C p (.2 C p [[T ]] Bernoull B n,χ C p p q p 2 q = p p = 2 q = 4 ω Techmüller a Z p ω(a a ( mod q φ(q ω(a Z p a pz p ω(a = 0 Z p φ Euler Techmüller ω Q

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "C p (.2 C p [[T ]] Bernoull B n,χ C p p q p 2 q = p p = 2 q = 4 ω Techmüller a Z p ω(a a ( mod q φ(q ω(a Z p a pz p ω(a = 0 Z p φ Euler Techmüller ω Q"

Transcription

1 p- L- [Iwa] [Iwa2] -Leopoldt [KL] p- L-. Kummer Remann ζ(s Bernoull B n (. ζ( n = B n n, ( n Z p a = Kummer [Kum] ( Kummer p m n 0 ( mod p m n a m n ( mod (p p a ( p m B m m ( pn B n n ( mod pa Z p Kummer p- p- -Leopoldt p- L- Kummer ζ(s p- L- ζ(s Drchlet L- p- Drchlet χ f χ Bernoull B n,χ Q[[T ]] (.2 f χ a= χ(at e at e f χt = B n,χ T n Drchlet L- L(s, χ Bernoull (.3 L( n, χ = B n,χ n, ( n Z χ f = ( = Bernoull B n = B n, p Q Q p- Q p Q p C p Drchlet

2 C p (.2 C p [[T ]] Bernoull B n,χ C p p q p 2 q = p p = 2 q = 4 ω Techmüller a Z p ω(a a ( mod q φ(q ω(a Z p a pz p ω(a = 0 Z p φ Euler Techmüller ω Q(ζ p Q p q Drchlet χ = ω (.2 Q p [[T ]] Bernoull B n,ω Q p p- L- Kummer 5 p n 0 ( mod p n B,ω n B n n ( mod p Z p Bernoull (.4 B n (X = n ( n ( B X n, T ext e T = B n (X T n =0 B n,χ (.2 f χ F χ (.5 B n,χ = F n χ F χ a= χ(a B n ( a F χ Bernoull [Was] [AIK] Clausen-von Staudt n B n + p n p Z p n p 2. -Leopoldt p- L- p p = p C p p D C p p- 2

3 p- D f : D C p p- α D α D α s D α \{α} f(s = a n (s α n, Z, a 0, a n C p n= f α Laurent < 0 α a Laurent 0 f α p- α D p- f D p- [Gou] Prop f(s = a n s n D α D ( n f(s = b m (s α m, b m = f (m (α = a n α n m m m=0 n=m C p C p [[s]] D -Leopoldt [KL] p- L- L p (s, χ ( -Leopoldt p- L- Drchlet χ D = {s C p s p < qp /(p ( > } p- χ p- L p (s, χ L p ( n, χ = ( χω n (pp n B n,χω (2. n, ( n Z n L p (s, D\{} p- s = p p- L- p- p- D = {s C p s p < qp /(p } (2.2 L p (s, χ = a { s + a n (s n, a n Q p, a = 0 : χ p : χ = χ s D χ = s D\{} (2.2 p- L- p- p- α D\{} D α = { s C p s α p < α p } D\{} s = α ( s α = α α 3 =0 ( s α α

4 Laurent L p (s, D\{} p- p- L- p- ( D C p p- f(s D f(s D C p p- f(s D α f(s α D α D f(s = (s α f(s, f(s = a n (s α n, 0, a 0 0 α f(s { α n } n D α α n α lm α n = α (α n α f(αn = f(α n = 0 f(α n = 0 n a 0 = f(α = lm f(αn = 0 f(s n D = {s C p s p < qp /(p } (2. p- χ χ( = (.2 n B n,χω n = 0 (2. χ p- L- L p (s, χ (2. (.3 n j ( mod p, 0 j < p (2.3 L p ( n, χ = ( χω j (pp n L( n, χω j, ( n Z p- L- L p (s, χ n n p j Drchlet L L(s, χω j p- Drchlet L Euler (2.4 L(s, χω j = N= χω j (N N s = l: ( χω j (ll s, Re(s > p N Euler χω j (pp n (2. (2.3 ζ(s s = L p (s, s = p Euler Kummer Euler χ Drchlet L s = (2.5 L(, χ = τ(χ f χ f χ a= χ (a log ζ a f χ, τ(χ = f χ a= χ(aζ a f χ L(, χ 0 τ(χ Gauss Drchlet L p- L 4

5 s = Euler (2.6 L p (, χ = ( χ(pp τ(χ f χ f χ a= χ (a log p ( ζ a f χ log p p- L p (, χ 0 L p (, χ 0 Leopoldt p- K p p p K p K p U p = { u K p u p = } U,p = { u K p u p < } U = U p U = U,p K E dagonal p p p p U U E = E U U E U E Z p K C r 2 r 2 Drchlet E Z-ran r + r 2 E Z p -ran Leopoldt Z p -ran E = r + r 2 δ = r + r 2 ( Z p -ran E 0 K Z p r δ Leopoldt K Ax-Brumer Z p Z p K r = n = [K : Q] r 2 = 0 K R σ, σ 2,, σ n p K p K C K p C p U p = W U,p W p K p u U p u = w u w W u U,p K ε, ε 2,, ε n p- R p (K = det( log p ε σ j, j n K Drchlet X L p (, χ 0 ( χ X\{} R p (K 0 Z p -ran E = Z-ran E = n h(k d(k K K C p p- 2n h(kr p (K = d(k χ X\{} ( χ(pp L p (, χ p- Euler χ(pp K Leopoldt 5

6 L p (, χ 0 (2.6 p- L- [Was] 3. Drchlet χ f χ q lcm(f χ, q (3. lcm(f χ, q = dqp e, e 0, (p, d = d κ = + dq = dqp n ( n 0 n ( (3.2 Ker (Z/qp n Z (Z/qZ : a mod qp n a mod q p n κ mod qp n p a a = ω(a a Z p a ( mod q a mod qp n (3.2 (3.3 a κ n(a ( mod qp n, 0 n (a < p n Galos ( a mod a mod d, ω(a mod q, a mod qp n (Z/ Z (Z/dZ (Z/qZ }{{} (Z/dqZ κ mod qp n Gal(Q(ζ qn /Q Gal(Q(ζ dq /Q Gal(Q(ζ qn /Q(ζ dq = = Γ n σ a ( δ(a : ζ dq ζ a dq, γ n (a : ζ qn ζ κn(a (3.4 σ a = δ(aγ n (a Gal(Q(ζ qn /Q = Γ n χ ( n e (3.5 χ = θψ (Z/qn Z = Γ n, θ, ψ Γ n θ d qd Techmüller ω ψ Γ n qp e ( e 6

7 Q(ζ qp e Q p e Q e Z p Q /Q e-th layer χ θ Q(ζ qn /Q Stcelberger { } a ξ n = σa Q[Gal(Q(ζ qn /Q] (3.6 σ a Gal(Q(ζ qn /Q = 0<a<, (a,= a δ(a γ n (a Q[ Γ n ] { } x x [ x ] x { } x = x [ x ] ξ n Q p [ Γ n ] ωθ Q p [ ] (3.7 ε ωθ = ωθ (δ δ Q p [ ] Q p [ Γ n ] δ (3.8 ε ωθ ξ n = ξ n (θ ε ωθ ξ n (θ = a θω (aγ n (a Q q p [Γ n ] n 0<a<, (a, = Q p [Γ n ] ξ n (θ ε ωθ - (3.9 η n (θ = ( κγ n (κ ξ n (θ ( { } { } a aκ = κ θω (aγ n (aκ Q p [Γ n ] 0<a<, (a, = m n 0 φ m,n : Γ m Γ n (3.0 φ m,n : Q p [Γ m ] Q p [Γ n ], γ m (a γ n (a θ Q p (ζ fθ O θ ( η n (θ 2O[Γ n ] ( ξ n (θ 2O[Γ n ], θ ( φ m,n (η m (θ = η n (θ, φ m,n (ξ m (θ = ξ n (θ, ( m n 0 a 0 < a <, (a, = 7

