例 e 指数関数的に減衰する信号を h( a < + a a すると, それらのラプラス変換は, H ( ) { e } e インパルス応答が h( a < ( ただし a >, U( ) { } となるシステムにステップ信号 ( y( のラプラス変換 Y () は, Y ( ) H ( ) X (

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "例 e 指数関数的に減衰する信号を h( a < + a a すると, それらのラプラス変換は, H ( ) { e } e インパルス応答が h( a < ( ただし a >, U( ) { } となるシステムにステップ信号 ( y( のラプラス変換 Y () は, Y ( ) H ( ) X ("

Transcription

1 第 週ラプラス変換 教科書 p.34~ 目標ラプラス変換の定義と意味を理解する フーリエ変換や Z 変換と並ぶ 信号解析やシステム設計における重要なツール ラプラス変換は波動現象や電気回路など様々な分野で 微分方程式を解くために利用されてきた ラプラス変換を用いることで微分方程式は代数方程式に変換される また 工学上使われる主要な関数のラプラス変換は簡単な形の関数で表されるので これを ラプラス変換表 として用意しておけば 機械的な操作により微分方程式を解くことが可能になる 計測 制御システムにおいてもラプラス変換は 安定性の判定などに利用されている ラプラス変換の定義 教科書 p.35 時間信号 x( は, 次の式により, 複素数 の関数 X () に変換される { } + x X ( ) x( e ( d (-) この定義式のラプラス変換は 片側ラプラス変換 と呼ばれる. < で信号 x( として扱っている. 工学上のほとんどの応用では, この形で扱うことができる. そこで, これ以降, 特に断らない限り, 信号は < で となる片側信号とする 注意 : ラプラス変換の収束域ラプラス変換の値は, 複素平面内の全ての について有限の値に収束するわけではない. 収束域 : ラプラス変換の値が収束する複素数 の範囲 片側ラプラス変換の収束域は, 一般的には, { } > γ Re (-) という半平面になる.γ の値は, 信号 x( によって変わる. ラプラス変換の使い方 3 有用な信号の多くは複素数 の単純な関数で表わせる変換 逆変換は ラプラス変換表 を使う線形 時不変システムの入出力は比例関係になる 入力 ( x, 出力 y (, インパルス応答 h( のラプラス変換を () とすると, Y ( ) H ( ) X ( ) jω とすればフーリエ変換が求まる X, Y (), H () 4 線形システム入門講義資料 -

2 例 e 指数関数的に減衰する信号を h( a < + a a すると, それらのラプラス変換は, H ( ) { e } e インパルス応答が h( a < ( ただし a >, U( ) { } となるシステムにステップ信号 ( y( のラプラス変換 Y () は, Y ( ) H ( ) X ( ) + a a + a y( a + a a + a このシステムの周波数応答 a { Y ( ) } ( e ) H ( ) の を jω で置き換えると, + a Hjω) j ω + a a ), ステップ信号を で与えられる u を入力したときの出力 y ( と < 5 6 ラプラス変換では, 時間信号を e という 複素の周波数 を持つ信号に分解している, と解釈できる (Fig.- 参照 ). 指数関数やステップ関数のように過渡的に変化する信号を扱える点がフーリエ変換とは異なる. α <, ω α, ω Im{ } α + jω Re{ } α >, ω α <, ω α >, ω α, ω Fig.- 複素周波数と信号波形 フーリエ変換の拡張として理解できる X ( ω) x( e 角周波数 ω の成分 jω d 角周波数 ω ( 実数値, 数直線上の 点 ) 変数 ( 複素数, 複素平面上の 点 ) α jω ( j ) j e e α + ω e α e ω 増大または減少する角周波数 ωの正弦波信号 + とすると, ラプラス変換には逆変換がある ( 章末の解説を参照 ) - 線形システム入門講義資料

3 基本的な信号のラプラス変換 教科書 p.36~ 工学上重要な信号のラプラス変換を以下に示す これらのラプラス変換は複素角周波数 の簡単な関数で表される また その分母多項式がゼロになる の値が 信号の周波数や減衰率に対応している ラプラス変換の分母がゼロになる の値を極 (pole) と呼ぶ 単位ステップ関数 < 導出過程 : { } ( 収束域は, Re { } > ) (-3) Re { } > { u } e d ( e d e lim e のとき つまり α + jω, α > のとき (-4) 式の第 項は, lim α jω e lim e e α + jω のように, となる したがって,(-3) が導き出される (-4) (-5) 単位ステップ信号は 計測システムにおける被測定信号や 制御システムでの制御入力信号がステップ的な変化をする場合に現れる この信号の極は につだけ存在し 角周波数ゼロ 減衰率ゼロの信号であることがわかる δ 関数 { ( } ( e d e δ δ ( 全領域で収束 ) (-6) δ 関数のラプラス変換は 平面全体に渡って となる 3 指数関数 { } e α α ( 収束域は, { } > α α α 導出過程 : { e } e e d Re ) (-7) ( α ) ( α ) e d lim e α したがって Re { } > α なら,(-7) 式が導き出される α (-8) 指数関数的の極は α となり 減衰係数と一致する 信号の振幅は α > なら時間とともに増大 α < なら時間と共に減衰する 指数関数のラプラス変換から出発して, 幾つかの信号のラプラス変換を導き出せる. 演習問題問題 上記の導出過程を見ないで, 以下の関数のラプラス変換と収束域を示せ. ステップ関数 δ 関数 3 指数関数 線形システム入門講義資料 -3

4 ステップ関数 δ 関数 3 指数関数 4 複素三角関数 j e ω jω { e } ω ( 収束域は, { } - j Re > ) (-9) 一定振幅の複素三角関数の極は 平面の虚軸上に つだけ存在する 5 co ω in ω jω jω e + e jω + jω { coω} + +ω ( 収束域は, Re { } > ) (-) jω jω e e j j jω + jω { inω} ω + ω ( 収束域は, { } Re > ) (-) 実数の正弦波のラプラス変換では, 極は虚軸上に存在し, 実軸に関し対称に 個が対になる -4 線形システム入門講義資料

5 6 e α e α coω inω ( α + jω) ( α jω) + α e e { e coω} + α jω α + jω α (-) ( α) + ω ( α + jω) ( α jω) α e e { e inω} ω ( α) + ω j ( 収束域は, { } > α j α jω α + jω Re ) (-3) 振幅が時間とともに減衰または増大する正弦波のラプラス変換の極は 実軸に関し対称に 個が対になる 7 n 信号 x ( のラプラス変換を求めると, + { } e d e e d (-4) となり, > では第 項はゼロとなるので, n { } e d ( 収束域は, Re { } > x ( のラプラス変換は, n n n n n { } + ) (-5) e d e e d (-6) となり, 前と同様にして, n n n n n { } e d { } (-7) となる { } / n n! { } n であるから, 一般に ( 収束域は, Re { } > n+ 信号 のラプラス変換は 平面の原点に n + 重の多重極を持つ ) (-8) 8 n e α 7 と同様の過程により, n α n! { e } n+ ( 収束域は, { } α ( α) Re > ) (-9) 信号 n e α のラプラス変換は 平面の実軸上に n + 重の多重極を持つ 線形システム入門講義資料 -5

