第2章

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "第2章"

Transcription

1 第 2 章 企業の行動 : 第二部 ここでは 短期の供給曲線がなぜ右上がりになるのか述べます 企業は利潤を最大化すると仮定します (1) π = TR TC π : 利潤 TR : 総収入 TC : 総費用 企業は自己の生産物の価格 P に影響をしない と仮定します このことは 生 産物市場が完全競争市場であるということを意味します 詳しくは 完全競争 市場の定義について教科書などを参考にしてください 1 すると式 (1) は (2) π = P q ( VC + FC) VC : 可変費用 ( 生産量と共に変化する費用 ) FC : 固定費用 ( 生産量に関係なく 生じる費用 または 生産量がゼロでも生じている費用 ) 生産物市場が完全競争市場の場合 価格 P の上に が付いている意味は 価格 P が一定であるということです 企業の生産物 q に対する需要は水平であることを意味します 企業は生産物市場の 価格についてプライステイカーである ともいいます 生産物市場が寡占市場の場合 企業の生産が市場の生産物価格 P に影響する 企業の生産物 q に対する需要は右下がりであることを意味します [ 寡占 ] 独占 : 市場に企業が一つだけ存在し 類似品がない 複占 : 二つの企業が市場に存在する 1 ミクロ経済学について日本語で丁寧に良く書かれていると思われる教科書に 西村和雄 ミクロ経済学入門 ( 第 2 版 ) 岩波書店,1995 年 があります

2 独占的競争 : 二つ以上の企業が存在する 式 (2) に戻ります 生産物 ( 量 ) q について考えてみます 企業は生産において 原料 中間財 電気 水などに労働 L と資本 K を投入して q を製造 ( 生産 ) することになります 生産関数で表すと (3) q = f ( raw materials, int ermideate goods, electricities, water, labor, capital) となります ここでは これらの生産要素の価格が企業にとって決められていている状態 を想定します ( このことは これらの生産要素市場が完全競争であるというこ とを意味します ) 便宜上 ここで原料 中間財 電気 水等については 企業は既にこれ らを購入して必要なだけあるとします 注意 : 少々混乱しますが 生産物 q といって 具体的に数量で考えればなにも問題は無いのですが 数量ではなく貨幣単位として 付加価値 (value added) として考えるときがよく分析上行われます つまり 生産関数を式 (3) のように書くのではなく (4) q = f ( labor, capital) このように表示にします この表現では 生産物 q は付加価値となるので 企業 の生産活動による総価値から原材料や中間財などの諸費用を差し引いた残りと解釈します つまり 価値の純生産 ( つまり 付加価値 )q は労働と資本によっ

3 て生産されることを意味します 2 式 (4) についていえば 生産量 q を決定する要素は労働 L と資本 K です そして 経済学の企業行動分析として 短期 と 長期 の分析とに区別され ます 短期の企業行動 生産要素のうち少なくとも一つの要素が固定されている状態をいいます 式 (4) を使って表現すれば (5) q = f ( labor, capital is fixed.) = f ( L, K ) となります 長期の企業行動 すべての生産要素 ここでは労働も資本 が固定されていない生産活動をさし ます 式 (4) を使って表現すれば (6) q = g( labor, capial) = g( L, K) となります 式 (5) を式 (2) に代入して 短期の企業の利潤式を次のように表すことができます (7) π = Pq( L, K ) ( VC + FC) = Pq( L, K ) ( w L + r K ) 式 (7) について 先ほどの生産要素市場が完全競争であるという仮定をつかいますと 賃金率 w や利子率 r は市場で決定されているので 個々の企業にとって定数ということになります 3 2 経済学では式 (4) の生産物 q は付加価値ですが q を生産量として考えると理解しやすいです 3 賃金率 といいますと 通常一時間当たりの賃金を意味します すると 労働 L はそう労働時間数と考えます その他 もし労働 L を時間で測るのではなく 労働 L を被雇用者

4 すると 式 (7) はさらに (8) π = Pq( L, K ) ( VC + FC) = Pq( L, K ) ( w L + r K ) となります 賃金率 w や利子率 r の上に が付いていることに注意してください 式 (8) の意味するところは もし生産物市場 ( 企業の生産物が売買される市場 ) と生産要素市場 ( 企業が生産要素である労働や資本を購買する市場 ) が共に完全競争市場と仮定するならば 企業にとって労働雇用量の調整のみが利潤を決定することになります すると 利潤を最大にするために労働者 ( もしくは労働時間数 ) をどれほど雇 用したらよいかという問題がでてきます この労働雇用量を決めるために重要な要因として 生産関数 ( 生産量 q と労働者 L の雇用量の関係 ) が挙げられます 式 (8) の総収入の部分について Pq( L, K ) は 労働 L を一単位増やすと 総収入が K ) だけ増加します 注意 : は変化分とします 一方 式 (8) の総費用の部分について ( w L + r K ) は 労働 L を一単位増やすと 費用が w だけ増えます すると 労働を一単位増加させることによって 収入の変化と費用の変化をみると K ) > w であれば 利潤は増加する K ) = w であれば 利潤は変化しない K ) < w であれば 利潤は減少する ということが分かります の数で測るとすれば w は労働者一人当たりの一日の労働賃金として考えます 考え方はどちらでもいいです もし労働 L を被雇用者の数と考えると理解しやすくなるかもしれませんね

5 K ) について さらに q( L, K ) と労働 L の関係はどうなんだろうか? ここでは短期の企業行動を考えていますので 短期の生産関数の表現は式 (5) が それにあたりますので これについて調べる必要があります (9) 短期の生産関数 : q = f ( L, K ) この生産関数における生産物 ( または生産量 ) q と労働 L の関係について 限界性産力逓減の法則 (the law of diminishing marginal productivity) が成り立つと考えます この法則は経験法則といえます つまり 理論から導出されるのではなく 現実に観測されることです 限界生産力の逓減の法則 他の生産要素を固定して特定の生産要素の量を増加してゆくとき その限界 性産物が次第に減少してゆくという性質 ( 西村和雄 1995 年 447 ページ ) ( 下線部分は 付け加えました ) 生産量 q 図 1. 資本を一定にした場合における生産関数 q = f ( L, K ) E q L dq 点 Eにおける傾き= dl 0 L : 労働量 / 期間当たり

6 限界生産力 ( 限界性産物と同じ定義 ) 他の生産要素の投入量を一定にして特定の生産要素の量を一単位追加すると きの生産量の増加分 ( 西村和雄 1995 年 446 ページ ) 図 1で 限界生産物とは q 線上のある点における接線の傾きを意味します 接線 dq の傾き は 労働 L の増加につれてその傾きが次第に減少することが分かり dl ます 4 この関係を限界性産力逓減の法則といいます つまり 先ほどの K ) > w であれば 利潤は増加する K ) = w であれば 利潤は変化しない K ) < w であれば 利潤は減少する の関係において 労働量 L が増加するとそれにつれて生産量 q も増加するけれど も 追加労働一単位あたり増加分 つまり限界性産物 きます dq は次第に減少してゆ dl 労働雇用量が比較的に少ないときには限界性産物は大きかったのですが 雇用量が増加するにつれて次第に一人当たりの貢献度である q が次第に減少してゆくので K ) > w から K ) = w となります もし 雇用量が多すぎると K ) < w の現象が起きていれば 雇用量を減少させることが利潤を増加させることにつながります 以上の関係を式 (1) を使って表すと 利潤の最大化 : dπ dtr dtc (9) = = MR MC = 0 dq dq dq ここで dtr dtc = MR : 限界収入 = dq dq MC : 限界費用 と定義されるので 限界収入と 4 次第に減少する ことを 逓減 といいます

7 限界費用が等しい時に 利潤は最大になることが分かります 5 限界収入 6 生産量を 1 単位追加するときの総収入の増加分 限界費用 7 生産量を 1 単位追加することによって増加する費用 また 式 (2) をつかって表現すると次のようになります dπ dtr dtc dq dl 1 (10) = = P w = P w = 0 dq dq dq dq dq MP L MP L : 労働の限界生産力 ( 又は 限界生産物 ) P は 生産物市場が完全競争の企業にとっては限界収入であるから 式 (9) の関 w 係にならえばを限界費用と理解できます MP L 5 勿論 最大になるためには 2 階の条件 (the second order condition) は負になる必要があ d π d TR d TC dmr dmc ります : = = < dq dq dq dq dq 6 西村和雄 1995 年 446 ページ 7 西村和雄 1995 年 447 ページ

8 ここで 限界収入 ( つまり 生産物一単位あたりの価格 ) P と限界費用 MC を図に書いてみます 最初に 限界収入の P について この価格は生産物一単位あたり収入でから平 均収入ともいえます 生産物価格が企業の生産量に関係なく一定であるという ことは (X 軸に生産量 Y 軸に生産物価格をとる ) P 図 2. 限界収入 ( 及び平均収入 ) P 8 P となります 0 q w つぎに 限界費用のについてですが 図 1 から理解できるように 雇用量 MP L が増加するにつれて q が増加しますが 限界性産力 MP L は最初は増加するが次第 w に減少することから 限界費用 MC = は 最初に減少して 次第に増加す MP L ることがわかります 9 図では以下のようになります 8 この場合に 限界収入 P は一定なので 生産物価格である P は平均収入といえる w 9 つまり 限界費用の定義であるの 分子 w が一定であれば 分母 MPL の変化が MP L 限界費用に影響することになります

9 MC 図 3. 限界費用 MC 0 q 生産物市場が完全競争である場合に 企業は限界費用曲線をもとに自己の生産物の供給量を決定するのですが この限界費用曲線のすべてが供給曲線となるわけではありません 限界費用線の操業停止点より上の部分が 企業の供給曲線となります MC MC S 損益分岐点 操業停止点 S 0 q

