mthesis.dvi

Size: px
Start display at page:

Download "mthesis.dvi"

Transcription

1 Study of multiple electron transfer processes to Highly charged ions with microcapillary targets : /01/19

2 Classical over barrier(cob) EBIS Microcapillary Target Xe q+ (q=3,6,9) Xe ECR kev/q Xe 6+ (MCP ) kev/q Xe kev/q Xe 6+ (Ni Microcapillary ) Xe Xe keV/q Xe

3 kev/q Xe

4 classical over barrier model H. Winter Xe q+ (1 q 33) [4] Briand Ar 17+ X [5] kev/q Xe mini-ebis mini-ebis Wien Filter Wedge Meander Strip Anode PSD PSD Ni SEM ev/q Xe q Auger Monte Calro Simulation Auger ev/q Xe kev/u N 6+ [15] RIKEN 14.5GHz Caprice ECR Delay Line Anode PSD Delay Line Anode Am PSD (MCP) Ni MCP

5 Mylar nano tube 3keV Ne +7 [17] MCP Xe 6+ (q f =0, 1) MCP Xe 6+ (q f =2, 3, 4) Xe Ni ( ) Ni Xe 6+ (0 q f 5) Ni Xe Xe Xe 6+ ( ) Xe 6+ (Y ) Xe kev/q Xe Xe kev/q Xe

6 Bell Laboratory Hagstrum [1] potential emission potential emission Auger Auger 1980 Ryufuku Classical over barrier model (COBm) [2] 1991 J. Burgdörfer [3] 1993 H. Winter Xe q+ (1 q 33) Al [4] (Hollow Atom, HA) 1990 Briand Ar 17+ Ag K-X [5] K-X COBm K-X (HA2) (HA1) 1991 Meyer N 6+ Ar q+ (q =7, 8, 9) Au Auger HA1 [6] HA1 Yamazaki [7] 5

7 : (x, y, z) x-y (z = 0) z 0 (0, 0,Z i ) q Fig.1.1 (0, 0, Z i ) z =0 z 0 (x, y, z) z 0 U(x, y, z) 3 (1.1) U(x, y, z) = 1 4z q x 2 + y 2 +(z + Z i ) 2 q x 2 + y 2 +(z Z i ) 2 (1.1) (1.1) (x, y, z) =(0, 0, 40) Fig(1.2) (a) (x, y, z) =(0, 0, 20) Fig(1.2) (b) (1.1) Z s U s 6

8 1.2: Z s Z i 8q (1.2) 2q U s (1.3) Z i Classical over barrier(cob) Classical over barrier(cob) Ryufuku [2] Burgdörfer [3] - - Z c (1.3) U s = W 2q Z c W (1.4) 7

9 E n q/2z 1/4z n c E n = q2 2n 2 c E n = W (1.5) + q 2Z i 1 4Z i (1.5) E n = W = q2 2n 2 c + q 2Z i 1 4Z i (1.6) Z i (1.4) n c n c = q { } ( )q 1 1/2 2 (1.7) W 2q q 1/2 n c = = = { } 1/2 q ( )q W 2q q 2 W (1 + 8) q q W 1 2(1 + q 8 ) (1.8) W 0.2 a.u. n c q (1.9) Xe 6+ Al 20 a.u (1.5) Fig.1.3 Al n=

10 1.3: classical over barrier model Xe 6+ Al Z c =20a.u Z i W Al W 0.15 a.u 9

11 q 2 (z) E = dz (1.10) 4z2 COB Z c 2q Z c (q) = (1.11) W E = W 3 2 q3/2 (1.12) H. Winter Xe q+ (1 q 33) Al (Fig. 1.4) (Fig.1.4(B)) (Fig.1.4(C)) COB (1.12) [4] 1.4: H. Winter Xe q+ (1 q 33) [4] 10

12 Meyer Pb q 3/2 [8] 1.3 (1.4) 1 (1.4) q q 1 1.5: Auger Briand Ar 17+ Ag X K L (Fig.1.6)[5] 10keV sec (HA1) Auger Auger sec 11

13 (A) (B) 1.6: Briand Ar 17+ X [5] Auger X (1.10) q Fig.1.7 Z c (q) Z c (q) sec 1.7: 12

14 sec Yamazaki (Fig.1.8) Ne 9+ K K 6 [7] 1.8: - 13

15 1.9: (A) (B) (1) (2) ( ) (3) : (4) : (5) (C) (B) 14

16 Fig.(1.9) (B) (1) (2) (3) (4) (3) (5) (C) (B) (B) (1) Z c (q) ( (1.4)) q f ρ q F (q) = ρ2 (ρ Z c (q)) 2 ρ 2 2Z c(q) ρ (1.13) 200nm 6 99% 1% q f q f F (q f ) F (q f ) = (ρ Z c(q f )) 2 (ρ Z c (q f + 1)) 2 ρ 2 2ρ(Z c(q f +1) Z c (q f )) ρ 2 8(q f +1) 8q f Wρ (1.14) (1.14) F (q f ) q f Fig.(1.9) 15

17 (1.10) (1.11) q f 1.5 EBIS(Electron Beam Ion Source) (RIKEN) ECRIS(Electron Cyclotron Resonance Ion Soource) Fig.1.10(a) 5 kev/q Xe 6+ (PSD) -2.5kV +2.5kV PSD Fig.1.10(b) 5 kev/q Xe 6+ PSD 16

18 1.10: 5 kev/q Xe 6+ 17

19 EBIS (EBIS) Donetz [9] Fig.2.1 mini-ebis 2.1: mini-ebis EBIS Okuno [10] Kakutani [11] 2keV 18

20 2.1.2 Fig.2.2 Wien (m/q) 2.2: mini-ebis- Wien EBIS 1 Wien Wien Fig.2.3 Wien v B E v = E (2.1) B Wien Velocity Selecter 19

21 V ex v = 2qeV ex m (2.2) e ) (2.1) m q = 2eV exb 2 E 2 (2.3) Wien slit m/q 2.3: Wien Filter Fig mm 5mm 10 mm 70 mm 35 mm) (Position Sensitive Detector, PSD) Wedge-Meander-Strip anode PSD Fig.(2.4) (PSD) (MCP) Wedge-Meander-Strip anode MCP MCP

22 3 MCP Al 2 O 3 MCP Al Ge Wedge-Meander-Strip anode [12] MCP 2.7kV MCP MCP Au W Mesh(100 mesh/inch) MCP Mesh MCP MCP MCP MCP -100 V (a) Mesh insulator triple stacked MCP Ge Layer W.M.S anode W output M output S output fast output (b) (c) Strip y Wedge Meander x 1.5 mm 2.4: Wedge Meander Strip Anode PSD MCP Ge Wedge-Meander-Strip PSD (x, y) Wedge Meander Strip Q w Q m Q s x = Q s Q w + Q m + Q s, y = Q w Q w + Q m + Q s (2.4) PSD 241 Am α ( 0.41 mm 16 mesh/inch) MCP PSD Mesh α α Fig.(2.5) 2 PSD 21

23 2.5: PSD 22

24 2.1.4 Microcapillary Target Fig.(2.6) 2.1 ρ[nm] 100 l[nm] 700 [% ] 65 Ni 2.1: ( ) 2.6: Ni SEM [(a) (b) (3) 45 ] 23

25 Xe q+ (q=3,6,9) Ni 800eV/q Xe q+ (q=3,6,9) Fig.(2.7) 80% (1.13) 1% 20 20% U COBm (1.14) q f U Ninomiya N 6+ [13] Tőkési 2.7: 800 ev/q Xe q+ 800eV/q Xe nm 700nm Ni Auger Monte Calro Simulation (Fig.2.8)[14] q =6 1% 1% 24

26 q =6 q f =5, 4, 3, 2, 1, 0 Auger q f =6 q f Auger COBm Auger 20nm 80% Fig.(2.9) 2.8: Auger Monte Calro Simulation 800eV/q Xe nm 700nm Ni [15] 25

