例 e 指数関数的に減衰する信号を h( a < + a a すると, それらのラプラス変換は, H ( ) { e } e インパルス応答が h( a < ( ただし a >, U( ) { } となるシステムにステップ信号 ( y( のラプラス変換 Y () は, Y ( ) H ( ) X (

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "例 e 指数関数的に減衰する信号を h( a < + a a すると, それらのラプラス変換は, H ( ) { e } e インパルス応答が h( a < ( ただし a >, U( ) { } となるシステムにステップ信号 ( y( のラプラス変換 Y () は, Y ( ) H ( ) X ("

Transcription

1 第 週ラプラス変換 教科書 p.34~ 目標ラプラス変換の定義と意味を理解する フーリエ変換や Z 変換と並ぶ 信号解析やシステム設計における重要なツール ラプラス変換は波動現象や電気回路など様々な分野で 微分方程式を解くために利用されてきた ラプラス変換を用いることで微分方程式は代数方程式に変換される また 工学上使われる主要な関数のラプラス変換は簡単な形の関数で表されるので これを ラプラス変換表 として用意しておけば 機械的な操作により微分方程式を解くことが可能になる 計測 制御システムにおいてもラプラス変換は 安定性の判定などに利用されている ラプラス変換の定義 教科書 p.35 時間信号 x( は, 次の式により, 複素数 の関数 X () に変換される { } + x X ( ) x( e ( d (-) この定義式のラプラス変換は 片側ラプラス変換 と呼ばれる. < で信号 x( として扱っている. 工学上のほとんどの応用では, この形で扱うことができる. そこで, これ以降, 特に断らない限り, 信号は < で となる片側信号とする 注意 : ラプラス変換の収束域ラプラス変換の値は, 複素平面内の全ての について有限の値に収束するわけではない. 収束域 : ラプラス変換の値が収束する複素数 の範囲 片側ラプラス変換の収束域は, 一般的には, { } > γ Re (-) という半平面になる.γ の値は, 信号 x( によって変わる. ラプラス変換の使い方 3 有用な信号の多くは複素数 の単純な関数で表わせる変換 逆変換は ラプラス変換表 を使う線形 時不変システムの入出力は比例関係になる 入力 ( x, 出力 y (, インパルス応答 h( のラプラス変換を () とすると, Y ( ) H ( ) X ( ) jω とすればフーリエ変換が求まる X, Y (), H () 4 線形システム入門講義資料 -

2 例 e 指数関数的に減衰する信号を h( a < + a a すると, それらのラプラス変換は, H ( ) { e } e インパルス応答が h( a < ( ただし a >, U( ) { } となるシステムにステップ信号 ( y( のラプラス変換 Y () は, Y ( ) H ( ) X ( ) + a a + a y( a + a a + a このシステムの周波数応答 a { Y ( ) } ( e ) H ( ) の を jω で置き換えると, + a Hjω) j ω + a a ), ステップ信号を で与えられる u を入力したときの出力 y ( と < 5 6 ラプラス変換では, 時間信号を e という 複素の周波数 を持つ信号に分解している, と解釈できる (Fig.- 参照 ). 指数関数やステップ関数のように過渡的に変化する信号を扱える点がフーリエ変換とは異なる. α <, ω α, ω Im{ } α + jω Re{ } α >, ω α <, ω α >, ω α, ω Fig.- 複素周波数と信号波形 フーリエ変換の拡張として理解できる X ( ω) x( e 角周波数 ω の成分 jω d 角周波数 ω ( 実数値, 数直線上の 点 ) 変数 ( 複素数, 複素平面上の 点 ) α jω ( j ) j e e α + ω e α e ω 増大または減少する角周波数 ωの正弦波信号 + とすると, ラプラス変換には逆変換がある ( 章末の解説を参照 ) - 線形システム入門講義資料

3 基本的な信号のラプラス変換 教科書 p.36~ 工学上重要な信号のラプラス変換を以下に示す これらのラプラス変換は複素角周波数 の簡単な関数で表される また その分母多項式がゼロになる の値が 信号の周波数や減衰率に対応している ラプラス変換の分母がゼロになる の値を極 (pole) と呼ぶ 単位ステップ関数 < 導出過程 : { } ( 収束域は, Re { } > ) (-3) Re { } > { u } e d ( e d e lim e のとき つまり α + jω, α > のとき (-4) 式の第 項は, lim α jω e lim e e α + jω のように, となる したがって,(-3) が導き出される (-4) (-5) 単位ステップ信号は 計測システムにおける被測定信号や 制御システムでの制御入力信号がステップ的な変化をする場合に現れる この信号の極は につだけ存在し 角周波数ゼロ 減衰率ゼロの信号であることがわかる δ 関数 { ( } ( e d e δ δ ( 全領域で収束 ) (-6) δ 関数のラプラス変換は 平面全体に渡って となる 3 指数関数 { } e α α ( 収束域は, { } > α α α 導出過程 : { e } e e d Re ) (-7) ( α ) ( α ) e d lim e α したがって Re { } > α なら,(-7) 式が導き出される α (-8) 指数関数的の極は α となり 減衰係数と一致する 信号の振幅は α > なら時間とともに増大 α < なら時間と共に減衰する 指数関数のラプラス変換から出発して, 幾つかの信号のラプラス変換を導き出せる. 演習問題問題 上記の導出過程を見ないで, 以下の関数のラプラス変換と収束域を示せ. ステップ関数 δ 関数 3 指数関数 線形システム入門講義資料 -3

4 ステップ関数 δ 関数 3 指数関数 4 複素三角関数 j e ω jω { e } ω ( 収束域は, { } - j Re > ) (-9) 一定振幅の複素三角関数の極は 平面の虚軸上に つだけ存在する 5 co ω in ω jω jω e + e jω + jω { coω} + +ω ( 収束域は, Re { } > ) (-) jω jω e e j j jω + jω { inω} ω + ω ( 収束域は, { } Re > ) (-) 実数の正弦波のラプラス変換では, 極は虚軸上に存在し, 実軸に関し対称に 個が対になる -4 線形システム入門講義資料

5 6 e α e α coω inω ( α + jω) ( α jω) + α e e { e coω} + α jω α + jω α (-) ( α) + ω ( α + jω) ( α jω) α e e { e inω} ω ( α) + ω j ( 収束域は, { } > α j α jω α + jω Re ) (-3) 振幅が時間とともに減衰または増大する正弦波のラプラス変換の極は 実軸に関し対称に 個が対になる 7 n 信号 x ( のラプラス変換を求めると, + { } e d e e d (-4) となり, > では第 項はゼロとなるので, n { } e d ( 収束域は, Re { } > x ( のラプラス変換は, n n n n n { } + ) (-5) e d e e d (-6) となり, 前と同様にして, n n n n n { } e d { } (-7) となる { } / n n! { } n であるから, 一般に ( 収束域は, Re { } > n+ 信号 のラプラス変換は 平面の原点に n + 重の多重極を持つ ) (-8) 8 n e α 7 と同様の過程により, n α n! { e } n+ ( 収束域は, { } α ( α) Re > ) (-9) 信号 n e α のラプラス変換は 平面の実軸上に n + 重の多重極を持つ 線形システム入門講義資料 -5