DVIOUT-r0

DVIOUT-r0 4 企業の理論 4.1 企業行動の原則 ( ) のもとで,( )(profit) を ( ) するように, ( ) や ( ) を決定する 4.2 利潤 (profit) とは 利潤 = ( ) ( ) = ( ) ( ) ( ) (1) 4.2.1 総収入 (Total Revenue) とは 総収入 = ( ) = ( ) ( ) (2) 4.2.2 総費用 (Total Cost) とは 総費用

More information

産業組織論(企業経済論)

産業組織論(企業経済論) 産業組織論 ( 企業経済論 ) 第 6 回 井上智弘 2010/5/19 産業組織論第 6 回 1 完全競争市場の条件 前回の復習 1. 取引される財 サービスが同質的である. 2. 消費者と企業の数が十分に多く, 誰も価格に影響力を及ぼせない. 3. 情報が完全である. 4. 市場への参入と市場からの退出が自由である. 2010/5/19 産業組織論第 6 回 2 代替財と補完財 : 前回の復習»

More information

ミクロ経済学Ⅰ

ミクロ経済学Ⅰ 労働需要 労働力を雇う側の意思決定 労働力を雇うのは企業と仮定 企業は利潤を最大化する 利潤最大化する企業は どのように労働力を需要するか? まず 一定の生産量を生産する際の 費用最小化問題から考察する 企業の費用最小化 複数の生産要素を用いて生産活動を行なう企業を想定 min C( w, r; y) = wl + rk LK, subject to FKL (, ) y Cwr (, ; y) 費用関数

More information

PowerPoint Presentation

PowerPoint Presentation 3. 国民所得 : どこから来てどこへ行くのか (1) マクロ経済学 Ⅰ 1 概要 1. 今回のねらい 2. 長期と短期 3. 経済諸部門の相互関係 4. 供給の決定 5. 生産関数の典型的仮定 6. 企業の利潤最大化行動 7. 完全競争市場における企業利潤 8. 確認問題 マクロ経済学 Ⅰ 2 1. 今回のねらい ここまでの講義では GDP 消費者物 価指数 失業とは何かについて学んだ 今回から数回を使って

More information

PowerPoint Presentation

PowerPoint Presentation 3. 国民所得 : どこから来てどこへ行くのか (1) 基礎マクロ経済学 1 概要 1. 今回のねらい 2. 長期と短期 3. 経済諸部門の相互関係 4. 供給の決定 5. 生産関数の典型的仮定 6. 企業の利潤最大化行動 7. 完全競争市場における企業利潤 8. 確認問題 基礎マクロ経済学 2 1. 今回のねらい ここまでの講義では GDP 消費者物 価指数 失業とは何かについて学んだ 今回から数回を使って

More information

Microsoft Word - ミクロ経済学02-01費用関数.doc

Microsoft Word - ミクロ経済学02-01費用関数.doc ミクロ経済学の シナリオ 講義の 3 分の 1 の時間で理解させる技術 国際派公務員養成所 第 2 章 生産者理論 生産者の利潤最大化行動について学び 供給曲線の導出プロセスを確認します 2-1. さまざまな費用曲線 (1) 総費用 (TC) 固定費用 (FC) 可変費用 (VC) 今回は さまざまな費用曲線を学んでいきましょう 費用曲線にはまず 総費用曲線があります 総費用 TC(Total Cost)

More information

経済学 第1回 2010年4月7日

経済学 第1回 2010年4月7日 経済学 第 13 回 井上智弘 2010/7/7 経済学第 13 回 1 注意事項 次回 (7/14), 小テストを行う.» 企業の生産費用と完全競争市場における生産決定について 復習用に, 講義で使ったスライドをホームページにアップしている. http://tomoinoue.web.fc2.com/index.html 2010/7/7 経済学第 13 回 2 前回の復習 固定費用の水準を決めたときに導くことができる平均費用曲線のことを,

More information

経済学 第1回 2010年4月7日

経済学 第1回 2010年4月7日 経済学 第 11 回 井上智弘 2010/6/23 経済学第 11 回 1 注意事項 復習用に, 講義で使ったスライドをホームページにアップしている. http://tomoinoue.web.fc2.com/index.html 2010/6/23 経済学第 11 回 2 前回の復習 企業の生産量は投入量に依存し, 投入量と生産量の関係は, 生産関数として表される. 投入量が固定される投入物のことを固定投入物と呼ぶ.

More information

資本分配率と労働分配率は, 生産物についての資本 ( 企業 ) と労働 ( 家計 ) の分け前の 割合を表しています. 資本分配率は資本 K の右肩の数字 ( 指数 ) です.α がいつでも資本 分配率というわけではありません. 生産関数が L 率になります. K という形であれば,β が資本分配

資本分配率と労働分配率は, 生産物についての資本 ( 企業 ) と労働 ( 家計 ) の分け前の 割合を表しています. 資本分配率は資本 K の右肩の数字 ( 指数 ) です.α がいつでも資本 分配率というわけではありません. 生産関数が L 率になります. K という形であれば,β が資本分配 生産者行動の理論 のポイント 生産者とは企業のことを指します. 企業の目的は, 財 サービスを生産して販売して, 利潤 を得ることです. 企業は消費者と同じように合理的に行動するため, 利潤が最大 になるように生産活動を行います. 利潤最大化を目指す企業の行動を 供給曲線 という 一本の線で表してみましょう. 利潤は,( 利潤 )=( 総収入 )-( 総費用 ) で計算できます. よく使うので, TR

More information

生産者行動の理論(1)

生産者行動の理論(1) 生産者行動の理論 (1) 生産者の行動 利潤最大化 生産の技術的制約のもとで 生産の技術的制約 生産関数, 費用関数 短期と長期 生産関数の基礎概念 投入物と産出物 規模に関する収穫 限界生産物, 平均生産物 等量曲線 費用関数の基礎概念 短期と長期 固定費用, 可変費用 平均費用, 限界費用 生産者行動の理論 利潤最大化 生産の技術的制約のもとで, 利潤 = 収入ー費用を最大にするように行動 消費者行動

More information

Microsoft PowerPoint - 第8章.ppt [互換モード]

Microsoft PowerPoint - 第8章.ppt [互換モード] 第 8 章 供給曲線の裏側 : 投入物と費用 この章で学ぶこと : 第 3~6 章では需要曲線 供給曲線が与えられたときに 市場が均衡する様子を学習しました 第 7 章では個人や企業が合理的に意志決定する場合の原則を学習しました 供給曲線は財の生産を行う企業の意志決定によって導出されます 企業 : 投入物から財を生産する技術 ( 生産関数 ) を持つ 具体的にどのような意志決定によって右上がりの供給曲線が導出されるのでしょうか?

More information

Microsoft PowerPoint - 08economics4_2.ppt

Microsoft PowerPoint - 08economics4_2.ppt 経済学第 4 章資源配分と所得分配の決定 (2) 4.2 所得分配の決定 中村学園大学吉川卓也 1 所得を決定する要因 資源配分が変化する過程で 賃金などの生産要素価格が変化する 生産要素価格は ( 賃金を想定すればわかるように ) 人々の所得と密接な関係がある 人々の所得がどのように決まるかを考えるために 会社で働いている人を例にとる 2 (1) 賃金 会社で働いている人は 給与を得ている これは

More information

産業組織論(企業経済論)

産業組織論(企業経済論) 産業組織論 ( 企業経済論 ) 第 8 回 井上智弘 2010/6/2 産業組織論第 8 回 1 注意事項 次回 (6/9) は, 講義のはじめに小テストを行う.» 内容は, 完全競争市場の均衡を求める問題と ( 本日講義を行う ) 独占市場の均衡を求める問題. 講義の資料は, 授業終了後にホームページにアップしている. http://tomoinoue.web.fc2.com/index.html

More information

Microsoft Word 国家2種経済.doc

Microsoft Word 国家2種経済.doc NO.36 X 財と Y 財の 2 財について 所得変化及び価格変化が需要量に与える効果に関する次の記 述のうち妥当なのはどれか 1.X 財が下級財の場合には その財の需要の所得弾力性は1よりも小さくなり X 財と Y 財の間に描くことのできる所得 消費曲線は右上がりとなる 2.X 財 Y 財ともに上級財であり 両財が代替財の関係にある場合 X 財の価格が低下すると Y 財は代替効果によっても所得効果によっても需要量が減少するので

More information

ミクロ マクロ経済学演習 冬休みの宿題 担当 : 河田 学籍番号 氏名 2014 年 1 月 6 日 ( 月 )17 時までに 河田研究室 (514) まで提出すること 途中の式や思考過程はそのままにしておくこと

ミクロ マクロ経済学演習 冬休みの宿題 担当 : 河田 学籍番号 氏名 2014 年 1 月 6 日 ( 月 )17 時までに 河田研究室 (514) まで提出すること 途中の式や思考過程はそのままにしておくこと ミクロ マクロ経済学演習 冬休みの宿題 2013.12.18 担当 : 河田 学籍番号 氏名 2014 年 1 月 6 日 ( 月 )17 時までに 河田研究室 (514) まで提出すること 途中の式や思考過程はそのままにしておくこと < 需要の価格弾力性 > [ 解法の手順 ] 1 均衡点における需要の弾力性であれば 需要曲線と供給曲線の連立方程式を解き 均衡点の価格と需要量を求める 2 需要曲線上で

More information

独占と不完全競争

独占と不完全競争 独占と不完全競争 競争状態の分類 完全競争 perfect competition 多数の生産者, 同質の財を生産, 個々の生産者は価格支配力を持たない 独占 monopoly 生産者は一社 市場全体の需要曲線に直面 ( 価格をコントロールできる ) 不完全競争 imperfect competition 完全競争でも独占でもない状況 寡占 oligopoly 独占的競争 monopolistic