6 付録 A 逆ラプラス変換 教科書 p.47~ ラプラス変換には逆変換が存在し α + j e x( X ( ) d (-4) j α j π で与えられる 積分経路は Fig.- に示すように, ラプラス変換の収束領域内に存在しなければならない すなわち α > γ である α + j Im{ } Re { } α > γ Im{ } Re { } α > γ γ Re{ } Re{ } C Re { } γ α Re { } γ α j a)bromwich の経路 b) 周回積分路 Fig.- 逆ラプラス変換の積分路 逆ラプラス変換式の導出 ラプラス変換の式 (-) は 単位ステップ関数 < を使って (-5) と変形できる これに α + jω を代入すると X ( ) x( e d (-6) ( α + j ω) X ( α + jω) x( e d α jω ( e e (-7) x d α となる この式から X ( α + jω) は x( e のフーリエ変換と等しいことがわかる したがって 逆フーリエ変換の式 : j ω ω x( X ( j ) e dω ( X ( jω) は x( のフーリエ変換 ) π を利用すると π α jω ( e X ( α + jω) e dω (-8) x -6 線形システム入門講義資料

7 が得られる 両辺に e α を乗ずると x π ( α + j ω) ( X ( α + jω) e dω (-9) が得られる α + j ω, jd ω d とすると (-9) 式は線積分の形に表され が導かれた ( 導出終り ) α + j e x( x( X ( ) d (-3) j α j π 逆ラプラス変換の (-4) 式は Fig.- に示す Bromwich の経路に沿った積分で求められる さらに, この積分は, Jordan の補助定理 により閉路積分 x ( X ( ) e d jπ C (-3) の形に収束するので 留数定理により計算することが可能である 線形システム入門講義資料 -7

8 モーグ シンセサイザーアメリカの電子工学博士 ロバート モーグ (Rober Moog,934-5) が 964 年に開発したアナログ シンセサイザー 電圧制御発振器, 電圧制御フィルタ, 可変利得増幅器などのアナログ電子回路で構成されていた -8 線形システム入門講義資料 Yauaka Tamra 9

ディジタル信号処理

ディジタル信号処理 ディジタルフィルタの設計法. 逆フィルター. 直線位相 FIR フィルタの設計. 窓関数法による FIR フィルタの設計.5 時間領域での FIR フィルタの設計 3. アナログフィルタを基にしたディジタル IIR フィルタの設計法 I 4. アナログフィルタを基にしたディジタル IIR フィルタの設計法 II 5. 双 次フィルタ LI 離散時間システムの基礎式の証明 [ ] 4. ] [ ]*

More information

画像解析論(2) 講義内容

画像解析論(2) 講義内容 画像解析論 画像解析論 東京工業大学長橋宏 主な講義内容 信号処理と画像処理 二次元システムとその表現 二次元システムの特性解析 各種の画像フィルタ 信号処理と画像処理 画像解析論 処理の応答 記憶域 入出力の流れ 信号処理系 実時間性が求められる メモリ容量に対する制限が厳しい オンラインでの対応が厳しく求められる 画像処理系 ある程度の処理時間が許容される 大容量のメモリ使用が容認され易い オフラインでの対応が容認され易い

More information

Microsoft PowerPoint - 10.pptx

Microsoft PowerPoint - 10.pptx m u. 固有値とその応用 8/7/( 水 ). 固有値とその応用 固有値と固有ベクトル 行列による写像から固有ベクトルへ m m 行列 によって線形写像 f : R R が表せることを見てきた ここでは 次元平面の行列による写像を調べる とし 写像 f : を考える R R まず 単位ベクトルの像 u y y f : R R u u, u この事から 線形写像の性質を用いると 次の格子上の点全ての写像先が求まる

More information

Microsoft PowerPoint - 10.pptx

Microsoft PowerPoint - 10.pptx 0. 固有値とその応用 固有値と固有ベクトル 2 行列による写像から固有ベクトルへ m n A : m n n m 行列によって線形写像 f R R A が表せることを見てきた ここでは 2 次元平面の行列による写像を調べる 2 = 2 A 2 2 とし 写像 まず 単位ベクトルの像を求める u 2 x = v 2 y f : R A R を考える u 2 2 u, 2 2 0 = = v 2 0

More information

2018年度 東京大・理系数学

2018年度 東京大・理系数学 08 東京大学 ( 理系 ) 前期日程問題 解答解説のページへ関数 f ( ) = + cos (0 < < ) の増減表をつくり, + 0, 0 のと sin きの極限を調べよ 08 東京大学 ( 理系 ) 前期日程問題 解答解説のページへ n+ 数列 a, a, を, Cn a n = ( n =,, ) で定める n! an qn () n とする を既約分数 an p として表したときの分母

More information

Microsoft PowerPoint - 集積デバイス工学7.ppt

Microsoft PowerPoint - 集積デバイス工学7.ppt 集積デバイス工学 (7 問題 追加課題 下のトランジスタが O する電圧範囲を求めよただし T, T - とする >6 問題 P 型 MOS トランジスタについて 正孔の実効移動度 μ.7[m/ s], ゲート長.[μm], ゲート幅 [μm] しきい値電圧 -., 単位面積あたりの酸化膜容量

More information

2011年度 筑波大・理系数学

2011年度 筑波大・理系数学 0 筑波大学 ( 理系 ) 前期日程問題 解答解説のページへ O を原点とするy 平面において, 直線 y= の を満たす部分をC とする () C 上に点 A( t, ) をとるとき, 線分 OA の垂直二等分線の方程式を求めよ () 点 A が C 全体を動くとき, 線分 OA の垂直二等分線が通過する範囲を求め, それ を図示せよ -- 0 筑波大学 ( 理系 ) 前期日程問題 解答解説のページへ

More information

平成 年 月 7 日 ( 土 第 75 回数学教育実践研究会アスティ 45 ビル F セミナールーム A 札幌医科大学 年 P ab, を正の定数とする 平面上において ( a, を中心とする円 Q 4 C と (, b を中心とする円 C が 原点 O で外接している また P を円 C 上の点と

平成 年 月 7 日 ( 土 第 75 回数学教育実践研究会アスティ 45 ビル F セミナールーム A 札幌医科大学 年 P ab, を正の定数とする 平面上において ( a, を中心とする円 Q 4 C と (, b を中心とする円 C が 原点 O で外接している また P を円 C 上の点と 平成 年 月 7 日 ( 土 第 75 回数学教育実践研究会アスティ 45 ビル F セミナールーム 微分積分の拡張 変数関数問題へのアプローチ 予選決勝優勝法からラグランジュ未定乗数法 松本睦郎 ( 札幌北高等学校 変数関数の最大値 最小値に関する問題には多様なアプローチ法がある 文字を固定した 予選決勝優勝法, 計算のみで解法する 文字消去法, 微分積分を利用した ラグランジュ未定乗数法 がある

More information

Microsoft Word - 補論3.2

Microsoft Word - 補論3.2 補論 3. 多変量 GARC モデル 07//6 新谷元嗣 藪友良 対数尤度関数 3 章 7 節では 変量の対数尤度を求めた ここでは多変量の場合 とくに 変量について対数尤度を求める 誤差項 は平均 0 で 次元の正規分布に従うとする 単純化のため 分散と共分散は時間を通じて一定としよう ( この仮定は後で変更される ) したがって ij から添え字 を除くことができる このとき と の尤度関数は

More information

PowerPoint Presentation

PowerPoint Presentation 応用数学 Ⅱ (7) 7 連立微分方程式の立て方と解法. 高階微分方程式による解法. ベクトル微分方程式による解法 3. 演算子による解法 連立微分方程式 未知数が複数個あり, 未知数の数だけ微分方程式が与えられている場合, これらを連立微分方程式という. d d 解法 () 高階微分方程式化による解法 つの方程式から つの未知数を消去して, 未知数が つの方程式に変換 のみの方程式にするために,