6 付録 A 逆ラプラス変換 教科書 p.47~ ラプラス変換には逆変換が存在し α + j e x( X ( ) d (-4) j α j π で与えられる 積分経路は Fig.- に示すように, ラプラス変換の収束領域内に存在しなければならない すなわち α > γ である α + j Im{ } Re { } α > γ Im{ } Re { } α > γ γ Re{ } Re{ } C Re { } γ α Re { } γ α j a)bromwich の経路 b) 周回積分路 Fig.- 逆ラプラス変換の積分路 逆ラプラス変換式の導出 ラプラス変換の式 (-) は 単位ステップ関数 < を使って (-5) と変形できる これに α + jω を代入すると X ( ) x( e d (-6) ( α + j ω) X ( α + jω) x( e d α jω ( e e (-7) x d α となる この式から X ( α + jω) は x( e のフーリエ変換と等しいことがわかる したがって 逆フーリエ変換の式 : j ω ω x( X ( j ) e dω ( X ( jω) は x( のフーリエ変換 ) π を利用すると π α jω ( e X ( α + jω) e dω (-8) x -6 線形システム入門講義資料

7 が得られる 両辺に e α を乗ずると x π ( α + j ω) ( X ( α + jω) e dω (-9) が得られる α + j ω, jd ω d とすると (-9) 式は線積分の形に表され が導かれた ( 導出終り ) α + j e x( x( X ( ) d (-3) j α j π 逆ラプラス変換の (-4) 式は Fig.- に示す Bromwich の経路に沿った積分で求められる さらに, この積分は, Jordan の補助定理 により閉路積分 x ( X ( ) e d jπ C (-3) の形に収束するので 留数定理により計算することが可能である 線形システム入門講義資料 -7

8 モーグ シンセサイザーアメリカの電子工学博士 ロバート モーグ (Rober Moog,934-5) が 964 年に開発したアナログ シンセサイザー 電圧制御発振器, 電圧制御フィルタ, 可変利得増幅器などのアナログ電子回路で構成されていた -8 線形システム入門講義資料 Yauaka Tamra 9

ディジタル信号処理

ディジタル信号処理 ディジタルフィルタの設計法. 逆フィルター. 直線位相 FIR フィルタの設計. 窓関数法による FIR フィルタの設計.5 時間領域での FIR フィルタの設計 3. アナログフィルタを基にしたディジタル IIR フィルタの設計法 I 4. アナログフィルタを基にしたディジタル IIR フィルタの設計法 II 5. 双 次フィルタ LI 離散時間システムの基礎式の証明 [ ] 4. ] [ ]*

More information

画像解析論(2) 講義内容

画像解析論(2) 講義内容 画像解析論 画像解析論 東京工業大学長橋宏 主な講義内容 信号処理と画像処理 二次元システムとその表現 二次元システムの特性解析 各種の画像フィルタ 信号処理と画像処理 画像解析論 処理の応答 記憶域 入出力の流れ 信号処理系 実時間性が求められる メモリ容量に対する制限が厳しい オンラインでの対応が厳しく求められる 画像処理系 ある程度の処理時間が許容される 大容量のメモリ使用が容認され易い オフラインでの対応が容認され易い

More information

Microsoft PowerPoint - 集積デバイス工学7.ppt

Microsoft PowerPoint - 集積デバイス工学7.ppt 集積デバイス工学 (7 問題 追加課題 下のトランジスタが O する電圧範囲を求めよただし T, T - とする >6 問題 P 型 MOS トランジスタについて 正孔の実効移動度 μ.7[m/ s], ゲート長.[μm], ゲート幅 [μm] しきい値電圧 -., 単位面積あたりの酸化膜容量

More information

PowerPoint Presentation

PowerPoint Presentation 応用数学 Ⅱ (7) 7 連立微分方程式の立て方と解法. 高階微分方程式による解法. ベクトル微分方程式による解法 3. 演算子による解法 連立微分方程式 未知数が複数個あり, 未知数の数だけ微分方程式が与えられている場合, これらを連立微分方程式という. d d 解法 () 高階微分方程式化による解法 つの方程式から つの未知数を消去して, 未知数が つの方程式に変換 のみの方程式にするために,

More information

< 図形と方程式 > 点間の距離 A x, y, B x, y のとき x y x y : に分ける点 æ ç è A x, y, B x, y のとき 線分 AB を : に分ける点は x x y y, ö ø 注 < のとき外分点 三角形の重心 点 A x, y, B x, y, C x, を頂

< 図形と方程式 > 点間の距離 A x, y, B x, y のとき x y x y : に分ける点 æ ç è A x, y, B x, y のとき 線分 AB を : に分ける点は x x y y, ö ø 注 < のとき外分点 三角形の重心 点 A x, y, B x, y, C x, を頂 公式集数学 Ⅱ B < 式と証明 > 整式の割り算縦書きの割り算が出来ること f を g で割って 商が Q で余りが R のときは Q g f /////// R f g Q R と書ける 分数式 分母, 分子をそれぞれ因数分解し 約分する 既約分数式 加法, 減法については 分母を通分し分子の計算をする 繁分数式 分母 分子に同じ多項式をかけて 普通の分数式になおす 恒等式 数値代入法 係数比較法

More information

書式に示すように表示したい文字列をダブルクォーテーション (") の間に書けば良い ダブルクォーテーションで囲まれた文字列は 文字列リテラル と呼ばれる プログラム中では以下のように用いる プログラム例 1 printf(" 情報処理基礎 "); printf("c 言語の練習 "); printf

書式に示すように表示したい文字列をダブルクォーテーション () の間に書けば良い ダブルクォーテーションで囲まれた文字列は 文字列リテラル と呼ばれる プログラム中では以下のように用いる プログラム例 1 printf( 情報処理基礎 ); printf(c 言語の練習 ); printf 情報処理基礎 C 言語についてプログラミング言語は 1950 年以前の機械語 アセンブリ言語 ( アセンブラ ) の開発を始めとして 現在までに非常に多くの言語が開発 発表された 情報処理基礎で習う C 言語は 1972 年にアメリカの AT&T ベル研究所でオペレーションシステムである UNIX を作成するために開発された C 言語は現在使われている多数のプログラミング言語に大きな影響を与えている

More information

vecrot

vecrot 1. ベクトル ベクトル : 方向を持つ量 ベクトルには 1 方向 2 大きさ ( 長さ ) という 2 つの属性がある ベクトルの例 : 物体の移動速度 移動量電場 磁場の強さ風速力トルクなど 2. ベクトルの表現 2.1 矢印で表現される 矢印の長さ : ベクトルの大きさ 矢印の向き : ベクトルの方向 2.2 2 個の点を用いて表現する 始点 () と終点 () を結ぶ半直線の向き : ベクトルの方向

More information

受信機時計誤差項の が残ったままであるが これをも消去するのが 重位相差である. 重位相差ある時刻に 衛星 から送られてくる搬送波位相データを 台の受信機 でそれぞれ測定する このとき各受信機で測定された衛星 からの搬送波位相データを Φ Φ とし 同様に衛星 からの搬送波位相データを Φ Φ とす

受信機時計誤差項の が残ったままであるが これをも消去するのが 重位相差である. 重位相差ある時刻に 衛星 から送られてくる搬送波位相データを 台の受信機 でそれぞれ測定する このとき各受信機で測定された衛星 からの搬送波位相データを Φ Φ とし 同様に衛星 からの搬送波位相データを Φ Φ とす RTK-GPS 測位計算アルゴリズム -FLOT 解 - 東京海洋大学冨永貴樹. はじめに GPS 測量を行う際 実時間で測位結果を得ることが出来るのは今のところ RTK-GPS 測位のみである GPS 測量では GPS 衛星からの搬送波位相データを使用するため 整数値バイアスを決定しなければならず これが測位計算を複雑にしている所以である この整数値バイアスを決定するためのつの方法として FLOT

More information

DVIOUT-n_baika

DVIOUT-n_baika 1 三角関数の n 倍角の公式とその応用について述べます. なお Voyage 200 の操作の詳細は http://sci-tech.ksc.kwansei.ac.jp/~yamane にある はじめての数式処理電卓 Voyage 200 をご覧下さい. 2 倍角の公式 cos 2x =2cos 2 x 1=1 2sin 2 x sin 2x =2sinxcos x はよく知られています.3 倍角の公式

More information

nsg04-28/ky208684356100043077

nsg04-28/ky208684356100043077 δ!!! μ μ μ γ UBE3A Ube3a Ube3a δ !!!! α α α α α α α α α α μ μ α β α β β !!!!!!!! μ! Suncus murinus μ Ω! π μ Ω in vivo! μ μ μ!!! ! in situ! in vivo δ δ !!!!!!!!!! ! in vivo Orexin-Arch Orexin-Arch !!