8 { a (3.9 C(a = κ } { } aκ Z p 2 ( p = 2 (3.9 η n (θ η n (θ = C(a θω (aγ n (aκ + C( a θω ( aγ n (( aκ a /2 = a /2 { } { } a qn a + =, ( a /2 C(a C( a θω (aγ n (aκ { } { } aκ (qn aκ + = C(a C( a = 2C(a 2Z p p = 2 ( γ n (a = γ n ( a θω ( a = θω (a a = a ω(a ξ n (θ ξ n (θ = a θ(aγ n (a a = ( a /2 = ( 2 = 2 a /2 a /2 a θ(aγ n (a + a /2 a θ(aγ n (a a θ(aγ n (a + a /2 a θ( aγ n ( a a /2 ω(a θ(aγ n (a θω (aγ n (a θ ( a θ(aγ n (a = a θ(aγ n (a a /2 = b mod Γ n b mod Γ n b mod Γ n ( a /2, a b ( mod ( a /2, a b ( mod a /2, a b ( mod b θ(aγ n (b mod O[Γ n ] θ(a b γ n (b b mod Γ n θ(a = θ(a = θ( δ = a /2, a b ( mod a b ( mod δ a θ(aγ n (a 0 mod O[Γ n ] 2 a /2 a /2 a θ(aγ n (a 2O[Γ n ] p 2 ( p = 2 ( θω (aγ n (a = θω (aγ n (a a /2 = b mod Γ n b mod Γ n b mod Γ n ( a /2, a b ( mod ( a /2, a b ( mod a /2, a b ( mod 8 θω (a θ(a γ n (b γ n (b mod 2O[Γ n ]

9 0 mod 2O[Γ n ] p = 2 ( m n 0 φ m,n (ξ m (θ = q m = q m = q m = q m 0<a<q m, (a,q m = 0<b<, (b,= 0<b<, (b, = 0<b<, (b, = = ξ n (θ pm n 2 a θω (aγ n (a (b + θω (bγ n (b 0 <p m n ( θω (b (b + γ n (b 0 <p m n θω (b q ( m p m n b + γ n (b 2 θω (bγ n (b 0<b<, (b,= θω (bγ n (b = θω ( bγ n ( b = b b b θω (bγ n (b 0 φ m,n (ξ m (θ = ξ n (θ φ m,n ( κγ m (κ = κγ n (κ φ m,n (η m (θ = η n (θ ( (3.9 φ m,n Z p Galos Γ = Gal(Q(ζ dp /Q(ζ dq = lm Γ n κz p = + pz p Z p γ = lm γ n (κ : ζ qn ζq κ n ( n 0 O O[[Γ]] = lm O[Γ n ] O Λ = O[[T ]] lm ξ n (θ f(t, θ, θ lm η n (θ g(t, θ κγ κ( + T γ + T (3. O[[Γ]] Λ O[Γ n ] Λ/( + T pn γ n (κ + T mod ( + T pn η n (θ g(t, θ mod ( + T pn 9

10 θ Λ (3.2 f(t, θ = g(t, θ κ( + T θ = (3.2 f(t, Stcelberger f(t, θ (3.0 (3.9 ( { } { } a aκ g(t, θ κ θω (a( + T n(a (3.3 0<a<, (a, = mod ( + T pn 4. p- L- p- (4. ( n+ X n log p ( + X = n n= n ( n+ /n p = p vp(n n, n log p ( + X + X = κ = + dq (4.2 log p κ p = log p ( + dq p dq p = q p- (4.3 exp(x = X n n p p log n log p < v p( < n p, p n p p log n log p < < p n p p p /(p ( < [Was] [Gou] p pz p = 2 2 n p (4.4 q p n p + p 2 < p (4.2 D = {s C p s p < qp /(p } (4.5 s log p κ p = s p log p κ p < qp /(p q < p /(p 0

11 D p- (4.6 κ s = exp( s log p κ = ( log p κ n s n s κ s κ s κ s = ( + n=2 n 2 n = (p + j, ( log p κ n s ( n s log p κ j p p = 2 n = + j = (4.4 p s D p (log p κ n s n p = log p κ n p s n p p < p q n+ p n p = p j p p < p j p n 2 (4.7 (log p κ n s n p (log p κ n < s log p κ p s n p < ( log s = D κ s p κ n Z p ( log p κ n log p κ p p q n=2 (4.8 κ s + q s Z p [[s]] κ s p = s log p κ p < p /(p ( s D ψ p (4.9 ζ ψ = ψ(κ = χ(κ Q p (ζ ψ π = ζ ψ O ψ (4.6 ζ ψ κ s πo ψ [[s]] s (4.0 ζ ψ κ s = c n (s n, c n πo ψ ( n 0 D

12 p- L- χ = θψ θ ψ θ f(t, θ (4. L p (s, χ = f( ζ ψ κ s, θ. ζ ψ κ s step p- θ f(t, θ = s D (4.8 =0 z T n Λ = O[[T ]] ζ ψ κ s p = ζ ψ ( κ s + ( ζ ψ p < ( ζ ψ κ s p 0 ( f( ζ ψ κ s, θ D ( f( ζ ψ κ s, θ = z c n (s n t +t 2 + +t =n = =0 =0 ( z t +t 2 + +t =n c t c t2 c t (s n c t c t2 c t p π p 0, ( a n = f( ζ ψ κ s, θ = ( z =0 t +t 2 + +t =n c t c t2 c t a n (s n Q p [[s ]] θ = g( ζ ψ κ s, Q p [[s ]] D g(t, f(t, = κ ( + T f( ζ ψ κ s, = ζ ψκ s g( ζ ψ κ s, ζ ψ κ s κ D s ζ ψ κ s κ ψ ζ ψ D ζ ψ κ s κ = 0 κ pn (s = ( n s = κ ζ ψ p = ( ζ ψ + dq p = ζ ψ p ζ p p = p /(p (4.8 s D ζ ψ(κ s p = κs p < κ ζ ψ κ ζ ψ p ζ ψ κ s κ = κ ζ ψ ( ζψ (κ s = κ ζ ψ κ ζ ψ 2 ( ζψ (κ s =0 κ ζ ψ

13 (4.8 ζ ψ(κ s q κ ζ ψ π O ψ[[s]] s ζ ψ (κ s = c n (s n, c n q κ ζ ψ π O ψ ( n 0 θ s D ζ ψ κ s κ s D f( ζ ψ κ s, Q p [[s ]] ψ = χ = D\{} ζ κ s κ = κ(s ( κ s = (κ log p κ s ( (log p κ n + (s s n κ s κ = κ s ζ = s D (4.7 (log p κ n (s n p < n=2 ζ κ s κ = (κ log p κ s ( =0 n=2 n=2 (log p κ n (s n (4.7 n 2 (log p κ n < p D\{} ζ κ s κ s Q p[[s ]] f( κ s, D\{} s Laurent s = χ f( ζ ψ κ s, θ f( ζ ψ κ s, θ = n= a n (s n a n Q p, χ a = 0 D p- χ p- step 2 n 0 < a <, (a, = { } a { } a aκ κa = ( + dqa a a 2 a 2 = κ κ n(a a κa κ n(a+ ( mod n (a = n (a + θω (a = θω (a (3.3 g(t, θ a 2 θω (a ( + T n(a mod ( + T pn 0<a<, (a, = n T = ζ ψ κ m ( m N ( + T pn = (ζ ψ κ m pn = (( + dq pn m 0 ( mod T =ζψ κ m 3