More information

システム工学実験 パラメータ推定手順

システム工学実験 パラメータ推定手順 システム工学実験パラメータ推定手順 大木健太郎 2014/11/14 2014 年度システム工学実験 : フレキシブルリンク 1 アウトライン 1. 線形システムと周波数情報 2. パラメータ推定 3. 実際の手順 2014/11/14 2014 年度システム工学実験 : フレキシブルリンク 2 線形時不変システムと伝達関数 入力と出力の関係が線形な定係数微分方程式で与えられるとき, この方程式を線形時不変システムという

More information

< 図形と方程式 > 点間の距離 A x, y, B x, y のとき x y x y : に分ける点 æ ç è A x, y, B x, y のとき 線分 AB を : に分ける点は x x y y, ö ø 注 < のとき外分点 三角形の重心 点 A x, y, B x, y, C x, を頂

< 図形と方程式 > 点間の距離 A x, y, B x, y のとき x y x y : に分ける点 æ ç è A x, y, B x, y のとき 線分 AB を : に分ける点は x x y y, ö ø 注 < のとき外分点 三角形の重心 点 A x, y, B x, y, C x, を頂 公式集数学 Ⅱ B < 式と証明 > 整式の割り算縦書きの割り算が出来ること f を g で割って 商が Q で余りが R のときは Q g f /////// R f g Q R と書ける 分数式 分母, 分子をそれぞれ因数分解し 約分する 既約分数式 加法, 減法については 分母を通分し分子の計算をする 繁分数式 分母 分子に同じ多項式をかけて 普通の分数式になおす 恒等式 数値代入法 係数比較法

More information

Microsoft PowerPoint - 9.Analog.ppt

Microsoft PowerPoint - 9.Analog.ppt 9 章 CMOS アナログ基本回路 1 デジタル情報とアナログ情報 アナログ情報 大きさ デジタル信号アナログ信号 デジタル情報 時間 情報処理システムにおけるアナログ技術 通信 ネットワークの高度化 無線通信, 高速ネットワーク, 光通信 ヒューマンインタフェース高度化 人間の視覚, 聴覚, 感性にせまる 脳型コンピュータの実現 テ シ タルコンヒ ュータと相補的な情報処理 省エネルギーなシステム

More information

のスペクトル ( 実部と虚部 ) をスケッチせよ. Re c n Δω = π T Im c n Δω = π T 問題 例題 では, 虚部のスペクトルに負の振動数が現れる. 負の振動数は何を意味するか. また, 原点について対称 ( 奇関数 ) となるのはどのような意味があるか. 例題 において,

のスペクトル ( 実部と虚部 ) をスケッチせよ. Re c n Δω = π T Im c n Δω = π T 問題 例題 では, 虚部のスペクトルに負の振動数が現れる. 負の振動数は何を意味するか. また, 原点について対称 ( 奇関数 ) となるのはどのような意味があるか. 例題 において, 3 章フーリエ変換 テーマと目標 単発現象に含まれる振動数を分析する方法とその考え方 フーリエ係数からフーリエ変換への橋渡しの数学的操作 フーリエ変換とフーリエ逆変換の定義 フーリエ変換の実例 デルタ関数の定義と使い方 フーリエ変換の性質 たたみ込み積分とフーリエ変換 パーセバルの等式 3. フーリエ変換の定義 [ 周期現象から非周期現象へ ] 前章まで, 周期現象を扱う数学の道具を学んだ. 周期現象には基本振動数があり,

More information

Microsoft PowerPoint - 9.pptx

Microsoft PowerPoint - 9.pptx 9/7/8( 水 9. 線形写像 ここでは 行列の積によって 写像を定義できることをみていく また 行列の積によって定義される写像の性質を調べていく 拡大とスカラー倍 行列演算と写像 ( 次変換 拡大後 k 倍 k 倍 k 倍拡大の関係は スカラー倍を用いて次のように表現できる p = (, ' = k ' 拡大前 p ' = ( ', ' = ( k, k 拡大 4 拡大と行列の積 拡大後 k 倍

More information

Microsoft PowerPoint - 熱力学Ⅱ2FreeEnergy2012HP.ppt [互換モード]

Microsoft PowerPoint - 熱力学Ⅱ2FreeEnergy2012HP.ppt [互換モード] 熱力学 Ⅱ 第 章自由エネルギー システム情報工学研究科 構造エネルギー工学専攻 金子暁子 問題 ( 解答 ). 熱量 Q をある系に与えたところ, 系の体積は膨張し, 温度は上昇した. () 熱量 Q は何に変化したか. () またこのとき系の体積がV よりV に変化した.( 圧力は変化無し.) 内部エネルギーはどのように表されるか. また, このときのp-V 線図を示しなさい.. 不可逆過程の例を

More information

書式に示すように表示したい文字列をダブルクォーテーション (") の間に書けば良い ダブルクォーテーションで囲まれた文字列は 文字列リテラル と呼ばれる プログラム中では以下のように用いる プログラム例 1 printf(" 情報処理基礎 "); printf("c 言語の練習 "); printf

書式に示すように表示したい文字列をダブルクォーテーション () の間に書けば良い ダブルクォーテーションで囲まれた文字列は 文字列リテラル と呼ばれる プログラム中では以下のように用いる プログラム例 1 printf( 情報処理基礎 ); printf(c 言語の練習 ); printf 情報処理基礎 C 言語についてプログラミング言語は 1950 年以前の機械語 アセンブリ言語 ( アセンブラ ) の開発を始めとして 現在までに非常に多くの言語が開発 発表された 情報処理基礎で習う C 言語は 1972 年にアメリカの AT&T ベル研究所でオペレーションシステムである UNIX を作成するために開発された C 言語は現在使われている多数のプログラミング言語に大きな影響を与えている

More information

vecrot

vecrot 1. ベクトル ベクトル : 方向を持つ量 ベクトルには 1 方向 2 大きさ ( 長さ ) という 2 つの属性がある ベクトルの例 : 物体の移動速度 移動量電場 磁場の強さ風速力トルクなど 2. ベクトルの表現 2.1 矢印で表現される 矢印の長さ : ベクトルの大きさ 矢印の向き : ベクトルの方向 2.2 2 個の点を用いて表現する 始点 () と終点 () を結ぶ半直線の向き : ベクトルの方向

More information

受信機時計誤差項の が残ったままであるが これをも消去するのが 重位相差である. 重位相差ある時刻に 衛星 から送られてくる搬送波位相データを 台の受信機 でそれぞれ測定する このとき各受信機で測定された衛星 からの搬送波位相データを Φ Φ とし 同様に衛星 からの搬送波位相データを Φ Φ とす

受信機時計誤差項の が残ったままであるが これをも消去するのが 重位相差である. 重位相差ある時刻に 衛星 から送られてくる搬送波位相データを 台の受信機 でそれぞれ測定する このとき各受信機で測定された衛星 からの搬送波位相データを Φ Φ とし 同様に衛星 からの搬送波位相データを Φ Φ とす RTK-GPS 測位計算アルゴリズム -FLOT 解 - 東京海洋大学冨永貴樹. はじめに GPS 測量を行う際 実時間で測位結果を得ることが出来るのは今のところ RTK-GPS 測位のみである GPS 測量では GPS 衛星からの搬送波位相データを使用するため 整数値バイアスを決定しなければならず これが測位計算を複雑にしている所以である この整数値バイアスを決定するためのつの方法として FLOT

More information

DVIOUT-n_baika

DVIOUT-n_baika 1 三角関数の n 倍角の公式とその応用について述べます. なお Voyage 200 の操作の詳細は http://sci-tech.ksc.kwansei.ac.jp/~yamane にある はじめての数式処理電卓 Voyage 200 をご覧下さい. 2 倍角の公式 cos 2x =2cos 2 x 1=1 2sin 2 x sin 2x =2sinxcos x はよく知られています.3 倍角の公式