27 2.9: Auger [ (q f =6) 20 nm ] 26

28 2.2.2 Xe 6+ Fig.(2.10) Xe 6+ q f : 800 ev/q Xe 6+ 2 (1) : (2) : q f =0 6 (3)2 : 3 (1),(2),(3) COB (1) (1.12) 15 ev 4.8 kev 15/ mrad( 3.2 ) Fig.(2.10) 0.5 (2.2) 27

29 (1.10) (1.11) Z c (q) 1 / Angle[degree] E im [ev ] q f Exp. Calc. Exp. Calc e e e e e e e-2-2.2: 800 ev/q Xe 6+ (2) (2.2) q f =6 6 2 q f =0 q f =1 (3) 2 Fig.(1.9) kev/u N 6+ Tőkési (Fig.2.11)[15] (3) COB COBm 28

30 2.11: 2.1 kev/u N 6+ [15] 29

31 Ninomiya 1/10 ( 50%) 50% 2 20 nm SEM (1) (2) (3) 2 3 (Micro channel plate, MCP) MCP 1 µm (1.13) 0.1% 1 MCP Ni 30

32 ECR ECR (Electron Cyclotron Resonance Ion Source, ECRIS) (Electron Cyclotron Resonance) B f c f c = eb (3.1) m e f rf f c = f rf (ECR ) ECR ECR f rf ECR 14.5GHz Caprice (BL1, BL2, BL3, BL4) Fig GHz Caprice 1kV 20kV Fig.3.2 ECR analyzing magnet quadrupole magnet switching magnet switching magnet BL3 BL3 steering deflector Einzel four jaw slit 1700 mm 1.5 mm four jaw slit 1.5 mm 10 8 Torr 31

33 3.1: RIKEN 14.5GHz Caprice 32

34 3.2: ECR - 33

35 3.1.3 Fig.3.3 φ φ : 400mm ICF mmφ 15 mm 0.3 mmφ x-y ( 60 mm 60 mm) 10 mm 5kV (Fig.1.10(b)) PSD 12 mm Fig

36 3.4: 35

37 Delay Line Anode PSD Fig.3.5(a) PSD Fig.3.5(b) (c) (a) PSD 2 MCP Al 2 O 3 Delay Line PSD MCP Wedge-Meander-Strip anode PSD Delay Line Delay Line Bare Cu (Fig.3.6) Delay Line 2 (X1s, X2s) Delay Line Delay Line Delay Line Delay Line(reference wire) Bare Cu Lecher cable [16] Delay Line anode PSD PSD 241 Am α MCP 3mm ( 3mm 250 µm) PSD Fig Am α Hg α discriminator 241 Am.3.1 PSD MCP V f V Signal wire V s 400 V MCP V b 0V Reference wire V s 350 V Anode Holder V h 100 V Mesh V m 0V 3.1: Delay Line anode PSD 36

38 3.5: Delay Line Anode PSD 37

39 3.6: Delay Line Anode 3.7: 241 Am PSD 38

40 MCP (Micro channel plate, MCP) MCP Fig : (MCP) (a)mcp (b)mcp Al (c)mcp (d) :6 µm :300 µm :59% MCP 25 mm 300 µm 6 µm PSD MCP MCP ( :0 ) Al Al 3 µm MCP (Fig.3.8 (b)) Fig.3.9 MCP MCP 39

41 3.9: [(a)mcp (b) (a) (c) ( ) (d) ( )] 40

42 (2) (2) 7mmφ (1) MCP MCP 7mmφ 1mm 5mm (3) (2) (4) 5mmφ MCP 1 Fig.3.9(c) (d) MCP 34 mm Ni 3mmφ Ni 6mm 5mmφ (Fig.3.3) Fig.3.10 θ ϕ 3.10: 41

43 Ni 10 MCP 1/50 20 mrad 2 ±0.1 ( 1.7 mrad) Ni MCP Ni MCP Ni φ5mm 200mm 12 mm Current Integrator Fig.3.11 / MCP 6 µm 300 nm 300 µm 1500 nm % 35 % ( Al ) Ni 3.2:.3.2 Fig.3.11 MCP Ni 25% Ni SEM 42

44 3.11: Ni MCP 43

45 3.3 5 kev/q Xe 6+ (MCP ) MCP MCP 3.2 Fig.3.12 θ ϕ q f =0 q f =1 q f =0 q f =1 PSD Fig.3.12 (1) (2) q f =0 q f =1 (1) MCP (2) (Fig.3.13) q f =1 (2) MCP Stolterfoht Mylar 80 nm 10 µm Ne 7+ 5 [17] 0.5 q f =2 (1) (2) kev/q Xe MCP (2) Fig.3.15 (a) q f =0 q f =1 (b) Y q f =0 q f =1 q f =0 q f =1 (1) (2) Fig.3.16 (a) q f =2 q f =3 q f =4 (b) Y q f =0 q f =2 q f =3 q f =4 q f =3 q f =4 (b) 44

46 / θ [degree] ϕ [degree] (a) 0 0 (b) (c) (d) : 45

47 3.13: 3.14: Mylar nano tube 3keV Ne +7 [17] 46

48 3.15: MCP Xe 6+ (q f =0, 1) [(a) (b) Y ] 47

49 q f =2 (c) q f =2 q f =3 q f =4 (d) q f q f =0 q f =4 q f =5 q f =5 q f =6 PSD q f =6 q f 4 q f =5 q f =6 q f =6 PSD MCP q f =6 q f =5 q f =6 q f =5 MCP q f =0 q f =4 Fig.3.17 (a) (b) (a) Y (b) PSD (FWHM) 4ch PSD 1ch 0.08 mm 0.32 mm 0.3 mmφ PSD 170 mm θ i θ i mrad(0.02 ) (3.2) q f =2, 3, 4 FWHM 0.4 mm 0.8 mrad( 0.05 ) 20 mev (1.10) ev 10 mev 48

50 3.16: MCP Xe 6+ (q f =2, 3, 4) [(a) q f =0, 1. (b) (a) Y. (c) q f =0, 1. (d) (c) Y.] 49

51 3.17: Xe 6+ [(a) Xe 6+ (b) (a) Y ] kev/q Xe 6+ (Ni Microcapillary ) Ni [18] Fig.3.18 Ni ( ) SEM Xe 6+ Fig.3.19 (a) (b) (c) (d) Y 5 kev/q Xe 6+ q f Fig.3.20 Experiment. (1.13) (1.14) Fig.3.20 Calculation. U Tökesi COB Auger Fig.3.20 Simulation with Auger process. SEM 200 nm Ni SEM 100 nm 20 nm COB 50

52 3.18: Ni ( ) (a) (b) (c) 45 51

53 3.19: Ni Xe 6+ (0 q f 5) [(a) q f =0, 1, 2. (b) q f =2, 3, 4, 5. (c) (a) Y. (d) (b) Y.] 52

54 3.20: Ni Xe 6+ [Auger ( :300nm)] 53

55 3.4.2 Xe COBm mmφ 5mmφ ( ) Fig.3.21 Fig.??(b) FWHM 4ch 0.32 mm (3.2) θ i θ i 0.3 mrad (0.02 ) 3.21: Xe 6+ [(a) Xe 6+ (b) (a) Y ] Fig.3.19 Fig.3.22 Fig.3.23 q f 0.4 mm 0.9 mrad (0.05 ) 10 mev (1) (3.3) (1.10) (1.11) Ni 54

56 (2) Fig.3.23 (a) (b) q f =0 q f =1 (1) Ni MCP q f =0 q f =1 FWHM 2.5 mm 1.9 mm 7.7mrad(0.44 ) 5.9mrad(0.34 ) 1.8 ev 1.1 ev / Angle[degree] E im [ev ] q f Exp. Calc. Exp. Calc e e e e e e e-2-3.3: 5 kev/q Xe 6+ PSD 3.3 Ni Ni SEM (Fig.3.18) (a) 310 nmφ (b) 380 nmφ Ni (Fig. 1.9) 55