14 a g( ζ ψ κ m, θ a a 2 ω (a θ(a ψ(a a m a a 2 θω (a ζ n(a ψ (κ n(a m a 2 χω m (a a m ( mod (κa m = ( a + a 2 m a m + ma m a 2 ( mod qn 2 qn 2 g( ζ ψ κ m, θ m ( a χω m (a (κa m a m a ( χω m (κ κ m a a χω m (a ma m a 2 χω m (a a m ( ζ ψ κm a χω m (κa (κa m a χω m (a a m χω m (a a m ( mod q 2 n g( ζ ψ κ m, θ ( ζ ψ κm χω m (a a m m a ( mod m m 0 ( n (4.2 f( ζ ψ κ m, θ = g( ζ ψκ m, θ ζ ψ κm = m lm n 0<a<, (a,= χω m (a a m (.5 (4.3 B m,χω m = a= χω m (a q m n B m ( a (.4 B m,χω m = a= ( χω m (a a m m 2 am + qn( 2 q n χω m (a a m m 2 a= a= χω m (a a m ( mod a= χω m (a a m q n a= χω m ( a ( a m a= χω m (a a m ( mod 4

15 0 n ( χω m (pp m B m,χω m = ( χω m (pp m lm n = lm n = lm n = lm n a= q n a= a= χω m (a a m χω m (a a m χω m (pp m lm n χω m (a a m lm 0<a<, (a,= n χω m (a a m (4.2 (4.4 q n a= q n a= χω m (pa (pa m f( ζ ψ κ m, θ = ( χω m (pp m B m,χω m m χω m (a a m χ = d = = qp n ζ ψ = a (a = s = m m = (p p M (4.2 lm (s f( s κs, = lm (p M pm f( κ (p pm, = lm M lm n = lm n qp n = lm n qp n qp n 0<a<qp n, (a,p= 0<a<qp n, (a,p= 0<a<qp n, (a,p= = lm n (p qp n qp n (a a (p pm lm M a (p pm = p f( κ s, s = p p- f( ζ ψ κ s, θ p- L- ( Kummer p- L- Kummer p m n 0 ( mod p m n ( mod (p p a m n a (4.8 κ s + p s Z p [[s]] ( κ m ( κ n = p(m n ( p- 0 ( mod p a 5

16 f(t, ω m p- ( p m B m = L p ( m, ω m = f( κ m, ω m m f( κ n, ω n = L p ( n, ω n = ( p n B n ( mod p a n Z p Kummer n 0 ( mod p n κ s + p s Z p [[s]] κ n 0 ( mod p f(t, ω n p- B,ω n = ( ω n (p B,ω n = L p (0, ω n = f(0, ω n f( κ n, ω n = L p ( n, ω n = ( p n B n, n B n ( mod p n Z p 6. Drchlet L- Bernoull p- L- Stcelberger Galos annhlator Stcelberger p- L- (2.6 p- L- Stcelberger Herbrand-Rbet p- L- Drchlet L- p- p- L- p- p 0 < p Techmüller χ = θ = ω ωθ = ω f ω = p p- Z p Q(ζ p /Q(ζ p Galos = Gal(Q(ζ p /Q Γ = Gal(Q(ζ p /Q(ζ p Γ n = Gal(Q(ζ p n+/q(ζ p κ = + p Γ γ : ζ p n+ ζ κ p ( n 0 n+ Λ = Z p [ ][[Γ]] ε = ω (δ δ Z p [ ] p Λ δ 6

17 Λ ω - Λ = Z p [[T ]] γ ε γ + T (6. ε Λ = Zp [[Γ]]ε Z ( p [[Γ]] Z ( p [[T ]] = Λ lm ξ n (ω ε lm ξ n (ω f(t, ω ( = Z p δ ω (δ- Z ( p Z p ( ω Stcelberger ξ n ε - ξ n (ω f(t, ω f(t, ω p- L- (6.2 L p (s, ω = f( κ s, ω Z p Q(ζ p /Q(ζ p n-th layer Q(ζ p n+ p-sylow A n ω - A ( n = ε A n X = lm A n = p 2 =0 X ( X ( = ε X = lm A ( n (6. torson Λ- f(t, ω torson Λ- X ( p- Mazur-Wles < < p (6.3 char Λ X ( = f(t, ω Λ char Λ X ( Λ- (6.4 0 ( fnte X ( Λ/g ( Λ ( fnte 0 g ( p dstngushed char Λ X ( = g ( Λ 7

18 < < p Weerstrass (6.3 dstngushed P alg P ana (6.5 char Λ X ( = p µalg f(t, ω Λ = p µana P alg Λ, p µalg P alg = P ana Λ, λ ana = degp ana g (, λ alg = degp alg λ alg λ ana µ alg µ ana p- λ-, µ- [Was] < < p λ alg = λ ana µ alg = µ ana Ferrero-Washngton = µ ana = 0 µ alg CM X ( Λ [Was] Z p - (6.6 X ( Z λalg p Λ/f(T, ω Λ Z λana p Q p V alg = X ( Q p Q p [T ]/( g (, dm Q p V alg = λ alg V ana = Λ/f(T, ω Λ Q p Q p [T ]/(P ana, dmq p V ana = λ ana T T : x T x p V alg (6.7 p-det( T V alg = X ( /T X ( = A ( 0 = p v p(a ( 0 char( T V alg = g ( = P alg f(0, ω = L p (0, ω = B,ω V ana p p-det( T V ana = Λ/( T, f(t, ω = Z p /f(0, ω Z p (6.8 = Z p /( B,ω Z p = p v p(b,ω char( T V ana = P ana 8

19 ( h (Q(ζ p = 2 p (6.9 2 B,ω <p, f(0, ω 0 T f(t, ω (6.7 (6.8 V alg V ana (6.0 p-det( T V alg = p v p(a ( 0 char( T V alg = P alg p-det( T V ana = p v p(b,ω char( T V ana = P ana Stcelberger p c (c σ c ξ n Z[Γ n ] (c σ c ξ n A n = 0 σ c = δ(cγ n (c < p (6. (c ω (cγ n (c ξ n (ω A ( n = ε ( (c σ c ξ n A n = 0 c p lm (c ω (cγ n (c = c ω (c( + T (c Λ, c ω (cγ n (c Z p [Γ n ] (6.2 f(t, ω X ( = lm ξ n (ω A ( n = 0 ( (6.4 f(t, ω f(t, ω Λ/g ( Λ Λ Λ/g ( Λ Λ (6.3 ( f(t, ω Λ/g ( Λ ( f(t, ω ( g ( P ana P alg = 0 g ( (6.0 V alg V ana < < p (.5 B,ω = p p a= a ω (a p p mod Z p 9