More information

Microsoft PowerPoint - 09macro3.ppt

Microsoft PowerPoint - 09macro3.ppt マクロ経済学 [3] 第 3 章設備投資と在庫投資 何のために投資をするのか 中村学園大学吉川卓也 目次 3-1 企業の設備投資 3-2 投資の決定要因 3-3 3-4 資本の使用者費用 3-5 望ましい 1 2 投資とは 1. 消費とは ( 主として ) 家計による財 サービスの購入である 2. 投資とは ( 主として ) 企業が生産のためにおこなう財 サービスの購入である 3. 設備投資とは 民間企業が建物や機械

More information

2004年度経済政策(第1回)

2004年度経済政策(第1回) 2018 年度前期 ミクロ経済学概論 ( 第 7 回 ) 萩原史朗 ( 地域文化学科地域社会講座 ) 研究室 : 教育文化学部 3 号館 3-330 E-mail:hagihara@ed.akita-u.ac.jp ミクロ経済学概論 ( 第 7 回 ) 1 ミクロ経済学のフローチャート 経済主体が多数の場合 ミクロ経済学 価格理論 経済主体が少数の場合 消費者の効用最大化 需要曲線 企業の利潤最大化

More information

Ⅲ 特殊的要素モデル(Specific Factor Model)

Ⅲ 特殊的要素モデル(Specific Factor Model) 特殊的要素モデル (Specific actor Model) 07 年 5 月 9 日 07 年度前期大学院 理論の背景 Jones,R.W. (97), A Three-actor Model in Theory, Trade, and History, in Bhagati,J., R.W.Jones, and J.Vanek (eds.), Trade, Balance of ayments

More information

シラバス-マクロ経済学-

シラバス-マクロ経済学- 経済原論 Ⅱ(4/211) マンキュー第 3 章 1 第 2 部長期分析マクロ経済の ( 新 ) 古典派モデル 諸価格が完全に伸縮的であると想定 すべての生産要素は完全に雇用 ( 使用 ) される ( すべての生産要素が用いられるように価格がきちんと変化する ) 第 3 章国民所得 : どこから来てどこに行くのか 3-1. 財 サービスの総生産を決めるのは何か ( 生産関数 ) GD は 生産要素の投入量によって決まる

More information

ミクロ マクロ経済学演習 冬休みの宿題 担当 : 河田 学籍番号 氏名 模範解答 2014 年 1 月 6 日 ( 月 )17 時までに 河田研究室 (514) まで提出すること 途中の式や思考過程はそのままにしておくこと

ミクロ マクロ経済学演習 冬休みの宿題 担当 : 河田 学籍番号 氏名 模範解答 2014 年 1 月 6 日 ( 月 )17 時までに 河田研究室 (514) まで提出すること 途中の式や思考過程はそのままにしておくこと ミクロ マクロ経済学演習 冬休みの宿題 013.1.18 担当 : 河田 学籍番号 氏名 模範解答 014 年 1 月 6 日 ( 月 )17 時までに 河田研究室 (514) まで提出すること 途中の式や思考過程はそのままにしておくこと < 需要の価格弾力性 > [ 解法の手順 ] 1 均衡点における需要の弾力性であれば 需要曲線と供給曲線の連立方程式を解き 均衡点の価格と需要量を求める 需要曲線上で

More information

経済学 第1回 2010年4月7日

経済学 第1回 2010年4月7日 経済学 第 12 回 井上智弘 2010/6/30 経済学第 12 回 1 注意事項 復習用に, 講義で使ったスライドをホームページにアップしている. http://tomoinoue.web.fc2.com/index.html 2010/6/30 経済学第 12 回 2 前回の復習 限界費用 (MC) とは, 追加的に 1 単位生産量を増やすときの総費用の増加分のこと. 平均費用 (AC) とは,

More information

7. 1 max max min f g h h(x) = max{f(x), g(x)} f g h l(x) l(x) = min{f(x), g(x)} f g 1 f g h(x) = max{f(x), g(x)} l(x) = min{f(x), g(x)} h(x) = 1 (f(x)

7. 1 max max min f g h h(x) = max{f(x), g(x)} f g h l(x) l(x) = min{f(x), g(x)} f g 1 f g h(x) = max{f(x), g(x)} l(x) = min{f(x), g(x)} h(x) = 1 (f(x) 7. 1 ma ma min f g h h() = ma{f(), g()} f g h l() l() = min{f(), g()} f g 1 f g h() = ma{f(), g()} l() = min{f(), g()} h() = 1 (f() + g() + f() g() ) 2 1 1 l() = 1 (f() + g() f() g() ) 2 2 1 45 = 2 e 1

More information

(8 p) s( p) = = ( 8) p = ( p 8) したがって, 固定費用が全く存在しない場合, 完全に固定費用の支払いを回避できる場合には, どちらの場合にも供給

(8 p) s( p) = = ( 8) p = ( p 8) したがって, 固定費用が全く存在しない場合, 完全に固定費用の支払いを回避できる場合には, どちらの場合にも供給 第 11 章完全競争企業と完全競争 練習問題 11.1 の解答 ( 固定費用のうち )100 万ドルは ( 生産をやめたとしても ) 支払いを回避できないので, 企業にとっての 実質的な 総費用関数は, 400万 + 5 x+ x /10,000 となる 企業はこの 実質的な 費用関数により決まる平均費用の最小値よりも低い任意の価格 p の下では, 生産 を行わない 平均費用の最小値を求めるには,

More information

Microsoft PowerPoint - 08economics3_2.ppt

Microsoft PowerPoint - 08economics3_2.ppt 経済学第 3 章の決定とその変化 3.2 需要曲線のシフトと財のの変化 中村学園大学吉川卓也 1 代替財のの変化 みかんのが上昇 ( 低下 ) すると みかんの代替財であるりんごの需要曲線は右 ( 左 ) へシフトする ( 第 2 章 ) 図 3.2は みかんのが上昇したことによりりんごの需要曲線が右シフトしたとき りんごがどのように変化するかを示している みかんの上昇前 : りんごの供給曲線 とりんごの需要曲線

More information

Microsoft PowerPoint - 15kiso-macro03.pptx

Microsoft PowerPoint - 15kiso-macro03.pptx 基礎マクロ経済学 (05 年前期 ) 3. 国民所得 担当 : 小塚匡文 3. 国民所得 3. 決定要因 教科書 66 頁の図 3-より 貨幣の流れを見てみよう これを踏まえ 基本的な古典派モデルで考察 < 生産要素 > 生産に必要なもの ( 原材料以外で ) 資本 ( 設備 ) と労働者 これらの生産性は分配にも影響する < 生産関数 > 生産要素の数量と産出量 ( 財 サービスの供給量

More information

消費者余剰の損失分は 780 ドルとなる 練習問題 13.2 の解答公式を導出する際に重要なことは, 課税のよる価格の変化, 取引量の変化, 逆供給曲線と逆需要曲線の傾きを正しく図で描写することである これが正しくできればその他の公式は簡単である 残りの 2 つの公式を導出するために, 図 13.1

消費者余剰の損失分は 780 ドルとなる 練習問題 13.2 の解答公式を導出する際に重要なことは, 課税のよる価格の変化, 取引量の変化, 逆供給曲線と逆需要曲線の傾きを正しく図で描写することである これが正しくできればその他の公式は簡単である 残りの 2 つの公式を導出するために, 図 13.1 第 13 章市場介入 : 課税 補助金 管理価格および数量割当 練習問題 13.1 の解答まず課税前の均衡を求めよう 課税前の均衡は需要 = 供給の条件より, 以下の式が成立することで求められる 2000( p 4) = 1000(10 p) より 2p 8= 10 p, 3p = 18となるので p = 6 ドルとなる このとき均衡取引量は 4000 単位となる 需要関数の傾きは-1000 であるので,

More information

Microsoft PowerPoint - 13economics5_2.pptx

Microsoft PowerPoint - 13economics5_2.pptx 経済学概論資料 5(2) 改訂版 吉川卓也 6.3 寡占 1. 寡占と複占 寡占とは ある産業で財 サービスを供給する企業の数が少数しかなく それぞれの企業が価格支配力をある程度もっており 他の企業の行動によって影響される状態をいう 寡占のなかで 企業数が2の場合を複占という たとえば 日本ではビール産業は事実上 4 社の寡占である 外国では多数の企業が生産をおこなっている 2 他方で 日本酒の市場は多くのメーカーが競合している

More information

【No

【No No. 3 ある個人は働いて得た賃金の全てをY 財の購入に支出するものとする この個人の効用関数が u = x 3 y u: 効用水準 x:1 年間 (365 日 ) における余暇 ( 働かない日 ) の日数 y:y 財 の消費量で示され Y 財の価格が 労働 1 日あたりの賃金率が4であるとき この個人の1 年間 (365 日 ) の労働日数はいくらか ただし この個人は効用を最大にするように行動するものとする

More information

では もし企業が消費者によって異なった価格を提示できるとすれば どのような価格設定を行えば利潤が最大になるでしょうか その答えは 企業が消費者一人一人の留保価格に等しい価格を提示する です 留保価格とは消費者がその財に支払っても良いと考える最も高い価格で それはまさに需要曲線で表されています 再び図

では もし企業が消費者によって異なった価格を提示できるとすれば どのような価格設定を行えば利潤が最大になるでしょうか その答えは 企業が消費者一人一人の留保価格に等しい価格を提示する です 留保価格とは消費者がその財に支払っても良いと考える最も高い価格で それはまさに需要曲線で表されています 再び図 産業組織 B 講義資料 (8) (8) 企業戦略 (ⅰ)- 価格差別 - 産業組織 A では主に寡占市場の構造について学びました ここからは企業の利潤最大化行動を詳しく分析していきましょう まず 価格差別 について学びます 映画館で映画を観るとき 大学生である皆さんは学生証を提示し 大学生料金 を支払いますよね? いわゆる 学割 というもので 普通の大人料金よりも安く映画を観ることが出来るわけです

More information

(c) 規模に関して収穫一定の生産技術をもっているから, 総費用は直線で表され, また平均費用も限界費用も同様に直線で表されかつフラットな形状になる. 問 (b) の解答より, 1 脚当たりの総費用は $65( $390 / 6 ) であるから, 各費用関数は図 9.12 のように描くことができる.