More information

第1章 単 位

第1章  単  位 H. Hamano,. 長柱の座屈 - 長柱の座屈 長い柱は圧縮荷重によって折れてしまう場合がある. この現象を座屈といい, 座屈するときの荷重を座屈荷重という.. 換算長 長さ の柱に荷重が作用する場合, その支持方法によって, 柱の理論上の長さ L が異なる. 長柱の計算は, この L を用いて行うと都合がよい. この L を換算長 ( あるいは有効長さという ) という. 座屈荷重は一般に,

More information

第2章

第2章 第 2 章 企業の行動 : 第二部 ここでは 短期の供給曲線がなぜ右上がりになるのか述べます 企業は利潤を最大化すると仮定します (1) π = TR TC π : 利潤 TR : 総収入 TC : 総費用 企業は自己の生産物の価格 P に影響をしない と仮定します このことは 生 産物市場が完全競争市場であるということを意味します 詳しくは 完全競争 市場の定義について教科書などを参考にしてください

More information

49Z-12716-2.qxd (Page 1)

49Z-12716-2.qxd (Page 1) www.tektronix.co.jp µ 全 A = 1/4N * ( T 1-T 2 ), (i =1...N) ディスク ドライブ設計のための測定ソリューション アプリケーション ノート 図 6. リード チャンネルの電流を生成するために使用する任意波形ゼネレー タと電流プローブ リード ライト ヘッドの電流 ライト ヘッドの電流振幅は ヘッド リードを電流プ ローブでルーピングすることにより簡単に測定できま

More information

今週の内容 後半全体のおさらい ラグランジュの運動方程式の導出 リンク機構のラグランジュの運動方程式 慣性行列 リンク機構のエネルギー保存則 エネルギー パワー 速度 力の関係 外力が作用する場合の運動方程式 粘性 粘性によるエネルギーの消散 慣性 粘性 剛性と微分方程式 拘束条件 ラグランジュの未

今週の内容 後半全体のおさらい ラグランジュの運動方程式の導出 リンク機構のラグランジュの運動方程式 慣性行列 リンク機構のエネルギー保存則 エネルギー パワー 速度 力の関係 外力が作用する場合の運動方程式 粘性 粘性によるエネルギーの消散 慣性 粘性 剛性と微分方程式 拘束条件 ラグランジュの未 力学 III GA 工業力学演習 X5 解析力学 5X 5 週目 立命館大学機械システム系 8 年度後期 今週の内容 後半全体のおさらい ラグランジュの運動方程式の導出 リンク機構のラグランジュの運動方程式 慣性行列 リンク機構のエネルギー保存則 エネルギー パワー 速度 力の関係 外力が作用する場合の運動方程式 粘性 粘性によるエネルギーの消散 慣性 粘性 剛性と微分方程式 拘束条件 ラグランジュの未定乗数法

More information

Microsoft PowerPoint ppt

Microsoft PowerPoint ppt 基礎演習 3 C 言語の基礎 (5) 第 05 回 (20 年 07 月 07 日 ) メモリとポインタの概念 ビットとバイト 計算機内部では データは2 進数で保存している 計算機は メモリにデータを蓄えている bit 1bit 0 もしくは 1 のどちらかを保存 byte 1byte 1bitが8つ集まっている byte が メモリの基本単位として使用される メモリとアドレス メモリは 1byte

More information

C#の基本

C#の基本 C# の基本 ~ 開発環境の使い方 ~ C# とは プログラミング言語のひとつであり C C++ Java 等に並ぶ代表的な言語の一つである 容易に GUI( グラフィックやボタンとの連携ができる ) プログラミングが可能である メモリ管理等の煩雑な操作が必要なく 比較的初心者向きの言語である C# の利点 C C++ に比べて メモリ管理が必要ない GUIが作りやすい Javaに比べて コードの制限が少ない

More information

スライド 1

スライド 1 アナログ検定 2014 1 アナログ検定 2014 出題意図 電子回路のアナログ的な振る舞いを原理原則に立ち返って解明できる能力 部品の特性や限界を踏まえた上で部品の性能を最大限に引き出せる能力 記憶した知識や計算でない アナログ技術を使いこなすための基本的な知識 知見 ( ナレッジ ) を問う問題 ボーデ線図などからシステムの特性を理解し 特性改善を行うための基本的な知識を問う問題 CAD や回路シミュレーションツールの限界を知った上で

More information

竹田式数学 鉄則集

竹田式数学  鉄則集 合格への鉄則集 数学 ⅡB 竹鉄 ⅡB-01~23 竹鉄 ⅡB-1 式と証明 (1) 方程式の決定 方程式の決定問題 a+bi が解なら,a-bi も解 解と係数の関係を活用する 例題 クリアー 140 a,b は実数とする 3 次方程式 x 3 +ax 2 +bx+10=0 が 1+2i を解にもつとき, 定数 a,b の値を求めよ また, 他の解を求めよ 鉄則集 21 竹鉄 ⅡB-2 式と証明

More information

演習2

演習2 神戸市立工業高等専門学校電気工学科 / 電子工学科専門科目 数値解析 2017.6.2 演習 2 山浦剛 (tyamaura@riken.jp) 講義資料ページ h t t p://clim ate.aic s. riken. jp/m embers/yamaura/num erical_analysis. html 曲線の推定 N 次多項式ラグランジュ補間 y = p N x = σ N x x

More information

JavaプログラミングⅠ

JavaプログラミングⅠ Java プログラミング Ⅰ 12 回目クラス 今日の講義で学ぶ内容 クラスとは クラスの宣言と利用 クラスの応用 クラス クラスとは 異なる複数の型の変数を内部にもつ型です 直観的に表現すると int 型や double 型は 1 1 つの値を管理できます int 型の変数 配列型は 2 5 8 6 3 7 同じ型の複数の変数を管理できます 配列型の変数 ( 配列変数 ) クラスは double

More information

4.6: 3 sin 5 sin θ θ t θ 2t θ 4t : sin ωt ω sin θ θ ωt sin ωt 1 ω ω [rad/sec] 1 [sec] ω[rad] [rad/sec] 5.3 ω [rad/sec] 5.7: 2t 4t sin 2t sin 4t

4.6: 3 sin 5 sin θ θ t θ 2t θ 4t : sin ωt ω sin θ θ ωt sin ωt 1 ω ω [rad/sec] 1 [sec] ω[rad] [rad/sec] 5.3 ω [rad/sec] 5.7: 2t 4t sin 2t sin 4t 1 1.1 sin 2π [rad] 3 ft 3 sin 2t π 4 3.1 2 1.1: sin θ 2.2 sin θ ft t t [sec] t sin 2t π 4 [rad] sin 3.1 3 sin θ θ t θ 2t π 4 3.2 3.1 3.4 3.4: 2.2: sin θ θ θ [rad] 2.3 0 [rad] 4 sin θ sin 2t π 4 sin 1 1

