Μ粒子電子転換事象探索実験による世界最高感度での 荷電LFV探索 第3回機構シンポジューム 2009年5月11日 素粒子原子核研究所 三原 智
|
|
- ひろみ わしあし
- 10 months ago
- Views:
Transcription
1 µ COMET LFV esys
2 clfv (Charged Lepton Flavor Violation) J-PARC µ COMET
3
4 ( )
5 ( )
6 ( )
7 ( ) B
8 ( ) B
9 ( ) B
10 ( ) B
11 ( ) B
12 ( ) B
13 ( ) B
14 2016 J- PARC µ KEK
15
16 3
17 3 3
18 3 3
19 3 3
20 3 3
21 3 3
22 clfv
23 clfv
24 clfv
25 clfv
26 clfv
27 clfv
28 clfv
29 clfv
30 clfv
31 clfv SM µ - e - ν µ ν e L µ ΔL µ =0 L e ΔL e =0 µ - A e - A L µ ΔL µ =-1 L e ΔL e =+1 vs µ
32 clfv SM ν µ µ - e - ν µ ν e m ixin g L µ 1 0 ν1 0 ΔL µ =0 L e e 1 ΔL e =0 µ e µ - A e - A W (m ν /m W ) 4 L µ ΔL µ =-1 L e ΔL e =+1 Very Small (10-52 ) vs µ
33 clfv GUT LFV
34 @ Planck mass scale SUSY-GUT Yukawa interaction SUSY Seesaw Model Neutrino Yukawa interaction CKM matrix LFV Neutrino oscillation L.J.Hall,V.Kostelecky,S.Raby,1986;A.Masiero, F.Borzumati, 1986
35 clfv LHC Masiero et al. JHEP03
36 LHC clvf LHC+cLFV LHC clfv LHC clfv LHC clfv TeV LHC LHC+cLFV LHC upgrade, ILC
37 clfv g-2 Hep-ph/ v2 S.Antusch et al This Experiment
38 clfv g-2 hep-ph/ v2 G.Isidori et al Hep-ph/ v2 S.Antusch et al δ 12 LL = 10 4 and δ 23 LL = GeV M~ 600 GeV This Experiment 200 GeV M GeV 500 GeV µ 1000 GeV 10 tan β 50 A U = 1 TeV M q = 1.5 TeV. and the GUT relations The red areas correspond to points within the funnel region which satisfy the B- physics constraints listed
39 clfv g-2 ~10 hep-ph/ v2 G.Isidori et al Hep-ph/ v2 S.Antusch et al δ 12 LL = 10 4 and δ 23 LL = GeV M~ 600 GeV Current Bound This Experiment This Experiment 200 GeV M GeV 500 GeV µ 1000 GeV 10 tan β 50 A U = 1 TeV M q = 1.5 TeV. and the GUT relations The red areas correspond to points within the funnel region which satisfy the B- physics constraints listed 0.002
40 Muon clfv MEGA SINDRUM II MEG Los Alamos µ eγ PSI µ-e conversion PSI µ eγ RUNNING! µ (28MeV/c) ( )µ ( 52MeV/c) µ 28MeV/c 4 x 10 7 s -1 ~10 7 s -1 3 x 10 7 s PRD 65, EPJ C (2006) (Au )7 x NP B834 (2010) x 10-11
41 µ eγ µ-e conversion
42 µ eγ µ-e conversion µ eγ µ-e conv
43 µ eγ µ-e conversion µ eγ µ-e conv µ eγ µ-e conv Loop vs Tree LHC
44 µ eγ µ-e conversion µ eγ µ-e conv µ eγ µ-e conv Loop vs Tree LHC
45 µ eγ µ-e conversion Z Z µ eγ µ-e conv µ eγ µ-e conv Loop vs Tree LHC
46 µ-e conversion µ eγ µ eγ µ eγ µ-e conversion
47 µ-e conversion µ eγ µ eγ µ eγ µ-e conversion ν µ ν e? γ
48 µ-e conversion µ eγ µ eγ µ eγ µ-e conversion µ-e conversion µ