(c) 規模に関して収穫一定の生産技術をもっているから, 総費用は直線で表され, また平均費用も限界費用も同様に直線で表されかつフラットな形状になる. 問 (b) の解答より, 1 脚当たりの総費用は $65( $390 / 6 ) であるから, 各費用関数は図 9.12 のように描くことができる. 第 9 章生産技術と費用最小化 練習問題 9.1 の解答 (a) 椅子 4 脚および 6 脚に対応する等量曲線は以下の図 9.10 のようになる.6 脚の場合の等量曲線について説明しておこう. 最低 12 時間の労働と 6 時間の旋盤加工が必要であり, かつ, 合計 36 時間の投入要素の組み合わせが必要になる. (b) 図 9.11 を用いて, 椅子 6 脚をつくる場合の最も安価な生産方法を求めてみる,

More information

産業組織論(企業経済論)

産業組織論(企業経済論) 産業組織論 ( 企業経済論 ) 第 9 回 井上智弘 2010/6/9 産業組織論第 9 回 1 注意事項 小テストを行う. 講義の資料は, 授業終了後にホームページにアップしている. http://tomoinoue.web.fc2.com/index.html 2010/6/9 産業組織論第 9 回 2 前回の復習 独占市場には, 他の企業の参入を防ぐ参入障壁が存在する. 1 生産要素の独占 2

More information

Adobe Photoshop PDF

Adobe Photoshop PDF 基礎知識 300 ミクロ経済学 # 3 消費者行動の理論 無差別曲線 / ミクロ経済学 とつ以下の図は X 財と Y 財に関する無差別曲線である この無差別曲線は 原点に対して凸であり かつ原点からみて東北方向ほど効用水準が高い特徴がある 図内の A から D における消費の組み合わせの特徴を述べなさい 解説ビデオクリップ無差別曲線 (indifference curve) とは同じ効用が得られる財の組み合わせを結んだ曲線である

More information

Microsoft PowerPoint - 08macro6.ppt

Microsoft PowerPoint - 08macro6.ppt マクロ経済学 [6] 第 6 章乗数理論と IS-LM 分析 目次 6- ケインズ経済学の登場 6- 有効需要の原理 6-3 乗数理論 中村学園大学吉川卓也 6- ケインズ経済学の登場 古典派経済学に代わるマクロ経済学の考え方. 一般理論 が生まれた背景 ケインズ経済学とは 総需要 ( 一国全体の需要 マクロの需要 ) に注目した経済学である ケインズJohn Maynard Keynes (883-946)

More information

限界効用は以下のようにして求められます. du d U この式は U という式を で微分する という意味です. 微分ていったい何なのさ で確認しておきましょう. 微分は接線の傾きを求めることでした. 限界効用も, 接線の傾きとして求められます. こちらの方がよく使われますので, マスターしておきまし

限界効用は以下のようにして求められます. du d U この式は U という式を で微分する という意味です. 微分ていったい何なのさ で確認しておきましょう. 微分は接線の傾きを求めることでした. 限界効用も, 接線の傾きとして求められます. こちらの方がよく使われますので, マスターしておきまし 1. 消費者行動の理論 のポイント この章では, 私たち ( 家計 ) が財 サービスを購入する際にどのような行動を取っているのかを, 効用最大化 という視点から分析します. また, 家計の消費行動を 需要曲線 という一本の線で表すことを考えてみましょう. この章では, 消費 と 需要 という言葉が出てきますが, とりあえず両者は同じものだと考えておいてください. 1-1. 効用 消費者 : 財 サービスを購入して消費する経済主体

More information

経済と社会

経済と社会 寡占 戦略的行動と経済取引 ( ゲーム理論入門 ) 9. 寡占競争 寡占 (olgooly): ある市場に 社以上のごく少数の企業のみが存在する状態 企業間に戦略的相互依存関係が存在 例 : ある企業が生産量 市場 他企業の利潤 その他の市場構造 : 独占 (monooly): 市場に存在するのは 社のみ 完全競争 (erfect cometton): 各企業は市場を与えられたものとして行動 独占的競争

More information

ミクロ経済学入門

ミクロ経済学入門 ミクロ経済学入門 1. ミクロ経済学とは何か ミクロ経済学とマクロ経済学 部分均衡分析と一般均衡分析 ミクロ経済学の方法論的特徴 応用分野 2. ミクロ経済学の基礎概念 需要曲線, 供給曲線 市場均衡, 消費者余剰 生産者余剰 3. 価格メカニズムの役割 ミクロ経済学とは何か マクロ経済学 経済全体の動きを大まかに捉える 簡単な連立方程式体系 (IS-LM 分析など ) 家計や企業 : 合理的な意思決定

More information

経済情報処理のための Mathematica 課題 改訂新里 課題 1 微分次の関数を微分せよ 1 f(x)=x 3-2x+x/(x+1) 2 f(x)=(x+1)(x 2 +1)-1/(x 3 +1) 3 f(x)=(2x+3)(x 3-2)+(2x+3)/(x 2 +1) 課題

経済情報処理のための Mathematica 課題 改訂新里 課題 1 微分次の関数を微分せよ 1 f(x)=x 3-2x+x/(x+1) 2 f(x)=(x+1)(x 2 +1)-1/(x 3 +1) 3 f(x)=(2x+3)(x 3-2)+(2x+3)/(x 2 +1) 課題 経済情報処理のための Mathematica 課題 2010.3.8 改訂新里 課題 1 微分次の関数を微分せよ 1 f(x)=x 3-2x+x/(x+1) 2 f(x)=(x+1)(x 2 +1)-1/(x 3 +1) 3 f(x)=(2x+3)(x 3-2)+(2x+3)/(x 2 +1) 課題 2 微分, 平均, グラフ MC(Marginal Cost) 曲線と AC(Average Cost)

More information

短期均衡(2) IS-LMモデル

短期均衡(2) IS-LMモデル 短期均衡 (2) IS-LM モデル 財市場 IS 曲線 財市場の均衡 政府支出の増加, 減税 貨幣市場 LM 曲線 貨幣需要, 貨幣市場の均衡 マネーサプライの増加 IS-LMモデル 財政政策の効果, 金融政策の効果 流動性の罠 実質利子率と名目利子率の区別 貨幣供給 財市場の均衡 財市場の均衡条件 Y=C(Y-T)+I(r)+G 貸付資金市場の均衡条件 S=Y-C(Y-T)-G S=I(r) 所得

More information

い最適消費点 ) を E 1 と記入しなさい 接点の位置は任意でよい (7)E 0 と E 1 を結んだ曲線の名前は, ( 価格消費 ) 曲線という 問 3.( 1) 下表のカッコ内に 増加 か 減少 の言葉を入れなさい (2) ギッフェン財は上の表では ( 3 ) 番のケースにあたる - 2 -

い最適消費点 ) を E 1 と記入しなさい 接点の位置は任意でよい (7)E 0 と E 1 を結んだ曲線の名前は, ( 価格消費 ) 曲線という 問 3.( 1) 下表のカッコ内に 増加 か 減少 の言葉を入れなさい (2) ギッフェン財は上の表では ( 3 ) 番のケースにあたる - 2 - ミクロ経済学入門 新版 吉田良生 / 角本伸晃 / 青木芳将 / 久下沼仁笥 / 水野英雄著成文堂 2014 年 第 1 章 練習問題 解答 問 1. 次の文章のカッコ内に適切な言葉を入れなさい 海外旅行のようなぜいたく品は価格が下がると需要量が大きく増える ので, 需要の価格弾力性の値が 1 より ( 大き ) く, 米やトイレット ペーパーなどの必需品は価格が下がっても需要量はあまり増えないの

More information

これは を 1 増やすと, はどうなるか という文章になっています. 微分とい う計算は, この問題を解くときに使われます. 微分の式は, d d のように記述します.d は (differetial: 微分 ) の頭文字です. この式は, を で 微分する という記号です. この式は つに分解する

これは を 1 増やすと, はどうなるか という文章になっています. 微分とい う計算は, この問題を解くときに使われます. 微分の式は, d d のように記述します.d は (differetial: 微分 ) の頭文字です. この式は, を で 微分する という記号です. この式は つに分解する 微分っていったい何なのさ ミクロ経済学では, 必ずといっていいほど 微分 が出てきます. 数学は嫌いだという気持ちは良く分かるのですが ( 私もそうですから ), 微分とケンカをしてもいいことは何もありません. 微分は 頭で考えるものではなく, 体で覚えるもの と割り切って, できるだけ早いうちにマスターしてしまいましょう 1.. 例えばこんなときに微分を使う ゆーちょこぼ自動車 ( 株 ) のガーン社長は,

