極限

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "極限"

Transcription

1 si θ = ) θ 0 θ cos θ θ 0 θ = ) P T θ H A, 0) θ, 0 < θ < π ) AP, P H A P T PH < AP < AT si θ < θ < ta θ si θ < θ < si θ cos θ θ cos θ < si θ θ < θ < 0 θ = h θ 0 cos θ =, θ 0 si θ θ =. θ 0 cos θ θ θ 0 cos θ) + cos θ) θ + cos θ) θ 0 si ) θ si θ θ + cos θ) θ 0 θ + cos θ) = ), θ 0 0 ) si θ si θ θ θ cos θ θ cos θ θ cos θ θ

2 . i) θ = π { si θ = si π = = 0.5 θ = π =.459 si θ θ 0.5 = cos θ = cos π = = = θ = ).459 = ) = cos θ θ θ = π θ ii)θ = π si θ = si π = si45 0 ) = 4 = θ = π =.459 = si θ θ cos θ = cos π = + 4 = = θ = ).459 = ) = cos θ θ θ si θ θ cos θ θ = = si π π π π = cos = = si, = = cos = = = cos 0, ) = cos.)

3 ) 0 si si ) 0 si si ) ) 0 cos 4) 0 cos cos

4 4 = = e = 4 = =.5 A0, ) = a A0, ) A = a a A0, ) a e ) f) = e f fh) f0) e 0) h 0 h h h 0 h = e A0, ) h 0 e h h = e ) = e f ) h 0 e +h e h h 0 e h h e = e Ph, e h ) e ) = e A0, ) h e h AP eh h g) = a h 0 A g ) h 0 a +h a h h 0 a h h a ) = h, 4 ) = 4 4 h h 0 h h 0 h a = e log e a = e log a h 0 a h h h 0 e h loge a h h 0 e h loge a h log e a a ) = a log a. log e a = log e a ) e = e.

5 5 e 4 ) 0 e = e =t log+t)= t 0 log + t) t = t 0 + t) t = e ± + ) = e 0 e e +. log + ) log + ) = +, = = e, = log + ) 0, ), 0, 0) = log + ), = = log, = = = log, 0) = e = log = = = = e = + = = log + ) = = log = log ) = t log + t) t 0 t,, ) 4 = log + t) t = = log e + t) t = e t 0 t 0 + ) = e e A

6 = e = log log = = log = e a e a. a = XX > 0) = log X e a = e e a e a = log ) = > 0) = log a e a -. ) 0 e ) 0 log + ) ) 0 5 4) 0 e si log + ) 5) 0 logcos )

7 7. e ) e ; e + ).) a = ) + =,,, ). a = + =, a = + ) = 9 4 =.5, a = + ) = 4 7 =.70707, a 4 = + 4 ) 4 = 5 5 =.44405, a 00% ) )? ) + ) = + ) : + ) = 4. = : + ) = + ) ). + : + ) + ) = + ). 4, + ) = a ) = + a a 0., 0.0, ), a + ) = e ) + ) + ) + ) e e ) ) 5 5 ), )

8 8 P, + ), P, + ) ), P, + ) ) k,, P k, + ) ) k,, P k k =,,, ) = ) + = { +, ) } f ) = { + ) } { f ) + ) } = e ) = f ) = e 4) ) + = + ) e ) + = e = + ) = + = + P P P P A0, ) A0, ) ) - + = e. 5) ) + ) ) + ) ) + ) 4) P, + ) A0, ) AP P = +.) P = e Q, e ) Q A, = + A = e 5) ),) 00% ) 00%.

9 9. ) + ) ) ) 0 4) 5) ) + + ) ) + ) ) 7) = log = e,, =, =,, = < < < < < e) = log a =, b = e b a e a b

10 0 4 ) ) f), g) = a fa) = ga) = 0, = a g )=\ 0 f ) a g ) a f) g) a f ) g ) g a)=\ 0 a f) g) a f) fa) a g) ga) a = f a) g a) 0 0 ) : ) log cos ) 0 ) si ) f) =, g) = log f) = g) = 0. g ) =, g )=\ 0. log f) f) g) g) = f ) g ) = = f ) =, g ) = ) f) = cos, g) = f0) = g0) = 0 g ) = g 0) = 0. g ) = 0 = 0, 0 cos cos ) si 0 ) 0 = 0 si = ) f) = si, g) = f0) = g0) = 0 g ) = g ) = 0 = 0 si si ) cos 0 ) 0 cos ) si 0 ) 0 = ) 0 0 ) ) =. 0 )