57 3.22: Xe 6+ ( ) 56

58 3.23: Xe 6+ (Y ) 57

59 Z c keV/q Xe kev/q Xe mmφ 5mmφ ( ) Fig FWHM 0.04 θ 3.24: Xe 6+ [(a) Xe 6+ (b) ] Fig q f

60 q f (Fig. 1.9) kev/q Xe 6+ 5 kev/q Xe 6+ q f PSD PSD 1 kev/q q f mmφ 5mmφ ( ) Fig kev/q Xe 6+ Ni q f Fig (1.10) (1.11) 3.4 / Angle[degree] E im [ev ] q f Exp. Calc. Exp. Calc e e e e e e e-2-3.4: 1 kev/q Xe 6+ 59

61 3.25: 5 kev/q Xe 6+ 60

62 θ 3.26: Xe 6+ [(a) Xe 6+ (b) ] mev ( 15 mev) 2 q f 5 kev Xe 6 q f 1 kev/q Xe 6+ PSD Ni Ni

63 3.27: 1 kev/q Xe 6+ 62

64 4 mini-ebis RIKEN 14.5GHz Caprice Xe 6+ (MCP) Ni 3 COB Auger COB Fig.1.9 q f 5keV/q 1keV/q Ni Ni (1.11) MCP MCP 300 µm 1kV TOF 63

65 Wien K. Tőkési PSD PSD PSD MCP D4 PSD D2 - D2 EBIS D2 M2 PSD PC Franzen M2 M1 64

66 [1] H. D. Hagstrum: Phys. Rev. 91, 543 (1953) [2] H. Ryuhuku, K. Sasaki and T. Watanabe : Phys. Rev. A21, 7451 (1980) [3] J. Burgdörfer, P. Lerner and F. W. Meyer : Phys. Rev. A44, 5674 (1991) [4] H. Winter, C. Auth, R. Schuch and E. W. Beebe : Phys. Rev. Lett. 71, 1939 (1993) [5] J. P. Briand, L. de Billy, P. Charles, S. Essabaa, P. Briand, R. Geller, J. P. Desclaux, S. Bliman and C. Ristori : Phys. Rev. Lett. 65, 159 (1990) [6] F. W. Meyer, S. H. Overbury, C. C. Havener, P. A. Zeijlmans van Emmichoven, J. Burgdörfer and D. M. Zehner : Phys. Rev. A44, 7214 (1991) [7] Y. Yamazaki, S. Ninomiya, F. Koike, H. Masuda, T. Azuma, K. Komaki, K. Kuroki, M. Sekiguchi : J. Phys. Soc. Jpn. 65, 1199 (1996) [8] F. W. Meyer, L. Folkerts, H. O. Folkerts and S. Schippers : Nucl. Instrum. Meth. Phys. Res. B98, 441 (1995) [9] E. D. Donetz : IEEE Trans. Nucl. Sci. NS-23, 904 (1976). [10] K. Okuno : Jpn. J. Appl. Phys. 28, 1124 (1989). [11] K. Kakutani: PhD Thesis, Institute of Physics, University of Tokyo (1995) [12] N. Okabayashi: Master s Thesis, Institute of Physics, University of Tokyo (1999) [13] S. Ninomiya, Y. Yamazaki, F. Koike, H. Masuda, T. Azuma, K. Komaki, K. Kuroki, M. Sekiguchi : Phys. Rev. Lett. 78, 4557 (1997) [14] K. Tőkési, L. Wirtz, C. Lemell and J. Burgdörfer : Phys. Rev. A61, (R) (2000) [15] K. Tőkési : private communication. [16] S. E. Sobottka and M. B. Williams : IEEE Trans. Nucl. Sci. 35, 348 (1988) [17] N. Stolterfoht, J. H. Bremer, V. Hoffmann and D. Fink : 10th International Conference on the Physics of Highly Charged Ions, Berkeley, Ca, July/August 2000 [18] H. Masuda, M. Ohya, K. Nishio, H. Asoh, M. Nakao, M. Nohtomi, A. Yokoo and T. Tamamura : Jpn. J. Appl. Phys. 39, L1039 (2000) 65

Undulator.dvi

Undulator.dvi X X 1 1 2 Free Electron Laser: FEL 2.1 2 2 3 SACLA 4 SACLA [1]-[6] [7] 1: S N λ [9] XFEL OHO 13 X [8] 2 2.1 2(a) (c) z y y (a) S N 90 λ u 4 [10, 11] Halbach (b) 2: (a) (b) (c) (c) 1 2 [11] B y = n=1 B

More information

untitled

untitled TOF ENMA JAEA-RMS) TOF Pre-scission JAERI-RMS (m-state 16 O + 27 Al 150MeV d TOF Nucl. Phys. A444, 349-364 (1985). l = m d Pre-scission Scission 10-19 (Post_scission) (Pre-scission) Proton_fission Alpha_fission

More information

Mott散乱によるParity対称性の破れを検証

Mott散乱によるParity対称性の破れを検証 Mott Parity P2 Mott target Mott Parity Parity Γ = 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 t P P ),,, ( 3 2 1 0 1 γ γ γ γ γ γ ν ν µ µ = = Γ 1 : : : Γ P P P P x x P ν ν µ µ vector axial vector ν ν µ µ γ γ Γ ν γ

More information

Donald Carl J. Choi, β ( )

Donald Carl J. Choi, β ( ) :: α β γ 200612296 20 10 17 1 3 2 α 3 2.1................................... 3 2.2................................... 4 2.3....................................... 6 2.4.......................................

More information

main.dvi

main.dvi MICE Sci-Fi 2 15 3 7 1 1 5 1.1 MICE(Muon Ionization Cooling Experiment)............. 5 1.1.1........................... 5 1.1.2............................... 7 1.1.3 MICE.......................... 10

More information

Drift Chamber

Drift Chamber Quench Gas Drift Chamber 23 25 1 2 5 2.1 Drift Chamber.............................................. 5 2.2.............................................. 6 2.2.1..............................................

More information

positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) MeV : thermalization m psec 100

positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) MeV : thermalization m psec 100 positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) 0.5 1.5MeV : thermalization 10 100 m psec 100psec nsec E total = 2mc 2 + E e + + E e Ee+ Ee-c mc

More information

1).1-5) - 9 -

1).1-5) - 9 - - 8 - 1).1-5) - 9 - ε = ε xx 0 0 0 ε xx 0 0 0 ε xx (.1 ) z z 1 z ε = ε xx ε x y 0 - ε x y ε xx 0 0 0 ε zz (. ) 3 xy ) ε xx, ε zz» ε x y (.3 ) ε ij = ε ij ^ (.4 ) 6) xx, xy ε xx = ε xx + i ε xx ε xy = ε

More information

1-x x µ (+) +z µ ( ) Co 2p 3d µ = µ (+) µ ( ) W. Grange et al., PRB 58, 6298 (1998). 1.0 0.5 0.0 2 1 XMCD 0-1 -2-3x10-3 7.1 7.2 7.7 7.8 8.3 8.4 up E down ρ + (E) ρ (E) H, M µ f + f E F f + f f + f X L

More information

From Evans Application Notes

From Evans Application Notes 3 From Evans Application Notes http://www.eaglabs.com From Evans Application Notes http://www.eaglabs.com XPS AES ISS SSIMS ATR-IR 1-10keV µ 1 V() r = kx 2 = 2π µν x mm 1 2 µ= m + m 1 2 1 k ν = OSC 2

More information

X線分析の進歩36 別刷

X線分析の進歩36 別刷 X X X-Ray Fluorescence Analysis on Environmental Standard Reference Materials with a Dry Battery X-Ray Generator Hideshi ISHII, Hiroya MIYAUCHI, Tadashi HIOKI and Jun KAWAI Copyright The Discussion Group