20 0 = 0 (6. = c = κ = + p pb,ω A ( 0 = 0 (6.9 A ( p-det( T V alg = p v p(a ( 0 = p vp(b,ω = p-det( T V ana ( deg char( T ( ( ( V alg = deg P alg = deg P ana = deg char( T V ana Q p (6.0 ω p- Herbrand-Rbet < < p A ( 0 = 0 p B p (6.4 v p (A ( 0 = 0 v p (B,ω = 0 Mazur-Wles A < < p 2 ( g (, g ( 2 = ( P ana P alg deg P alg = ( deg P alg = P ana P ana A X ( Λ P alg 20

21 [AIK],, 200. [Gou] F. Q. Gouvêa, p-adc Numbers 2nd ed. Unverstext, Sprnger, 997. [Iwa] K. Iwasawa, On p-adc L-functons Ann. of Math., 89 (969, ( II [Iwa2] K. Iwasawa, Lectures on p-adc L-functons Ann. Math. Studes #74, Prnceton Unversty Press, 972. [KL] T. Kubota and H. Leopoldt, Ene p-adsche Theore der Zetawerte ( Tel I: Enfuhrung der p-adschen Drchletschen L-Funtonen, J. Rene. Angew. Math., 23 (964, [Kum] E. E. Kummer, Über ene allgemene Egenschaft der ratonalen Entwclungscoeffcenten ener bestmmten Gattung analytscher Functonen, J. Rene. Angew. Math., 4 (85, ( I [KKS],,, 998. [Was] L. C. Washngton Introducton to cyclotomc felds 2nd ed. Graduate Texts n Math. vol.83, Sprnger-Verlag New Yor, 997. Yasush Mzusawa e-mal : 2

B

B B YES NO 5 7 6 1 4 3 2 BB BB BB AA AA BB 510J B B A 510J B A A A A A A 510J B A 510J B A A A A A 510J M = σ Z Z = M σ AAA π T T = a ZP ZP = a AAA π B M + M 2 +T 2 M T Me = = 1 + 1 + 2 2 M σ Te = M 2 +T

More information

2 2 MATHEMATICS.PDF 200-2-0 3 2 (p n ), ( ) 7 3 4 6 5 20 6 GL 2 (Z) SL 2 (Z) 27 7 29 8 SL 2 (Z) 35 9 2 40 0 2 46 48 2 2 5 3 2 2 58 4 2 6 5 2 65 6 2 67 7 2 69 2 , a 0 + a + a 2 +... b b 2 b 3 () + b n a

More information

nsg02-13/ky045059301600033210

nsg02-13/ky045059301600033210 φ φ φ φ κ κ α α μ μ α α μ χ et al Neurosci. Res. Trpv J Physiol μ μ α α α β in vivo β β β β β β β β in vitro β γ μ δ μδ δ δ α θ α θ α In Biomechanics at Micro- and Nanoscale Levels, Volume I W W v W

More information

RIMS Kôkyûroku Bessatsu B32 (2012), (Iwasawa invariants of rea abeian number fieds with prime power conductors) By (Keiichi Komatsu), (Takashi

RIMS Kôkyûroku Bessatsu B32 (2012), (Iwasawa invariants of rea abeian number fieds with prime power conductors) By (Keiichi Komatsu), (Takashi Tite 素数巾導手実アーベル体の岩澤不変量 (Agebraic Number Theory and Reated Topics 2010) Author(s) 小松, 啓一 ; 福田, 隆 ; 森澤, 貴之 Citation 数理解析研究所講究録別冊 = RIMS Kokyuroku Bessa (2012), B32: 105-124 Issue Date 2012-07 URL http://hd.hande.net/2433/196246

More information

1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C

1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C 0 9 (1990 1999 ) 10 (2000 ) 1900 1994 1995 1999 2 SAT ACT 1 1990 IMO 1990/1/15 1:00-4:00 1 N 1990 9 N N 1, N 1 N 2, N 2 N 3 N 3 2 x 2 + 25x + 52 = 3 x 2 + 25x + 80 3 2, 3 0 4 A, B, C 3,, A B, C 2,,,, 7,

More information

Z: Q: R: C: 3. Green Cauchy

Z: Q: R: C: 3. Green Cauchy 7 Z: Q: R: C: 3. Green.............................. 3.............................. 5.3................................. 6.4 Cauchy..................... 6.5 Taylor..........................6...............................

More information

untitled

untitled .m 5m :.45.4m.m 3.m.6m (N/mm ).8.6 σ.4 h.m. h.68m h(m) b.35m θ4..5.5.5 -. σ ta.n/mm c 3kN/m 3 w 9.8kN/m 3 -.4 ck 6N/mm -.6 σ -.8 3 () :. 4 5 3.75m :. 7.m :. 874mm 4 865mm mm/ :. 7.m 4.m 4.m 6 7 4. 3.5

More information

量子力学A

量子力学A c 1 1 1.1....................................... 1 1............................................ 4 1.3.............................. 6 10.1.................................. 10......................................

More information

gr09.dvi

gr09.dvi .1, θ, ϕ d = A, t dt + B, t dtd + C, t d + D, t dθ +in θdϕ.1.1 t { = f1,t t = f,t { D, t = B, t =.1. t A, tdt e φ,t dt, C, td e λ,t d.1.3,t, t d = e φ,t dt + e λ,t d + dθ +in θdϕ.1.4 { = f1,t t = f,t {

More information

* 1 2014 7 8 *1 iii 1. Newton 1 1.1 Newton........................... 1 1.2............................. 4 1.3................................. 5 2. 9 2.1......................... 9 2.2........................

More information

Γ Ec Γ V BIAS THBV3_0401JA THBV3_0402JAa THBV3_0402JAb 1000 800 600 400 50 % 25 % 200 100 80 60 40 20 10 8 6 4 10 % 2.5 % 0.5 % 0.25 % 2 1.0 0.8 0.6 0.4 0.2 0.1 200 300 400 500 600 700 800 1000 1200 14001600

More information

13 0 1 1 4 11 4 12 5 13 6 2 10 21 10 22 14 3 20 31 20 32 25 33 28 4 31 41 32 42 34 43 38 5 41 51 41 52 43 53 54 6 57 61 57 62 60 70 0 Gauss a, b, c x, y f(x, y) = ax 2 + bxy + cy 2 = x y a b/2 b/2 c x

More information

( ) 2002 1 1 1 1.1....................................... 1 1.1.1................................. 1 1.1.2................................. 1 1.1.3................... 3 1.1.4......................................

More information

A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B

A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B 9 7 A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B x x B } B C y C y + x B y C x C C x C y B = A

More information

(Basic of Proability Theory). (Probability Spacees ad Radom Variables , (Expectatios, Meas) (Weak Law

(Basic of Proability Theory). (Probability Spacees ad Radom Variables , (Expectatios, Meas) (Weak Law I (Radom Walks ad Percolatios) 3 4 7 ( -2 ) (Preface),.,,,...,,.,,,,.,.,,.,,. (,.) (Basic of Proability Theory). (Probability Spacees ad Radom Variables...............2, (Expectatios, Meas).............................

More information

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e 7 -a 7 -a February 4, 2007 1. 2. 3. 4. 1. 2. 3. 1 Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e z

More information

untitled

untitled V. 8 9 9 8.. SI 5 6 7 8 9. - - SI 6 6 6 6 6 6 6 SI -- l -- 6 -- -- 6 6 u 6cod5 6 h5 -oo ch 79 79 85 875 99 79 58 886 9 89 9 959 966 - - NM /6 Nucl Ml SI NM/6/685 85co /./ /h / /6/.6 / /.6 /h o NM o.85

More information

1

1 016 017 6 16 1 1 5 1.1............................................... 5 1................................................... 5 1.3................................................ 5 1.4...............................................