11 4 ) 0 ) 0 cos XY Pt, cos t) t t = 0 P C =\ 0 A, cos ), A cos = A ) C A Q Q C A ) Q t = c 0 < c < < c < 0), Q C f c) g c) A ) cos = f c) g c) 0 < c < < c < 0) c 0 ) 0 c 0. c 0 f c) g c) 0 cos c 0 f c) g c) c 0 si c c t 0 si t t = t = c Y Y t = c A, cos ) Q C X 0 A, cos ) Q C X ) ) t = 0 g t) = 0 C : f c) g c) t = 0 g t) = 0

12 4 ) ) a f) g) Y { X = gt) C : Y = ft) t = a C :gt), ft)) Ag), f)) =\ a g )=\ 0 = a = a g)=\ 0. ga), fa)) = 0, 0), f) g) = A ) A Q t = t = c t = a X C A Q Q C A Q t = c 0 < c < < c < 0), Q C f c) g c) A ) f) g) = f c) g c) < c < < c < ) f c. a c a c) c a g c) a f) g) c a f c) g c) a f ) g ) Q.E.D. 4.) ) 0 e + ) ) 0 e + e ).

13 4 ) 4, ) ) 0 e + ) {e + )} 0 ) 0 e = ) 0 e + e {e + e } e e 0 ) 0 0 {e e } ) 0 e + e = 0 e + e 0 e + e e e ) 0 e = Commet ) ) 0 e + ) e + + e 0. ) ) e + e + ) 0 e + e = + ) + ) = 0 = 0 ) e + + e + e 0 ) ) ) = =.K.) 0 0,,, 0 0 MuPAD.)

14 4 5 Talor ) = a f ) a) = a f) = fa) + f a) a) + f a)! =,, a) + f a)! a) + + f ) a)! a) [ ] f) = fa) + f a) a) [ ] f) = fa) + f a) a) + f a)! [ ] f) = fa) + f a) a) + f a)! a) a) + f a)! a) ) a = 0, = 0 f ) 0) = 0 =,, f) = f0) + f 0) + f 0)! + f 0)! + + f ) 0)! [ ] f) = f0) + f 0) [ ] f) = f0) + f 0) + f 0)! [ ] f) = f0) + f 0) + f 0)! + f 0)! ) f ) a) f ) a) = f a), f ) a) = f a), f ) a) = f a). a).

15 5 Talor ) 5 5. f) = a a f) fa) a = f a) Q h) = f) g) = f) A P a f) fa) f a) a) a = 0 g) = f a) a) + fa) = a! ) = g) a a a f) g) a = 0 f) g) h) a a) = a = g) = f), f) = a = a f) fa) + a)f a) f) h) = f) {fa) + a)f a)} a ). ) ) a α, β 0 β a α = 0 β α β α ). β a α β α = k k )

16 5 Talor ) a) 4 0m 5m,.5m.) =, =. h),, ) i) f) = a, a h) = f) g) < = f) = g).. Q = f) = g) Q Q P A P P a 4 ii) f) = a f) = a = a Aa, 0) = 0 a+0 f) fa) a =, a 0 f) fa) a =. f f) fa) a) a a f) = a = a = a = 0 = a = = 0 = a Q = a Q = a Q Q Q Aa, 0) P P P Q Aa, 0) P P Aa, 0) P 4 = f a) a) + fa) = a = f).

17 5 Talor ) 7 5. = 0 = 0 f ) 0) = 0 f) = f0) + f 0) + f 0)! + f 0)! + + f ) 0)! 5.. e = 0 f) = e f ) = e, f ) = e, f ) = e f0) = f 0) = f 0) = f 0) = e + +! +! = 0 = f) ) = + f) A A 0 e + ) {e + )} e 0 ) 0 = 0 e = = 0 e + ) e + + [ ] f) B ) e + + B 0 0 {e + )} e 0 ) 0 { )} e + + e + ) ) 0 = = 0 ) e + + e [ ]

18 5 Talor ) 8 0 a + b) ±., e + ) a = e = + = e + ) = = e + ) = = e + ) 0 a + b + c) ±, = e = + + ) = e + + ) = e + + = e : + + a = e + + ) = = e 0,, = = + + = + = e e = 0,,