More information

untitled

untitled (a) (b) (c) (d) (e) (f) (g) (f) (a), (b) 1 He Gleiter 1) 5-25 nm 1/2 Hall-Petch 10 nm Hall-Petch 2) 3) 4) 2 mm 5000% 5) 1(e) 20 µm Pd, Zr 1(f) Fe 6) 10 nm 2 8) Al-- 1,500 MPa 9) 2 Fe 73.5 Si 13.5 B 9 Nb

More information

J. Mass Spectrom. Soc. Jpn.: 58(5), (2010)

J. Mass Spectrom. Soc. Jpn.: 58(5), (2010) J. Mass Spectrom. Soc. Jpn. Vol. 58, No. 5, 2010 REVIEW 9 Secondary Ion Mass Spectrometry (SIMS) SIMS SIMS Fundamentals of Mass Spectrometry Secondary Ion Mass Spectrometry (SIMS), Cluster SIMS, and Electrospray

More information

B

B B07557 0 0 (AGN) AGN AGN X X AGN AGN Geant4 AGN X X X (AGN) AGN AGN X AGN. AGN AGN Seyfert Seyfert Seyfert AGN 94 Carl Seyfert Seyfert Seyfert z < 0. Seyfert I II I 000 km/s 00 km/s II AGN (BLR) (NLR)

More information

untitled

untitled SPring-8 RFgun JASRI/SPring-8 6..7 Contents.. 3.. 5. 6. 7. 8. . 3 cavity γ E A = er 3 πε γ vb r B = v E c r c A B A ( ) F = e E + v B A A A A B dp e( v B+ E) = = m d dt dt ( γ v) dv e ( ) dt v B E v E

More information

untitled

untitled 27.2.9 TOF-SIMS SIMS TOF-SIMS SIMS Mass Spectrometer ABCDE + ABC+ DE + Primary Ions: 1 12 ions/cm 2 Molecular Fragmentation Region ABCDE ABCDE 1 15 atoms/cm 2 Molecular Desorption Region Why TOF-SIMS?

More information

03J_sources.key

03J_sources.key Radiation Detection & Measurement (1) (2) (3) (4)1 MeV ( ) 10 9 m 10 7 m 10 10 m < 10 18 m X 10 15 m 10 15 m ......... (isotope)...... (isotone)......... (isobar) 1 1 1 0 1 2 1 2 3 99.985% 0.015% ~0% E

More information

スライド 1

スライド 1 Matsuura Laboratory SiC SiC 13 2004 10 21 22 H-SiC ( C-SiC HOY Matsuura Laboratory n E C E D ( E F E T Matsuura Laboratory Matsuura Laboratory DLTS Osaka Electro-Communication University Unoped n 3C-SiC

More information

untitled

untitled /, S=1/2 S=0 S=1/2 - S// m H m H = S G e + + G Z (t) 1 0 t G Z (t) 1 0 t G Z (t) 1 0 t SR G Z (t) = 1/3 + (2/3)(1-2 t 2 )exp(- 2 t 2 /2) G Z (t) 1-1/3 1/3 0 3/ 3/ t G Z (t)

More information

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n 003...............................3 Debye................. 3.4................ 3 3 3 3. Larmor Cyclotron... 3 3................ 4 3.3.......... 4 3.3............ 4 3.3...... 4 3.3.3............ 5 3.4.........

More information

untitled

untitled 2013 74 Tokyo Institute of Technology AlGaN/GaN C Annealing me Dependent Contact Resistance of C Electrodes on AlGaN/GaN, Tokyo Tech.FRC, Tokyo Tech. IGSSE, Toshiba, Y. Matsukawa, M. Okamoto, K. Kakushima,

More information

TSP-MPS-OM.book

TSP-MPS-OM.book 取扱説明書 Transpector MPS Transpector MPH www.inficon.com 2014 INFICON reachus@inficon.com INFICON Inc. Two Technology Place East Syracuse, NY 13057 USA PN 074-603-P1A 1-1 PN 074-603-P1A 1-2 PN 074-603-P1A

More information

CdTe γ 02cb059e :

CdTe γ 02cb059e : CdTe γ 02cb059e : 2006 5 2 i 1 1 1.1............................................ 1 1.2............................................. 2 1.3............................................. 2 2 3 2.1....................................

More information

PDF

PDF 1 1 1 1-1 1 1-9 1-3 1-1 13-17 -3 6-4 6 3 3-1 35 3-37 3-3 38 4 4-1 39 4- Fe C TEM 41 4-3 C TEM 44 4-4 Fe TEM 46 4-5 5 4-6 5 5 51 6 5 1 1-1 1991 1,1 multiwall nanotube 1993 singlewall nanotube ( 1,) sp 7.4eV

More information

(e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ,µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) [ ] [ ] [ ] ν e ν µ ν τ e µ τ, e R,µ R,τ R (2.1a

(e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ,µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) [ ] [ ] [ ] ν e ν µ ν τ e µ τ, e R,µ R,τ R (2.1a 1 2 2.1 (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ,µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) [ ] [ ] [ ] ν e ν µ ν τ e µ τ, e R,µ R,τ R (2.1a) L ( ) ) * 2) W Z 1/2 ( - ) d u + e + ν e 1 1 0 0

More information

thesis.dvi

thesis.dvi 3 17 03SA210A 2005 3 1 introduction 1 1.1 Positronium............ 1 1.2 Positronium....................... 4 1.2.1 moderation....................... 5 1.2.2..................... 6 1.2.3...................

More information

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2 1 6 6.1 (??) (P = ρ rad /3) ρ rad T 4 d(ρv ) + PdV = 0 (6.1) dρ rad ρ rad + 4 da a = 0 (6.2) dt T + da a = 0 T 1 a (6.3) ( ) n ρ m = n (m + 12 ) m v2 = n (m + 32 ) T, P = nt (6.4) (6.1) d [(nm + 32 ] )a

More information

Λ (Λ ) Λ (Ge) Hyperball γ ΛN J-PARC Λ dead time J-PARC flash ADC 1 dead time ( ) 1 µsec 3

Λ (Λ ) Λ (Ge) Hyperball γ ΛN J-PARC Λ dead time J-PARC flash ADC 1 dead time ( ) 1 µsec 3 19 Λ (Λ ) Λ (Ge) Hyperball γ ΛN J-PARC Λ dead time J-PARC flash ADC 1 dead time ( ) 1 µsec 3 1 1 1.1 γ ΛN................. 1 1.2 KEK J-PARC................................ 2 1.2.1 J-PARC....................................

More information

untitled

untitled BELLE TOP 12 1 3 2 BELLE 4 2.1 BELLE........................... 4 2.1.1......................... 4 2.1.2 B B........................ 7 2.1.3 B CP............... 8 2.2 BELLE...................... 9 2.3

More information

untitled

untitled --- = ---- 16 Z 8 0 8 8 0 Big Bang 8 8 s-process 50 r-process 8 50 N r-process s-process Hydrogen 71% Helium 8% Others 1.9% Heay 4-4% lements(>ni p-process (γ process? r-process s-process Big Bang H,He

More information

J-PARC E15 K K-pp Missing mass Invariant mass K - 3 He Formation K - pp cluster neutron Mode to decay charged particles p Λ π - Decay p Decay E15 dete

J-PARC E15 K K-pp Missing mass Invariant mass K - 3 He Formation K - pp cluster neutron Mode to decay charged particles p Λ π - Decay p Decay E15 dete J-PARC E15 (TGEM-TPC) TGEM M1 ( ) J-PARC E15 TPC TGEM TGEM J-PARC E15 K K-pp Missing mass Invariant mass K - 3 He Formation K - pp cluster neutron Mode to decay charged particles p Λ π - Decay p Decay

More information

2 (March 13, 2010) N Λ a = i,j=1 x i ( d (a) i,j x j ), Λ h = N i,j=1 x i ( d (h) i,j x j ) B a B h B a = N i,j=1 ν i d (a) i,j, B h = x j N i,j=1 ν i