More information

<94F68DE EA C2E6D6364>

<94F68DE EA C2E6D6364> 名城論叢 2006 年 3 13 平均可変費 と平均費 を最 にする 産量の関係 尾崎雄 郎 ミクロ経済学において完全競争下の企業や独占企業の利潤最 化 動など多くの問題が短期の総費 曲線や平均費 曲線, 限界費 曲線などを いて分析される. 短期の総費 曲線は, 産量の増加関数で, 通常 分に湾曲し, 滑らかで, 逆 S 字型をしていて, 正の総固定費 を伴うと想定される. ミクロ経済学の多くの教科書においてこのような形状の総費

More information

数学の学び方のヒント

数学の学び方のヒント 数学 Ⅱ における微分単元の 指導法の改善に関する研究 2017 年 10 月北数教旭川大会で発表した内容です 北海道札幌国際情報高等学校和田文興 1 Ⅰ. 研究の動機と背景 高校では極限を厳密に定義できず, 曖昧でわかりにくい. 私自身は, はじめて微分と出会ったとき, 極限の考え方等が納得できなかった. y () a h 接線 a 傾き (a) 2 Ⅰ. 研究の動機と背景 微分の指導改善に関する優れた先行研究がいくつかあるが,

More information

Microsoft PowerPoint - 15kiso-macro09.pptx

Microsoft PowerPoint - 15kiso-macro09.pptx 基礎マクロマクロ経済学 (2015 年度前期 ) 9. 総需要 :IS-LM 分析の応用担当 : 小塚匡文 9.1 IS-LM 分析の応用 : 短期均衡の変化 < 政府購入の変更 > 政府購入が ΔG だけ増えた場合 ( 拡張的財政政策 ) IS 曲線は右シフトし 仮に金利が一定であるとすれば 所得 生産は 1 = G 1 ( MPC) だけ増加 ( : ケインジアン クロスと乗数効果 ) LM 曲線との交点

More information

様々なミクロ計量モデル†

様々なミクロ計量モデル† 担当 : 長倉大輔 ( ながくらだいすけ ) この資料は私の講義において使用するために作成した資料です WEB ページ上で公開しており 自由に参照して頂いて構いません ただし 内容について 一応検証してありますが もし間違いがあった場合でもそれによって生じるいかなる損害 不利益について責任を負いかねますのでご了承ください 間違いは発見次第 継続的に直していますが まだ存在する可能性があります 1 カウントデータモデル

More information

Microsoft PowerPoint - 15kiso-macro10.pptx

Microsoft PowerPoint - 15kiso-macro10.pptx 基礎マクロ経済学 (2015 年度 ) 10. マンデル = フレミングモデルと為替相場制度担当 : 小塚匡文 総需要分析の拡張 マンデル = フレミングモデルで国際金融や貿易を考える マンデル = フレミングモデルは IS-LM と非常に近い関係 ( 財と貨幣の 2 つの市場の相互関係 ) 小国開放経済を想定 ( かつ資本移動は完全 ) 例えばアメリカに対するカナダのような存在 国民所得モデル +

More information

<4D F736F F D20837D834E838D97FB8F4B96E291E889F090E091E682528FCD81698FAC97D1816A>

<4D F736F F D20837D834E838D97FB8F4B96E291E889F090E091E682528FCD81698FAC97D1816A> 第 3 章 GDP の決定 練習問題の解説 1. 下表はある国の家計所得と消費支出です 下記の設問に答えなさい 年 所得 (Y) 消費支出 (C) 1 年目 25 15 2 年目 3 174 (1) 1 年目の平均消費性向と平均貯蓄性向を求めなさい (2) 1 年面から 2 年目にかけての限界消費性向を求めなさい 解答 (1).6 と.4 (2).48 解説 (3 頁参照 ) (1) 所得に対する消費の割合が平均消費性向です

More information

<4D F736F F D20837D834E838D8C6F8DCF8A77838C D A>

<4D F736F F D20837D834E838D8C6F8DCF8A77838C D A> マクロ経済学の考え方 マクロ経済学では 国民所得 ( またはGDP) をどうすれば増やすかを考える学問である 通常の商品と同じように 需要と供給にわけて考えて 需要と供給が均衡したところで 国民所得が決まると考える ケインズ経済学では 需要が決まればそれに応じた供給は生み出されると考えており 需要がどのようにして決まるかを重視する ただ 需要から決まってくる均衡国民所得が 労働者全体の雇用を満たすとは限らない

More information

<4D F736F F D208CF68BA48C6F8DCF8A C31312C CC295CA8FC194EF90C582C697988E718F8A93BE90C52E646F63>

<4D F736F F D208CF68BA48C6F8DCF8A C31312C CC295CA8FC194EF90C582C697988E718F8A93BE90C52E646F63> 年 月 4 日 ( 水曜 3 限 )/6. 個別消費税と利子所得課税. 一括固定税と超過負担 財 と財 に関する個人の消費選択のモデルを用いて 一括固定税の効果と超過負担について検討しよう なお 一括固定税とは 個人が行動を変化させても税額が変化しない税 であり 人頭税がその例である < 税の存在しない場合の予算制約式 > 財 i の量を x i 税が存在しないもとでの財 i の価格を pi とする

More information

<4D F736F F F696E74202D20837E834E838D2D91E6428FCD EF97708DC58FAC89BB96E291E E707074>

<4D F736F F F696E74202D20837E834E838D2D91E6428FCD EF97708DC58FAC89BB96E291E E707074> B.3 費用最小化問題 生産要素価格 生産量所与 生産費用を最小化する生産要素投入量の決定 利潤最大化問題より まずは費用最小化問題 1 利潤最大化の必要条件 2 利潤最大化問題 = 生産財価格の受容者としての 利潤最大化問題 収穫一定 規模の経済の下で不適 1 B.3.1. 生産費用の概念 定義 B.26 固定費用 -fied cost 生産計画期間中に投入量変更不可な生産要素費用 1 埋没費用

More information

microecon-intro-01.ppt

microecon-intro-01.ppt ando.munetomo@nihon-u.ac.jp 201092 / 1 2 2-1 2-2 3 3 4 by Mankiw 5 6 () 124 7 89 8 () ( ) () 9 10 by Mankiw () 4 1. 2. 3. 4. 11 12 AB 220 AB Avw Bxy (w-v+(x-y)) () 13 14 220 100 220-100=120 300 220 300-220=80

More information

Microsoft Word - microeconomics_2017_social_welfare11

Microsoft Word - microeconomics_2017_social_welfare11 2017 春経済原論 ( ミクロ経済学 ) 2017 年 6 月 20 日 3 なぜ市場均衡が望ましいのか ( つづき ) 価格, 限界費用, 限界効用 B D 需要曲線 K F = 限界効用曲線 E C G A 供給曲線 = 限界費用曲線 O X 1 X * X 2 需要量, 供給量 ケース 1 X * ( 市場均衡 ) まで生産して消費する場合限界効用の合計 (= 総効用 )= OX * EB

More information

切片 ( 定数項 ) ダミー 以下の単回帰モデルを考えよう これは賃金と就業年数の関係を分析している : ( 賃金関数 ) ここで Y i = α + β X i + u i, i =1,, n, u i ~ i.i.d. N(0, σ 2 ) Y i : 賃金の対数値, X i : 就業年数. (

切片 ( 定数項 ) ダミー 以下の単回帰モデルを考えよう これは賃金と就業年数の関係を分析している : ( 賃金関数 ) ここで Y i = α + β X i + u i, i =1,, n, u i ~ i.i.d. N(0, σ 2 ) Y i : 賃金の対数値, X i : 就業年数. ( 統計学ダミー変数による分析 担当 : 長倉大輔 ( ながくらだいすけ ) 1 切片 ( 定数項 ) ダミー 以下の単回帰モデルを考えよう これは賃金と就業年数の関係を分析している : ( 賃金関数 ) ここで Y i = α + β X i + u i, i =1,, n, u i ~ i.i.d. N(0, σ 2 ) Y i : 賃金の対数値, X i : 就業年数. ( 実際は賃金を就業年数だけで説明するのは現実的はない

More information

<4D F736F F D E937897FB8F4B96E291E882CC914F94BC959495AA82CC89F0939A>

<4D F736F F D E937897FB8F4B96E291E882CC914F94BC959495AA82CC89F0939A> 練習問題 1 章練習問題 1. 名目 GD 実質 GD GD デフレータに関して以下の問いに答えなさい 1-1: 1974 年の日本の名目 GD は対前年比で 20% の上昇を示したのに 実質 GD は 1% の下落であった このとき GD デフレータは対前年比で何 % 変化したか (21%) 1-2: 1997 年の日本の名目 GD は対前年比で 2% の下落を示したが GD デフレータも 4%

More information

Microsoft PowerPoint - 15InMacro4.pptx

Microsoft PowerPoint - 15InMacro4.pptx 第 4 章貨幣とインフレーション 初級マクロ経済学 1(2015 年度 ) 担当 : 中川竜一 第 4 章のテーマ (1/2) 価格 : 貨幣が財 サービスと交換される比率 インフレーション : 言い換えれば インフレーション : 激しいインフレ 2 : 逆の現象 インフレの原因 影響 社会的コストを学ぶ 古典派の理論 ( 価格伸縮的な長期の経済 ) 日本のインフレーション 3 25 年率 (%)

More information

Microsoft Word - t30_西_修正__ doc

Microsoft Word - t30_西_修正__ doc 反応速度と化学平衡 金沢工業大学基礎教育部西誠 ねらい 化学反応とは分子を構成している原子が組み換り 新しい分子構造を持つことといえます この化学反応がどのように起こるのか どのような速さでどの程度の分子が組み換るのかは 反応の種類や 濃度 温度などの条件で決まってきます そして このような反応の進行方向や速度を正確に予測するために いろいろな数学 物理的な考え方を取り入れて化学反応の理論体系が作られています