More information

-2 外からみたプロセッサ GND VCC CLK A0 A1 A2 A3 A4 A A6 A7 A8 A9 A10 A11 A12 A13 A14 A1 A16 A17 A18 A19 D0 D1 D2 D3 D4 D D6 D7 D8 D9 D10 D11 D12 D13 D14 D1 MEMR

-2 外からみたプロセッサ GND VCC CLK A0 A1 A2 A3 A4 A A6 A7 A8 A9 A10 A11 A12 A13 A14 A1 A16 A17 A18 A19 D0 D1 D2 D3 D4 D D6 D7 D8 D9 D10 D11 D12 D13 D14 D1 MEMR 第 回マイクロプロセッサのしくみ マイクロプロセッサの基本的なしくみについて解説する. -1 マイクロプロセッサと周辺回路の接続 制御バス プロセッサ データ バス アドレス バス メモリ 周辺インタフェース バスの基本構成 Fig.-1 バスによる相互接続は, 現在のコンピュータシステムのハードウェアを特徴づけている. バス (Bus): 複数のユニットで共有される信号線システム内の データの通り道

More information

nsg04-28/ky208684356100043077

nsg04-28/ky208684356100043077 δ!!! μ μ μ γ UBE3A Ube3a Ube3a δ !!!! α α α α α α α α α α μ μ α β α β β !!!!!!!! μ! Suncus murinus μ Ω! π μ Ω in vivo! μ μ μ!!! ! in situ! in vivo δ δ !!!!!!!!!! ! in vivo Orexin-Arch Orexin-Arch !!

More information

第1章 単 位

第1章  単  位 H. Hamano,. 長柱の座屈 - 長柱の座屈 長い柱は圧縮荷重によって折れてしまう場合がある. この現象を座屈といい, 座屈するときの荷重を座屈荷重という.. 換算長 長さ の柱に荷重が作用する場合, その支持方法によって, 柱の理論上の長さ L が異なる. 長柱の計算は, この L を用いて行うと都合がよい. この L を換算長 ( あるいは有効長さという ) という. 座屈荷重は一般に,

More information

Microsoft Word - ultrasonic_2010.doc

Microsoft Word - ultrasonic_2010.doc 超音波の基礎 改訂版 機能材料工学科 阿部洋 目次. 音響振動と音場音場. 音圧. 速度ポテンシャル. 音響インピーダンス 5. 超音波の反射と透過 6. 液浸法 ( パルス超音波透過 ). 超音波吸収 8. 減衰定数 8. 音速測定 9. 測定例 9. 横波反射法を用いたずりいたずりインピーダンスインピーダンス測定. 弾性 0. 粘性 0. 粘弾性. 音波の緩和現象 5 付録 A 弾性論 7 参考文献

More information

第2章

第2章 第 2 章 企業の行動 : 第二部 ここでは 短期の供給曲線がなぜ右上がりになるのか述べます 企業は利潤を最大化すると仮定します (1) π = TR TC π : 利潤 TR : 総収入 TC : 総費用 企業は自己の生産物の価格 P に影響をしない と仮定します このことは 生 産物市場が完全競争市場であるということを意味します 詳しくは 完全競争 市場の定義について教科書などを参考にしてください

More information

49Z-12716-2.qxd (Page 1)

49Z-12716-2.qxd (Page 1) www.tektronix.co.jp µ 全 A = 1/4N * ( T 1-T 2 ), (i =1...N) ディスク ドライブ設計のための測定ソリューション アプリケーション ノート 図 6. リード チャンネルの電流を生成するために使用する任意波形ゼネレー タと電流プローブ リード ライト ヘッドの電流 ライト ヘッドの電流振幅は ヘッド リードを電流プ ローブでルーピングすることにより簡単に測定できま

More information

統計的データ解析

統計的データ解析 統計的データ解析 011 011.11.9 林田清 ( 大阪大学大学院理学研究科 ) 連続確率分布の平均値 分散 比較のため P(c ) c 分布 自由度 の ( カイ c 平均値 0, 標準偏差 1の正規分布 に従う変数 xの自乗和 c x =1 が従う分布を自由度 の分布と呼ぶ 一般に自由度の分布は f /1 c / / ( c ) {( c ) e }/ ( / ) 期待値 二乗 ) 分布 c

More information

今週の内容 後半全体のおさらい ラグランジュの運動方程式の導出 リンク機構のラグランジュの運動方程式 慣性行列 リンク機構のエネルギー保存則 エネルギー パワー 速度 力の関係 外力が作用する場合の運動方程式 粘性 粘性によるエネルギーの消散 慣性 粘性 剛性と微分方程式 拘束条件 ラグランジュの未

今週の内容 後半全体のおさらい ラグランジュの運動方程式の導出 リンク機構のラグランジュの運動方程式 慣性行列 リンク機構のエネルギー保存則 エネルギー パワー 速度 力の関係 外力が作用する場合の運動方程式 粘性 粘性によるエネルギーの消散 慣性 粘性 剛性と微分方程式 拘束条件 ラグランジュの未 力学 III GA 工業力学演習 X5 解析力学 5X 5 週目 立命館大学機械システム系 8 年度後期 今週の内容 後半全体のおさらい ラグランジュの運動方程式の導出 リンク機構のラグランジュの運動方程式 慣性行列 リンク機構のエネルギー保存則 エネルギー パワー 速度 力の関係 外力が作用する場合の運動方程式 粘性 粘性によるエネルギーの消散 慣性 粘性 剛性と微分方程式 拘束条件 ラグランジュの未定乗数法

More information

8. 自由曲線と曲面の概要 陽関数 陰関数 f x f x x y y y f f x y z g x y z パラメータ表現された 次元曲線 パラメータ表現は xyx 毎のパラメータによる陽関数表現 形状普遍性 座標独立性 曲線上の点を直接に計算可能 多価の曲線も表現可能 gx 低次の多項式は 計

8. 自由曲線と曲面の概要 陽関数 陰関数 f x f x x y y y f f x y z g x y z パラメータ表現された 次元曲線 パラメータ表現は xyx 毎のパラメータによる陽関数表現 形状普遍性 座標独立性 曲線上の点を直接に計算可能 多価の曲線も表現可能 gx 低次の多項式は 計 8. 自由曲線 曲面. 概論. ベジエ曲線 曲面. ベジエ曲線 曲面の数学. OeGLによる実行. URS. スプライン関数. スプライン曲線 曲面. URS 曲線 曲面 4. OeGLによる実行 8. 自由曲線と曲面の概要 陽関数 陰関数 f x f x x y y y f f x y z g x y z パラメータ表現された 次元曲線 パラメータ表現は xyx 毎のパラメータによる陽関数表現 形状普遍性

More information

Functional Programming

Functional Programming PROGRAMMING IN HASKELL プログラミング Haskell Chapter 7 - Higher-Order Functions 高階関数 愛知県立大学情報科学部計算機言語論 ( 山本晋一郎 大久保弘崇 2013 年 ) 講義資料オリジナルは http://www.cs.nott.ac.uk/~gmh/book.html を参照のこと 0 Introduction カリー化により

More information

C#の基本

C#の基本 C# の基本 ~ 開発環境の使い方 ~ C# とは プログラミング言語のひとつであり C C++ Java 等に並ぶ代表的な言語の一つである 容易に GUI( グラフィックやボタンとの連携ができる ) プログラミングが可能である メモリ管理等の煩雑な操作が必要なく 比較的初心者向きの言語である C# の利点 C C++ に比べて メモリ管理が必要ない GUIが作りやすい Javaに比べて コードの制限が少ない