2 (March 13, 2010) N Λ a = i,j=1 x i ( d (a) i,j x j ), Λ h = N i,j=1 x i ( d (h) i,j x j ) B a B h B a = N i,j=1 ν i d (a) i,j, B h = x j N i,j=1 ν i 1. A. M. Turing [18] 60 Turing A. Gierer H. Meinhardt [1] : (GM) ) a t = D a a xx µa + ρ (c a2 h + ρ 0 (0 < x < l, t > 0) h t = D h h xx νh + c ρ a 2 (0 < x < l, t > 0) a x = h x = 0 (x = 0, l) a = a(x,

More information

Microsoft Word - 章末問題

Microsoft Word - 章末問題 1906 R n m 1 = =1 1 R R= 8h ICP s p s HeNeArXe 1 ns 1 1 1 1 1 17 NaCl 1.3 nm 10nm 3s CuAuAg NaCl CaF - - HeNeAr 1.7(b) 2 2 2d = a + a = 2a d = 2a 2 1 1 N = 8 + 6 = 4 8 2 4 4 2a 3 4 π N πr 3 3 4 ρ = = =

More information

pp * Yw; Mq 1. 1L 20 cc [1] Sonoluminescence: Light emission from acoustic cavitation bubble. Pak-Kon Choi (Departm

pp * Yw; Mq 1. 1L 20 cc [1] Sonoluminescence: Light emission from acoustic cavitation bubble. Pak-Kon Choi (Departm 73 7 2017 pp. 447 454 447 * 43.25.Yw; 78.60.Mq 1. 1L 20 cc [1] Sonoluminescence: Light emission from acoustic cavitation bubble. Pak-Kon Choi (Department of Physics, Meiji University, Kawasaki, 214 8571)

More information

2

2 Rb Rb Rb :10256010 2 3 1 5 1.1....................................... 5 1.2............................................. 5 1.3........................................ 6 2 7 2.1.........................................

More information

i

i i ii 1 6 9 12 15 16 19 19 19 21 21 22 22 23 26 32 34 35 36 3 37 5 5 4 4 5 iii 4 55 55 59 59 7 7 8 8 9 9 10 10 1 11 iv ozein Van Marum 1801 Cruiokshank Marum 1840 Schonbein 3 / atm 1 N 1892 50 1960 1970

More information

4 2 Rutherford 89 Rydberg λ = R ( n 2 ) n 2 n = n +,n +2, n = Lyman n =2 Balmer n =3 Paschen R Rydberg R = cm 896 Zeeman Zeeman Zeeman Lorentz

4 2 Rutherford 89 Rydberg λ = R ( n 2 ) n 2 n = n +,n +2, n = Lyman n =2 Balmer n =3 Paschen R Rydberg R = cm 896 Zeeman Zeeman Zeeman Lorentz 2 Rutherford 2. Rutherford N. Bohr Rutherford 859 Kirchhoff Bunsen 86 Maxwell Maxwell 885 Balmer λ Balmer λ = 364.56 n 2 n 2 4 Lyman, Paschen 3 nm, n =3, 4, 5, 4 2 Rutherford 89 Rydberg λ = R ( n 2 ) n

More information

1.06μm帯高出力高寿命InGaAs歪量子井戸レーザ

1.06μm帯高出力高寿命InGaAs歪量子井戸レーザ rjtenmy@ipc.shizuoka.ac.jp ZnO RPE-MOCVD UV- ZnO MQW LED/PD & Energy harvesting LED ( ) PV & ZnO... 1970 1980 1990 2000 2010 SAW NTT ZnO LN, LT IC PbInAu/PbBi Nb PIN/FET LD/HBT 0.98-1.06m InGaAs QW-LD

More information

Canvas-tr01(title).cv3

Canvas-tr01(title).cv3 Working Group DaiMaJin DaiRittaikaku Multiparticle Jiki-Bunnsekiki Samurai7 Superconducting Analyser for Multi particles from RadioIsotope Beams with 7Tm of bending power (γ,n) softgdr, GDR non resonant

More information

untitled

untitled N0 N8 N0 N8 N0 * 49MeV/nuceon β 0.3c γ Hgh Z Target Pb Equvaent Photon Method 0 d σ dωde σ π γ γ π E 3 γ [!! ] dnπ σ dω π γ Eγ c h C.A.Bertuan and G.Baur Phys.Rep.63,99 988. J.D. Jackson Cassca Eectrodynamcs

More information

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H 199 1 1 199 1 1. Vx) m e V cos x π x π Vx) = x < π, x > π V i) x = Vx) V 1 x /)) n n d f dξ ξ d f dξ + n f = H n ξ) ii) H n ξ) = 1) n expξ ) dn dξ n exp ξ )) H n ξ)h m ξ) exp ξ )dξ = π n n!δ n,m x = Vx)

More information

3-2 PET ( : CYRIC ) ( 0 ) (3-1 ) PET PET [min] 11 C 13 N 15 O 18 F 68 Ga [MeV] [mm] [MeV]

3-2 PET ( : CYRIC ) ( 0 ) (3-1 ) PET PET [min] 11 C 13 N 15 O 18 F 68 Ga [MeV] [mm] [MeV] 3 PET 3-1 PET 3-1-1 PET PET 1-1 X CT MRI(Magnetic Resonance Imaging) X CT MRI PET 3-1 PET [1] H1 D2 11 C-doxepin 11 C-raclopride PET H1 D2 3-2 PET 0 0 H1 D2 3-1 PET 3-2 PET ( : CYRIC ) ( 0 ) 3-1-2 (3-1

More information

An automated method to generate the collisional radiative model of multiple charged ions SASAKI Akira, NISHIHARA Katunobu, MURATA Masaki Quan

An automated method to generate the collisional radiative model of multiple charged ions SASAKI Akira, NISHIHARA Katunobu, MURATA Masaki Quan An automated method to generate the collisional radiative model of multiple charged ions. 1 2 1 2 SASAKI Akira, NISHIHARA Katunobu, MURATA Masaki Quantum Beam Science Directorate, Japan Atomic Energy Research

More information

MOSFET HiSIM HiSIM2 1

MOSFET HiSIM HiSIM2 1 MOSFET 2007 11 19 HiSIM HiSIM2 1 p/n Junction Shockley - - on-quasi-static - - - Y- HiSIM2 2 Wilson E f E c E g E v Bandgap: E g Fermi Level: E f HiSIM2 3 a Si 1s 2s 2p 3s 3p HiSIM2 4 Fermi-Dirac Distribution

More information

PowerPoint Presentation

PowerPoint Presentation / 2008/04/04 Ferran Salleras 1 2 40Gb/s 40Gb/s PC QD PC: QD: e.g. PCQD PC/QD 3 CP-ON SP T CP-OFF PC/QD-SMZ T ~ps, 40Gb/s ~100fJ T CP-ON CP-OFF 500µm500µm Photonic Crystal SMZ K. Tajima, JJAP, 1993. Control

More information

C: PC H19 A5 2.BUN Ohm s law

C: PC H19 A5 2.BUN Ohm s law C: PC H19 A5 2.BUN 19 8 6 3 19 3.1........................... 19 3.2 Ohm s law.................... 21 3.3.......................... 24 4 26 4.1................................. 26 4.2.................................