19 5 Talor ) si = 0 f) = si f ) = cos, f ) = si, f ) = cos f0) = 0, f 0) =, f 0) = 0, f 0) = si 0 +! + 0! +! si = 0 = f) ) = f) A, A 0 si si ) cos 0 ) 0 0 cos ) ) 0 si = 0, si + 0 = f) + 0 B, B 0 si si ) cos 0 ) 0 0 cos ) si 0 ) 0 = si si [ ] = = si = si = si = si : + 0 a

20 5 Talor ) 0 = si, = = = si = = si = si = 0,, 5.. cos = 0 f) = cos f ) = si, f ) = cos, f ) = si f0) =, f 0) = 0, f 0) =, f 0) = 0 cos + 0! +! + 0! cos = 0 = f) ) = f) A,, A 0 cos = cos [ ]

21 5 Talor ) A a f) {fa) + f a) a)} a) F ), G), F a) = Ga) = 0. f a) A a f) {fa) + f a) a)} a) a f) {fa) + f a) a)}) a) ) = 0 f) a f ) f a) a) = f a) f) fa) + f a) a) + f a) f a), = a f) a). f) fa) + f a) a) + f a) a) a) f a) a f ) f a) a 5.. f a), f) B a a { fa) + f a) a) + f a) a) } a) 0 0 { f) fa) f a) a) f a) a) } { a) } a f ) f a) f a) a) a) 0 0 a {f ) f a) f a) a)} { a) } a f ) f a) a) = f a) { } f) fa) + f a) a) + f a) a) a) f a) f a) a f ) f a) a

22 5 Talor ) a f a) f) fa) + f a) a) + f a) f) = fa) + f a) a) + f a)! a). a) + f a) a) + f a)! a) a) 5.4., = 0 = 0 e + +! si! cos! +! + 5 5! + 4 4! + +! 7 7!! log + ) ) α + α! + αα )! + + ) )! + + ) )! + + ) + αα )α )! + + αα ) α ))! α. α α = ) ) + )! ) ) + )α α =, = ) = = + +, 0 + = 0.

23 5 Talor ) si si. ) si = 0! = π si π π π ) ) si π = 0.5, π.459 = log a a a??) ) log + ) = ) log ) = log + ) = ) 0 < < + + = = { ) log + ) } = { 5 ) log + ) + ) } 5 = log = e = = + + =.5 e + +! +! + 4! + +! = = = = = e.78888, +)! = 7 8! = ) + e

24 4. e e = 0 e =t t 0 log + t) t = t 0 + t) t = e ± + ) = e ) e 0 = e + e e.)?) a = ) + = ±, ±, ±, ). a = + =, a = + ) = 9 4 =.5, a = + ) = 4 7 =.707, a4 = + 4 ) 4 = 5 5 =.4440, + ) ) ) ) = C 0 + C + C + + C = + + )! = + + )! ) ) +! + ) )! ) + +! + + )! a + ) = + + ) + ) ) + + )!!! < + +! +! + +! < ! = 4 > = = + ) < a e ) e + ) = e ) ) a a a e )

25 5. ) 0 si si si 0 si = ) 0 +0, cos, 0 cos 4) si si ) ) 0 = 0 si si ) si si = cos cos = cos + ) cos ) α ± β = cos cos si si ) cos si + si si ) = si si Commet cos cos 0 0 si si si θ θ, cos θ θ 0 4) si si = 4 ) 0 ) 0 si si = ) si si ) si ) = cos = ) = 9, cos cos cos 9 ) ) = 4 = 4 - ) ) 5 ) 0 4) 0 e log 5) 0 e log 5) log 5) log 5 = log 5 0 e si log + ) e si 0 si si log + ) = = 5) logcos ) 0 Commet 0 log + cos ) 0 log + cos ) cos 0 e +, log + ) 4) 0 5) 0 e si log + ) = logcos ) = log ). cos ) = ) = logcos ) =

26 - ) { + ) } = e ) ) + ) { + Commet ) } = e { + ) } = e ) 00% e ) 00% e ) 00% e. ) ) ) 4) 5) ) + + ) ) + + ) + + ) ) = ) + + ) ) ) + { = + ) = + + ) + ) ) = ) + ) = ) } ) + ) < + < ) < + < =, ) + = + =