49 µ 1s Neutrino-less muon nuclear capture (=µ-e conversion) µ - + (A, Z) e - + (A,Z) µ muon decay in orbit µ e ν ν nuclear muon capture µ + ( A, Z) ν µ + ( A, Z 1) B(µ - N e - N) = Γ (µ - N e - N ) Γ ( µ - N ν N ' )
50 µ E µe ~ m µ -B µ m µ : µ B µ : 1s R.Kitano, M.Koike, Y.Okada P.R. D66, (2002)
51 FNAL FNAL Mu2e Experiment CD-0 Tevatron Accumulator Ring Debuncher Ring C. Bhat and M. Syphers Mu2e Acc WG meeting Mar 9,
52 COMET J-PARC E21
53 COMET J-PARC p π µ 8GeV, ~7µA 56kW µ π µ J-PARC PAC J-PARC PAC -1 µ /
54 π π - +(A,Z) (A,Z-1)* γ + (A,Z-1) γ e + e -
55 π π - +(A,Z) (A,Z-1)* γ + (A,Z-1) γ e + e - π µν µ-e conv 0.88µs µ
56 π π - +(A,Z) (A,Z-1)* γ + (A,Z-1) γ e + e -
57 π π - +(A,Z) (A,Z-1)* γ + (A,Z-1) γ e + e -
58 µ 100nsec, ~1µsec - 8GeV µs (584ns x 2) ns 0.7 second beam spill 1.5 second accelerator cycle N bg = NP x R ext x R π-stop/p x A π x P RPC x P γ-e x A NP : total # of protons (~10 21 ) R ext : Extinction Ratio (10-9 ) R π-stop/p : π stop yield per proton (3.5 x 10-7 ) R RPC : Probability of γ from π (0.2) P γ-e : Probability of e from γ A : detector acceptance 1.4x10-5 BR=10-16, N bg ~ 0.1 Extinction < 10-9
59 COMET RCS: h=2 1 MR:h=8(9) 4(3) RF ON 8GeV 1.6 x ppb, 7µA, 56kW Linac RCS
60 COMET RCS: h=2 1 MR:h=8(9) 4(3) RF ON 8GeV 1.6 x ppb, 7µA, 56kW Linac RCS
61 COMET RCS: h=2 1 MR:h=8(9) 4(3) RF ON 8GeV 1.6 x ppb, 7µA, 56kW Linac RCS
62 π π µ π Mars and PHITS
63 µ π µ µ Guide π s until decay to µ s Suppress high-p particles µ s : p µ < 75 MeV/c e s : pe < 100 MeV/c Beam Blocker See Classical Electrodynamics, J.D.Jackson Ch.12-Sec.4 Beam collimator
64 µ π µ µ Guide π s until decay to µ s Suppress high-p particles µ s : p µ < 75 MeV/c e s : pe < 100 MeV/c Beam Blocker See Classical Electrodynamics, J.D.Jackson Ch.12-Sec.4 Beam collimator
65 COMET ~100MeV µ µ
66 60-MeV/c DIO electrons µ : τ µ - = 0.88 µs 66 µ rejection ~10-6 : < 10kHz 20% 105-MeV/c µ-e electron
67 JPNC
68 2x10 7 sec Single event sensitivity N µ µ µ 2.0x10 18 fcap, µ 0.6 Ae total protons muon yield per proton muon stopping efficiency 8.5x # of stopped muons 2.0x10 18 Single event sensitivity 90% C.L. upper limit 2.6 x x 10-17
69 2x10 7 sec Background Events Comments Radiative Pion Capture 0.05 Beam Electrons <0.1 MC stat limited Muon Decay in Flight < Pion Decay in Flight < Neutron Induced For high E n Delayed-Pion Radiative Capture Anti-proton Induced For 8 GeV p Muon Decay in Orbit 0.15 Radiative Muon Capture <0.001 Muon Capture with n Emission <0.001 Muon Capture with Charged Part. Emission <0.001 Cosmic-Ray Muons Electrons from Cosmic-Ray Muons Total 0.34