More information

ゲーム理論

ゲーム理論 初歩から学ぶクールノー競争とベルトラン競争 渡辺隆裕首都大学東京 Dec 5, 015 1 構成 ベンチマーク独占企業の行動同質財の市場とクールノー競争クールノー競争下でのコストダウン製品差別化とベルトラン競争ベルトラン競争下でのコストダウン戦略的代替と戦略的補完 Dec 5, 015 ベンチマーク : 独占企業の行動 線形モデルによる分析 Dec 5, 015 市場構造の分類とゲーム理論 完全競争市場

More information

Excelを用いた行列演算

Excelを用いた行列演算 を用いた行列演算 ( 統計専門課程国民 県民経済計算の受講に向けて ) 総務省統計研究研修所 この教材の内容について計量経済学における多くの経済モデルは連立方程式を用いて記述されています この教材は こうした科目の演習においてそうした連立方程式の計算をExcelで行う際の技能を補足するものです 冒頭 そもそもどういう場面で連立方程式が登場するのかについて概括的に触れ なぜ この教材で連立方程式の解法について事前に学んでおく必要があるのか理解していただこうと思います

More information

(2) 出題分析のポイントミクロは 5 問とも得点しやすい典型的なパターンの計算問題ミクロ経済学 5 問はすべて計算でした 5 問共にⅥ 計算マスター編に出ている典型的な問題であり 計算問題をある程度練習すれば全問正解も可能な出題でした 内容的には Ⅱミクロ編の範囲が 4 問 Ⅳ 上級ミクロ編の範囲

(2) 出題分析のポイントミクロは 5 問とも得点しやすい典型的なパターンの計算問題ミクロ経済学 5 問はすべて計算でした 5 問共にⅥ 計算マスター編に出ている典型的な問題であり 計算問題をある程度練習すれば全問正解も可能な出題でした 内容的には Ⅱミクロ編の範囲が 4 問 Ⅳ 上級ミクロ編の範囲 国家公務員 Ⅱ 種の経済学 2007 年 7 月 26 日 経済学入門塾講師 : 石川秀樹 国家公務員 Ⅱ 種は 通称 国 Ⅱ: こくに と呼ばれますので ここでも国 Ⅱ ( こくに ) と呼ぶこととしましょう 1. 国 Ⅱ 試験の概要 受験資格 受験科目など試験概要は人事院のサイトをご覧ください http://www.jinji.go.jp/saiyo/shiken.htm 2.2007 年国 Ⅱ

More information

Microsoft Word - 演習問題解答(第1から第12)最終修正済.docx

Microsoft Word - 演習問題解答(第1から第12)最終修正済.docx 吉田真理子 荒田映子著 ミクロ経済学の理論と演習 中央経済社, 03 年 演習問題の解答 解説 第 章ミクロ経済学と消費者 () 右下がりの曲線であることは 選好順序の単調性の仮定から図表 を用いて説明する () 右上方の無差別曲線ほど効用が高くなることは () と同様に選好順序の単調性の仮定から図表 を用いて説明する (3) 原点に対して凸の曲線であることは 選好順序の凸性の仮定の下では無差別曲線が図表

More information

曲線 = f () は を媒介変数とする自然な媒介変数表示 =,= f () をもつので, これを利用して説明する 以下,f () は定義域で連続であると仮定する 例えば, 直線 =c が曲線 = f () の漸近線になるとする 曲線 = f () 上の点 P(,f ()) が直線 =c に近づくこ

曲線 = f () は を媒介変数とする自然な媒介変数表示 =,= f () をもつので, これを利用して説明する 以下,f () は定義域で連続であると仮定する 例えば, 直線 =c が曲線 = f () の漸近線になるとする 曲線 = f () 上の点 P(,f ()) が直線 =c に近づくこ 伊伊伊伊伊伊伊伊伊伊 伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊 漸近線の求め方に関する考察 たまい玉井 かつき克樹 伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊 伊伊伊伊伊伊伊伊伊伊. 漸近線についての生徒からの質問 数学において図を使って直感的な説明を与えることは, 理解を深めるのに大いに役立つ

More information

数学 Ⅲ 微分法の応用 大学入試問題 ( 教科書程度 ) 1 問 1 (1) 次の各問に答えよ (ⅰ) 極限 を求めよ 年会津大学 ( 前期 ) (ⅱ) 極限値 を求めよ 年愛媛大学 ( 前期 ) (ⅲ) 無限等比級数 が収束するような実数 の範囲と そのときの和を求めよ 年広島市立大学 ( 前期

数学 Ⅲ 微分法の応用 大学入試問題 ( 教科書程度 ) 1 問 1 (1) 次の各問に答えよ (ⅰ) 極限 を求めよ 年会津大学 ( 前期 ) (ⅱ) 極限値 を求めよ 年愛媛大学 ( 前期 ) (ⅲ) 無限等比級数 が収束するような実数 の範囲と そのときの和を求めよ 年広島市立大学 ( 前期 数学 Ⅲ 微分法の応用 大学入試問題 ( 教科書程度 )1 問 1 (1) 次の各問に答えよ (ⅰ) 極限 を求めよ 年会津大学 ( 前期 ) (ⅱ) 極限値 を求めよ 年愛媛大学 ( 前期 ) (ⅲ) 無限等比級数 が収束するような実数 の範囲と そのときの和を求めよ 年広島市立大学 ( 前期 ) (2) 次の関数を微分せよ (ⅰ) を正の定数とする (ⅱ) (ⅳ) (ⅵ) ( 解答 )(1) 年群馬大学

More information

Microsoft PowerPoint - 08macro2_1.ppt

Microsoft PowerPoint - 08macro2_1.ppt 目次 マクロ経済学 [2.1] 1. ケインズ型の消費関数 第 2 章消費と貯蓄はどのように決まるか 1. 可処分所得と消費 2. ケインズ型の消費関数の図解. 貯蓄関数 2. ケインズ型の消費関数の説明力 中村学園大学吉川卓也 1. 2 つのタイプのデータ 2. クロスセクション データの結果. 長期の時系列データの結果. 短期の時系列データの結果 5. 矛盾する推計結果 1 2 目次 目次 6.

More information

「経済政策論(後期)《運営方法と予定表(1997、三井)

「経済政策論(後期)《運営方法と予定表(1997、三井) 0 年 月 6 日 ( 水曜 3 限 )/6 0. 個別消費税と利子所得課税 0. 一括固定税と超過負担 財 と財 に関する個人の消費選択のモデルを用いて 一括固定税の効果と超過負担につ いて検討しよう なお 一括固定税とは 個人が行動を変化させても税額が変化しない税 であり 人頭税がその例である < 税の存在しない場合の予算制約式 > 財 i の量を x 税が存在しないもとでの財 i の価格を p

More information

厚生の測度

厚生の測度 公共経済学 消費者行動の理論 消費者 ( 家計 ) 行動 消費者の行動の特徴 消費可能集合 ( 予算制約 ) 選好 効用 選択 需要 顕示選好 消費者の行動の特徴 経済主体企業 家計 ( 政府 ) 家計 価格 資本 労働 株式 賃料 賃金 配当 財 サービス市場 需要 家計 = 価格受容者 (rce taker) 供給 家計の所得 企業 数量 3 消費可能集合 () 家計が直面する制約 予算制約 (

More information

特殊なケースでの定式化技法

特殊なケースでの定式化技法 特殊なケースでの定式化技法 株式会社数理システム. はじめに 本稿は, 特殊な数理計画問題を線形計画問題 (Lear Programmg:LP) ないしは混合整数計画問題 (Med Ieger Programmg:MIP) に置き換える為の, 幾つかの代表的な手法についてまとめたものである. 具体的には以下の話題を扱った. LP による定式化 絶対値最小化問題 最大値最小化問題 ノルム最小化問題 MIP

More information

<4D F736F F F696E74202D20837E834E838D2D91E682618FCD EF97708DC58FAC89BB96E291E E B8CDD8AB B836

<4D F736F F F696E74202D20837E834E838D2D91E682618FCD EF97708DC58FAC89BB96E291E E B8CDD8AB B836 B.3 費用最小化問題 生産要素価格 生産量所与生産量所与 生産費用を最小化する生産要素投入量の決定 利潤最大化問題より まずは費用最小化問題 1 利潤最大化の必要条件 2 利潤最大化問題 = 生産財価格の受容者としての 利潤最大化問題 収穫一定 規模の経済の下で不適 1 B.3.1. 生産費用の概念 定義 B.26 固定費用 -fied cost 生産計画期間中に投入量変更不可な生産要素費用 1

More information

Microsoft PowerPoint - 09macro2_1.pptx

Microsoft PowerPoint - 09macro2_1.pptx マクロ経済学 [2.1] 第 2 章消費と貯蓄はどのように決まるか 中村学園大学吉川卓也 1 目次 1. ケインズ型の消費関数 1. 可処分所得と消費 2. ケインズ型の消費関数の図解 3. 貯蓄関数 2. ケインズ型の消費関数の説明力 1. 2 つのタイプのデータ 2. クロスセクション データの結果 3. 長期の時系列データの結果 4. 短期の時系列データの結果 5. 矛盾する推計結果 2 目次

More information

問 題

問 題 数学 出題のねらい 数と式, 図形, 関数, 資料の活用 の 4 領域について, 基礎的な概念や原理 法則の理解と, それらに基づき, 数学的に考察したり, 表現したり, 処理したりする力をみることをねらいとした () 数と式 では, 数の概念についての理解の程度, 文字を用いた式を処理したり, 文字を用いて式に表現したりする力, 目的に応じて式を変形する力をみるものとした () 図形 では, 平面図形や空間図形についての理解の程度,