More information

( ) Note (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e

( ) Note (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e ( ) Note 3 19 12 13 8 8.1 (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e µ τ, e R, µ R, τ R (1a) L ( ) ) * 3) W Z 1/2 ( - )

More information

C el = 3 2 Nk B (2.14) c el = 3k B C el = 3 2 Nk B

C el = 3 2 Nk B (2.14) c el = 3k B C el = 3 2 Nk B I ino@hiroshima-u.ac.jp 217 11 14 4 4.1 2 2.4 C el = 3 2 Nk B (2.14) c el = 3k B 2 3 3.15 C el = 3 2 Nk B 3.15 39 2 1925 (Wolfgang Pauli) (Pauli exclusion principle) T E = p2 2m p T N 4 Pauli Sommerfeld

More information

C-2 NiS A, NSRRC B, SL C, D, E, F A, B, Yen-Fa Liao B, Ku-Ding Tsuei B, C, C, D, D, E, F, A NiS 260 K V 2 O 3 MIT [1] MIT MIT NiS MIT NiS Ni 3 S 2 Ni

C-2 NiS A, NSRRC B, SL C, D, E, F A, B, Yen-Fa Liao B, Ku-Ding Tsuei B, C, C, D, D, E, F, A NiS 260 K V 2 O 3 MIT [1] MIT MIT NiS MIT NiS Ni 3 S 2 Ni M (emu/g) C 2, 8, 9, 10 C-1 Fe 3 O 4 A, SL B, NSRRC C, D, E, F A, B, B, C, Yen-Fa Liao C, Ku-Ding Tsuei C, D, D, E, F, A Fe 3 O 4 120K MIT V 2 O 3 MIT Cu-doped Fe3O4 NCs MIT [1] Fe 3 O 4 MIT Cu V 2 O 3

More information

rcnp01may-2

rcnp01may-2 E22 RCP Ring-Cyclotron 97 953 K beam K-atom HF X K, +,K + e,e K + -spectroscopy OK U U I= First-order -exchange - coupling I= U LS U LS Meson-exchange model /5/ I= Symmetric LS Anti-symmetric LS ( σ Λ

More information

SPECTにおける撮像時間短縮の研究

SPECTにおける撮像時間短縮の研究 SPECT(single photon emission computed tomography) 031-8001355-5 SPECT (single photon emission computed tomography) 20 30 SPECT OS-EM (ordered subsets-expectation maximization) OS-EM SNR (signal to noise

More information

4‐E ) キュリー温度を利用した消磁:熱消磁

4‐E ) キュリー温度を利用した消磁:熱消磁 ( ) () x C x = T T c T T c 4D ) ) Fe Ni Fe Fe Ni (Fe Fe Fe Fe Fe 462 Fe76 Ni36 4E ) ) (Fe) 463 4F ) ) ( ) Fe HeNe 17 Fe Fe Fe HeNe 464 Ni Ni Ni HeNe 465 466 (2) Al PtO 2 (liq) 467 4G ) Al 468 Al ( 468

More information

i

i 009 I 1 8 5 i 0 1 0.1..................................... 1 0.................................................. 1 0.3................................. 0.4........................................... 3

More information

1 3 1.1 PET..................................... 3 1.1.1......................................... 3 1.1.2 PET................................. 4 1.2..

1 3 1.1 PET..................................... 3 1.1.1......................................... 3 1.1.2 PET................................. 4 1.2.. 21 PET 06S2037G 2010 3 1 3 1.1 PET..................................... 3 1.1.1......................................... 3 1.1.2 PET................................. 4 1.2........................................

More information

THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS TECHNICAL REPORT OF IEICE

THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS TECHNICAL REPORT OF IEICE THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS TECHNICAL REPORT OF IEICE. 56 8531 1 3 E-mail: morisaka@ec.ee.es.osaka-u.ac.jp, {shiomi,okamura}@ee.es.osaka-u.ac.jp 2.665GHz 29 1.2,

More information

PET. PET, PET., PET 1, TPC 3.,. TPC,,.

PET. PET, PET., PET 1, TPC 3.,. TPC,,. PET TPC 21 2 9 PET. PET, PET., PET 1, TPC 3.,. TPC,,. 1 6 2 PET 7 2.1........................... 7 2.1.1 PET..................... 7 2.1.2.......................... 10 2.2..............................

More information

1 1.1,,,.. (, ),..,. (Fig. 1.1). Macro theory (e.g. Continuum mechanics) Consideration under the simple concept (e.g. ionic radius, bond valence) Stru

1 1.1,,,.. (, ),..,. (Fig. 1.1). Macro theory (e.g. Continuum mechanics) Consideration under the simple concept (e.g. ionic radius, bond valence) Stru 1. 1-1. 1-. 1-3.. MD -1. -. -3. MD 1 1 1.1,,,.. (, ),..,. (Fig. 1.1). Macro theory (e.g. Continuum mechanics) Consideration under the simple concept (e.g. ionic radius, bond valence) Structural relaxation

More information

10 nm SThM Fig.1 AFM 6) AFM 7) Fig.1 AFM 0.1 N/m 100 pn 10 nn 8) SThM STM AFM RTD Resistance Temperature Device SNOM Scanning Near-field Optical Micro

10 nm SThM Fig.1 AFM 6) AFM 7) Fig.1 AFM 0.1 N/m 100 pn 10 nn 8) SThM STM AFM RTD Resistance Temperature Device SNOM Scanning Near-field Optical Micro @@@@@@@@@@@@@@ @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@

More information

W 1983 W ± Z cm 10 cm 50 MeV TAC - ADC ADC [ (µs)] = [] (2.08 ± 0.36) 10 6 s 3 χ µ + µ 8 = (1.20 ± 0.1) 10 5 (Ge

W 1983 W ± Z cm 10 cm 50 MeV TAC - ADC ADC [ (µs)] = [] (2.08 ± 0.36) 10 6 s 3 χ µ + µ 8 = (1.20 ± 0.1) 10 5 (Ge 22 2 24 W 1983 W ± Z 0 3 10 cm 10 cm 50 MeV TAC - ADC 65000 18 ADC [ (µs)] = 0.0207[] 0.0151 (2.08 ± 0.36) 10 6 s 3 χ 2 2 1 20 µ + µ 8 = (1.20 ± 0.1) 10 5 (GeV) 2 G µ ( hc) 3 1 1 7 1.1.............................

More information

2008/02/18 08:40-10:10, 12:50-14:20 14:30-16:00, 16:10-17:40,

2008/02/18 08:40-10:10, 12:50-14:20 14:30-16:00, 16:10-17:40, 008/0/18 08:40-10:10, 1:50-14:0 14:30-16:00, 16:10-17:40, 1pt A 1911 Leiden Heike Kammelingh-Onnes H.Kammelingh Onnes 1907 He 1 4. K H H c T c T H c Hg:40 mt, Pb:80 mt, Sn:30 mt 100 mt I c H c H c H

More information

text_0821.dvi

text_0821.dvi Team DIANA 2007 8 21 2 ( ) ( ) Team DIANA 1 2 1 1 1 1 1 1 1 1 2 1 1 1 1 1 Janosfalvi Zsuzsa 1 1 3 1 5 1.1.................................. 5 1.2................................. 5 1.3.....................................

More information

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4 1. k λ ν ω T v p v g k = π λ ω = πν = π T v p = λν = ω k v g = dω dk 1) ) 3) 4). p = hk = h λ 5) E = hν = hω 6) h = h π 7) h =6.6618 1 34 J sec) hc=197.3 MeV fm = 197.3 kev pm= 197.3 ev nm = 1.97 1 3 ev

More information

加速器の基本概念 V : 高周波加速の基礎

加速器の基本概念  V : 高周波加速の基礎 .... V : KEK koji.takata@kek.jp http://research.kek.jp/people/takata/home.html 2015 2015 4 16 1 2 (1) 3 (2) 4 5 6 ERL: Energy Recovery Linac LCLS: Linac Coherent Light Source LC : µ-µ Koji Takata (KEK)

More information

反D中間子と核子のエキゾチックな 束縛状態と散乱状態の解析

反D中間子と核子のエキゾチックな   束縛状態と散乱状態の解析 .... D 1 in collaboration with 1, 2, 1 RCNP 1, KEK 2 . Exotic hadron qqq q q Θ + Λ(1405) etc. uudd s? KN quasi-bound state? . D(B)-N bound state { { D D0 ( cu) B = D ( cd), B = + ( bu) B 0 ( bd) D(B)-N

More information

1 5 1.1................................ 5 1.2 MPGD.......................................... 6 1.2.1 GEM...................................... 6 1.2.2

1 5 1.1................................ 5 1.2 MPGD.......................................... 6 1.2.1 GEM...................................... 6 1.2.2 19 GEM 2 2008/3/13 1 5 1.1................................ 5 1.2 MPGD.......................................... 6 1.2.1 GEM...................................... 6 1.2.2 MICROMEGAS................................