70 2x10 7 sec Background Events Comments Radiative Pion Capture 0.05 Beam Electrons <0.1 MC stat limited Muon Decay in Flight < Pion Decay in Flight < Neutron Induced For high E n Delayed-Pion Radiative Capture Anti-proton Induced For 8 GeV p Muon Decay in Orbit 0.15 Radiative Muon Capture <0.001 Muon Capture with n Emission <0.001 Muon Capture with Charged Part. Emission <0.001 Cosmic-Ray Muons Electrons from Cosmic-Ray Muons Total 0.34 < 10-9
71
72 π W
73 CDR TDR π µ
74 2016 J-PARC µ KEK J-PARC clfv COMET KEK
KamLAND (µ) ν e RSFP + ν e RSFP(Resonant Spin Flavor Precession) ν e RSFP 1. ν e ν µ ν e RSFP.ν e νµ ν e νe µ KamLAND νe KamLAND (ʼ4). kton-day 8.3 < E ν < 14.8 MeV candidates Φ(νe) < 37 cm - s -1 P(νe
LHC ALICE (QGP) QGP QGP QGP QGP ω ϕ J/ψ ALICE s = ev + J/ψ
8 + J/ψ ALICE B597 : : : 9 LHC ALICE (QGP) QGP QGP QGP QGP ω ϕ J/ψ ALICE s = ev + J/ψ 6..................................... 6. (QGP)..................... 6.................................... 6.4..............................
Y. Nambu and G. Jona-Lasinio, A Dynamical Model of Elementary Particles Based on an Analogy with Superconductivity I, Phys. Rev. 122, 345 (1961). http://prola.aps.org/pdf/pr/v122/i1/p345_1 Y. Nambu and
42 3 u = (37) MeV/c 2 (3.4) [1] u amu m p m n [1] m H [2] m p = (4) MeV/c 2 = (13) u m n = (4) MeV/c 2 =
3 3.1 3.1.1 kg m s J = kg m 2 s 2 MeV MeV [1] 1MeV=1 6 ev = 1.62 176 462 (63) 1 13 J (3.1) [1] 1MeV/c 2 =1.782 661 731 (7) 1 3 kg (3.2) c =1 MeV (atomic mass unit) 12 C u = 1 12 M(12 C) (3.3) 41 42 3 u
O1-1 O1-2 O1-3 O1-4 O1-5 O1-6
O1-1 O1-2 O1-3 O1-4 O1-5 O1-6 O1-7 O1-8 O1-9 O1-10 O1-11 O1-12 O1-13 O1-14 O1-15 O1-16 O1-17 O1-18 O1-19 O1-20 O1-21 O1-22 O1-23 O1-24 O1-25 O1-26 O1-27 O1-28 O1-29 O1-30 O1-31 O1-32 O1-33 O1-34 O1-35
Big Bang Planck Big Bang 1 43 Planck Planck quantum gravity Planck Grand Unified Theories: GUTs X X W X 1 15 ev 197 Glashow Georgi 1 14 GeV 1 2
12 Big Bang 12.1 Big Bang Big Bang 12.1 1-5 1 32 K 1 19 GeV 1-4 time after the Big Bang [ s ] 1-3 1-2 1-1 1 1 1 1 2 inflationary epoch gravity strong electromagnetic weak 1 27 K 1 14 GeV 1 15 K 1 2 GeV
nsg04-28/ky208684356100043077
δ!!! μ μ μ γ UBE3A Ube3a Ube3a δ !!!! α α α α α α α α α α μ μ α β α β β !!!!!!!! μ! Suncus murinus μ Ω! π μ Ω in vivo! μ μ μ!!! ! in situ! in vivo δ δ !!!!!!!!!! ! in vivo Orexin-Arch Orexin-Arch !!
