Microsoft Word - 09弾性02基礎方程式.doc

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Microsoft Word - 09弾性02基礎方程式.doc"

Transcription

1 第 章基礎方程式と弾性問題の解. フックの法則 応力に対してひずみが生じ 応力をゼロに戻すとひずみも消失する性質を 弾性 という 弾性挙動を示す棒の軸方向の応力 とひずみの間には式 の関係が成り立つ これが フックの法則 であり をヤング率または弾性率と呼ぶ 棒を軸 縦 方向に引張ると直交 横 方向に収縮し 逆に縦方向に圧縮すると横方向に膨張する 棒の縦横の長さを L,d とし 縦ひずみを L L-L /L 横ひずみを d d-d /d で表すと L,d は初期長さ 材料の変形特性を表すもうつの弾性定数としてポアソン比 が式 で定義される 一方 せん断応力 とせん断ひずみ γγ: テンソルひずみ の間にも式 と同形式の式 c が成立ち をせん断弾性率または剛性率と呼ぶ 等方弾性体では,, の間に式 d の関係がある d c γ d l 等方 均質弾性体の主応力,, と主ひずみ,, の間には { } i, j,,, k. i i j k なる応力 ~ひずみ関係が成り立つ これを 一般化したフックの法則 という 棒の単軸引張では 軸応力 より /, - / となり 式 に帰着する 式. を応力成分について解くと次の表示を得る λ μ,, i. i i i は体積ひずみである λ,μ は ラ-メの常数 と呼ばれる 式. で,, とすると 直角座標における垂直応力,, と垂直ひずみ,, の関係が得られる つまり式. は任意方向の垂直応力 ひずみの間で成り立っている 例えば 軸の,, 方向への方向余弦を l,m,n とすると 応力の座標変換式 : 式. より l m n l λμ m λμ n λμ λl m n μl m n λμ となって式. が成立する ただし 第 式の第 項の 方向余弦の性質 第 項の 応力と同形のひずみの座標変換式より を用いている 一方 軸の方向余弦を l,m,n とすると 同様の演算から -lstic.-

2 l l m m n n l l λμ m m λμ n n λμ λl l m m n n μl l m m n n μγ γ を得る すなわち 垂直応力 ~ひずみ関係 : 式. から座標変換式を介してせん断応力 ~ひずみ関係が導かれたことになる 以上まとめると 直角座標の応力 ひずみ成分間の関係は μ λμ μγ λμ μγ. λμ μγ 柱状弾性体の側面を拘束し 側方にひずみを生じさせない状態で一様な軸応力を加えるときの軸方向応力とひずみの関係を求める 軸方向応力 ひずみを, とすると 側方拘束状態 : では式. より 両式より主応力,, の関係として次式を得る K.4 K は土質力学では静止土圧係数に相当する 上式の, を の式に代入すると c となり 側方拘束弾性率 c が定義される 式. の つの式を辺々加え 平均垂直応力を m / と置くと 体積ひずみ : m K によって m ~ 関係を結ぶ 体積弾性率 K が定義される m 垂直応力,, から平均垂直応力 m を引き などをそのままにした応力を偏差応力という 同様に γ などを変えずに垂直ひずみ,, から / を引いたものを偏差ひずみという 偏差応力 ひずみに記号 を付けると -lstic.-

3 -lstic.- ' ' K λ となる せん断応力 ~ ひずみ関係は γ 等で表せるから 偏差応力 ひずみを用いると全ての応力 ~ ひずみ成分の関係が で結ばれることが分かる. 弾性論における基礎方程式 変位の基礎方程式 : 等方弾性体の応力 ~ ひずみ関係 : 式. に 第 章で定義したひずみ ~ 変位関係 : 式. を用いると 応力と変位の関係式が次のように表せる などなど w.5 このように表した, 及び を それぞれ, 及び で微分すると w 上 式を辺々加算して整理すると 方向の力のつりあい式として X w X.6 を得る, として, 方向の力のつりあい式も同様に表せる これを 変位の基礎方程式 という ただし 及び は次式で定義される w ナブラ自乗 : 体積ひずみ : 物体力が場所によらず一定 例えば XY Z-ρg の場合 式.6 を微分して で微分 : 同様に, 方向についても つりあい式を, で順次微分して : : w