More information

スライド 1

スライド 1 ミクロ経済学ゼミ 第 7 章外部性と公共財 2012 年 7 月 1 日 伊藤創太 外部性 外部性ある経済主体の行動が 市場の取引を通じることなく 別の経済主体の効用関数または生産関数に影響を与えること 外部不経済 工場 漁民 なぜ外部不経済を受け入れる? 排除費用がかかるから 汚染物質市場がないので対価がない 排出に制限がない 外部経済 ( 良い景観など ) 排除費用 > 排除で得られる対価 裁判

More information

スライド 1

スライド 1 公共経済分析 II 1 講義ノート 4 佐藤主光 もとひろ 一橋大学経済学研究科 政策大学院 課税のコスト入門 2 課税のコスト 納税者が政府に支払う税 = 民間部門から政府部門への所得 資源 の移転 経済 全体 から資源は失われていない 経済学の観点から課税の効率費用ではない 課税による逸失利益 = 課税によってさもなければ実現していた経済活動 投資 消費等 からの付加価値 課税の効率費用 課税のコスト会計経済学

More information

Microsoft PowerPoint - 13模擬講義.pptx

Microsoft PowerPoint - 13模擬講義.pptx 目次 経済学 [ 模擬講義 ] 身近なことを経済学で考える 1. 可処分所得と消費 2. ケインズ型の消費関数 3. ライフサイクル仮説 (1) 生涯所得と消費 (2) ライフサイクル仮説の図解 中村学園大学吉川卓也 1 2 1. 可処分所得と消費 1. 可処分所得とは 現在の所得から税金を差し引いた税引後所得である ( 可処分所得 = 所得 - 税金 ) 2. 消費とは モノやサービスを購入して使うことである

More information

スライド 1

スライド 1 Ⅳ 規模の経済性と産業内貿易 1. 伝統的貿易論と新しい貿易論 2. 規模の経済性と外部経済 3. 外部経済と貿易の利益 不利益 4. 産業内貿易指数 5. 産業内貿易の独占的競争モデル 1 1. 伝統的貿易論と新しい貿易論 A 伝統的貿易論 比較優位の根拠 リカード モデル 生産技術の違い ヘクシャー = オリーン モデル 要素賦存の違い 貿易の利益 : 交易条件の改善による厚生の増加 先進国と途上国の間の

More information

7. フィリップス曲線 経済統計分析 (2014 年度秋学期 ) フィリップス曲線の推定 ( 経済理論との関連 ) フィリップス曲線とは何か? 物価と失業の関係 トレード オフ 政策運営 ( 財政 金融政策 ) への含意 ( 計量分析の手法 ) 関数形の選択 ( 関係が直線的でない場合の推定 ) 推

7. フィリップス曲線 経済統計分析 (2014 年度秋学期 ) フィリップス曲線の推定 ( 経済理論との関連 ) フィリップス曲線とは何か? 物価と失業の関係 トレード オフ 政策運営 ( 財政 金融政策 ) への含意 ( 計量分析の手法 ) 関数形の選択 ( 関係が直線的でない場合の推定 ) 推 7. フィリップス曲線 経済統計分析 ( 年度秋学期 ) フィリップス曲線の推定 ( 経済理論との関連 ) フィリップス曲線とは何か? 物価と失業の関係 トレード オフ 政策運営 ( 財政 金融政策 ) への含意 ( 計量分析の手法 ) 関数形の選択 ( 関係が直線的でない場合の推定 ) 推定結果に基づく予測シミュレーション 物価と失業の関係......... -. -. -........ 失業率

More information

B4 に入れる値は決して 0 もしくは負にならないことを確かめる必要がある. 一見したところ,B(B3 と B4 も同様に ) が例えば に等しい, もしくはこれよ りも大きくなければならないという制約を置かなければならないように感じるかもしれない ( B 0 という制約ならば, 数

B4 に入れる値は決して 0 もしくは負にならないことを確かめる必要がある. 一見したところ,B(B3 と B4 も同様に ) が例えば に等しい, もしくはこれよ りも大きくなければならないという制約を置かなければならないように感じるかもしれない ( B 0 という制約ならば, 数 第 5 章消費者行動のモデリング 自然対数関数の性質について自然対数関数 ln( i) は, 数学において, とても重要な役割を果たす. 例えば, 指数関数の逆関数は,ln( e x ) = xである. ここで e は超越数.718... であり, 数学者は イー と呼ぶ.ln( x) は厳密に正の x で定義される. そして厳密な増加関数であり, 以下の つの極限を持つ. lim ln( x) =

More information

<4D F736F F D2094F795AA95FB92F68EAE82CC89F082AB95FB E646F63>

<4D F736F F D2094F795AA95FB92F68EAE82CC89F082AB95FB E646F63> 力学 A 金曜 限 : 松田 微分方程式の解き方 微分方程式の解き方のところが分からなかったという声が多いので プリントにまとめます 数学的に厳密な話はしていないので 詳しくは数学の常微分方程式を扱っているテキストを参照してください また os s は既知とします. 微分方程式の分類 常微分方程式とは 独立変数 と その関数 その有限次の導関数 がみたす方程式 F,,, = のことです 次までの導関数を含む方程式を

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション 製品競争下での インストア広告サービスの 戦略的効果 慶應義塾大学大学院松林研究室 M2 小林春輝 目次 1. はじめに 2. モデルの定式化 3. 分析 考察 4. 結論 はじめに ICT の著しい発展 多様な消費者ニーズを把握しやすくなり 製品開発に活用 メーカー企業に製品ラインナップを拡大させるインセンティブを与え熾烈な品揃え競争 市場に存在する過剰な製品数 はじめに このメーカー内のそれぞれの製品を比較検討

More information

経済変動論 0

経済変動論  0 経済原論 Ⅱ(7/31) マンキュー第 10 章 1 第 10 章開放経済下の総需要 1 主要な目的 : 財政 金融政策が開放経済下の総所得にどのような影響を及ぼすかを分析すること 2 マンデル = フレミング モデル (Mundll-Flming Modl): - モデルの開放経済版価格が一定という想定の下で 小国開放経済の総所得の変動を引き起こす要因を分析 (3 最後に 大国の開放経済モデル について若干言及する

More information

Probit , Mixed logit

Probit , Mixed logit Probit, Mixed logit 2016/5/16 スタートアップゼミ #5 B4 後藤祥孝 1 0. 目次 Probit モデルについて 1. モデル概要 2. 定式化と理解 3. 推定 Mixed logit モデルについて 4. モデル概要 5. 定式化と理解 6. 推定 2 1.Probit 概要 プロビットモデルとは. 効用関数の誤差項に多変量正規分布を仮定したもの. 誤差項には様々な要因が存在するため,

More information

Microsoft Word - 1B2011.doc

Microsoft Word - 1B2011.doc 第 14 回モールの定理 ( 単純梁の場合 ) ( モールの定理とは何か?p.11) 例題 下記に示す単純梁の C 点のたわみ角 θ C と, たわみ δ C を求めよ ただし, 部材の曲げ 剛性は材軸に沿って一様で とする C D kn B 1.5m 0.5m 1.0m 解答 1 曲げモーメント図を描く,B 点の反力を求める kn kn 4 kn 曲げモーメント図を描く knm 先に得られた曲げモーメントの値を

More information

Microsoft PowerPoint - データ解析基礎4.ppt [互換モード]

Microsoft PowerPoint - データ解析基礎4.ppt [互換モード] データ解析基礎. 正規分布と相関係数 keyword 正規分布 正規分布の性質 偏差値 変数間の関係を表す統計量 共分散 相関係数 散布図 正規分布 世の中の多くの現象は, 標本数を大きくしていくと, 正規分布に近づいていくことが知られている. 正規分布 データ解析の基礎となる重要な分布 平均と分散によって特徴づけることができる. 平均値 : 分布の中心を表す値 分散 : 分布のばらつきを表す値 正規分布

More information

Microsoft PowerPoint - 08.ppt [互換モード]

Microsoft PowerPoint - 08.ppt [互換モード] この章で学ぶこと 第 8 章 GDP とは何か 1. GDP とは何か国の豊かさはどうやって測るのかとは何か 2. 経済の循環 家計 企業 政府はどのようにかかわりあっているか マクロ経済学とミクロ経済学 本章から マクロ経済学分野を学んでいく まず 比較のためにミクロ経済学がどのようなものであったかを確認しておこう ミクロ経済学 1 人ひとりの消費者 ( 家計 ) や 1 つひとつの企業の行動 1

More information

Microsoft PowerPoint - 第4章(koime).ppt [互換モード]

Microsoft PowerPoint - 第4章(koime).ppt [互換モード] 第 2 部 環境問題の発生メカニズム 本章の概要 立命館大学経済学部 寺脇 拓 多くの環境問題は外部性の存在によって引き起こされるものと解釈される 本章では特に生産に伴って生じる外部費用に焦点を当て それが存在するときに市場メカニズムが非効率な資源配分をもたらすこと ( 市場の失敗 ) を理解する 加えてその処方箋としてのピグー税の考え方を学ぶ 2 11 1.1 外部性 外部性 (externalities)

More information

Microsoft Word - 8章(CI).doc

Microsoft Word - 8章(CI).doc 8 章配置間相互作用法 : Configuration Interaction () etho [] 化学的精度化学反応の精密な解析をするためには エネルギー誤差は数 ~ kcal/mol 程度に抑えたいものである この程度の誤差内に治まる精度を 化学的精度 と呼ぶことがある He 原子のエネルギーをシュレーディンガー方程式と分子軌道法で計算した結果を示そう He 原子のエネルギー Hartree-Fock

More information

第1章 財務諸表

第1章 財務諸表 企業財務論 2010( 太田浩司 ) Lecture Note 22 1 第 22 章債券分析 Part 2 1. スポット レートとフォワード レート 1.1 スポット レートスポット レートとは 現在から一定期間後に満期となる割引債の利回り ( 複利利回り ) のことである 例えば 1 年物スポット レート (r 1 ) 6% 2 年物スポット レート (r 2 ) 7% 3 年物スポット レート

More information

Microsoft PowerPoint - Econometrics

Microsoft PowerPoint - Econometrics 計量経済学講義 第 0 回回帰分析 Part 07 年 月 日 ( 水 ) 限 ( 金曜授業実施日 ) 担当教員 : 唐渡 広志 研究室 : 経済学研究棟 4 階 4 号室 mal: kkarato@co.-toama.ac.jp wbst: http://www.-toama.ac.jp/kkarato/ 講義の目的 ロジスティック関数の推定方法について学びます 多重回帰分析について学びます kwords:

More information

横浜市環境科学研究所

横浜市環境科学研究所 周期時系列の統計解析 単回帰分析 io 8 年 3 日 周期時系列に季節調整を行わないで単回帰分析を適用すると, 回帰係数には周期成分の影響が加わる. ここでは, 周期時系列をコサイン関数モデルで近似し単回帰分析によりモデルの回帰係数を求め, 周期成分の影響を検討した. また, その結果を気温時系列に当てはめ, 課題等について考察した. 気温時系列とコサイン関数モデル第 報の結果を利用するので, その一部を再掲する.