LHC・アトラス実験におけるヒッグス粒子探索の最新結果について
LHC アトラス実験におけるヒッグス粒子探索の最新結果について 田中純一 東大 ICEPP SM Higgs search@lhc ATLAS ATLAS Results H->WW->lnln H->ZZ->4l (plus CMS) H->gg (plus CMS) Combination (ATLAS and CMS) Summary Contents 2 2011 データ 3 月 13 日
PowerPoint プレゼンテーション
The result of the MEG experiment with the full dataset (+ MEG II status) Daisuke Kaneko, on behalf of the MEG collaboration Contents 1. µ eγ Decay 2. MEG Instruments 3. Analysis and Result 4. MEG II experiment
nsg02-13/ky045059301600033210
φ φ φ φ κ κ α α μ μ α α μ χ et al Neurosci. Res. Trpv J Physiol μ μ α α α β in vivo β β β β β β β β in vitro β γ μ δ μδ δ δ α θ α θ α In Biomechanics at Micro- and Nanoscale Levels, Volume I W W v W
untitled
/, S=1/2 S=0 S=1/2 - S// m H m H = S G e + + G Z (t) 1 0 t G Z (t) 1 0 t G Z (t) 1 0 t SR G Z (t) = 1/3 + (2/3)(1-2 t 2 )exp(- 2 t 2 /2) G Z (t) 1-1/3 1/3 0 3/ 3/ t G Z (t)
研修コーナー
l l l l l l l l l l l α α β l µ l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l
JPS_draft.pptx
LHC-ATLAS 実験における高い運動量を持つジェットの b- タグの開発及び評価 小林愛音 江成祐二 A 川本辰男 A 東大理 東大素セ A 9pSK-6 9th September 4 日本物理学会 4 年秋季大会 Introduction 5 年から始まる LHC の運転では高い運動量を持った物理の解析が重要 新しい重いレゾナンスの探索 (à WW, tt, hhà jets) VHà bb
環境報告2008ダイジェスト版
2008 KEK Environmental Report 2008 2008 http://www.kek.jp/kankyou/pdf/kankyohoukokusho2008.pdf Inter-University Research Institute Corporation High Energy Accelerator Research Organization CO 2 CO 2 2007
第86回日本感染症学会総会学術集会後抄録(I)
κ κ κ κ κ κ μ μ β β β γ α α β β γ α β α α α γ α β β γ μ β β μ μ α ββ β β β β β β β β β β β β β β β β β β γ β μ μ μ μμ μ μ μ μ β β μ μ μ μ μ μ μ μ μ μ μ μ μ μ β
41 Round Table? 1 5 LEP OPAL?? 19837 1987? 1983 1984 IMB? p e IMB? 1982? p νk νk 1981? - νk 198182? 16 100 MeV 30 MeV 100 MeV Callan-Rubakov Callan-Ru
Round Table Talk Kavli IPMU Kavli IPMU Kavli IPMU Kavli IPMU? 2?? 20? 19814 DESY 1981 IMB? IMB 20 40 Kavli IPMU News No 32 January 2016 41 Round Table? 1 5 LEP OPAL?? 19837 1987? 1983 1984 IMB? p e IMB?
スライド 1
201381 43 1 AGN SNR Pulsar e P e + χ e - χ JEM-EF ISS CALET CALorimetric Electron Telescope 201381 43 2 JAPAN Aoyama Gakuin University Hirosaki University Institute for Cosmic Ray Research, University
2014_01_17_ishi_dist.key
FFAG! 2 2014.1.17!!!!! 1.FFAG 2.FFAG 3. 4. 5. 6.FFAG 7. FFAG: Fixed Field Alternating Gradient B(r) =B(r 0 ) r r 0 k RF ( 6D-focusing i.e. x, px, y, py, s, ps ) RF gymnastics Bunching, Stacking etc. School,London,June
LHC ATLAS Large Hadron Collider 27km 2010 7TeV ~48pb -1 ATLAS LHC Higgs Muon spectrometer MDT RPC,TGC
LHC ATLAS Large Hadron Collider 27km 2010 7TeV ~48pb -1 ATLAS LHC Higgs Muon spectrometer MDT RPC,TGC TGC RPC ATLAS r : φ : θ : y-z : η=-ln(tan(θ/2)) Resistive Plate Chamber η
untitled
27.2.9 TOF-SIMS SIMS TOF-SIMS SIMS Mass Spectrometer ABCDE + ABC+ DE + Primary Ions: 1 12 ions/cm 2 Molecular Fragmentation Region ABCDE ABCDE 1 15 atoms/cm 2 Molecular Desorption Region Why TOF-SIMS?