27 7 7) = log, 0), = S a = T log e =, b S a, T b S = T a b. b a = S a = e b T = log A, 0), P + a, 0), Q + a, log + a )), R + a, a ) = log A = log S = log = = APQ < S < APR a log + a ) < S < a = T b loge b ) < T < b = = log R Q + a, log + a )) S = T, a log + a ) < S = T < b b loge b ) < T = S < a A, 0) a = P + a, 0) = log log + a ) < b a a < loge b ) loge b ) Se b, 0) b e a 0, b 0 log + a ) a t 0 log + t) t =, loge b ) = log e = Commet b a = S T log e = =\ 0 T log = 0 S

28 8 ) ) ) 4) iteret ), MuPAD MuPAD free,.) ) geogebra free MuPAD ) cabri geogebra 4) Mathematica CATComputer algebra sstem) free Mathematica ) si 0 π) si ) plot plot si, =0..pi = si 0 π) d si d/d d/d si d π it it si), =0..pi si d 0 si si )/ as ->0 0 * ) *si si si si / si )/ ^ ^ log log π e, π e, pi it si, =0..pi si d 0 plot ^- =

No2 4 y =sinx (5) y = p sin(2x +3) (6) y = 1 tan(3x 2) (7) y =cos 2 (4x +5) (8) y = cos x 1+sinx 5 (1) y =sinx cos x 6 f(x) = sin(sin x) f 0 (π) (2) y

No2 4 y =sinx (5) y = p sin(2x +3) (6) y = 1 tan(3x 2) (7) y =cos 2 (4x +5) (8) y = cos x 1+sinx 5 (1) y =sinx cos x 6 f(x) = sin(sin x) f 0 (π) (2) y No1 1 (1) 2 f(x) =1+x + x 2 + + x n, g(x) = 1 (n +1)xn + nx n+1 (1 x) 2 x 6= 1 f 0 (x) =g(x) y = f(x)g(x) y 0 = f 0 (x)g(x)+f(x)g 0 (x) 3 (1) y = x2 x +1 x (2) y = 1 g(x) y0 = g0 (x) {g(x)} 2 (2) y = µ

More information

1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C

1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C 0 9 (1990 1999 ) 10 (2000 ) 1900 1994 1995 1999 2 SAT ACT 1 1990 IMO 1990/1/15 1:00-4:00 1 N 1990 9 N N 1, N 1 N 2, N 2 N 3 N 3 2 x 2 + 25x + 52 = 3 x 2 + 25x + 80 3 2, 3 0 4 A, B, C 3,, A B, C 2,,,, 7,

More information

研修コーナー

研修コーナー l l l l l l l l l l l α α β l µ l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l

More information

取扱説明書[NE-202]

取扱説明書[NE-202] NE-202 13.3 m m 1 2 3 m 4 5 6 7 a a a 8 9 10 11 12 a a a a 13 14 15 16 17 2.4 FH 1/XX 4 18 19 20 21 22 23 24 25 26 27 1 2 3 4 5 6 m 7 h 8 r 9 a P b c d e f g h i j ud k l m n o 28 29 30 31 32 33 34 35

More information

( )

( ) ) ( ( ) 3 15m t / 1.9 3 m t / 0.64 3 m ( ) ( ) 3 15m 3 1.9m / t 0.64m 3 / t ) ( β1 β 2 β 3 y ( ) = αx1 X 2 X 3 ( ) ) ( ( ) 3 15m t / 1.9 3 m 3 90m t / 0.64 3 m ( ) : r : ) 30 ( 10 0.0164

More information

B

B B YES NO 5 7 6 1 4 3 2 BB BB BB AA AA BB 510J B B A 510J B A A A A A A 510J B A 510J B A A A A A 510J M = σ Z Z = M σ AAA π T T = a ZP ZP = a AAA π B M + M 2 +T 2 M T Me = = 1 + 1 + 2 2 M σ Te = M 2 +T

More information

2. 2 P M A 2 F = mmg AP AP 2 AP (G > : ) AP/ AP A P P j M j F = n j=1 mm j G AP j AP j 2 AP j 3 P ψ(p) j ψ(p j ) j (P j j ) A F = n j=1 mgψ(p j ) j AP

2. 2 P M A 2 F = mmg AP AP 2 AP (G > : ) AP/ AP A P P j M j F = n j=1 mm j G AP j AP j 2 AP j 3 P ψ(p) j ψ(p j ) j (P j j ) A F = n j=1 mgψ(p j ) j AP 1. 1 213 1 6 1 3 1: ( ) 2: 3: SF 1 2 3 1: 3 2 A m 2. 2 P M A 2 F = mmg AP AP 2 AP (G > : ) AP/ AP A P P j M j F = n j=1 mm j G AP j AP j 2 AP j 3 P ψ(p) j ψ(p j ) j (P j j ) A F = n j=1 mgψ(p j ) j AP