More information

Microsoft PowerPoint - fuseitei_6

Microsoft PowerPoint - fuseitei_6 不静定力学 Ⅱ 骨組の崩壊荷重の計算 不静定力学 Ⅱ では, 最後の問題となりますが, 骨組の崩壊荷重の計算法について学びます 1 参考書 松本慎也著 よくわかる構造力学の基本, 秀和システム このスライドの説明には, 主にこの参考書の説明を引用しています 2 崩壊荷重 構造物に作用する荷重が徐々に増大すると, 構造物内に発生する応力は増加し, やがて, 構造物は荷重に耐えられなくなる そのときの荷重を崩壊荷重あるいは終局荷重という

More information

<4D F736F F D20837D834E838D97FB8F4B96E291E889F090E091E682528FCD81698FAC97D1816A>

<4D F736F F D20837D834E838D97FB8F4B96E291E889F090E091E682528FCD81698FAC97D1816A> 第 3 章 GDP の決定 練習問題の解説 1. 下表はある国の家計所得と消費支出です 下記の設問に答えなさい 年 所得 (Y) 消費支出 (C) 1 年目 25 15 2 年目 3 174 (1) 1 年目の平均消費性向と平均貯蓄性向を求めなさい (2) 1 年面から 2 年目にかけての限界消費性向を求めなさい 解答 (1).6 と.4 (2).48 解説 (3 頁参照 ) (1) 所得に対する消費の割合が平均消費性向です

More information

Microsoft PowerPoint - multi_media05-dct_jpeg [互換モード]

Microsoft PowerPoint - multi_media05-dct_jpeg [互換モード] マルチメディア工学マルチメディアデータの解析データ圧縮 : 離散コサイン変換と JPEG 佐藤嘉伸 マルチメディア工学 : 講義計画 マルチメディアデータの解析 基礎数理 代表的解析手法 データ圧縮 : 離散コサイン変換 JPEG データ表現 : 形状の主成分分析 奈良先端科学技術大学院大学情報科学研究科生体医用画像研究室 yoshi@is.naist.jp http://icb lab.naist.jp/members/yoshi/

More information

技術解説_有田.indd

技術解説_有田.indd Acceleration / G 2 18 16 14 12 1 8 6 4 2 Damping : 1. Period / s XY.1.1 1. 6533 283 3333 423 155 15 (X) 26.12 Hz 15 12 (Y) 28.32 Hz (Z) 43.98 Hz GS Yuasa Technical Report 211 年 6 月 第8巻 水平方向 X_3G 1.7e+7

More information

電気電子発送配変電二次練習問題

電気電子発送配変電二次練習問題 Copy Rght (c) 008 宮田明則技術士事務所 . ()() () n n 60 f f f 50, 60503000rp(n - ) f 60, 66060300rp(n - ) f 50, 060500300rp(n - ) f 50, 46050500rp(n - ) N N N (6) N () Copy Rght (c) 008 宮田明則技術士事務所 . r a, r a a a

More information

Microsoft PowerPoint - LogicCircuits01.pptx

Microsoft PowerPoint - LogicCircuits01.pptx 論理回路 第 回論理回路の数学的基本 - ブール代数 http://www.info.kindai.ac.jp/lc 38 号館 4 階 N-4 内線 5459 takasi-i@info.kindai.ac.jp 本科目の内容 電子計算機 computer の構成 ソフトウェア 複数のプログラムの組み合わせ オペレーティングシステム アプリケーション等 ハードウェア 複数の回路 circuit の組み合わせ

More information

次に示す数値の並びを昇順にソートするものとする このソートでは配列の末尾側から操作を行っていく まず 末尾の数値 9 と 8 に着目する 昇順にソートするので この値を交換すると以下の数値の並びになる 次に末尾側から 2 番目と 3 番目の 1

次に示す数値の並びを昇順にソートするものとする このソートでは配列の末尾側から操作を行っていく まず 末尾の数値 9 と 8 に着目する 昇順にソートするので この値を交換すると以下の数値の並びになる 次に末尾側から 2 番目と 3 番目の 1 4. ソート ( 教科書 p.205-p.273) 整列すなわちソートは アプリケーションを作成する際には良く使われる基本的な操作であり 今までに数多くのソートのアルゴリズムが考えられてきた 今回はこれらソートのアルゴリズムについて学習していく ソートとはソートとは与えられたデータの集合をキーとなる項目の値の大小関係に基づき 一定の順序で並べ替える操作である ソートには図 1 に示すように キーの値の小さいデータを先頭に並べる

More information

等価回路図 絶対最大定格 (T a = 25ºC) 項目記号定格単位 入力電圧 1 V IN 15 V 入力電圧 2 V STB GND-0.3~V IN+0.3 V 出力電圧 V GND-0.3~V IN+0.3 V 出力電流 I 120 ma 許容損失 P D 200 mw 動作温度範囲 T o

等価回路図 絶対最大定格 (T a = 25ºC) 項目記号定格単位 入力電圧 1 V IN 15 V 入力電圧 2 V STB GND-0.3~V IN+0.3 V 出力電圧 V GND-0.3~V IN+0.3 V 出力電流 I 120 ma 許容損失 P D 200 mw 動作温度範囲 T o 小型スタンバイ機能付高精度正電圧レギュレータ 概要 NJU7241 シリーズは, 出力電圧精度 ±2% を実現したスタンバイ機能付の低消費電流正電圧レギュレータ IC で, 高精度基準電圧源, 誤差増幅器, 制御トランジスタ, 出力電圧設定用抵抗及び短絡保護回路等で構成されています 出力電圧は内部で固定されており, 下記バージョンがあります また, 小型パッケージに搭載され, 高出力でありながらリップル除去比が高く,

More information

Microsoft PowerPoint - multi_media05-dct_jpeg [互換モード]

Microsoft PowerPoint - multi_media05-dct_jpeg [互換モード] マルチメディア工学 マルチメディアデータの解析データ圧縮 : 離散コサイン変換と JPEG マルチメディア工学 : 講義計画 イントロダクション コンピュータグラフィックス (Computer Graphics: CG) マルチメディアデータの解析 佐藤嘉伸 大阪大学大学院医学系研究科放射線統合医学講座 yoshi@image.med.osaka u.ac.jp http://www.image.med.osaka

More information

DVIOUT

DVIOUT 車両のモデリングと制御 松尾孝美 まえがき 制御理論は世の中のあらゆるものを対象として, それを数学的に解釈するとともに, いかに自分の目的とする解を得るようにその対象を変形していくかということにその本質がある. ベースとなるのは数学と物理学のこれまでの美しい 金字塔である. 難しさゆえに数物系学問は他分野の理工系人にとっても敬遠されがちであるが, ものごとの本質を理解する上で欠かせないものである.