More information

68 JAXA-RR r v m Ó e ε 0 E = - Ó/ r f f 0 f 1 f = f 0 + f 1 x k f 1 = f k e ikx Ó = Ó k e ikx Ó k 3

68 JAXA-RR r v m Ó e ε 0 E = - Ó/ r f f 0 f 1 f = f 0 + f 1 x k f 1 = f k e ikx Ó = Ó k e ikx Ó k 3 67 1 Landau Damping and RF Current Drive Kazuya UEHARA* 1 Abstract The current drive due to the rf travelling wave has been available to sustain the plasma current of tokamaks aiming the stational operation.

More information

Ni PLD GdBa 2 Cu 3 O 7 x 2 6

Ni PLD GdBa 2 Cu 3 O 7 x 2 6 Ni PLD GdBa 2 Cu 3 O 7 x 2 6 1 1 1.1.................................. 1 1.2................................ 2 1.2.1......................... 3 1.3 RE 1 Ba 2 Cu 3 O 7 x...................... 3 1.3.1...............................

More information

42 3 u = (37) MeV/c 2 (3.4) [1] u amu m p m n [1] m H [2] m p = (4) MeV/c 2 = (13) u m n = (4) MeV/c 2 =

42 3 u = (37) MeV/c 2 (3.4) [1] u amu m p m n [1] m H [2] m p = (4) MeV/c 2 = (13) u m n = (4) MeV/c 2 = 3 3.1 3.1.1 kg m s J = kg m 2 s 2 MeV MeV [1] 1MeV=1 6 ev = 1.62 176 462 (63) 1 13 J (3.1) [1] 1MeV/c 2 =1.782 661 731 (7) 1 3 kg (3.2) c =1 MeV (atomic mass unit) 12 C u = 1 12 M(12 C) (3.3) 41 42 3 u

More information

OHO.dvi

OHO.dvi 1 Coil D-shaped electrodes ( [1] ) Vacuum chamber Ion source Oscillator 1.1 m e v B F = evb (1) r m v2 = evb r v = erb (2) m r T = 2πr v = 2πm (3) eb v

More information

薄膜結晶成長の基礎3.dvi

薄膜結晶成長の基礎3.dvi 3 464-8602 1 [1] 2 3 (epitaxy) (homoepitaxy) (heteroepitaxy) 1 Makio Uwaha. E-mail:uwaha@nagoya-u.jp; http://slab.phys.nagoya-u.ac.jp/uwaha/ 2 3.1 [2] (strain) r u(r) ɛ αγ (r) = 1 ( uα + u ) γ (3.1) 2

More information

C 3 C-1 Cu 2 (OH) 3 Cl A, B A, A, A, B, B Cu 2 (OH) 3 Cl clinoatacamite S=1/2 Heisenberg Cu 2+ T N 1 =18K T N 2 =6.5K SR T N 2 T N 1 T N 1 0T 1T 2T 3T

C 3 C-1 Cu 2 (OH) 3 Cl A, B A, A, A, B, B Cu 2 (OH) 3 Cl clinoatacamite S=1/2 Heisenberg Cu 2+ T N 1 =18K T N 2 =6.5K SR T N 2 T N 1 T N 1 0T 1T 2T 3T C 3 C-1 Cu 2 (OH) 3 Cl A, B A, A, A, B, B Cu 2 (OH) 3 Cl clinoatacamite S=1/2 Heisenberg Cu 2+ T N 1 =18K T N 2 =6.5K SR T N 2 T N 1 T N 1 0T 1T 2T 3T 4T 5T 6T C (J/K mol) 20 18 16 14 12 10 8 6 0 0 5 10

More information

Thick-GEM 06S2026A 22 3

Thick-GEM 06S2026A 22 3 Thick-GEM 06S2026A 22 3 (MWPC-Multi Wire Proportional Chamber) MPGD(Micro Pattern Gas Detector) MPGD MPGD MPGD MPGD GEM(Gas Electron Multiplier) GEM GEM GEM Thick-GEM GEM Thick-GEM 10 4 Thick-GEM 1 Introduction

More information

放射線化学, 92, 39 (2011)

放射線化学, 92, 39 (2011) V. M. S. V. 1 Contents of the lecture note by Prof. V. M. Byakov and Dr. S. V. Stepanov (Institute of Theoretical and Experimental Physics, Russia) are described in a series of articles. The first article

More information

LD

LD 989935 1 1 3 3 4 4 LD 6 7 10 1 3 13 13 16 0 4 5 30 31 33 33 35 35 37 38 5 40 FFT 40 40 4 4 4 44 47 48 49 51 51 5 53 54 55 56 Abstract [1] HDD (LaserDopplerVibrometer; LDV) [] HDD IC 1 4 LDV LDV He-Ne Acousto-optic

More information

hvac-dpos_dif.eps

hvac-dpos_dif.eps 11 C(α, p) 14 N Feasibility Study of the Experiment on the Stellar Reaction 11 C(α, p) 14 N 20 2 7 1 1 1.1............................... 1 1.2............................... 2 1.3........................................

More information

2 Zn Zn + MnO 2 () 2 O 2 2 H2 O + O 2 O 2 MnO 2 2 KClO 3 2 KCl + 3 O 2 O 3 or 3 O 2 2 O 3 N 2 () NH 4 NO 2 2 O + N 2 ( ) MnO HCl Mn O + CaCl(ClO

2 Zn Zn + MnO 2 () 2 O 2 2 H2 O + O 2 O 2 MnO 2 2 KClO 3 2 KCl + 3 O 2 O 3 or 3 O 2 2 O 3 N 2 () NH 4 NO 2 2 O + N 2 ( ) MnO HCl Mn O + CaCl(ClO 1 [1]. Zn + 2 H + Zn 2+,. K Ca Na Mg Al Zn Fe Ni Sn Pb H Cu Hg Ag Pt Au H (H + ),,. [2] ( ) ( ) CO 2, S, SO 2, NH 3 () + () () + () FeS Fe S ( ) + ( ) ( ) + ( ) 2 NH 4 Cl + Ca(OH) 2 Ca O + 2 NH 3,.,,.,,.,.

More information

Microsoft PowerPoint - 14.菅谷修正.pptx

Microsoft PowerPoint - 14.菅谷修正.pptx InGaAs/系量子ドット太陽電池の作製 革新デバイスチーム 菅谷武芳 電子 バンド3:伝導帯 E3 E3 E 正孔 バンド:中間バンド 量子ドット超格子 ミニバンド 量子ドットの井戸型 ポテンシャル バンド:価電子帯 量子ドット太陽電池のバンド図 6%を超える理想的な量子ドット太陽 電池実現には E3として1 9eVが必要 量子ドット超格子太陽電池 理論上 変換効率6%以上 集光 を採用 MBE

More information

a L = Ψ éiγ c pa qaa mc ù êë ( - )- úû Ψ 1 Ψ 4 γ a a 0, 1,, 3 {γ a, γ b } η ab æi O ö æo ö β, σ = ço I α = è - ø çèσ O ø γ 0 x iβ γ i x iβα i

a L = Ψ éiγ c pa qaa mc ù êë ( - )- úû Ψ 1 Ψ 4 γ a a 0, 1,, 3 {γ a, γ b } η ab æi O ö æo ö β, σ = ço I α = è - ø çèσ O ø γ 0 x iβ γ i x iβα i 解説 4 matsuo.mamoru jaea.go.jp 4 eizi imr.tohoku.ac.jp 4 maekawa.sadamichi jaea.go.jp i ii iii i Gd Tb Dy g khz Pt ii iii Keywords vierbein 3 dreibein 4 vielbein torsion JST-ERATO 1 017 1. 1..1 a L = Ψ