More information

第86回日本感染症学会総会学術集会後抄録(I)

第86回日本感染症学会総会学術集会後抄録(I) κ κ κ κ κ κ μ μ β β β γ α α β β γ α β α α α γ α β β γ μ β β μ μ α ββ β β β β β β β β β β β β β β β β β β γ β μ μ μ μμ μ μ μ μ β β μ μ μ μ μ μ μ μ μ μ μ μ μ μ β

More information

nsg04-28/ky208684356100043077

nsg04-28/ky208684356100043077 δ!!! μ μ μ γ UBE3A Ube3a Ube3a δ !!!! α α α α α α α α α α μ μ α β α β β !!!!!!!! μ! Suncus murinus μ Ω! π μ Ω in vivo! μ μ μ!!! ! in situ! in vivo δ δ !!!!!!!!!! ! in vivo Orexin-Arch Orexin-Arch !!

More information

1 1.1 / Fik Γ= D n x / Newton Γ= µ vx y / Fouie Q = κ T x 1. fx, tdx t x x + dx f t = D f x 1 fx, t = 1 exp x 4πDt 4Dt lim fx, t =δx 3 t + dxfx, t = 1

1 1.1 / Fik Γ= D n x / Newton Γ= µ vx y / Fouie Q = κ T x 1. fx, tdx t x x + dx f t = D f x 1 fx, t = 1 exp x 4πDt 4Dt lim fx, t =δx 3 t + dxfx, t = 1 1 1.1......... 1............. 1.3... 1.4......... 1.5.............. 1.6................ Bownian Motion.1.......... Einstein.............. 3.3 Einstein........ 3.4..... 3.5 Langevin Eq.... 3.6................

More information

= hυ = h c λ υ λ (ev) = 1240 λ W=NE = Nhc λ W= N 2 10-16 λ / / Φe = dqe dt J/s Φ = km Φe(λ)v(λ)dλ THBV3_0101JA Qe = Φedt (W s) Q = Φdt lm s Ee = dφe ds E = dφ ds Φ Φ THBV3_0102JA Me = dφe ds M = dφ ds

More information

10:30 12:00 P.G. vs vs vs 2

10:30 12:00 P.G. vs vs vs 2 1 10:30 12:00 P.G. vs vs vs 2 LOGIT PROBIT TOBIT mean median mode CV 3 4 5 0.5 1000 6 45 7 P(A B) = P(A) + P(B) - P(A B) P(B A)=P(A B)/P(A) P(A B)=P(B A) P(A) P(A B) P(A) P(B A) P(B) P(A B) P(A) P(B) P(B

More information

76 3 B m n AB P m n AP : PB = m : n A P B P AB m : n m < n n AB Q Q m A B AQ : QB = m : n (m n) m > n m n Q AB m : n A B Q P AB Q AB 3. 3 A(1) B(3) C(

76 3 B m n AB P m n AP : PB = m : n A P B P AB m : n m < n n AB Q Q m A B AQ : QB = m : n (m n) m > n m n Q AB m : n A B Q P AB Q AB 3. 3 A(1) B(3) C( 3 3.1 3.1.1 1 1 A P a 1 a P a P P(a) a P(a) a P(a) a a 0 a = a a < 0 a = a a < b a > b A a b a B b B b a b A a 3.1 A() B(5) AB = 5 = 3 A(3) B(1) AB = 3 1 = A(a) B(b) AB AB = b a 3.1 (1) A(6) B(1) () A(

More information

On a branched Zp-cover of Q-homology 3-spheres

On a branched Zp-cover of Q-homology 3-spheres Zp 拡大と分岐 Zp 被覆 GL1 表現の変形理論としての岩澤理論 SL2 表現の変形理論 On a branched Zp -cover of Q-homology 3-spheres 植木 潤 九州大学大学院数理学府 D2 December 23, 2014 植木 潤 九州大学大学院数理学府 D2 On a branched Zp -cover of Q-homology 3-spheres

More information

CVMに基づくNi-Al合金の

CVMに基づくNi-Al合金の CV N-A (-' by T.Koyama ennard-jones fcc α, β, γ, δ β α γ δ = or α, β. γ, δ α β γ ( αβγ w = = k k k ( αβγ w = ( αβγ ( αβγ w = w = ( αβγ w = ( αβγ w = ( αβγ w = ( αβγ w = ( αβγ w = ( βγδ w = = k k k ( αγδ

More information

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t 6 6.1 6.1 (1 Z ( X = e Z, Y = Im Z ( Z = X + iy, i = 1 (2 Z E[ e Z ] < E[ Im Z ] < Z E[Z] = E[e Z] + ie[im Z] 6.2 Z E[Z] E[ Z ] : E[ Z ] < e Z Z, Im Z Z E[Z] α = E[Z], Z = Z Z 1 {Z } E[Z] = α = α [ α ]

More information

populatio sample II, B II? [1] I. [2] 1 [3] David J. Had [4] 2 [5] 3 2

populatio sample II, B II?  [1] I. [2] 1 [3] David J. Had [4] 2 [5] 3 2 (2015 ) 1 NHK 2012 5 28 2013 7 3 2014 9 17 2015 4 8!? New York Times 2009 8 5 For Today s Graduate, Just Oe Word: Statistics Google Hal Varia I keep sayig that the sexy job i the ext 10 years will be statisticias.

More information

2 σ γ l σ ο 4..5 cos 5 D c D u U b { } l + b σ l r l + r { r m+ m } b + l + + l l + 4..0 D b0 + r l r m + m + r 4..7 4..0 998 ble4.. ble4.. 8 0Z Fig.4.. 0Z 0Z Fig.4.. ble4.. 00Z 4 00 0Z Fig.4.. MO S 999

More information

* ἅ ὅς 03 05(06) 0 ἄβιος,-ον, ἄβροτον ἄβροτος ἄβροτος,-ον, 08 17(01)-03 0 ἄβυσσος,-ου (ἡ), 08 17(01)-03 0 ἀβύσσου ἄβυ

* ἅ ὅς 03 05(06) 0 ἄβιος,-ον, ἄβροτον ἄβροτος ἄβροτος,-ον, 08 17(01)-03 0 ἄβυσσος,-ου (ἡ), 08 17(01)-03 0 ἀβύσσου ἄβυ Complete Ancient Greek 2010 (2003 ) October 15, 2013 * 25 04-23 0 ἅ ὅς 03 05(06) 0 ἄβιος,-ον, 15 99-02 0 ἄβροτον ἄβροτος 15 99-02 0 ἄβροτος,-ον, 08 17(01)-03 0 ἄβυσσος,-ου (ἡ), 08 17(01)-03 0 ἀβύσσου ἄβυσσος

More information

1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N m 1.

1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N m 1. 1.1 1. 1.3.1..3.4 3.1 3. 3.3 4.1 4. 4.3 5.1 5. 5.3 6.1 6. 6.3 7.1 7. 7.3 1 1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N

More information

[Oc, Proposition 2.1, Theorem 2.4] K X (a) l (b) l (a) (b) X [M3] Huber adic 1 Huber ([Hu1], [Hu2], [Hu3]) adic 1.1 adic A I I A {I n } 0 adic 2

[Oc, Proposition 2.1, Theorem 2.4] K X (a) l (b) l (a) (b) X [M3] Huber adic 1 Huber ([Hu1], [Hu2], [Hu3]) adic 1.1 adic A I I A {I n } 0 adic 2 On the action of the Weil group on the l-adic cohomology of rigid spaces over local fields (Yoichi Mieda) Graduate School of Mathematical Sciences, The University of Tokyo 0 l Galois K F F q l q K, F K,

More information

untitled

untitled . 96. 99. ( 000 SIC SIC N88 SIC for Windows95 6 6 3 0 . amano No.008 6. 6.. z σ v σ v γ z (6. σ 0 (a (b 6. (b 0 0 0 6. σ σ v σ σ 0 / v σ v γ z σ σ 0 σ v 0γ z σ / σ ν /( ν, ν ( 0 0.5 0.0 0 v sinφ, φ 0 (6.