スライド 1
WIMP 対消滅ニュートリノ探索 2009 年度宇宙グループ研究発表会 名古屋大学太陽地球環境研究所 CR 研田中隆之 Introduction 1 ダークマター : 宇宙に存在し自力で光を発しておらず観測が困難な物質 様々なダークマターの存在示唆 銀河団の観測 銀河の回転速度の観測 銀河形成シミュレーション 宇宙マイクロ波放射の観測 etc しかしながらその正体は 70 年来の謎! Introduction
Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e
7 -a 7 -a February 4, 2007 1. 2. 3. 4. 1. 2. 3. 1 Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e z
液体アルゴン3次元飛跡イメージング検出器
液 体 アルゴン3 次 元 飛 跡 イメー ジング 検 出 器 丸 山 和 純 (KEK) 液 体 アルゴン3 次 元 飛 跡 イメージング 検 出 器 現 代 版 電 子 泡 箱 検 出 器 高 位 置 分 解 能 飛 跡 検 出 器 (~1mm 分 解 能 ) 正 確 な 事 象 形 態 を 測 定 できる 低 い 運 動 量 の 粒 子 から 測 定 可 能 局 所 的 なエネルギー 損 失
[ ] = L [δ (D ) (x )] = L D [g ] = L D [E ] = L Table : ħh = m = D D, V (x ) = g δ (D ) (x ) E g D E (Table )D = Schrödinger (.3)D = (regularization)
. D............................................... : E = κ ............................................ 3.................................................
Appendix 1. CRC 13 Appendix Appendix LCGT 18 DECIGO 18 XMASS 19 GADZOOKS! 20 NEWAGE(
CRC 22 1 3 2 4 2-1 2-2 2-3 2-4 3 9 3-1 3-2 3-3 3-4 3-5 4 12 Appendix 1. CRC 13 Appendix 2. 14 Appendix 3. 17 LCGT 18 DECIGO 18 XMASS 19 GADZOOKS! 20 NEWAGE( ) 21 22 24 CTA (Cherenkov Telescope Array) 25
p.2/76
kino@info.kanagawa-u.ac.jp p.1/76 p.2/76 ( ) (2001). (2006). (2002). p.3/76 N n, n {1, 2,...N} 0 K k, k {1, 2,...,K} M M, m {1, 2,...,M} p.4/76 R =(r ij ), r ij = i j ( ): k s r(k, s) r(k, 1),r(k, 2),...,r(k,
gr09.dvi
.1, θ, ϕ d = A, t dt + B, t dtd + C, t d + D, t dθ +in θdϕ.1.1 t { = f1,t t = f,t { D, t = B, t =.1. t A, tdt e φ,t dt, C, td e λ,t d.1.3,t, t d = e φ,t dt + e λ,t d + dθ +in θdϕ.1.4 { = f1,t t = f,t {
= hυ = h c λ υ λ (ev) = 1240 λ W=NE = Nhc λ W= N 2 10-16 λ / / Φe = dqe dt J/s Φ = km Φe(λ)v(λ)dλ THBV3_0101JA Qe = Φedt (W s) Q = Φdt lm s Ee = dφe ds E = dφ ds Φ Φ THBV3_0102JA Me = dφe ds M = dφ ds
n i = ( ) Eg N C N ν exp = AT 3/2 exp ( Eg 2kT 2kT ) v e = µ e E v h = µ h E J = en i (µ e + µ h )E J = σe σ = en i (µ e + µ h ) Brief Introduction of Vetex to non-expert(myself) required point resolution
Happy 60th Birthdays! Ishikawa-san & Kawamoto-san
Glashow-Weinberg-Salam model on the lattice A construction with exact gauge invariance Y. Kikukawa Institute of Physics, University of Tokyo based on : D. Kadoh and Y.K., JHEP 0805:095 (2008), 0802:063
untitled