More information

36 th IChO : - 3 ( ) , G O O D L U C K final 1

36 th IChO : - 3 ( ) , G O O D L U C K final 1 36 th ICh - - 5 - - : - 3 ( ) - 169 - -, - - - - - - - G D L U C K final 1 1 1.01 2 e 4.00 3 Li 6.94 4 Be 9.01 5 B 10.81 6 C 12.01 7 N 14.01 8 16.00 9 F 19.00 10 Ne 20.18 11 Na 22.99 12 Mg 24.31 Periodic

More information

= hυ = h c λ υ λ (ev) = 1240 λ W=NE = Nhc λ W= N 2 10-16 λ / / Φe = dqe dt J/s Φ = km Φe(λ)v(λ)dλ THBV3_0101JA Qe = Φedt (W s) Q = Φdt lm s Ee = dφe ds E = dφ ds Φ Φ THBV3_0102JA Me = dφe ds M = dφ ds

More information

着色斜め蒸着膜の光学的性質~無機偏光膜への応用

着色斜め蒸着膜の光学的性質~無機偏光膜への応用 Anisotropy in the Optical Absorption of Metal-insulator Obliquely Deposited Thin Films The Application for an Inorganic Polarizer Motofumi Suzuki, Yasunori Taga Abstract An attempt has been made to clarify

More information

4_Laser.dvi

4_Laser.dvi 1 1905 A.Einstein 1917 A.Einstein 1954 C.H.Townes MASER Microwave Amplification by Stimulated Emission of Radiation 23.9 GHz 1.26 cm 1960 T.H.Maiman LASER Light Amplification by Stimulated Emissin of Radiation

More information

B 1 B.1.......................... 1 B.1.1................. 1 B.1.2................. 2 B.2........................... 5 B.2.1.......................... 5 B.2.2.................. 6 B.2.3..................

More information

75 unit: mm Fig. Structure of model three-phase stacked transformer cores (a) Alternate-lap joint (b) Step-lap joint 3 4)

75 unit: mm Fig. Structure of model three-phase stacked transformer cores (a) Alternate-lap joint (b) Step-lap joint 3 4) 3 * 35 (3), 7 Analysis of Local Magnetic Properties and Acoustic Noise in Three-Phase Stacked Transformer Core Model Masayoshi Ishida Kenichi Sadahiro Seiji Okabe 3.7 T 5 Hz..4 3 Synopsis: Methods of local

More information

研究成果報告書

研究成果報告書 10m 2m Ge Si BaF2 ZnSZnSe Sb-Ge-Sn-S IIR-SF1 1 2 Tungsten SilicideWSi WSi () IIR-SF 1 Sb-Ge-Sn-S 0.85~11μm2.710μm 253 C Al Al 220μm He-Cd laser 1 Exposure Photoresist WSi (a) 500 nm Development RIE WSi

More information

nsg02-13/ky045059301600033210

nsg02-13/ky045059301600033210 φ φ φ φ κ κ α α μ μ α α μ χ et al Neurosci. Res. Trpv J Physiol μ μ α α α β in vivo β β β β β β β β in vitro β γ μ δ μδ δ δ α θ α θ α In Biomechanics at Micro- and Nanoscale Levels, Volume I W W v W

More information

d > 2 α B(y) y (5.1) s 2 = c z = x d 1+α dx ln u 1 ] 2u ψ(u) c z y 1 d 2 + α c z y t y y t- s 2 2 s 2 > d > 2 T c y T c y = T t c = T c /T 1 (3.

d > 2 α B(y) y (5.1) s 2 = c z = x d 1+α dx ln u 1 ] 2u ψ(u) c z y 1 d 2 + α c z y t y y t- s 2 2 s 2 > d > 2 T c y T c y = T t c = T c /T 1 (3. 5 S 2 tot = S 2 T (y, t) + S 2 (y) = const. Z 2 (4.22) σ 2 /4 y = y z y t = T/T 1 2 (3.9) (3.15) s 2 = A(y, t) B(y) (5.1) A(y, t) = x d 1+α dx ln u 1 ] 2u ψ(u), u = x(y + x 2 )/t s 2 T A 3T d S 2 tot S

More information

質量数30-40,100領域の高スピン変形状態の研究

質量数30-40,100領域の高スピン変形状態の研究 質量数 30-40,100 領域の高スピン 変形状態の研究 井手口栄治東大 CNS Outline 重イオンビームを用いて行ってきた高スピン状態のこれまでの研究と今後の計画 質量数 100 領域の高スピン状態 107 In の高スピン状態の研究 質量数 30-40 領域の高スピン状態 40 Ca の高スピン状態 今後の研究計画 A~110 領域の高スピン状態 A~30-40 領域の高スピン状態 107

More information

Y. Nambu and G. Jona-Lasinio, A Dynamical Model of Elementary Particles Based on an Analogy with Superconductivity I, Phys. Rev. 122, 345 (1961). http://prola.aps.org/pdf/pr/v122/i1/p345_1 Y. Nambu and

More information

25 3 4

25 3 4 25 3 4 1 µ e + ν e +ν µ µ + e + +ν e + ν µ e e + TAC START STOP START veto START (2.04 ± 0.18)µs 1/2 STOP (2.09 ± 0.11)µs 1/8 G F /( c) 3 (1.21±0.09) 5 /GeV 2 (1.19±0.05) 5 /GeV 2 Weinberg θ W sin θ W

More information

untitled

untitled 1 / 37 5-4 6.1 1 2 / 37 1 (1) FePt AuAg (2) CdSe ZnSXY 2 O 3 X X : ZnO (3) SiO 2 (4) (5) 2 1 3 / 37 1 (1) FePt AuAg (2) CdSe ZnSXY 2 O 3 X X : ZnO (3) SiO 2 (4) (5) 3 4 / 37 1Tbits/cm 2 HD FePt FePt 110nm

More information

,, Andrej Gendiar (Density Matrix Renormalization Group, DMRG) 1 10 S.R. White [1, 2] 2 DMRG ( ) [3, 2] DMRG Baxter [4, 5] 2 Ising 2 1 Ising 1 1 Ising

,, Andrej Gendiar (Density Matrix Renormalization Group, DMRG) 1 10 S.R. White [1, 2] 2 DMRG ( ) [3, 2] DMRG Baxter [4, 5] 2 Ising 2 1 Ising 1 1 Ising ,, Andrej Gendiar (Density Matrix Renormalization Group, DMRG) 1 10 S.R. White [1, 2] 2 DMRG ( ) [3, 2] DMRG Baxter [4, 5] 2 Ising 2 1 Ising 1 1 Ising Model 1 Ising 1 Ising Model N Ising (σ i = ±1) (Free

More information

m dv = mg + kv2 dt m dv dt = mg k v v m dv dt = mg + kv2 α = mg k v = α 1 e rt 1 + e rt m dv dt = mg + kv2 dv mg + kv 2 = dt m dv α 2 + v 2 = k m dt d

m dv = mg + kv2 dt m dv dt = mg k v v m dv dt = mg + kv2 α = mg k v = α 1 e rt 1 + e rt m dv dt = mg + kv2 dv mg + kv 2 = dt m dv α 2 + v 2 = k m dt d m v = mg + kv m v = mg k v v m v = mg + kv α = mg k v = α e rt + e rt m v = mg + kv v mg + kv = m v α + v = k m v (v α (v + α = k m ˆ ( v α ˆ αk v = m v + α ln v α v + α = αk m t + C v α v + α = e αk m

More information

15

15 15 1...1 1-1...1 1-1-1...1 1-1-2...3 1-1-3...4 1-1-4...5 1-2...5 1-2-1...5 1-2-2...6 1-3...6 1-3-1...6 1-3-2...7 1-3-3...8 1-3-4...8 1.4 Co-Pt...9 1.5...9 2...10 2-1...10 2-1-1...10 2-1-2...10 2-2...11

More information