4 以上の 式を加算すると 最終的に次式を得る.7 また 式.6 に を作用させると 例えば 方向は 4, 方向についても同様であり 結局次式を得る w.8 すなわち は調和関数,,wは重調和関数でなければならない 弾性問題における未知数と関係式を整理すると以下のようになる 未知数 5 個 : 関係式 5 式 : 変位,,w ひずみ~ 変位 6 式 ひずみ,,,γ,γ,γ 応力 ~ひずみ 6 式 応力,,,,, 応力のつり合い式 式 誘導 : 式.5 ひずみの6 成分消去 式.5 基礎方程式 : 式.6 o 式.8 応力の6 成分消去 基礎方程式 式 境界条件 解,,w 二次元の調和関数と重調和関数の例 * 調和関数 直角座標 :,, -,, -, -, 4-6 4, - sinm cosm, n cosn * 調和関数 極座標 :,log, n sinn, n cosn, -n sinn, -n cosn * 重調和関数 を調和関数として 直角座標:,, 極座標:cos,sin, 応力の基礎方程式 : 変位が発生して応力が生じるから 物体内に生じる応力は 応力のつり合い方程式と同時に 適合条件式を満たす必要がある 誘導は省略して 後述の 次元問題で誘導を示す 結論のみ示すと 適合条件式を応力成分で表示し つり合い条件式と組み合わせることにより 方向の基礎方程式が以下のように得られる Ω m と置く -lstic.4-

5 -lstic.5- Ω Ω Ω Ω Z Y X 物体力 X,Y,Z が場所によらず一定 右辺がゼロ なら 上式は Ω Ω.9 同様な式が, に関しても書けるから 式を加えると 結局 Ω. を得る すなわち 平均垂直応力 m Ω/ は調和関数である このとき式.9 の上の式に を作用させると 4 を得る 同様な式が他に 5 つ書けるから まとめると 4,,,,,. したがって 直角座標における応力成分は重調和関数でなければならない 軸対称問題における変位の基礎方程式 : 軸対称問題では 軸を対称軸とする円筒座標,, が用いられ 座標軸に対応する変位,,w には,,,ww, なる条件が課せられる したがって に関するせん断ひずみ :γ γ であり 式.47 で求めた 4 つのひずみ成分,,,γ が残る 対応して 応力成分に関しては であり,,, の 4 成分が残る 軸対称問題における応力 ~ ひずみ関係は 座標の応力 ~ ひずみ関係と形式的に同じであり,, として { } k j i k j i i γ,,,,. の 4 式となる 逆に解くと 垂直成分については式. と同形の関係式を得る ここで 軸対称問題での体積ひずみは w である 前節と同様に ひずみ ~ 変位関係を応力 ~ ひずみ関係に代入して応力成分を変位で表し これらを応力のつり合い方程式に代入すると 変位の基礎方程式を得る ただし 軸対称問題では Θ,, は に無関係であるから / となり 方向のつり合いは自動的に満たされている, 方向は次のようになる : : Z w R. 円筒座標の は下式であるが 軸対称問題では, w に を含まないので 第 項は消滅する

6 . 次元問題における基礎方程式 平面応力 : 薄い板の面内変形問題のように 面と 垂直な方向 に外力 境界応力 物体力 が作用しない場合は 方向に関する応力成分をゼロ P と仮定してよい.4 この仮定によって問題は 面内での 次元応 q P 力 変形問題に帰着する 上式を前節の応力 ~ ひ ずみ関係に代入すると γ γ が得られ ゆがみのない板の 面内での変形を対象とし R R ていることが分かる 残りの応力 ~ ひずみ関係は - / γ / 図 -. 平面応力 - /.5 と板厚方向のひずみ に関する - / である これらを逆に 応力をひずみ で表して整理すると γ.6 のようになる 式.5 や式.6 が平面応力状態での直角座標応力成分,, とひずみ成分,,γ の関係を与え 行列表示では次のように表される.7 / γ 平面ひずみ : 延長の長い構造物の断面内での応力 変形問題のように 長手方向 に拘束され に無関係な外力が作用する場合は 方向に関するひずみ成分をゼロと仮定してよい すなわち 方向に拘束されていることより w また,は,のみの関数になるから 次が仮定できる γ γ.8 応力 ~ひずみ関係より で 残りの応力,, とひずみ,,γ 成分の関係は次式で与えられる q γ.9 図 -. 平面ひずみ -lstic.6-

7 -lstic.7- 長手方向の変形を拘束する応力 は より次式で表される であるから は 次元応力状態の つの主応力である 式.9 の応力 ~ ひずみ関係は 行列表示では以下のように表される γ /. 式.5 と式.9 を比べると 平面応力の諸式で, を ' '. と置き換えれば平面ひずみ問題に帰着する すなわち 平面応力問題として解いた解の, を ',' と書き換えれば平面ひずみ問題の解が得られる 平面問題における基本的な諸式は 応力 ~ ひずみ関係式 平面応力 ひずみ と ひずみ ~ 変位関係 : γ ひずみの適合条件 : γ. 応力のつり合い式 : Y X であり これらを組み合わせて変位あるいは応力の基礎方程式が導かれる 応力の基礎方程式 : 上式 の適合条件式のひずみ成分を 式.5 を用いて応力成分で書き直し 応力のつり合い式 を用いて を, で表して整理すると Y X Y X ただし.