More information

Microsoft PowerPoint ppt

Microsoft PowerPoint ppt 基礎演習 3 C 言語の基礎 (5) 第 05 回 (20 年 07 月 07 日 ) メモリとポインタの概念 ビットとバイト 計算機内部では データは2 進数で保存している 計算機は メモリにデータを蓄えている bit 1bit 0 もしくは 1 のどちらかを保存 byte 1byte 1bitが8つ集まっている byte が メモリの基本単位として使用される メモリとアドレス メモリは 1byte

More information

スライド 1

スライド 1 アナログ検定 2014 1 アナログ検定 2014 出題意図 電子回路のアナログ的な振る舞いを原理原則に立ち返って解明できる能力 部品の特性や限界を踏まえた上で部品の性能を最大限に引き出せる能力 記憶した知識や計算でない アナログ技術を使いこなすための基本的な知識 知見 ( ナレッジ ) を問う問題 ボーデ線図などからシステムの特性を理解し 特性改善を行うための基本的な知識を問う問題 CAD や回路シミュレーションツールの限界を知った上で

More information

英語                                    英-1

英語                                    英-1 数学 出題のねらい 数と式, 図形, 関数, 資料の活用 の 4 領域について, 基礎的な概念や原理 法則の理解と, それらに基づき, 数学的に考察したり, 表現したり, 処理したりする力をみることをねらいとした () 数と式 では, 数の概念についての理解の程度, 文字を用いた式を処理したり, 文字を用いて式に表現したりする力, 目的に応じて式を変形する力をみるものとした () 図形 では, 平面図形や空間図形についての理解の程度,

More information

竹田式数学 鉄則集

竹田式数学  鉄則集 合格への鉄則集 数学 ⅡB 竹鉄 ⅡB-01~23 竹鉄 ⅡB-1 式と証明 (1) 方程式の決定 方程式の決定問題 a+bi が解なら,a-bi も解 解と係数の関係を活用する 例題 クリアー 140 a,b は実数とする 3 次方程式 x 3 +ax 2 +bx+10=0 が 1+2i を解にもつとき, 定数 a,b の値を求めよ また, 他の解を求めよ 鉄則集 21 竹鉄 ⅡB-2 式と証明

More information

JavaプログラミングⅠ

JavaプログラミングⅠ Java プログラミング Ⅰ 12 回目クラス 今日の講義で学ぶ内容 クラスとは クラスの宣言と利用 クラスの応用 クラス クラスとは 異なる複数の型の変数を内部にもつ型です 直観的に表現すると int 型や double 型は 1 1 つの値を管理できます int 型の変数 配列型は 2 5 8 6 3 7 同じ型の複数の変数を管理できます 配列型の変数 ( 配列変数 ) クラスは double

More information

4.6: 3 sin 5 sin θ θ t θ 2t θ 4t : sin ωt ω sin θ θ ωt sin ωt 1 ω ω [rad/sec] 1 [sec] ω[rad] [rad/sec] 5.3 ω [rad/sec] 5.7: 2t 4t sin 2t sin 4t

4.6: 3 sin 5 sin θ θ t θ 2t θ 4t : sin ωt ω sin θ θ ωt sin ωt 1 ω ω [rad/sec] 1 [sec] ω[rad] [rad/sec] 5.3 ω [rad/sec] 5.7: 2t 4t sin 2t sin 4t 1 1.1 sin 2π [rad] 3 ft 3 sin 2t π 4 3.1 2 1.1: sin θ 2.2 sin θ ft t t [sec] t sin 2t π 4 [rad] sin 3.1 3 sin θ θ t θ 2t π 4 3.2 3.1 3.4 3.4: 2.2: sin θ θ θ [rad] 2.3 0 [rad] 4 sin θ sin 2t π 4 sin 1 1

More information

Microsoft PowerPoint - fuseitei_6

Microsoft PowerPoint - fuseitei_6 不静定力学 Ⅱ 骨組の崩壊荷重の計算 不静定力学 Ⅱ では, 最後の問題となりますが, 骨組の崩壊荷重の計算法について学びます 1 参考書 松本慎也著 よくわかる構造力学の基本, 秀和システム このスライドの説明には, 主にこの参考書の説明を引用しています 2 崩壊荷重 構造物に作用する荷重が徐々に増大すると, 構造物内に発生する応力は増加し, やがて, 構造物は荷重に耐えられなくなる そのときの荷重を崩壊荷重あるいは終局荷重という

More information

<4D F736F F D208D7E959A82A882E682D18F498BC78BC882B B BE98C60816A2E646F63>

<4D F736F F D208D7E959A82A882E682D18F498BC78BC882B B BE98C60816A2E646F63> 降伏時および終局時曲げモーメントの誘導 矩形断面 日中コンサルタント耐震解析部松原勝己. 降伏時の耐力と変形 複鉄筋の矩形断面を仮定する また コンクリートの応力ひずみ関係を非線形 放物線型 とする さらに 引張鉄筋がちょうど降伏ひずみに達しているものとし コンクリート引張応力は無視する ⅰ 圧縮縁のひずみ

More information

<4D F736F F D20837D834E838D97FB8F4B96E291E889F090E091E682528FCD81698FAC97D1816A>

<4D F736F F D20837D834E838D97FB8F4B96E291E889F090E091E682528FCD81698FAC97D1816A> 第 3 章 GDP の決定 練習問題の解説 1. 下表はある国の家計所得と消費支出です 下記の設問に答えなさい 年 所得 (Y) 消費支出 (C) 1 年目 25 15 2 年目 3 174 (1) 1 年目の平均消費性向と平均貯蓄性向を求めなさい (2) 1 年面から 2 年目にかけての限界消費性向を求めなさい 解答 (1).6 と.4 (2).48 解説 (3 頁参照 ) (1) 所得に対する消費の割合が平均消費性向です

More information

技術解説_有田.indd

技術解説_有田.indd Acceleration / G 2 18 16 14 12 1 8 6 4 2 Damping : 1. Period / s XY.1.1 1. 6533 283 3333 423 155 15 (X) 26.12 Hz 15 12 (Y) 28.32 Hz (Z) 43.98 Hz GS Yuasa Technical Report 211 年 6 月 第8巻 水平方向 X_3G 1.7e+7

More information

演習2

演習2 神戸市立工業高等専門学校電気工学科 / 電子工学科専門科目 数値解析 2017.6.2 演習 2 山浦剛 (tyamaura@riken.jp) 講義資料ページ h t t p://clim ate.aic s. riken. jp/m embers/yamaura/num erical_analysis. html 曲線の推定 N 次多項式ラグランジュ補間 y = p N x = σ N x x

More information

電気電子発送配変電二次練習問題

電気電子発送配変電二次練習問題 Copy Rght (c) 008 宮田明則技術士事務所 . ()() () n n 60 f f f 50, 60503000rp(n - ) f 60, 66060300rp(n - ) f 50, 060500300rp(n - ) f 50, 46050500rp(n - ) N N N (6) N () Copy Rght (c) 008 宮田明則技術士事務所 . r a, r a a a

More information

Microsoft PowerPoint - LogicCircuits01.pptx

Microsoft PowerPoint - LogicCircuits01.pptx 論理回路 第 回論理回路の数学的基本 - ブール代数 http://www.info.kindai.ac.jp/lc 38 号館 4 階 N-4 内線 5459 takasi-i@info.kindai.ac.jp 本科目の内容 電子計算機 computer の構成 ソフトウェア 複数のプログラムの組み合わせ オペレーティングシステム アプリケーション等 ハードウェア 複数の回路 circuit の組み合わせ

More information

等価回路図 絶対最大定格 (T a = 25ºC) 項目記号定格単位 入力電圧 1 V IN 15 V 入力電圧 2 V STB GND-0.3~V IN+0.3 V 出力電圧 V GND-0.3~V IN+0.3 V 出力電流 I 120 ma 許容損失 P D 200 mw 動作温度範囲 T o