More information

(1) 1.1

(1) 1.1 1 1 1.1 1.1.1 1.1 ( ) ( ) ( ) { ( ) ( ) { ( ) ( ) { ( ) ( ) { ( ) ( ) { ( ) ( ) ( ) ( ) ( ) 2 1 1.1.2 (1) 1.1 1.1 3 (2) 1.2 4 1 (3) 1.3 ( ) ( ) (4) 1.1 5 (5) ( ) 1.4 6 1 (6) 1.5 (7) ( ) (8) 1.1 7 1.1.3

More information

『共形場理論』

『共形場理論』 T (z) SL(2, C) T (z) SU(2) S 1 /Z 2 SU(2) (ŜU(2) k ŜU(2) 1)/ŜU(2) k+1 ŜU(2)/Û(1) G H N =1 N =1 N =1 N =1 N =2 N =2 N =2 N =2 ĉ>1 N =2 N =2 N =4 N =4 1 2 2 z=x 1 +ix 2 z f(z) f(z) 1 1 4 4 N =4 1 = = 1.3

More information

untitled

untitled (a) (b) (c) (d) Wunderlich 2.5.1 = = =90 2 1 (hkl) {hkl} [hkl] L tan 2θ = r L nλ = 2dsinθ dhkl ( ) = 1 2 2 2 h k l + + a b c c l=2 l=1 l=0 Polanyi nλ = I sinφ I: B A a 110 B c 110 b b 110 µ a 110

More information

(Basics of Proability Theory). (Probability Spacees ad Radom Variables,, (Ω, F, P ),, X,. (Ω, F, P ) (probability space) Ω ( ω Ω ) F ( 2 Ω ) Ω σ (σ-fi

(Basics of Proability Theory). (Probability Spacees ad Radom Variables,, (Ω, F, P ),, X,. (Ω, F, P ) (probability space) Ω ( ω Ω ) F ( 2 Ω ) Ω σ (σ-fi II (Basics of Probability Theory ad Radom Walks) (Preface),.,,,.,,,...,,.,.,,.,,. (Basics of Proability Theory). (Probability Spacees ad Radom Variables...............2, (Expectatios, Meas).............................

More information

2 Three-wave Painlevé VI 21 -Wilson three-wave Painlevé VI Gauss -Wilson [KK3] n 3 3 t = t 1 t 2 t 3 -Wilson W z; t := I + W 1 z + W 2 z 2 + z; t := 0

2 Three-wave Painlevé VI 21 -Wilson three-wave Painlevé VI Gauss -Wilson [KK3] n 3 3 t = t 1 t 2 t 3 -Wilson W z; t := I + W 1 z + W 2 z 2 + z; t := 0 1473 : de nouvelles perspectives 2006 2 pp 102 119 VI q 1 Tetsuya Kikuchi Sabro Kakei Drinfel d-sokolov Painlevé [KK1] [KK2] [KK3] [KIK] [ ] [ ] [KK3] three-wave equation Painlevé VI q q Drinfel d-sokolov

More information

2. 2 P M A 2 F = mmg AP AP 2 AP (G > : ) AP/ AP A P P j M j F = n j=1 mm j G AP j AP j 2 AP j 3 P ψ(p) j ψ(p j ) j (P j j ) A F = n j=1 mgψ(p j ) j AP

2. 2 P M A 2 F = mmg AP AP 2 AP (G > : ) AP/ AP A P P j M j F = n j=1 mm j G AP j AP j 2 AP j 3 P ψ(p) j ψ(p j ) j (P j j ) A F = n j=1 mgψ(p j ) j AP 1. 1 213 1 6 1 3 1: ( ) 2: 3: SF 1 2 3 1: 3 2 A m 2. 2 P M A 2 F = mmg AP AP 2 AP (G > : ) AP/ AP A P P j M j F = n j=1 mm j G AP j AP j 2 AP j 3 P ψ(p) j ψ(p j ) j (P j j ) A F = n j=1 mgψ(p j ) j AP

More information

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63> 通信方式第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/072662 このサンプルページの内容は, 第 2 版発行当時のものです. i 2 2 2 2012 5 ii,.,,,,,,.,.,,,,,.,,.,,..,,,,.,,.,.,,.,,.. 1990 5 iii 1 1

More information

統計学のポイント整理

統計学のポイント整理 .. September 17, 2012 1 / 55 n! = n (n 1) (n 2) 1 0! = 1 10! = 10 9 8 1 = 3628800 n k np k np k = n! (n k)! (1) 5 3 5 P 3 = 5! = 5 4 3 = 60 (5 3)! n k n C k nc k = npk k! = n! k!(n k)! (2) 5 3 5C 3 = 5!

More information

(Basics of Proability Theory). (Probability Spacees ad Radom Variables,, (Ω, F, P ),, X,. (Ω, F, P ) (probability space) Ω ( ω Ω ) F ( 2 Ω ) Ω σ (σ-fi

(Basics of Proability Theory). (Probability Spacees ad Radom Variables,, (Ω, F, P ),, X,. (Ω, F, P ) (probability space) Ω ( ω Ω ) F ( 2 Ω ) Ω σ (σ-fi I (Basics of Probability Theory ad Radom Walks) 25 4 5 ( 4 ) (Preface),.,,,.,,,...,,.,.,,.,,. (,.) (Basics of Proability Theory). (Probability Spacees ad Radom Variables...............2, (Expectatios,

More information

10 : 3010 : 54 1F Annex 1! 1 15:3015 : 58 1F Annex 1

10 : 3010 : 54 1F Annex 1! 1 15:3015 : 58 1F Annex 1 4 16 1 10:0010 : 24 1F Annex 1! 2 15:0015 : 24 1F Annex 1!! 10 : 3010 : 54 1F Annex 1! 1 15:3015 : 58 1F Annex 1 ! 2 10:0010 : 28 1F Annex 1 3 15:0015 : 28 1F Annex 1 4 10:3010 : 58 1F Annex 1 1 15:3015

More information

[ ] = L [δ (D ) (x )] = L D [g ] = L D [E ] = L Table : ħh = m = D D, V (x ) = g δ (D ) (x ) E g D E (Table )D = Schrödinger (.3)D = (regularization)

[ ] = L [δ (D ) (x )] = L D [g ] = L D [E ] = L Table : ħh = m = D D, V (x ) = g δ (D ) (x ) E g D E (Table )D = Schrödinger (.3)D = (regularization) . D............................................... : E = κ ............................................ 3.................................................