(a) (b) (c) (d) Wunderlich 2.5.1 = = =90 2 1 (hkl) {hkl} [hkl] L tan 2θ = r L nλ = 2dsinθ dhkl ( ) = 1 2 2 2 h k l + + a b c c l=2 l=1 l=0 Polanyi nλ = I sinφ I: B A a 110 B c 110 b b 110 µ a 110
10 2 2 10 6.5 78 1 65 / 30 / - 2 -
- 1 - 10 2 2 10 6.5 78 1 65 / 30 / - 2 - 3 3 30 8 4 8 6 11 14 45 14 7 8 1-3 - 4 1 () 20 4 9 4 9 3 9 4 PR 4 3-4 - - 5 - PR 15 4 PR 7 8 4 9 10-6 - 9 10 9 10 4 9 10 3 9 10 9 9 9 10 PR 1-7 - PR - 8 - 30 100-9
4 3 1 Introduction 3 2 7 2.1.................................. 7 2.1.1..................... 8 2.1.2............................. 8 2.1.3.......................... 10 2.2...............................
K 20 1 e, e K + 2000 2005 JLab e, e K + Λ K + 2 K + Missing Mass E/E 10 4 JLab 1 e, e K + Λ K, π π +, K + Λ Λ Σ 0 Mass Mass 2000 E89-009 e, e K + 12 Λ B 750 kev FWHM Missing Mass e, e K + background K
607_h1h4_0215.indd
3 2016 Mar. No.607 http://www.saitama-ctv-kyosai.net 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
10.02EWE51号本文
51 2010 Mar. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
22.5.1
22.5.1 78 This is 10 10 21 H21H25H25 1 2 3 4 5 1 2 1 2 3 1 945 65 295 375 65 1,865 1,005 282 1 25 2 4 6 6 9 53 2 5,000 5,000 114 4/10 1/10 1/10 3,77082
untitled
WG 2013 P P P P WG WG P WG 12 12 P P20 200 200 200 200 2011 2012 2012 11 1 2 21 2 2 1 2 2 2 2 1 2 1 2 11 720,450(8.0) 37,845(0.4) 4) 37.7 7 5.4 0.1 8,299,154(91.6)
untitled
19 - 1 - - 2 - - 3 - - 4 - - 5 - - 6 - - 7 - - 8 - - 9 - - 10 - - 11 - - 12 - - 13 - - 14 - - 15 - - 16 - - 17 - - 18 - - 19 - - 20 - - 21 - - 22 - - 23 - - 24 - - 25 - - 26 - - 27 - - 28 - - 29 - -
3/4/8:9 { } { } β β β α β α β β
α β : α β β α β α, [ ] [ ] V, [ ] α α β [ ] β 3/4/8:9 3/4/8:9 { } { } β β β α β α β β [] β [] β β β β α ( ( ( ( ( ( [ ] [ ] [ β ] [ α β β ] [ α ( β β ] [ α] [ ( β β ] [] α [ β β ] ( / α α [ β β ] [ ] 3
i ii ( ) ( ) ( ) 462,891 525,032 502,164 230,636 CD CD 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 11 10 12 11 13 11 14 12 15 12 16 13 16 14 17 15 18 15 18 16 19 17 20 17 18 19
SC210301 Ł\†EŒÚ M-KL.ec6
30 36 01 02 07 08 05 95 11 94 11 97 13 91 13 9T 14 15 15 96 16 BE 16 BF 16 BG 17 CL 17 00 17 17 17 1 180 28 28 180 2 180 181 60 180 180 90 32 180 30 15 29 29 30 14 3 15 30 29 29 14 30 14 19 19 30 30 22
STB-Ring(Stretcher-Booster Ring) 1.2 GeV Tagging System Tagging System Efficiency rate rate rate Efficiency 1 STB-Ring 2 rate Efficiency 3 Efficiency