等価回路図 絶対最大定格 (T a = 25ºC) 項目記号定格単位 入力電圧 1 V IN 15 V 入力電圧 2 V STB GND-0.3~V IN+0.3 V 出力電圧 V GND-0.3~V IN+0.3 V 出力電流 I 120 ma 許容損失 P D 200 mw 動作温度範囲 T o 小型スタンバイ機能付高精度正電圧レギュレータ 概要 NJU7241 シリーズは, 出力電圧精度 ±2% を実現したスタンバイ機能付の低消費電流正電圧レギュレータ IC で, 高精度基準電圧源, 誤差増幅器, 制御トランジスタ, 出力電圧設定用抵抗及び短絡保護回路等で構成されています 出力電圧は内部で固定されており, 下記バージョンがあります また, 小型パッケージに搭載され, 高出力でありながらリップル除去比が高く,

More information

DVIOUT

DVIOUT 車両のモデリングと制御 松尾孝美 まえがき 制御理論は世の中のあらゆるものを対象として, それを数学的に解釈するとともに, いかに自分の目的とする解を得るようにその対象を変形していくかということにその本質がある. ベースとなるのは数学と物理学のこれまでの美しい 金字塔である. 難しさゆえに数物系学問は他分野の理工系人にとっても敬遠されがちであるが, ものごとの本質を理解する上で欠かせないものである.

More information

分析のステップ Step 1: Y( 目的変数 ) に対する値の順序を確認 Step 2: モデルのあてはめ を実行 適切なモデルの指定 Step 3: オプションを指定し オッズ比とその信頼区間を表示 以下 このステップに沿って JMP の操作をご説明します Step 1: Y( 目的変数 ) の

分析のステップ Step 1: Y( 目的変数 ) に対する値の順序を確認 Step 2: モデルのあてはめ を実行 適切なモデルの指定 Step 3: オプションを指定し オッズ比とその信頼区間を表示 以下 このステップに沿って JMP の操作をご説明します Step 1: Y( 目的変数 ) の JMP によるオッズ比 リスク比 ( ハザード比 ) の算出と注意点 SAS Institute Japan 株式会社 JMP ジャパン事業部 2011 年 10 月改定 1. はじめに 本文書は JMP でロジスティック回帰モデルによるオッズ比 比例ハザードモデルによるリスク比 それぞれに対する信頼区間を求める操作方法と注意点を述べたものです 本文書は JMP 7 以降のバージョンに対応しております

More information

15010506PDF_15010506_„o“χƄo›c45−ª2“ƒ_Œ{Ł¶PDF.pdf

15010506PDF_15010506_„o“χƄo›c45−ª2“ƒ_Œ{Ł¶PDF.pdf 105 (139 ) 経済と経営 45 2(2015.3) 研究ノート> 電子楽器の聞こえ方の違い 各社音源の比較 浅 見 郎 1 はじめに 電子楽器が普及し シンセサイザー等が手に入れやすくなった 楽器としてのシンセサイザーが 登場した当初はアナログ方式で電圧を制御し発音させる方式であった 現在ではほとんどがデジタ ル方式を採用している 国内外を問わず数多くのメーカーから電子楽器が製作されているが

More information

Microsoft PowerPoint - stat-2014-[9] pptx

Microsoft PowerPoint - stat-2014-[9] pptx 統計学 第 17 回 講義 母平均の区間推定 Part-1 014 年 6 17 ( )6-7 限 担当教員 : 唐渡 広志 ( からと こうじ ) 研究室 : 経済学研究棟 4 階 43 号室 email: kkarato@eco.u-toyama.ac.j website: htt://www3.u-toyama.ac.j/kkarato/ 1 講義の目的 標本平均は正規分布に従うという性質を

More information

作成日 : 2016 年 1 月 28 日 作成者 : 吉澤清 Remez ガウシアン FIR フィルタ 目次 概要 Remez ガウシアンFIRフィルタの特徴 一般的なFIRフィルタはオーバーシュートを生じる オーバーシュートを生じないFIRフィルタ.

作成日 : 2016 年 1 月 28 日 作成者 : 吉澤清 Remez ガウシアン FIR フィルタ 目次 概要 Remez ガウシアンFIRフィルタの特徴 一般的なFIRフィルタはオーバーシュートを生じる オーバーシュートを生じないFIRフィルタ. 1 作成日 : 2016 年 1 月 28 日 作成者 : 吉澤清 Remez ガウシアン FIR フィルタ 目次 概要... 3 1.Remez ガウシアンFIRフィルタの特徴... 4 2. 一般的なFIRフィルタはオーバーシュートを生じる... 7 3. オーバーシュートを生じないFIRフィルタ... 8 4. ガウシアンFIRフィルタ...10 5.Remez-ガウシアンFIRフィルタ...13

More information

プログラミング基礎

プログラミング基礎 C プログラミング Ⅰ 授業ガイダンス C 言語の概要プログラム作成 実行方法 授業内容について 授業目的 C 言語によるプログラミングの基礎を学ぶこと 学習内容 C 言語の基礎的な文法 入出力, 変数, 演算, 条件分岐, 繰り返し, 配列,( 関数 ) C 言語による簡単な計算処理プログラムの開発 到達目標 C 言語の基礎的な文法を理解する 簡単な計算処理プログラムを作成できるようにする 授業ガイダンス

More information

次に示す数値の並びを昇順にソートするものとする このソートでは配列の末尾側から操作を行っていく まず 末尾の数値 9 と 8 に着目する 昇順にソートするので この値を交換すると以下の数値の並びになる 次に末尾側から 2 番目と 3 番目の 1

次に示す数値の並びを昇順にソートするものとする このソートでは配列の末尾側から操作を行っていく まず 末尾の数値 9 と 8 に着目する 昇順にソートするので この値を交換すると以下の数値の並びになる 次に末尾側から 2 番目と 3 番目の 1 4. ソート ( 教科書 p.205-p.273) 整列すなわちソートは アプリケーションを作成する際には良く使われる基本的な操作であり 今までに数多くのソートのアルゴリズムが考えられてきた 今回はこれらソートのアルゴリズムについて学習していく ソートとはソートとは与えられたデータの集合をキーとなる項目の値の大小関係に基づき 一定の順序で並べ替える操作である ソートには図 1 に示すように キーの値の小さいデータを先頭に並べる

More information

観測的宇宙論WS2013.pptx

観測的宇宙論WS2013.pptx ì コンテンツ イントロダクション 球対称崩壊モデル ビリアル平衡 結果 まとめ イントロダクション 宇宙磁場 銀河や銀河団など様々なスケールで磁場が存在 起源や進化について未だに謎が多い 宇宙の構造形成に影響 P(k)[h -3 Mpc 3 ] 10 6 10 5 10 4 10 3 10 10 1 10 0 10-1 10-10 -3 10-4 10-4 10-3 10-10 -1 10 0 10

More information

Microsoft PowerPoint - multi_media05-dct_jpeg [互換モード]

Microsoft PowerPoint - multi_media05-dct_jpeg [互換モード] マルチメディア工学 マルチメディアデータの解析データ圧縮 : 離散コサイン変換と JPEG マルチメディア工学 : 講義計画 イントロダクション コンピュータグラフィックス (Computer Graphics: CG) マルチメディアデータの解析 佐藤嘉伸 大阪大学大学院医学系研究科放射線統合医学講座 yoshi@image.med.osaka u.ac.jp http://www.image.med.osaka

More information

Microsoft PowerPoint - multi_media05-dct_jpeg [互換モード]