More information

分析のステップ Step 1: Y( 目的変数 ) に対する値の順序を確認 Step 2: モデルのあてはめ を実行 適切なモデルの指定 Step 3: オプションを指定し オッズ比とその信頼区間を表示 以下 このステップに沿って JMP の操作をご説明します Step 1: Y( 目的変数 ) の

分析のステップ Step 1: Y( 目的変数 ) に対する値の順序を確認 Step 2: モデルのあてはめ を実行 適切なモデルの指定 Step 3: オプションを指定し オッズ比とその信頼区間を表示 以下 このステップに沿って JMP の操作をご説明します Step 1: Y( 目的変数 ) の JMP によるオッズ比 リスク比 ( ハザード比 ) の算出と注意点 SAS Institute Japan 株式会社 JMP ジャパン事業部 2011 年 10 月改定 1. はじめに 本文書は JMP でロジスティック回帰モデルによるオッズ比 比例ハザードモデルによるリスク比 それぞれに対する信頼区間を求める操作方法と注意点を述べたものです 本文書は JMP 7 以降のバージョンに対応しております

More information

15010506PDF_15010506_„o“χƄo›c45−ª2“ƒ_Œ{Ł¶PDF.pdf

15010506PDF_15010506_„o“χƄo›c45−ª2“ƒ_Œ{Ł¶PDF.pdf 105 (139 ) 経済と経営 45 2(2015.3) 研究ノート> 電子楽器の聞こえ方の違い 各社音源の比較 浅 見 郎 1 はじめに 電子楽器が普及し シンセサイザー等が手に入れやすくなった 楽器としてのシンセサイザーが 登場した当初はアナログ方式で電圧を制御し発音させる方式であった 現在ではほとんどがデジタ ル方式を採用している 国内外を問わず数多くのメーカーから電子楽器が製作されているが

More information

Microsoft PowerPoint - stat-2014-[9] pptx

Microsoft PowerPoint - stat-2014-[9] pptx 統計学 第 17 回 講義 母平均の区間推定 Part-1 014 年 6 17 ( )6-7 限 担当教員 : 唐渡 広志 ( からと こうじ ) 研究室 : 経済学研究棟 4 階 43 号室 email: kkarato@eco.u-toyama.ac.j website: htt://www3.u-toyama.ac.j/kkarato/ 1 講義の目的 標本平均は正規分布に従うという性質を

More information

カメラレディ原稿

カメラレディ原稿 IS2-A2 カメラを回転させた時の特徴点軌跡を用いた魚眼カメラの内部パラメータ推定 - モデルと評価関数の変更による改良 - 田中祐輝, 増山岳人, 梅田和昇 Yuki TANAKA, Gakuto MASUYAMA, Kazunori UMEDA : 中央大学大学院理工学研究科,y.tanaka@sensor.mech.chuo-u.ac.jp 中央大学理工学部,{masuyama, umeda}@mech.chuo-u.ac.jp

More information

まず y t を定数項だけに回帰する > levelmod = lm(topixrate~1) 次にこの出力を使って先ほどのレジームスイッチングモデルを推定する 以下のように入力する > levelswmod = msmfit(levelmod,k=,p=0,sw=c(t,t)) ここで k はレジ

まず y t を定数項だけに回帰する > levelmod = lm(topixrate~1) 次にこの出力を使って先ほどのレジームスイッチングモデルを推定する 以下のように入力する > levelswmod = msmfit(levelmod,k=,p=0,sw=c(t,t)) ここで k はレジ マルコフレジームスイッチングモデルの推定 1. マルコフレジームスイッチング (MS) モデルを推定する 1.1 パッケージ MSwM インスツールする MS モデルを推定するために R のパッケージ MSwM をインスツールする パッケージとは通常の R には含まれていない 追加的な R のコマンドの集まりのようなものである R には追加的に 600 以上のパッケージが用意されており それぞれ分析の目的に応じて標準の

More information

662/04-直立.indd

662/04-直立.indd l l q= / D s HTqq /L T L T l l ε s ε = D + s 3 K = αγk R 4 3 K αγk + ( α + β ) K 4 = 0 γ L L + K R K αβγ () ㅧ ర ㅧ ర (4) (5) ()ᑼ (6) (8) (9) (0) () () (3) (3) (7) Ƚˎȁ Ȇ ၑა FYDFM වႁ ޙ 䊶䊶 䊶 䊶䊶 䊶 Ƚˏȁζ υ ίυέρθ

More information

Microsoft PowerPoint - DA2_2017.pptx

Microsoft PowerPoint - DA2_2017.pptx // データ構造とアルゴリズム IⅠ 第 回単一始点最短路 (II)/ 全点対最短路 トポロジカル ソート順による緩和 トポロジカル ソート順に緩和 閉路のない有向グラフ限定 閉路がないならトポロジカル ソート順に緩和するのがベルマン フォードより速い Θ(V + E) 方針 グラフをトポロジカル ソートして頂点に線形順序を与える ソート順に頂点を選び, その頂点の出辺を緩和する 各頂点は一回だけ選択される

More information

15群(○○○)-8編

15群(○○○)-8編 群 画像 音 言語 - 6 編 音響信号処理 章基礎技術 計測技術 概要 電子情報通信学会 知識の森 http://www.ieice-hbkb.org/ 群 - 6 編 - 章 執筆者 : 金田豊 [0 年 月受領 ] スピーカやマイクロホンなどの音響機器や, また, 音が伝播する空間系などの多くは線形 系とみなすことができる. したがって, 音響信号処理の多くは線形システム理論をその基本 理論としている.

More information

丹沢のブナの立ち枯れと東名高速道路にっいて 図3 夏型の高気圧におおわれ 風の弱い日の南関東 東海道の風の1日変化 矢は風向を 矢先の数字は風速 m s を示す この地区のアメダス地点は御殿場のみ 風向の方向に長軸をもっ楕円で囲んだ 午後から夕方に かけて南 南西風が卓越している 全体に午後に海風と谷風 平地から山地へ が卓越している 東名高速道路と国道246号線および地方道 まとめて東 名高速道路という

More information

Microsoft Word - 力学PC1.doc

Microsoft Word - 力学PC1.doc 基礎物理コース I 第 5 回 A 7/6/5, :-:, 9-49, 後藤貴行 -5B, -8-56, gotoo-t@sophia.ac.jp パソコンで微分方程式を解く. 基本 ( ( ( これが式で与えられる は微小量とする ( 何に比べて小さいかは後で述べる ( ( (. 簡単な例 ただの積分, ( e ( [ もちろん 解析的に解けて ( e ( ( e 6 前の値 78 となる ] (

More information

そこで ある程度の知識があれば数学と情報の練習もかねて用いてもおもしろいのではないだろうか これはある程度の下準備のされたファイルと FLSH のアプリケーションがあれば計算処理の結果をグラフなどで視覚的に表示することが可能となると思われる 環境が許せば できあがったものをいじ るだけでなく自分で作

そこで ある程度の知識があれば数学と情報の練習もかねて用いてもおもしろいのではないだろうか これはある程度の下準備のされたファイルと FLSH のアプリケーションがあれば計算処理の結果をグラフなどで視覚的に表示することが可能となると思われる 環境が許せば できあがったものをいじ るだけでなく自分で作 五心へのアプローチ札幌新川高等学校吉田奏介 数学 Ⅰ の授業のあと 生徒から 内心や外心と頂点の延長線は中点と一致しないんですか? と質問があった その生徒には角の二等分線の話や鈍角三角形のときの話をしたら納得していたが 確かに一般的な点におけることは紙面上の図を見ただけではわかりづらいだろうし 生徒が自分で描く図は都合のよい図を描いてしまいがちである そんなことを発端にして考えてみた 1 FLSH

More information

3. 入力データおよび出力データ エクセルシートは 入力地震波 解析条件 地盤データ ひずみ依存特性 ユーザ指定 ひずみ依存特性 出力 収束剛性 最大値深度分布 相対変位最大時深度分布 伝達関数+ 入力 伝達関数 入力 加速度時刻歴+ 出力 加速度時刻歴 出力 変位時刻歴 せん断応力時刻歴 および