STB-Ring Tagging Efficiency Study GEANT4 2010 3 STB-Ring(Stretcher-Booster Ring) 1.2 GeV Tagging System Tagging System Efficiency rate rate rate Efficiency 1 STB-Ring 2 rate Efficiency 3 Efficiency ( )
LHC 実 験 の 始 まり 去 年 1 年 でtopも 含 むほとんどの 既 知 の 粒 子 を 再 発 見 Excited quark, W, SUSYなどのlimitを 更 新 Highest mass di jet μ + μ - p T jet1=670 GeV, p T jet2=610
LHC/ATLAS アップグレード の 展 望 2011 年 2 月 28 日 機 構 シンポジウム 徳 宿 克 夫 12 Feb 2011 1 LHC 実 験 の 始 まり 去 年 1 年 でtopも 含 むほとんどの 既 知 の 粒 子 を 再 発 見 Excited quark, W, SUSYなどのlimitを 更 新 Highest mass di jet μ + μ - p T jet1=670
2 X-ray 6 gamma-ray 7 1 17.1 0:38m 0:77m nm 17.2 Hz Hz 1 E p E E = h = ch= (17.2) p = E=c = h=c = h= (17.3) continuum continuous spectrum line spectru
1 17 object 1 observation 17.1 X electromagnetic wave photon 1 = c (17.1) c =3 10 8 ms ;1 m mm = 10 ;3 m m =10 ;6 m nm = 10 ;9 m 1 Hz 17.1 spectrum radio 2 infrared 3 visual light optical light 4 ultraviolet
B
B YES NO 5 7 6 1 4 3 2 BB BB BB AA AA BB 510J B B A 510J B A A A A A A 510J B A 510J B A A A A A 510J M = σ Z Z = M σ AAA π T T = a ZP ZP = a AAA π B M + M 2 +T 2 M T Me = = 1 + 1 + 2 2 M σ Te = M 2 +T
( ) 2002 1 1 1 1.1....................................... 1 1.1.1................................. 1 1.1.2................................. 1 1.1.3................... 3 1.1.4......................................
CompuSec SW Ver.5.2 アプリケーションガイド(一部抜粋)
64 PART 9 65 66 PART10 67 1 2 3 68 PART 10 4 5 69 1 2 3 4 5 70 PART 10 6 7 8 6 9 71 PART11 72 PART 11 1 2 3 73 4 5 6 74 PART 11 7 8 9 75 PART12 76 PART 12 1 2 3 4 1 2 3 4 77 1 2 3 4 5 6 7 8 78 PART13 79
Outline Purpose Introduction of FFAG at KURRI Experiment Result Summary Future
Measurement of betatron tunes in KURRI FFAG Main ring Y.Takahoko (FUKUI university) M.Takashima (KYOTO university) Y.Kuriyama (KYOTO university) 1 Outline Purpose Introduction of FFAG at KURRI Experiment
2 FIG. 1: : n FIG. 2: : n (Ch h ) N T B Ch h n(z) = (sin ϵ cos ω(z), sin ϵ sin ω(z), cos ϵ), (1) 1968 Meyer [5] 50 N T B Ch h [4] N T B 10 nm Ch h 1 µ
: (Dated: February 5, 2016), (Ch), (Oblique Helicoidal) (Ch H ), Twist-bend (N T B ) I. (chiral: ) (achiral) (n) (Ch) (N ) 1996 [1] [2] 2013 (N T B ) [3] 2014 [4] (oblique helicoid) 2016 1 29 Electronic
_spring_school.key
2014/03/07 VII: XMASS http://www-sk1.icrr.u-tokyo.ac.jp/index.html XMASS( CANDLES (2 NEWAGE ( KAGURA( KAMLAND ( 2 F. Zwicky 1933 F. Zwicky!! (400! F. Zwicky 1933 F. Zwicky!! (400! 1970 Vera Cooper Rubin!