More information

gr09.dvi

gr09.dvi .1, θ, ϕ d = A, t dt + B, t dtd + C, t d + D, t dθ +in θdϕ.1.1 t { = f1,t t = f,t { D, t = B, t =.1. t A, tdt e φ,t dt, C, td e λ,t d.1.3,t, t d = e φ,t dt + e λ,t d + dθ +in θdϕ.1.4 { = f1,t t = f,t {

More information

a a s d f g h j a s d f g h a s

a a s d f g h j a s d f g h a s a a s d f g h j a s d f g h a s a a s a s d f d f g h a s d f g h a s d f a s d f g a s a s d a s d f g h a s d a s d f a s d f a s d a a s d f g h j k l 0 1 2 3 4 5 6 a s d f g a s d f a s d a

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション 0 1 2 3 4 5 6 1964 1978 7 0.0015+0.013 8 1 π 2 2 2 1 2 2 ( r 1 + r3 ) + π ( r2 + r3 ) 2 = +1,2100 9 10 11 1.9m 3 0.64m 3 12 13 14 15 16 17 () 0.095% 0.019% 1.29% (0.348%) 0.024% 0.0048% 0.32% (0.0864%)

More information

4.6: 3 sin 5 sin θ θ t θ 2t θ 4t : sin ωt ω sin θ θ ωt sin ωt 1 ω ω [rad/sec] 1 [sec] ω[rad] [rad/sec] 5.3 ω [rad/sec] 5.7: 2t 4t sin 2t sin 4t

4.6: 3 sin 5 sin θ θ t θ 2t θ 4t : sin ωt ω sin θ θ ωt sin ωt 1 ω ω [rad/sec] 1 [sec] ω[rad] [rad/sec] 5.3 ω [rad/sec] 5.7: 2t 4t sin 2t sin 4t 1 1.1 sin 2π [rad] 3 ft 3 sin 2t π 4 3.1 2 1.1: sin θ 2.2 sin θ ft t t [sec] t sin 2t π 4 [rad] sin 3.1 3 sin θ θ t θ 2t π 4 3.2 3.1 3.4 3.4: 2.2: sin θ θ θ [rad] 2.3 0 [rad] 4 sin θ sin 2t π 4 sin 1 1

More information

各位                               平成17年5月13日

各位                               平成17年5月13日 9000 1 6 7 8 8 9000 1960 1 2 2 3 3 1471 4 1362 5 2006 6 7 8 1967 9 1988 1988 10 1000 1348 5000 3000 2 11 3 1999 12 13 14 9000 A 15 9000 9000 9000 10000 16 6000 7000 2000 3000 6800 7000 7000 9000 17 18

More information

31 33

31 33 17 3 31 33 36 38 42 45 47 50 52 54 57 60 74 80 82 88 89 92 98 101 104 106 94 1 252 37 1 2 2 1 252 38 1 15 3 16 6 24 17 2 10 252 29 15 21 20 15 4 15 467,555 14 11 25 15 1 6 15 5 ( ) 41 2 634 640 1 5 252

More information

lim lim lim lim 0 0 d lim 5. d 0 d d d d d d 0 0 lim lim 0 d

lim lim lim lim 0 0 d lim 5. d 0 d d d d d d 0 0 lim lim 0 d lim 5. 0 A B 5-5- A B lim 0 A B A 5. 5- 0 5-5- 0 0 lim lim 0 0 0 lim lim 0 0 d lim 5. d 0 d d d d d d 0 0 lim lim 0 d 0 0 5- 5-3 0 5-3 5-3b 5-3c lim lim d 0 0 5-3b 5-3c lim lim lim d 0 0 0 3 3 3 3 3 3

More information

学習内容と日常生活との関連性の研究-第2部-第6章

学習内容と日常生活との関連性の研究-第2部-第6章 378 379 10% 10%10% 10% 100% 380 381 2000 BSE CJD 5700 18 1996 2001 100 CJD 1 310-7 10-12 10-6 CJD 100 1 10 100 100 1 1 100 1 10-6 1 1 10-6 382 2002 14 5 1014 10 10.4 1014 100 110-6 1 383 384 385 2002 4

More information

( ) 2002 1 1 1 1.1....................................... 1 1.1.1................................. 1 1.1.2................................. 1 1.1.3................... 3 1.1.4......................................