3. 入力データおよび出力データ エクセルシートは 入力地震波 解析条件 地盤データ ひずみ依存特性 ユーザ指定 ひずみ依存特性 出力 収束剛性 最大値深度分布 相対変位最大時深度分布 伝達関数+ 入力 伝達関数 入力 加速度時刻歴+ 出力 加速度時刻歴 出力 変位時刻歴 せん断応力時刻歴 および 成層地盤の地震応答計算プログラム エクセルマクロ について 日中構造研究所松原勝己同上梁生鈿. はじめに地上構造物の耐震解析に使用する入力地震動を地盤の影響を考慮して設定する場合や 地下構造物の耐震解析において地盤変位 周面せん断力および躯体慣性力など地震時外力の設定を行う場合に 当該地盤を成層構造と仮定し一次元地盤応答解析によって地盤の地震応答を算出することがあります この計算には SAK などの解析ソフトや他の市販ソフトが使用されるのが一般的です

More information

Microsoft PowerPoint - DA2_2017.pptx

Microsoft PowerPoint - DA2_2017.pptx 1// 小テスト内容 データ構造とアルゴリズム IⅠ 第 回単一始点最短路 (I) 1 1 第 章の構成. 単一始点最短路問題 単一始点最短路問題とは 単一始点最短路問題の考え方 単一始点最短路問題を解くつのアルゴリズム ベルマン フォードのアルゴリズム トポロジカル ソートによる解法 ダイクストラのアルゴリズム 1 1 単一始点最短路問題とは 単一始点最短路問題とは 前提 : 重み付き有向グラフ

More information

Microsoft Word - XRD_2010.doc

Microsoft Word - XRD_2010.doc 5.X 線回折. はじめに以下の条件条件を満たさないたさない場合場合 学生実験学生実験を始めない! 予習をしてこない 学生実験ノートを持ってこない ( テキストにデータを書く学生が多い ) レポート 実験実験ノートノートの作り方 実験ノート レポートは ボールペン ( 手書き ) で書くこと! ワープロで書かれたレポートは受け取らない 誰が読んでも分かりやすいレポートを書くこと 3 客観的な記述 考察が要求される

More information

MT2-Slides-04.pptx

MT2-Slides-04.pptx 計測工学 II 第 4 回 アナログ信号の処理 今日の内容 アナログ信号の処理 ブリッジ回路 増幅回路 負帰還回路 演算増幅器の回路 差動増幅 同相弁別比 受動フィルタ 能動フィルタ ロックイン増幅器などについて学習する 教科書では P218 P228 です 微弱な信号の処理 生体の電気信号は微弱 心電図の信号レベル : 1mV 前後 脳波の信号レベル : 数 µv 300µV 筋電図の信号レベル

More information

Microsoft PowerPoint - algo ppt [互換モード]

Microsoft PowerPoint - algo ppt [互換モード] ( 復習 ) アルゴリズムとは アルゴリズム概論 - 探索 () - アルゴリズム 問題を解くための曖昧さのない手順 与えられた問題を解くための機械的操作からなる有限の手続き 機械的操作 : 単純な演算, 代入, 比較など 安本慶一 yasumoto[at]is.naist.jp プログラムとの違い プログラムはアルゴリズムをプログラミング言語で表現したもの アルゴリズムは自然言語でも, プログラミング言語でも表現できる

More information

りあげるここでは補償伝達関数である設計の目的はいかなる外乱が加っても未知プラントの出力が規範モデルの出力に一致するようにを決定することである 外乱 設定入力 出力 図 フィードバック制御系 重合せの定理が成り立つ線形領域では図のブロック線図から次の関係を得ることができる ここで いまとなるように補償

りあげるここでは補償伝達関数である設計の目的はいかなる外乱が加っても未知プラントの出力が規範モデルの出力に一致するようにを決定することである 外乱 設定入力 出力 図 フィードバック制御系 重合せの定理が成り立つ線形領域では図のブロック線図から次の関係を得ることができる ここで いまとなるように補償 適応制御 大分大学工学部福祉環境工学科松尾孝美 まえがき 制御系設計でははじめに制御対象と制御目的が与えられている理想的な設計手法を用いる場合は, まず, 制御対象の数学モデルを作る同時に制御目的を仕様の形で表わすため評価関数の設定とか振幅減衰度の指定といったようななんらかの数量化を行うつぎに制御方式を定めこれに従って種々提案されている設計手法を用いて制御装置 ( コントローラ ) を設計することになるこのように制御系の設計は制御対象

More information

01

01 2 0 0 7 0 3 2 2 i n d e x 0 7. 0 2. 0 3. 0 4. 0 8. 0 9. 1 0. 1 1. 0 5. 1 2. 1 3. 1 4. 1 5. 1 6. 1 7. 1 8. 1 9. 2 0. 2 1. 2 3. 2 4. 2 5. 2 6. O k h o t s k H a m a n a s u B e e f 0 2 http://clione-beef.n43.jp

More information

Microsoft Word - Word1.doc

Microsoft Word - Word1.doc Word 2007 について ( その 1) 新しくなった Word 2007 の操作法について 従来の Word との相違点を教科書に沿って説明する ただし 私自身 まだ Word 2007 を使い込んではおらず 間違いなどもあるかも知れない そうした点についてはご指摘いただければ幸いである なお 以下において [ ] で囲った部分は教科書のページを意味する Word の起動 [p.47] Word

More information

連続講座 断層映像法の基礎第 34 回 : 篠原 広行 他 放射状に 線を照射し 対面に検出器の列を置いておき 一度に 1 つの角度データを取得する 後は全体を 1 回転しながら次々と角度データを取得することで計測を終了する この計測で得られる投影はとなる ここで l はファンビームのファンに沿った

連続講座 断層映像法の基礎第 34 回 : 篠原 広行 他 放射状に 線を照射し 対面に検出器の列を置いておき 一度に 1 つの角度データを取得する 後は全体を 1 回転しながら次々と角度データを取得することで計測を終了する この計測で得られる投影はとなる ここで l はファンビームのファンに沿った 連続講座 断層映像法の基礎第 34 回 : 篠原広行 他 篠原 広行 桑山 潤 小川 亙 中世古 和真 断層映像法の基礎第 34 回スパイラルスキャン CT 1) 軽部修平 2) 橋本雄幸 1) 小島慎也 1) 藤堂幸宏 1) 3) 首都大学東京人間健康科学研究科放射線科学域 2) 東邦大学医療センター大橋病院 3) 横浜創英短期大学情報学科 1) はじめに第 33 回では検出確率 C ij の関係を行列とベクトルの計算式に置き換えて解を求める最小二乗法を利用した方法について解説した

More information

PowerPoint Presentation

PowerPoint Presentation ファイルの入出力 芝浦工業大学情報工学科 青木義満 今回の講義内容 ファイル入出力 ファイルからのデータ読込み ファイルと配列 2 1 ファイルへのデータ書き込み ( 復習 ) ソースファイル名 :fileio1.c データをファイルに書き込み #include int main(void) { ファイルポインタ宣言 int student_id = 100; char name[

More information

Microsoft Word 国家2種経済.doc

Microsoft Word 国家2種経済.doc NO.36 X 財と Y 財の 2 財について 所得変化及び価格変化が需要量に与える効果に関する次の記 述のうち妥当なのはどれか 1.X 財が下級財の場合には その財の需要の所得弾力性は1よりも小さくなり X 財と Y 財の間に描くことのできる所得 消費曲線は右上がりとなる 2.X 財 Y 財ともに上級財であり 両財が代替財の関係にある場合 X 財の価格が低下すると Y 財は代替効果によっても所得効果によっても需要量が減少するので

More information

EndoPaper.pdf

EndoPaper.pdf Research on Nonlinear Oscillation in the Field of Electrical, Electronics, and Communication Engineering Tetsuro ENDO.,.,, (NLP), 1. 3. (1973 ),. (, ),..., 191, 1970,. 191 1967,,, 196 1967,,. 1967 1. 1988