Microsoft PowerPoint - multi_media05-dct_jpeg [互換モード] マルチメディア工学マルチメディアデータの解析データ圧縮 : 離散コサイン変換と JPEG 佐藤嘉伸 マルチメディア工学 : 講義計画 マルチメディアデータの解析 基礎数理 代表的解析手法 データ圧縮 : 離散コサイン変換 JPEG データ表現 : 形状の主成分分析 奈良先端科学技術大学院大学情報科学研究科生体医用画像研究室 yoshi@is.naist.jp http://icb lab.naist.jp/members/yoshi/

More information

まず y t を定数項だけに回帰する > levelmod = lm(topixrate~1) 次にこの出力を使って先ほどのレジームスイッチングモデルを推定する 以下のように入力する > levelswmod = msmfit(levelmod,k=,p=0,sw=c(t,t)) ここで k はレジ

まず y t を定数項だけに回帰する > levelmod = lm(topixrate~1) 次にこの出力を使って先ほどのレジームスイッチングモデルを推定する 以下のように入力する > levelswmod = msmfit(levelmod,k=,p=0,sw=c(t,t)) ここで k はレジ マルコフレジームスイッチングモデルの推定 1. マルコフレジームスイッチング (MS) モデルを推定する 1.1 パッケージ MSwM インスツールする MS モデルを推定するために R のパッケージ MSwM をインスツールする パッケージとは通常の R には含まれていない 追加的な R のコマンドの集まりのようなものである R には追加的に 600 以上のパッケージが用意されており それぞれ分析の目的に応じて標準の

More information

662/04-直立.indd

662/04-直立.indd l l q= / D s HTqq /L T L T l l ε s ε = D + s 3 K = αγk R 4 3 K αγk + ( α + β ) K 4 = 0 γ L L + K R K αβγ () ㅧ ర ㅧ ర (4) (5) ()ᑼ (6) (8) (9) (0) () () (3) (3) (7) Ƚˎȁ Ȇ ၑა FYDFM වႁ ޙ 䊶䊶 䊶 䊶䊶 䊶 Ƚˏȁζ υ ίυέρθ

More information

Microsoft PowerPoint - DA2_2017.pptx

Microsoft PowerPoint - DA2_2017.pptx // データ構造とアルゴリズム IⅠ 第 回単一始点最短路 (II)/ 全点対最短路 トポロジカル ソート順による緩和 トポロジカル ソート順に緩和 閉路のない有向グラフ限定 閉路がないならトポロジカル ソート順に緩和するのがベルマン フォードより速い Θ(V + E) 方針 グラフをトポロジカル ソートして頂点に線形順序を与える ソート順に頂点を選び, その頂点の出辺を緩和する 各頂点は一回だけ選択される

More information

15群(○○○)-8編

15群(○○○)-8編 群 画像 音 言語 - 6 編 音響信号処理 章基礎技術 計測技術 概要 電子情報通信学会 知識の森 http://www.ieice-hbkb.org/ 群 - 6 編 - 章 執筆者 : 金田豊 [0 年 月受領 ] スピーカやマイクロホンなどの音響機器や, また, 音が伝播する空間系などの多くは線形 系とみなすことができる. したがって, 音響信号処理の多くは線形システム理論をその基本 理論としている.

More information

Microsoft PowerPoint - kyoto

Microsoft PowerPoint - kyoto 研究集会 代数系アルゴリズムと言語および計算理論 知識の証明と暗号技術 情報セキュリティ大学大学院学院 有田正剛 1 はじめに 暗号技術の面白さとむずかしさ システムには攻撃者が存在する 条件が整ったときのベストパフォーマンスより 条件が整わないときの安全性 攻撃者は約束事 ( プロトコル ) には従わない 表面上は従っているふり 放置すると 正直者が損をする それを防ぐには 知識の証明 が基本手段

More information

カメラレディ原稿

カメラレディ原稿 IS2-A2 カメラを回転させた時の特徴点軌跡を用いた魚眼カメラの内部パラメータ推定 - モデルと評価関数の変更による改良 - 田中祐輝, 増山岳人, 梅田和昇 Yuki TANAKA, Gakuto MASUYAMA, Kazunori UMEDA : 中央大学大学院理工学研究科,y.tanaka@sensor.mech.chuo-u.ac.jp 中央大学理工学部,{masuyama, umeda}@mech.chuo-u.ac.jp

More information

丹沢のブナの立ち枯れと東名高速道路にっいて 図3 夏型の高気圧におおわれ 風の弱い日の南関東 東海道の風の1日変化 矢は風向を 矢先の数字は風速 m s を示す この地区のアメダス地点は御殿場のみ 風向の方向に長軸をもっ楕円で囲んだ 午後から夕方に かけて南 南西風が卓越している 全体に午後に海風と谷風 平地から山地へ が卓越している 東名高速道路と国道246号線および地方道 まとめて東 名高速道路という

More information

Microsoft Word - 力学PC1.doc

Microsoft Word - 力学PC1.doc 基礎物理コース I 第 5 回 A 7/6/5, :-:, 9-49, 後藤貴行 -5B, -8-56, gotoo-t@sophia.ac.jp パソコンで微分方程式を解く. 基本 ( ( ( これが式で与えられる は微小量とする ( 何に比べて小さいかは後で述べる ( ( (. 簡単な例 ただの積分, ( e ( [ もちろん 解析的に解けて ( e ( ( e 6 前の値 78 となる ] (

More information

そこで ある程度の知識があれば数学と情報の練習もかねて用いてもおもしろいのではないだろうか これはある程度の下準備のされたファイルと FLSH のアプリケーションがあれば計算処理の結果をグラフなどで視覚的に表示することが可能となると思われる 環境が許せば できあがったものをいじ るだけでなく自分で作

そこで ある程度の知識があれば数学と情報の練習もかねて用いてもおもしろいのではないだろうか これはある程度の下準備のされたファイルと FLSH のアプリケーションがあれば計算処理の結果をグラフなどで視覚的に表示することが可能となると思われる 環境が許せば できあがったものをいじ るだけでなく自分で作 五心へのアプローチ札幌新川高等学校吉田奏介 数学 Ⅰ の授業のあと 生徒から 内心や外心と頂点の延長線は中点と一致しないんですか? と質問があった その生徒には角の二等分線の話や鈍角三角形のときの話をしたら納得していたが 確かに一般的な点におけることは紙面上の図を見ただけではわかりづらいだろうし 生徒が自分で描く図は都合のよい図を描いてしまいがちである そんなことを発端にして考えてみた 1 FLSH

More information

ソフトウェア基礎技術研修

ソフトウェア基礎技術研修 マルチサイクルを用いた実現方式 ( 教科書 5. 節 ) マルチサイクル方式 () 2 つのデータパス実現方式 単一クロックサイクル : 命令を クロックサイクルで処理 マルチクロックサイクル : 命令を複数クロックサイクルで処理 単一クロックサイクル方式は処理効率が悪い. CLK 処理時間 命令命令命令命令命令 時間のかかる命令にクロック サイクル時間をあわさなければならない. 余り時間の発生 クロック

More information

l = 若年期の労働供給量, c + = 老年期の消費量, w = 賃金率, s = 貯蓄量, r + = 資本の レンタル料 ( 貯蓄からの純収益率,δ = 資産の減耗率である. 上記の最適化問題を解くと以下の式が得られる. l =Ψ ( c +, c Ψ + φ ただし Ψ である. (4 +

l = 若年期の労働供給量, c + = 老年期の消費量, w = 賃金率, s = 貯蓄量, r + = 資本の レンタル料 ( 貯蓄からの純収益率,δ = 資産の減耗率である. 上記の最適化問題を解くと以下の式が得られる. l =Ψ ( c +, c Ψ + φ ただし Ψ である. (4 + 第 6 章生産における外部効果とサンスポット均衡 - 現実的な外部性の度合いと局所的な非決定性 - 本章では生産における外部性 (Exernaliies in producion をライヒリンの世代重複モデル (Overlapping generaions model に導入する. ラムゼー型の最適成長モデル (Represenaive agen s model では労働の需要曲線と供給曲線が誤った形で交わるような非現実的な強い外部性を仮定しなければ,