More information

Microsoft Word - intl_finance_09_lecturenote

Microsoft Word - intl_finance_09_lecturenote ドルの需要ドルの供給国際金融論 29 秋講義メモ 第 2 章為替レートの決定理論 : アセット アプローチ ( 教科書第 4 章 ) イントロダクション円 ドル レート 円で測ったドルの価格 他の製品と価格と同様に, ドルの需要と供給の相互作用で為替レートは決まる. ところで, ドルが需要されたり供給されたりするのはどんな時? 米国製品 サービスの輸入 ( ドルの需要 ), 自国製品 サービスの輸出

More information

第Ⅱ編/労働移動と地域の発展

第Ⅱ編/労働移動と地域の発展 Introduction Introduction 京都大学森知也先生講義 空間経済学 HP より転載 Thu nen Fig. Thu nen rings Introduction Thu nen 第 4 章 独占的競争のディクシット = スティグリッツのモデルとその空間経済への拡張 U = M μ A 1'μ (4.1) M: 工業品の消費を示す合成指数 μ: 工業品への支出割合を表す定数 A:

More information

数値計算で学ぶ物理学 4 放物運動と惑星運動 地上のように下向きに重力がはたらいているような場においては 物体を投げると放物運動をする 一方 中心星のまわりの重力場中では 惑星は 円 だ円 放物線または双曲線を描きながら運動する ここでは 放物運動と惑星運動を 運動方程式を導出したうえで 数値シミュ

数値計算で学ぶ物理学 4 放物運動と惑星運動 地上のように下向きに重力がはたらいているような場においては 物体を投げると放物運動をする 一方 中心星のまわりの重力場中では 惑星は 円 だ円 放物線または双曲線を描きながら運動する ここでは 放物運動と惑星運動を 運動方程式を導出したうえで 数値シミュ 数値計算で学ぶ物理学 4 放物運動と惑星運動 地上のように下向きに重力がはたらいているような場においては 物体を投げると放物運動をする 一方 中心星のまわりの重力場中では 惑星は 円 だ円 放物線または双曲線を描きながら運動する ここでは 放物運動と惑星運動を 運動方程式を導出したうえで 数値シミュレーションによって計算してみる 4.1 放物運動一様な重力場における放物運動を考える 一般に質量の物体に作用する力をとすると運動方程式は

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション 1/X Chapter 9: Linear correlation Cohen, B. H. (2007). In B. H. Cohen (Ed.), Explaining Psychological Statistics (3rd ed.) (pp. 255-285). NJ: Wiley. 概要 2/X 相関係数とは何か 相関係数の数式 検定 注意点 フィッシャーのZ 変換 信頼区間 相関係数の差の検定

More information

Microsoft Word - principles-econ046SA2.doc

Microsoft Word - principles-econ046SA2.doc 第 6 回完全競争市場に対する政府介入 選択クイズ 1 以下の質問について, 適切な選択肢一つに〇を付けよ. いずれの設問も, 右下がりの需要曲線と右上がりの供給曲線から構成され, 均衡が存在する完全競争市場を想定している. 1 均衡価格よりも低い価格で価格規制が実施されると, a. 財不足が発生する. b. 財の余剰 ( 売れ残り ) が発生する. c. 均衡取引量が増加する. d. 需要曲線が左方シフトする.

More information

例 e 指数関数的に減衰する信号を h( a < + a a すると, それらのラプラス変換は, H ( ) { e } e インパルス応答が h( a < ( ただし a >, U( ) { } となるシステムにステップ信号 ( y( のラプラス変換 Y () は, Y ( ) H ( ) X (

例 e 指数関数的に減衰する信号を h( a < + a a すると, それらのラプラス変換は, H ( ) { e } e インパルス応答が h( a < ( ただし a >, U( ) { } となるシステムにステップ信号 ( y( のラプラス変換 Y () は, Y ( ) H ( ) X ( 第 週ラプラス変換 教科書 p.34~ 目標ラプラス変換の定義と意味を理解する フーリエ変換や Z 変換と並ぶ 信号解析やシステム設計における重要なツール ラプラス変換は波動現象や電気回路など様々な分野で 微分方程式を解くために利用されてきた ラプラス変換を用いることで微分方程式は代数方程式に変換される また 工学上使われる主要な関数のラプラス変換は簡単な形の関数で表されるので これを ラプラス変換表

More information

2016年度 筑波大・理系数学

2016年度 筑波大・理系数学 06 筑波大学 ( 理系 ) 前期日程問題 解答解説のページへ k を実数とする y 平面の曲線 C : y とC : y- + k+ -k が異なる共 有点 P, Q をもつとする ただし点 P, Q の 座標は正であるとする また, 原点を O とする () k のとりうる値の範囲を求めよ () k が () の範囲を動くとき, OPQ の重心 G の軌跡を求めよ () OPQ の面積を S とするとき,

More information

Microsoft PowerPoint - 09macro2_1.pptx

Microsoft PowerPoint - 09macro2_1.pptx マクロ経済学 [2.1] 第 2 章消費と貯蓄はどのように決まるか 中村学園大学吉川卓也 1 目次 1. ケインズ型の消費関数 1. 可処分所得と消費 2. ケインズ型の消費関数の図解 3. 貯蓄関数 2. ケインズ型の消費関数の説明力 1. 2 つのタイプのデータ 2. クロスセクション データの結果 3. 長期の時系列データの結果 4. 短期の時系列データの結果 5. 矛盾する推計結果 2 目次

More information

税法I(第01回)

税法I(第01回) 租税法 ( 第 04 回 ) 2014 年度 ( 香川大学 ) 1 所得税の変遷と所得概念 定期的, 回帰的 一時的, 偶発的 政府 2014 年度 ( 香川大学 ) 2 所得税の変遷と所得概念 定期的, 回帰的 一時的, 偶発的 政府 戦前所得税では原則非課税 2014 年度 ( 香川大学 ) 3 所得税の変遷と所得概念 定期的, 回帰的 一時的, 偶発的 政府 昭和 22 年改正で課税対象 (

More information

(Microsoft Word - \221\262\213\306\230_\225\266\222\361\217o\227pat.doc)

(Microsoft Word - \221\262\213\306\230_\225\266\222\361\217o\227pat.doc) 労働需要の賃金弾力性賃金弾力性と賃金増加率賃金増加率の関係 ~ 特殊要素モデルモデルを用いたいた理論分析 ~ 平成 20 年 月 0 日 早稲田大学商学部 商業 貿易 金融コース 市田敏啓ゼミナール 河野愛一朗 労働需要の賃金弾力性賃金弾力性と賃金増加率賃金増加率の関係 ~ 特殊要素モデルモデルを用いたいた理論分析 ~ 平成 9 年 月 0 日河野愛一朗 要約 特殊要素モデルを用いた分析では, コブ

More information

Microsoft PowerPoint - 熱力学Ⅱ2FreeEnergy2012HP.ppt [互換モード]

Microsoft PowerPoint - 熱力学Ⅱ2FreeEnergy2012HP.ppt [互換モード] 熱力学 Ⅱ 第 章自由エネルギー システム情報工学研究科 構造エネルギー工学専攻 金子暁子 問題 ( 解答 ). 熱量 Q をある系に与えたところ, 系の体積は膨張し, 温度は上昇した. () 熱量 Q は何に変化したか. () またこのとき系の体積がV よりV に変化した.( 圧力は変化無し.) 内部エネルギーはどのように表されるか. また, このときのp-V 線図を示しなさい.. 不可逆過程の例を

More information

経済成長論

経済成長論 経済成長論 経済成長の源泉 新古典派成長モデル (Solow モデル ) 定常状態の決定 貯蓄率の影響 人口成長率の影響 望ましい状態 黄金律の条件 動学的非効率性, 動学的効率性 経済成長の源泉 Y=F(A,K,L) 生産関数 A: 技術水準,K: 資本ストック,L: 労働力 成長会計経済成長の要因分解 Y = AK α L α コブ ダグラス型生産関数 a: 資本分配率,-a: 労働分配率 Y

More information

untitled

untitled 2009 1 3 () () (Goods) (Service) S D P Q 1 1 P.1 TR TC 1. VC FC () TC TC VC FC ()VC ()FC VC VCVariable Cost VC VC () 0 0 () FC FCFied Cost 0 FC FC V 1 2 TCTotal Cost C VC VC C FC FC TC ()TC VC TC VC FC

More information