More information

ォト マイクロセンサ ( 形 EE-SY113) を利用した 指先の毛細血管の血液の流れに対応して変化する赤外線反射量の電圧変化をオペアンプで増幅する 図 2 は 赤外線センサーとオペアンプ (LM358N-N) であり 赤外線反射量の電圧変化で赤色 LED の光と電子音を発することを表している 図

ォト マイクロセンサ ( 形 EE-SY113) を利用した 指先の毛細血管の血液の流れに対応して変化する赤外線反射量の電圧変化をオペアンプで増幅する 図 2 は 赤外線センサーとオペアンプ (LM358N-N) であり 赤外線反射量の電圧変化で赤色 LED の光と電子音を発することを表している 図 赤外線を利用した脈拍数計測装置の開発とその実験方法の工夫 1. はじめに近年の理科教育は あくまで理想的な条件下においてやさしい基本的思考問題を解くことに重点が置かれる その背景のひとつには生徒の知的好奇心を刺激し 教員にとって授業に取り入れやすい教材の不足があると考えられる その結果として 実物実験授業不足や実習体験不足が横たわり 高度な思考力を鍛える教育がなされていないのが現状だ つまり 現理科教育では

More information

としてもよいし,* を省略し, その代わりにスペースを空けてもよい. In[5]:= 2 3 Out[5]= 6 数値計算 厳密な代数計算 整数および有理数については, 厳密な計算がなされます. In[6]:= Out[6]= In[7]:= Out[7]= 2^

としてもよいし,* を省略し, その代わりにスペースを空けてもよい. In[5]:= 2 3 Out[5]= 6 数値計算 厳密な代数計算 整数および有理数については, 厳密な計算がなされます. In[6]:= Out[6]= In[7]:= Out[7]= 2^ Mathematica 入門 はじめに Mathematica は極めて高度かつ有用な機能を有する研究支援統合ソフトウェアです. 理工系学生にとって ( それどころか研究者にとっても ) 非常に便利なツールですから, 基本的な操作方法に慣れておくと, いざというときにとても重宝します. 入力方法 キーボードからの入力 Mathematica では, 数式はすべてキーボードから入力できるようになっています.

More information

Microsoft PowerPoint - 15kiso-macro09.pptx

Microsoft PowerPoint - 15kiso-macro09.pptx 基礎マクロマクロ経済学 (2015 年度前期 ) 9. 総需要 :IS-LM 分析の応用担当 : 小塚匡文 9.1 IS-LM 分析の応用 : 短期均衡の変化 < 政府購入の変更 > 政府購入が ΔG だけ増えた場合 ( 拡張的財政政策 ) IS 曲線は右シフトし 仮に金利が一定であるとすれば 所得 生産は 1 = G 1 ( MPC) だけ増加 ( : ケインジアン クロスと乗数効果 ) LM 曲線との交点

More information

Microsoft PowerPoint _OpenCAE並列計算分科会.pptx

Microsoft PowerPoint _OpenCAE並列計算分科会.pptx 地球流体力学に関する GPGPU を用いた数値計算 神戸大学惑星科学研究センター西澤誠也 地球流体力学とは 地球 惑星に関連がある流体の力学 回転, 重力の影響 e.g. 大気, 海洋, マントル 数値計算は天気予報 & 弾道軌道予測から始まった ベクトル計算機 地球流体の計算はベクトル長が長いものが多い ベクトル計算機の凋落 某社の次世代スパコンからの撤退 個人的スパコンの将来予想 個々の演算器はシンプルに

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション ロボティックス Robotics 先端工学基礎課程講義 小泉憲裕 2016/5/6 講義情報 当面はこちらのサイト, http://www.medigit.mi.uec.ac.jp/lect_robotics.html ロボットの運動学 ロボットの運動学 ロボットの運動学は現在 ニュートン力学を発展させた解析力学を基盤とすることが多い 解析力学では物体を 剛体としてあらわす 第 4 回 座標変換平行

More information

OR#5.key

OR#5.key オペレーションズ リサーチ1 Operations Research 前学期 月曜 3限(3:00-4:30) 8 整数計画モデル Integer Programming 経営A棟106教室 山本芳嗣 筑波大学 大学院 システム情報工学研究科 整数計画問題 2 凸包 最小の凸集合 線形計画問題 変数の整数条件 ctx Ax b x 0 xj は整数 IP LP 3 4 Bx d!!!!!? P NP

More information

1) クランク一体処理法 2013 年度版基準総則 集団規定の適用事例 において 1 本の道路で幅員が異なる場合 の処理法について示されました 従来は下段に示す 取扱い 2 のように 令 132 条に則った処理法でした ( この処理法ももちろん有用です ) が クランク道路を 一の道路 として扱った

1) クランク一体処理法 2013 年度版基準総則 集団規定の適用事例 において 1 本の道路で幅員が異なる場合 の処理法について示されました 従来は下段に示す 取扱い 2 のように 令 132 条に則った処理法でした ( この処理法ももちろん有用です ) が クランク道路を 一の道路 として扱った 2013 年度版基準総則 集団規定の適用事例対応 クランク道路処理操作手引き 1) クランク一体処理法 2)132 条による処理法 3) 二の道路 処理法 4) 敷地側がクランクした処理法 1) クランク一体処理法 2013 年度版基準総則 集団規定の適用事例 において 1 本の道路で幅員が異なる場合 の処理法について示されました 従来は下段に示す 取扱い 2 のように 令 132 条に則った処理法でした

More information

Microsoft Word - ミクロ経済学02-01費用関数.doc

Microsoft Word - ミクロ経済学02-01費用関数.doc ミクロ経済学の シナリオ 講義の 3 分の 1 の時間で理解させる技術 国際派公務員養成所 第 2 章 生産者理論 生産者の利潤最大化行動について学び 供給曲線の導出プロセスを確認します 2-1. さまざまな費用曲線 (1) 総費用 (TC) 固定費用 (FC) 可変費用 (VC) 今回は さまざまな費用曲線を学んでいきましょう 費用曲線にはまず 総費用曲線があります 総費用 TC(Total Cost)

More information

Microsoft PowerPoint - Chap3 [Compatibility Mode]

Microsoft PowerPoint - Chap3 [Compatibility Mode] 計算機構成論 (Chap. 3) @C4 http://www.ngc.is.ritsumei.ac.jp/~ger/lectures/comparch22/index.html (user=ganbare, passwd = 初回の講義で言いました ) 講義に出るなら 分からないなら質問しよう 単位を取りたいなら 章末問題は自分で全部といておこう ( レポートと考えればいいんです!) ご意見 ご要望

More information

Microsoft PowerPoint - 5Chap10.ppt

Microsoft PowerPoint - 5Chap10.ppt 第 11 章関数について 11.1 標準ライブラリ関数 11. 関数呼び出しのオーバーヘッド 11. 大域変数 11.4 プロトタイプ宣言数学関数の自作 11.1 標準ライブラリ関数 予め定義されており ユーザが定義 作成しなくても使える関数 ヘッダ部に以下のマクロが必要 #iclude pritf, scf 等の入出力関数 sqrt, si 等の数学関数 #iclude

More information

JavaプログラミングⅠ

JavaプログラミングⅠ Java プログラミング Ⅰ 2 回目 ようこそ Java へ 今日の講義で学ぶ内容 画面へのメッセージの表示 文字や文字列 数値を表現するリテラル 制御コードを表すエスケープシーケンス 画面出力の基本形 ソースファイル名 : クラス名.java class クラス名 System.out.println(" ここに出力したい文字列 1 行目 "); System.out.println(" ここに出力したい文字列