More information

Microsoft PowerPoint - DA2_2017.pptx

Microsoft PowerPoint - DA2_2017.pptx 1// 小テスト内容 データ構造とアルゴリズム IⅠ 第 回単一始点最短路 (I) 1 1 第 章の構成. 単一始点最短路問題 単一始点最短路問題とは 単一始点最短路問題の考え方 単一始点最短路問題を解くつのアルゴリズム ベルマン フォードのアルゴリズム トポロジカル ソートによる解法 ダイクストラのアルゴリズム 1 1 単一始点最短路問題とは 単一始点最短路問題とは 前提 : 重み付き有向グラフ

More information

Microsoft Word - XRD_2010.doc

Microsoft Word - XRD_2010.doc 5.X 線回折. はじめに以下の条件条件を満たさないたさない場合場合 学生実験学生実験を始めない! 予習をしてこない 学生実験ノートを持ってこない ( テキストにデータを書く学生が多い ) レポート 実験実験ノートノートの作り方 実験ノート レポートは ボールペン ( 手書き ) で書くこと! ワープロで書かれたレポートは受け取らない 誰が読んでも分かりやすいレポートを書くこと 3 客観的な記述 考察が要求される

More information

- VHDL 演習 ( 組み合せ論理回路 ) 回路 半加算器 (half adder,fig.-) 全加算器を構成する要素である半加算器を作成する i) リスト - のコードを理解してから, コンパイル, ダウンロードする ii) 実験基板上のスイッチ W, が, の入力,LED, が, の出力とな

- VHDL 演習 ( 組み合せ論理回路 ) 回路 半加算器 (half adder,fig.-) 全加算器を構成する要素である半加算器を作成する i) リスト - のコードを理解してから, コンパイル, ダウンロードする ii) 実験基板上のスイッチ W, が, の入力,LED, が, の出力とな 第 回 VHDL 演習組み合せ論理回路 VHDL に関する演習を行う 今回は, 組み合せ論理回路の記述について学ぶ - 論理回路の VHDL 記述の基本 同時処理文を並べることで記述できる 部品の接続関係を記述 順番は関係ない process 文の内部では, 順次処理文を使う process 文 つで, つの同時処理文になる順次処理文は, 回路の動作を 逐次処理的 に ( 手続き処理型プログラム言語のように

More information

Microsoft Word - Word1.doc

Microsoft Word - Word1.doc Word 2007 について ( その 1) 新しくなった Word 2007 の操作法について 従来の Word との相違点を教科書に沿って説明する ただし 私自身 まだ Word 2007 を使い込んではおらず 間違いなどもあるかも知れない そうした点についてはご指摘いただければ幸いである なお 以下において [ ] で囲った部分は教科書のページを意味する Word の起動 [p.47] Word

More information

Microsoft PowerPoint - algo ppt [互換モード]

Microsoft PowerPoint - algo ppt [互換モード] ( 復習 ) アルゴリズムとは アルゴリズム概論 - 探索 () - アルゴリズム 問題を解くための曖昧さのない手順 与えられた問題を解くための機械的操作からなる有限の手続き 機械的操作 : 単純な演算, 代入, 比較など 安本慶一 yasumoto[at]is.naist.jp プログラムとの違い プログラムはアルゴリズムをプログラミング言語で表現したもの アルゴリズムは自然言語でも, プログラミング言語でも表現できる

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション 電磁波工学 第 回アンテナ素子 ( 線状アンテナ 開口面アンテナ 進行波アンテナ アレイ 柴田幸司 線状アンテナ 金属 モノポール ダイポール 八木 宇田 オープン ( 電圧分布に対して db -3dB 半値角 E 面 ( 垂直面内 指向性 単一周波数において共振現象によりエネルギーの増大した高周波磁界がアンテナから放射 kx θ kxθ kx kx kxθ A θ B dx θ θ dx ダイポールアンテナの指向特性

More information

01

01 2 0 0 7 0 3 2 2 i n d e x 0 7. 0 2. 0 3. 0 4. 0 8. 0 9. 1 0. 1 1. 0 5. 1 2. 1 3. 1 4. 1 5. 1 6. 1 7. 1 8. 1 9. 2 0. 2 1. 2 3. 2 4. 2 5. 2 6. O k h o t s k H a m a n a s u B e e f 0 2 http://clione-beef.n43.jp

More information

りあげるここでは補償伝達関数である設計の目的はいかなる外乱が加っても未知プラントの出力が規範モデルの出力に一致するようにを決定することである 外乱 設定入力 出力 図 フィードバック制御系 重合せの定理が成り立つ線形領域では図のブロック線図から次の関係を得ることができる ここで いまとなるように補償

りあげるここでは補償伝達関数である設計の目的はいかなる外乱が加っても未知プラントの出力が規範モデルの出力に一致するようにを決定することである 外乱 設定入力 出力 図 フィードバック制御系 重合せの定理が成り立つ線形領域では図のブロック線図から次の関係を得ることができる ここで いまとなるように補償 適応制御 大分大学工学部福祉環境工学科松尾孝美 まえがき 制御系設計でははじめに制御対象と制御目的が与えられている理想的な設計手法を用いる場合は, まず, 制御対象の数学モデルを作る同時に制御目的を仕様の形で表わすため評価関数の設定とか振幅減衰度の指定といったようななんらかの数量化を行うつぎに制御方式を定めこれに従って種々提案されている設計手法を用いて制御装置 ( コントローラ ) を設計することになるこのように制御系の設計は制御対象

More information

3. 入力データおよび出力データ エクセルシートは 入力地震波 解析条件 地盤データ ひずみ依存特性 ユーザ指定 ひずみ依存特性 出力 収束剛性 最大値深度分布 相対変位最大時深度分布 伝達関数+ 入力 伝達関数 入力 加速度時刻歴+ 出力 加速度時刻歴 出力 変位時刻歴 せん断応力時刻歴 および

3. 入力データおよび出力データ エクセルシートは 入力地震波 解析条件 地盤データ ひずみ依存特性 ユーザ指定 ひずみ依存特性 出力 収束剛性 最大値深度分布 相対変位最大時深度分布 伝達関数+ 入力 伝達関数 入力 加速度時刻歴+ 出力 加速度時刻歴 出力 変位時刻歴 せん断応力時刻歴 および 成層地盤の地震応答計算プログラム エクセルマクロ について 日中構造研究所松原勝己同上梁生鈿. はじめに地上構造物の耐震解析に使用する入力地震動を地盤の影響を考慮して設定する場合や 地下構造物の耐震解析において地盤変位 周面せん断力および躯体慣性力など地震時外力の設定を行う場合に 当該地盤を成層構造と仮定し一次元地盤応答解析によって地盤の地震応答を算出することがあります この計算には SAK などの解析ソフトや他の市販ソフトが使用されるのが一般的です

More information

EndoPaper.pdf

EndoPaper.pdf Research on Nonlinear Oscillation in the Field of Electrical, Electronics, and Communication Engineering Tetsuro ENDO.,.,, (NLP), 1. 3. (1973 ),. (, ),..., 191, 1970,. 191 1967,,, 196 1967,,. 1967 1. 1988

More information