More information

untitled

untitled 20 7 1 22 7 1 1 2 3 7 8 9 10 11 13 14 15 17 18 19 21 22 - 1 - - 2 - - 3 - - 4 - 50 200 50 200-5 - 50 200 50 200 50 200 - 6 - - 7 - () - 8 - (XY) - 9 - 112-10 - - 11 - - 12 - - 13 - - 14 - - 15 - - 16 -

More information

untitled

untitled 19 1 19 19 3 8 1 19 1 61 2 479 1965 64 1237 148 1272 58 183 X 1 X 2 12 2 15 A B 5 18 B 29 X 1 12 10 31 A 1 58 Y B 14 1 25 3 31 1 5 5 15 Y B 1 232 Y B 1 4235 14 11 8 5350 2409 X 1 15 10 10 B Y Y 2 X 1 X

More information

3/4/8:9 { } { } β β β α β α β β

3/4/8:9 { } { } β β β α β α β β α β : α β β α β α, [ ] [ ] V, [ ] α α β [ ] β 3/4/8:9 3/4/8:9 { } { } β β β α β α β β [] β [] β β β β α ( ( ( ( ( ( [ ] [ ] [ β ] [ α β β ] [ α ( β β ] [ α] [ ( β β ] [] α [ β β ] ( / α α [ β β ] [ ] 3

More information

2 1 2 3 27 2 6 2 5 19 50 1 2

2 1 2 3 27 2 6 2 5 19 50 1 2 1 2 1 2 3 27 2 6 2 5 19 50 1 2 2 17 1 5 6 5 6 3 5 5 20 5 5 5 4 1 5 18 18 6 6 7 8 TA 1 2 9 36 36 19 36 1 2 3 4 9 5 10 10 11 2 27 12 17 13 6 30 16 15 14 15 16 17 18 19 28 34 20 50 50 5 6 3 21 40 1 22 23

More information

「産業上利用することができる発明」の審査の運用指針(案)

「産業上利用することができる発明」の審査の運用指針(案) 1 1.... 2 1.1... 2 2.... 4 2.1... 4 3.... 6 4.... 6 1 1 29 1 29 1 1 1. 2 1 1.1 (1) (2) (3) 1 (4) 2 4 1 2 2 3 4 31 12 5 7 2.2 (5) ( a ) ( b ) 1 3 2 ( c ) (6) 2. 2.1 2.1 (1) 4 ( i ) ( ii ) ( iii ) ( iv)

More information

2 2 MATHEMATICS.PDF 200-2-0 3 2 (p n ), ( ) 7 3 4 6 5 20 6 GL 2 (Z) SL 2 (Z) 27 7 29 8 SL 2 (Z) 35 9 2 40 0 2 46 48 2 2 5 3 2 2 58 4 2 6 5 2 65 6 2 67 7 2 69 2 , a 0 + a + a 2 +... b b 2 b 3 () + b n a

More information

23 15961615 1659 1657 14 1701 1711 1715 11 15 22 15 35 18 22 35 23 17 17 106 1.25 21 27 12 17 420,845 23 32 58.7 32 17 11.4 71.3 17.3 32 13.3 66.4 20.3 17 10,657 k 23 20 12 17 23 17 490,708 420,845 23

More information

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 ( ) 24 25 26 27 28 29 30 ( ) ( ) ( ) 31 32 ( ) ( ) 33 34 35 36 37 38 39 40 41 42 43 44 ) i ii i ii 45 46 47 2 48 49 50 51 52 53 54 55 56 57 58

More information

untitled

untitled i ii (1) (1) (2) (1) (3) (1) (1) (2) (1) (3) (1) (1) (2) (1) (3) (2) (3) (1) (2) (3) (1) (1) (1) (1) (2) (1) (3) (1) (2) (1) (3) (1) (1) (1) (2) (1) (3) (1) (1) (2) (1) (3)

More information

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t 6 6.1 6.1 (1 Z ( X = e Z, Y = Im Z ( Z = X + iy, i = 1 (2 Z E[ e Z ] < E[ Im Z ] < Z E[Z] = E[e Z] + ie[im Z] 6.2 Z E[Z] E[ Z ] : E[ Z ] < e Z Z, Im Z Z E[Z] α = E[Z], Z = Z Z 1 {Z } E[Z] = α = α [ α ]