More information

4.6: 3 sin 5 sin θ θ t θ 2t θ 4t : sin ωt ω sin θ θ ωt sin ωt 1 ω ω [rad/sec] 1 [sec] ω[rad] [rad/sec] 5.3 ω [rad/sec] 5.7: 2t 4t sin 2t sin 4t

4.6: 3 sin 5 sin θ θ t θ 2t θ 4t : sin ωt ω sin θ θ ωt sin ωt 1 ω ω [rad/sec] 1 [sec] ω[rad] [rad/sec] 5.3 ω [rad/sec] 5.7: 2t 4t sin 2t sin 4t 1 1.1 sin 2π [rad] 3 ft 3 sin 2t π 4 3.1 2 1.1: sin θ 2.2 sin θ ft t t [sec] t sin 2t π 4 [rad] sin 3.1 3 sin θ θ t θ 2t π 4 3.2 3.1 3.4 3.4: 2.2: sin θ θ θ [rad] 2.3 0 [rad] 4 sin θ sin 2t π 4 sin 1 1

More information

3章 問題・略解

3章 問題・略解 S S W R S O( l) O( ) c Jg g J Jg S R J 7. K.9 JK S W S R S JK S S R J 7. K.9JK 4 (a) -Tice 7.K T ice T N 77 K S R.9 JK 4. JK T T ice N.6JK S W S R S JK S S.6JK R (b) S R JK S.6 JK T T ice N 6 O( c) O(

More information

and καὶ Α καὶ Β A B both also 3 auto- iste D in orthan asso forwhen thatso that

and καὶ Α καὶ Β A B both also 3 auto- iste D in orthan asso forwhen thatso that 1. 2. 3. 4. ὁ, ἡ, τό ὅς, ἥ, ὅ αὐτός, -ή, -ό καί 5. 6. 7. 8. δέ τίς, τί τις, τι οὗτος, αὕτη, τοῦτο 9. 10. 11. 12. ἤ ἐν μὲν... δέ γάρ 13. 14. 15. 16. οὐ, οὐκ, οὐχ μή ὡς τε and καὶ Α καὶ Β A B both also 3

More information

< qq > (Quark Gluon Plasma,QGP) QGP (< qq >= ) < qq > π - π K + Nambu-Goldstone K + S = + S = K K + K + - K + t free ρ K + N K + N next-to-leading ord

< qq > (Quark Gluon Plasma,QGP) QGP (< qq >= ) < qq > π - π K + Nambu-Goldstone K + S = + S = K K + K + - K + t free ρ K + N K + N next-to-leading ord -K + < qq > (Quark Gluon Plasma,QGP) QGP (< qq >= ) < qq > π - π K + Nambu-Goldstone K + S = + S = K K + K + - K + t free ρ K + N K + N next-to-leading order (NLO) NLO (low energy constant,lec) χ I = I

More information

LHC ALICE (QGP) QGP QGP QGP QGP ω ϕ J/ψ ALICE s = ev + J/ψ

LHC ALICE (QGP) QGP QGP QGP QGP ω ϕ J/ψ ALICE s = ev + J/ψ 8 + J/ψ ALICE B597 : : : 9 LHC ALICE (QGP) QGP QGP QGP QGP ω ϕ J/ψ ALICE s = ev + J/ψ 6..................................... 6. (QGP)..................... 6.................................... 6.4..............................

More information

εἰς ἐπί κατά ἐγώ ἡμεῖς πρός ἐ ᾱν διά ἀλλά ἐκ,ἐξ περί ὅστις,ἥτις,ὅτι ἄν σύ ῡμεῖς ἀνά

εἰς ἐπί κατά ἐγώ ἡμεῖς πρός ἐ ᾱν διά ἀλλά ἐκ,ἐξ περί ὅστις,ἥτις,ὅτι ἄν σύ ῡμεῖς ἀνά 1. 2. 3. 4. ὁ,ἡ,τό ὅς,ἥ,ὅ αὐτός, -ή, -ό καί 5. 6. 7. 8. δέ τίς, τί τις, τι οὗτος, αὕτη, τοῦτο 9. 10. 11. 12. ἤ ἐν μὲν... δέ γάρ 13. 14. 15. 16. οὐ,οὐκ,οὐχ μή ὡς τε 17. 18. 19. 20. εἰς ἐπί κατά ἐγώ 21.

More information

™…{,

™…{, 16:30-17:40 1-36 1-37 1-38 1-39 1-40 1-41 1-42 33 10:00-11:10 1-43 1-44 1-45 1-46 1-47 1-48 1-49 12:00-12:50 LS4 34 16:30-17:40 1-50 1-51 1-52 1-53 1-54 1-55 1-56 35 16:30-17:40 1-57 1-58 1-59 1-60 1-61

More information

42 3 u = (37) MeV/c 2 (3.4) [1] u amu m p m n [1] m H [2] m p = (4) MeV/c 2 = (13) u m n = (4) MeV/c 2 =

42 3 u = (37) MeV/c 2 (3.4) [1] u amu m p m n [1] m H [2] m p = (4) MeV/c 2 = (13) u m n = (4) MeV/c 2 = 3 3.1 3.1.1 kg m s J = kg m 2 s 2 MeV MeV [1] 1MeV=1 6 ev = 1.62 176 462 (63) 1 13 J (3.1) [1] 1MeV/c 2 =1.782 661 731 (7) 1 3 kg (3.2) c =1 MeV (atomic mass unit) 12 C u = 1 12 M(12 C) (3.3) 41 42 3 u

More information

86 6 r (6) y y d y = y 3 (64) y r y r y r ϕ(x, y, y,, y r ) n dy = f(x, y) (6) 6 Lipschitz 6 dy = y x c R y(x) y(x) = c exp(x) x x = x y(x ) = y (init

86 6 r (6) y y d y = y 3 (64) y r y r y r ϕ(x, y, y,, y r ) n dy = f(x, y) (6) 6 Lipschitz 6 dy = y x c R y(x) y(x) = c exp(x) x x = x y(x ) = y (init 8 6 ( ) ( ) 6 ( ϕ x, y, dy ), d y,, dr y r = (x R, y R n ) (6) n r y(x) (explicit) d r ( y r = ϕ x, y, dy ), d y,, dr y r y y y r (6) dy = f (x, y) (63) = y dy/ d r y/ r 86 6 r (6) y y d y = y 3 (64) y

More information

213 2 katurada AT meiji.ac.jp http://nalab.mind.meiji.ac.jp/~mk/pde/ 213 9, 216 11 3 6.1....................................... 6.2............................. 8.3................................... 9.4.....................................

More information

2

2 1 2 3 4 23 26 1.821.42 5 6 7 8 9 10 11 (kw) 50.0 10.0 5.5 20.0 20.0 50.0 5.0 32.0 22.0 10.2 224.7 12 13 m3 14 15 16 17 18 19 20 21 22 23 24 25 12 26 27 L=50m 28 29 30 31 32 33 34 35 36 37 kl/ 年 kl/ 年 kl/

More information

p.2/76

p.2/76 kino@info.kanagawa-u.ac.jp p.1/76 p.2/76 ( ) (2001). (2006). (2002). p.3/76 N n, n {1, 2,...N} 0 K k, k {1, 2,...,K} M M, m {1, 2,...,M} p.4/76 R =(r ij ), r ij = i j ( ): k s r(k, s) r(k, 1),r(k, 2),...,r(k,

More information

O E ( ) A a A A(a) O ( ) (1) O O () 467

O E ( ) A a A A(a) O ( ) (1) O O () 467 1 1.0 16 1 ( 1 1 ) 1 466 1.1 1.1.1 4 O E ( ) A a A A(a) O ( ) (1) O O () 467 ( ) A(a) O A 0 a x ( ) A(3), B( ), C 1, D( 5) DB C A x 5 4 3 1 0 1 3 4 5 16 A(1), B( 3) A(a) B(b) d ( ) A(a) B(b) d AB d = d(a,