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション 担当教員名 単位数西田健 2 単位 教室 時間 4-1A 教室火曜 4 限 目的不確定性を有する対象の制御に有効な確率システム制御理論について解説する また 確率的要因を考慮した状態推定のために 宇宙ロケットや自律ロボットなどの幅広い分野で利用されているカルマンフィルタやパーティクルフィルタについて解説し それらを用いる制御系の構成手法を教授する 授業計画 (1) ガイダンスと導入 (2) 線形動的システムの時系列モデリング

More information

Microsoft PowerPoint - 2.ppt [互換モード]

Microsoft PowerPoint - 2.ppt [互換モード] 0 章数学基礎 1 大学では 高校より厳密に議論を行う そのために 議論の議論の対象を明確にする必要がある 集合 ( 定義 ) 集合 物の集まりである集合 X に対して X を構成している物を X の要素または元という 集合については 3 セメスタ開講の 離散数学 で詳しく扱う 2 集合の表現 1. 要素を明示する表現 ( 外延的表現 ) 中括弧で 囲う X = {0,1, 2,3} 慣用的に 英大文字を用いる

More information

238 古川智樹 機能を持っていると思われる そして 3のように単独で発話される場合もあ れば 5の あ なるほどね のように あ の後続に他の形式がつく場合も あり あ は様々な位置 形式で会話の中に現れることがわかる では 話し手の発話を受けて聞き手が発する あ はどのような機能を持つ のであろ

238 古川智樹 機能を持っていると思われる そして 3のように単独で発話される場合もあ れば 5の あ なるほどね のように あ の後続に他の形式がつく場合も あり あ は様々な位置 形式で会話の中に現れることがわかる では 話し手の発話を受けて聞き手が発する あ はどのような機能を持つ のであろ 238 古川智樹 機能を持っていると思われる そして 3のように単独で発話される場合もあ れば 5の あ なるほどね のように あ の後続に他の形式がつく場合も あり あ は様々な位置 形式で会話の中に現れることがわかる では 話し手の発話を受けて聞き手が発する あ はどのような機能を持つ のであろうか この あ に関して あいづち研究の中では 主に 理解して いる信号 堀口1 7 として取り上げられているが

More information

InfiniiSimによるオシロスコープの観測点移動

InfiniiSimによるオシロスコープの観測点移動 Keysight Technologies InfiniiSim によるオシロスコープの観測点移動 シミュレーションを利用した仮想プロービングポイントでの波形表示 Application Note 02 InfiniiSim によるオシロスコープの観測点移動 Application Note はじめに Infiniium シリーズオシロスコープは測定した波形にオプションの InfiniiSim 機能によるシミュレーションを適用することにより回路条件等を変えた場合の波形を表示することができます

More information

出力電圧ランク 品名 出力電圧 品名 出力電圧 品名 出力電圧 NJU774*F15 1.5V NJU774*F28 2.8V NJU774*F4 4.V NJU774*F18 1.8V NJU774*F29 2.9V NJU774*F45 4.5V NJU774*F19 1.9V NJU774*F

出力電圧ランク 品名 出力電圧 品名 出力電圧 品名 出力電圧 NJU774*F15 1.5V NJU774*F28 2.8V NJU774*F4 4.V NJU774*F18 1.8V NJU774*F29 2.9V NJU774*F45 4.5V NJU774*F19 1.9V NJU774*F 低飽和型レギュレータ 概要 NJU7741/44 はC-MOS プロセスを使用し 超低消費電流を実現した低飽和型レギュレータです SOT-23-5 の小型パッケージに搭載し 出力電流 1mA 小型.1 Fセラミックコンデンサ対応の為 携帯機器の応用に最適です また NJU7744 には出力シャントスイッチが付いているため 端子の使用時における出力応答の高速化が可能となっております 外形 NJU7741/44F

More information

314 図 10.1 分析ツールの起動 図 10.2 データ分析ウィンドウ [ データ ] タブに [ 分析 ] がないときは 以下の手順で表示させる 1. Office ボタン をクリックし Excel のオプション をクリックする ( 図 10.3) 図 10.3 Excel のオプション

314 図 10.1 分析ツールの起動 図 10.2 データ分析ウィンドウ [ データ ] タブに [ 分析 ] がないときは 以下の手順で表示させる 1. Office ボタン をクリックし Excel のオプション をクリックする ( 図 10.3) 図 10.3 Excel のオプション 313 第 10 章 Excel を用いた統計処理 10.1 Excel の統計処理レポートや卒業研究などでは 大量のデータを処理 分析し 報告しなければならない場面が数多く登場する このような場合 手計算では多くの時間を要するため現在では計算機を用いて一括処理することが一般的である これにより 時間短縮だけでなく手軽に詳細な分析を行うことができる Excel ではこのような大量のデータに対する分析を容易に行えるよう

More information

Taro-H22T3金沢工大eの導入訂正版

Taro-H22T3金沢工大eの導入訂正版 数学 Ⅲ での対数 e の導入 T3 第 4 回年会於金沢工業大学岡山市立岡山後楽館高校河合伸昭一部対数数学 Ⅱ の復習 作ってみようあなただけの対数表 対数の原理の理解と記号に慣れる.A. グラフ電卓で検算しながら 次の表を完成させよう 3 4 5 6 7 8 9 0 3 4 5 6 B. 暗算で次の値を計算しよう ( ヒント A の表を活用しよう ) 6 3 3 64 3 56 6 4 8 64

More information

Section1_入力用テンプレートの作成

Section1_入力用テンプレートの作成 入力用テンプレートの作成 1 Excel には 効率よく かつ正確にデータを入力するための機能が用意されています このセクションでは ユーザー設定リストや入力規則 関数を利用した入力用テンプレートの作成やワークシート操作について学習します STEP 1 ユーザー設定リスト 支店名や商品名など 頻繁に利用するユーザー独自の連続データがある場合には ユーザー設定リスト に登録しておけば オートフィル機能で入力することができ便利です

More information

6 6. 圧密理論 6. 圧密理論 6.. 圧密方程式の誘導 粘土層の圧密原因とメカニズム 地下水位の低下 盛土建設 最終圧縮量と圧縮速度 6. 圧密理論 記号の統一間隙水圧 ( 絶対圧 ): u 間隙水圧 (gauge 圧 ): u u p a ( 大気圧 ) 過剰間隙水圧 : Δu ( 教科書は これを u と記している 初期状態が u p a で u の時で uδu の状態を対象にしている ) 微小の増分

More information

<4D F736F F D2089FC92E82D D4B CF591AA92E882C CA82C982C282A282C42E727466>

<4D F736F F D2089FC92E82D D4B CF591AA92E882C CA82C982C282A282C42E727466> 11 Application Note 光測定と単位について 1. 概要 LED の性質を表すには 光の強さ 明るさ等が重要となり これらはその LED をどのようなアプリケーションに使用するかを決定するために必須のものになることが殆どです しかし 測定の方法は多種存在し 何をどのような測定器で測定するかにより 測定結果が異なってきます 本書では光測定とその単位について説明していきます 2. 色とは

More information

ブック 1.indb

ブック 1.indb 20 29 29 18 21 29 10 30 31 10 11 12 30 13 10 30 14 11 30 15 12 16 13 17 14 18 15 19 16 20 17 21 18 10 20 29 82 83 84 85 86 87 88 20 10 89 20 12 11 90 20 13 12 91 20 14 13 92 20 14 14 93 15 15 94 15 16

More information