More information

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e 7 -a 7 -a February 4, 2007 1. 2. 3. 4. 1. 2. 3. 1 Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e z

More information

x (0, 6, N x 2 (4 + 2(4 + 3 < 6 2 3, a 2 + a 2+ > 0. x (0, 6 si x > 0. (2 cos [0, 6] (0, 6 (cos si < 0. ( 5.4.6 (2 (3 cos 0, cos 3 < 0. cos 0 cos cos

x (0, 6, N x 2 (4 + 2(4 + 3 < 6 2 3, a 2 + a 2+ > 0. x (0, 6 si x > 0. (2 cos [0, 6] (0, 6 (cos si < 0. ( 5.4.6 (2 (3 cos 0, cos 3 < 0. cos 0 cos cos 6 II 3 6. π 3.459... ( /( π 33 π 00 π 34 6.. ( (a cos π 2 0 π (0, 2 3 π (b z C, m, Z ( ( cos z + π 2 (, si z + π 2 (cos z, si z, 4m, ( si z, cos z, 4m +, (cos z, si z, 4m + 2, (si z, cos z, 4m + 3. (6.

More information

Γ Ec Γ V BIAS THBV3_0401JA THBV3_0402JAa THBV3_0402JAb 1000 800 600 400 50 % 25 % 200 100 80 60 40 20 10 8 6 4 10 % 2.5 % 0.5 % 0.25 % 2 1.0 0.8 0.6 0.4 0.2 0.1 200 300 400 500 600 700 800 1000 1200 14001600

More information

1 6 2011 3 2011 3 7 1 2 1.1....................................... 2 1.2................................. 3 1.3............................................. 4 6 2.1................................................

More information

nsg02-13/ky045059301600033210

nsg02-13/ky045059301600033210 φ φ φ φ κ κ α α μ μ α α μ χ et al Neurosci. Res. Trpv J Physiol μ μ α α α β in vivo β β β β β β β β in vitro β γ μ δ μδ δ δ α θ α θ α In Biomechanics at Micro- and Nanoscale Levels, Volume I W W v W

More information

第18回海岸シンポジウム報告書

第18回海岸シンポジウム報告書 2011.6.25 2011.6.26 L1 2011.6.27 L2 2011.7.6 2011.12.7 2011.10-12 2011.9-10 2012.3.9 23 2012.4, 2013.8.30 2012.6.13 2013.9 2011.7-2011.12-2012.4 2011.12.27 2013.9 1m30 1 2 3 4 5 6 m 5.0m 2.0m -5.0m 1.0m

More information

液晶ディスプレイ取説TD-E432/TD-E502/TD-E552/TD-E652/TD-E432D/TD-E502D

液晶ディスプレイ取説TD-E432/TD-E502/TD-E552/TD-E652/TD-E432D/TD-E502D 1 2 3 4 5 6 7 1 2 3 4 5 6 7 2 2 2 1 1 2 9 10 11 12 13 14 15 16 17 1 8 2 3 4 5 6 7 1 2 3 4 5 6 7 8 9 10 9 11 12 13 13 14 15 16 17 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 1 2 3 4 5 6 7 8 9 11 12

More information

000-.\..

000-.\.. 1 1 1 2 3 4 5 6 7 8 9 e e 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 10mm 150mm 60mm 25mm 40mm 30mm 25 26 27 1 28 29 30 31 32 e e e e e e 33 e 34 35 35 e e e e 36 37 38 38 e e 39 e 1 40 e 41 e 42 43

More information

1 2 http://www.japan-shop.jp/ 3 4 http://www.japan-shop.jp/ 5 6 http://www.japan-shop.jp/ 7 2,930mm 2,700 mm 2,950mm 2,930mm 2,950mm 2,700mm 2,930mm 2,950mm 2,700mm 8 http://www.japan-shop.jp/ 9 10 http://www.japan-shop.jp/

More information

1 911 34/ 22 1012 2/ 20 69 3/ 22 69 1/ 22 69 3/ 22 69 1/ 22 68 3/ 22 68 1/ 3 8 D 0.0900.129mm 0.1300.179mm 0.1800.199mm 0.1000.139mm 0.1400.409mm 0.4101.199mm 0.0900.139mm 0.1400.269mm 0.2700.289mm

More information