More information

I 1 V ( x) = V (x), V ( x) = V ( x ) SO(3) x = R x: R SO(3) Lorentz R t JR = J: J = diag(1, 1, 1, 1) x = x + a Poincarré ( ) 2

I 1 V ( x) = V (x), V ( x) = V ( x ) SO(3) x = R x: R SO(3) Lorentz R t JR = J: J = diag(1, 1, 1, 1) x = x + a Poincarré ( ) 2 III 1 2005 Jan 30th, 2006 I : II : I : [ I ] 12 13 9 (Landau and Lifshitz, Quantum Mechanics chapter 12, 13, 9: Pergamon Pr.) [ ] ( ) (H. Georgi, Lie algebra in particle physics, Perseus Books) [ ] II

More information

タ 縺29135 タ 縺5 [ y 1 x i R 8 x j 1 7,5 2 x , チ7192, (2) チ41299 f 675

タ 縺29135 タ 縺5 [ y 1 x i R 8 x j 1 7,5 2 x , チ7192, (2) チ41299 f 675 139ィ 48 1995 3. 753 165, 2 6 86 タ7 9 998917619 4381 縺48 縺55 317832645 タ5 縺4273 971927, 95652539358195 45 チ5197 9 4527259495 2 7545953471 129175253471 9557991 3.9. タ52917652 縺1874ィ 989 95652539358195 45

More information

研修コーナー

研修コーナー l l l l l l l l l l l α α β l µ l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l

More information

mains.dvi

mains.dvi 8 Λ MRI.COM 8.1 Mellor and Yamada (198) level.5 8. Noh and Kim (1999) 8.3 Large et al. (1994) K-profile parameterization 8.1 8.1: (MRI.COM ) Mellor and Yamada Noh and Kim KPP (avdsl) K H K B K x (avm)

More information

No2 4 y =sinx (5) y = p sin(2x +3) (6) y = 1 tan(3x 2) (7) y =cos 2 (4x +5) (8) y = cos x 1+sinx 5 (1) y =sinx cos x 6 f(x) = sin(sin x) f 0 (π) (2) y

No2 4 y =sinx (5) y = p sin(2x +3) (6) y = 1 tan(3x 2) (7) y =cos 2 (4x +5) (8) y = cos x 1+sinx 5 (1) y =sinx cos x 6 f(x) = sin(sin x) f 0 (π) (2) y No1 1 (1) 2 f(x) =1+x + x 2 + + x n, g(x) = 1 (n +1)xn + nx n+1 (1 x) 2 x 6= 1 f 0 (x) =g(x) y = f(x)g(x) y 0 = f 0 (x)g(x)+f(x)g 0 (x) 3 (1) y = x2 x +1 x (2) y = 1 g(x) y0 = g0 (x) {g(x)} 2 (2) y = µ

More information

現代物理化学 1-1(4)16.ppt

現代物理化学 1-1(4)16.ppt (pdf) pdf pdf http://www1.doshisha.ac.jp/~bukka/lecture/index.html http://www.doshisha.ac.jp/ Duet -1-1-1 2-a. 1-1-2 EU E = K E + P E + U ΔE K E = 0P E ΔE = ΔU U U = εn ΔU ΔU = Q + W, du = d 'Q + d 'W

More information

(2) N elec = D p,q p,q χ q χ p dr = p,q D p,q S q,p Mulliken PA D Mull p = p = group A D p,p 1 + D p,q S q,p p q p [ r A D Mull p ] group χ p G Mull A

(2) N elec = D p,q p,q χ q χ p dr = p,q D p,q S q,p Mulliken PA D Mull p = p = group A D p,p 1 + D p,q S q,p p q p [ r A D Mull p ] group χ p G Mull A 7 - (Electron-Donor Acceptor) : Charge-Transfer ( CT) ( (Charge-Transfer) - (electron donor-electron acceptor) [1][2][3][4] Van der Waals CT [5] Population Analysis population analysis ( ), observable

More information

36.fx82MS_Dtype_J-c_SA0311C.p65

36.fx82MS_Dtype_J-c_SA0311C.p65 P fx-82ms fx-83ms fx-85ms fx-270ms fx-300ms fx-350ms J http://www.casio.co.jp/edu/ AB2Mode =... COMP... Deg... Norm 1... a b /c... Dot 1 2...1...2 1 2 u u u 3 5 fx-82ms... 23 fx-83ms85ms270ms300ms 350MS...

More information

122 6 A 0 (p 0 q 0 ). ( p 0 = p cos ; q sin + p 0 (6.1) q 0 = p sin + q cos + q 0,, 2 Ox, O 1 x 1., q ;q ( p 0 = p cos + q sin + p 0 (6.2) q 0 = p sin

122 6 A 0 (p 0 q 0 ). ( p 0 = p cos ; q sin + p 0 (6.1) q 0 = p sin + q cos + q 0,, 2 Ox, O 1 x 1., q ;q ( p 0 = p cos + q sin + p 0 (6.2) q 0 = p sin 121 6,.,,,,,,. 2, 1. 6.1,.., M, A(2 R).,. 49.. Oxy ( ' ' ), f Oxy, O 1 x 1 y 1 ( ' ' ). A (p q), A 0 (p q). y q A q q 0 y 1 q A O 1 p x 1 O p p 0 p x 6.1: ( ), 6.1, 122 6 A 0 (p 0 q 0 ). ( p 0 = p cos

More information

4 3 1 Introduction 3 2 7 2.1.................................. 7 2.1.1..................... 8 2.1.2............................. 8 2.1.3.......................... 10 2.2...............................

More information

3/4/8:9 { } { } β β β α β α β β

3/4/8:9 { } { } β β β α β α β β α β : α β β α β α, [ ] [ ] V, [ ] α α β [ ] β 3/4/8:9 3/4/8:9 { } { } β β β α β α β β [] β [] β β β β α ( ( ( ( ( ( [ ] [ ] [ β ] [ α β β ] [ α ( β β ] [ α] [ ( β β ] [] α [ β β ] ( / α α [ β β ] [ ] 3

More information

17 3 31 1 1 3 2 5 3 9 4 10 5 15 6 21 7 29 8 31 9 35 10 38 11 41 12 43 13 46 14 48 2 15 Radon CT 49 16 50 17 53 A 55 1 (oscillation phenomena) e iθ = cos θ + i sin θ, cos θ = eiθ + e iθ 2, sin θ = eiθ e

More information

R R P N (C) 7 C Riemann R K ( ) C R C K 8 (R ) R C K 9 Riemann /C /C Riemann 10 C k 11 k C/k 12 Riemann k Riemann C/k k(c)/k R k F q Riemann 15

R R P N (C) 7 C Riemann R K ( ) C R C K 8 (R ) R C K 9 Riemann /C /C Riemann 10 C k 11 k C/k 12 Riemann k Riemann C/k k(c)/k R k F q Riemann 15 (Gen KUROKI) 1 1 : Riemann Spec Z 2? 3 : 4 2 Riemann Riemann Riemann 1 C 5 Riemann Riemann R compact R K C ( C(x) ) K C(R) Riemann R 6 (E-mail address: kuroki@math.tohoku.ac.jp) 1 1 ( 5 ) 2 ( Q ) Spec

More information

橡博論表紙.PDF

橡博論表紙.PDF Study on Retaining Wall Design For Circular Deep Shaft Undergoing Lateral Pressure During Construction 2003 3 Study on Retaining Wall Design For Circular Deep Shaft Undergoing Lateral Pressure During Construction

More information