8 -lstic.8- を得る X,Y-ρg 重力 なら.4 となり 垂直応力の和は調和関数である 上式は三次元の式. で 平面応力 または 平面ひずみ としても得られる このときの応力の基礎方程式は式. と同様に次式で与えられる 4,,.5 上式の微分方程式を解くに当たり 境界条件の設定が必要になる 右図のように 法線の方向余弦が l,m の境界面素に単位面積当り f,f の表面外力が作用する場合 境界条件式は次式で表される l m f l m f.6 図 -.4 応力の境界条件 変位の基礎方程式 : 式.5 の応力 ~ ひずみ関係と 式. の ひずみ ~ 変位関係を用いて の応力のつり合い式を変位, で表すと 変位の基礎方程式として次式を得る : : Y X ただし.7 上式を, で順次微分して加えると X,Y-ρg の場合 式.7 及び式.8 と同様な関係として を得る これを境界条件に合うように解けばよいが 境界で応力 f,f が与えられる場合は 式.6 の応力成分を変位で表したものを用いる すなわち 式.6 と式. の から などとして式.6 に代入し 変位の境界条件に直して適用する 極座標における関係式 : 極座標においては次の関係式が成り立つ ひずみ ~ 変位関係 : γ ひずみの適合条件 : γ γ 応力のつり合い式 : R Θ f f nl,m f α α

9 -lstic.9-4 応力 ~ ひずみ関係 : γ 式.~ 式.5 のような関係は前と同様の手順で導くことができるが 垂直応力の和は座標変換によらない すなわち の性質を使うと 式.4 の応力の基礎方程式に対応する式が次式で与えられる ただし.9 極座標における変位の基礎方程式を導く場合は 変位, を未知数とする代わりに 二次元の体積ひずみ と 軸回りの回転 ω を未知数とした方が便利である すなわち 両者は次式で定義される ω. 座標では ω 座標の剛体変位, c- を上式に代入すると, ω-: 回転に対応する剛体変位 になる これによって変位の基礎方程式は Θ R Θ ω R. と書けるが 重力場 * では R-ρgsin,Θ-ρgcos であるので 上式は簡略化されて次式のように表示される ω. * 重力場 R Θ ρg R Θ ρg

10 .4 弾性問題 平面応力 の厳密解 物体内に生じる応力は 物体内の各点で応力のつり合い式と適合条件を満足し 表面では境界条件を満足していなければならない このような応力が求まれば これから得られる変位は変位の方程式を満足する また変位の方程式を満足する変位が求まれば これから得られる応力は応力のつり合い式と適合条件を満足する 応力のつり合い式 適合条件及び変位の方程式を弾性基礎方程式という また 弾性体内部で応力のつり合い式と適合条件あるいは変位の方程式を満足し 表面では境界条件を満足する解を弾性問題の厳密解という このような解は存在し 与えられた境界条件に対しては一つしか存在しないこと 解の唯一性 が証明されている サンブナン Sint-nnt の原理 : 弾性体の一部分に作用している荷重を これと同等な荷重 すなわち静力学的に等しい合力と合モ-メントに置き換えれば 両形式の荷重によって弾性体に生じる応力状態は 荷重点近傍では異なるけれども 荷重点から十分に遠く離れた領域では一致する これをサンブナンの原理という 例えば 図 -.5 のように端面に等分布荷重 を受ける場合と 断面の図心を通る軸線に沿って集中荷重 PAを受ける場合では 両端近傍の応力状態は全く異なるけれども 端面から 倍以上離れた領域では両応力状態はほとんど同じになる 図 -.5 のように 両端に一次的に分布する外力を受ける場合と端面の角に逆向きの集中力 P 受ける場合に 両外力のモ-メントが等しければ すなわち P /6 ならば 両端近傍を除いて両応力状態は同じになる < 一次分布の外力 とモーメントの関係を作り P /6 を導け> 幅 断面積 A PA P /6 P P P P 図 -.5 サンブナンの原理 : 単純引張 : 曲げ 幅 / / / P / / 図 -.6 端面外力分布 / P -lstic.-

11 図 -.6 のように 端面に一次的に分布する外力を受ける場合には これを静力学的に同等な荷重 下式の垂直力 Pとモ-メント に置き換えれば 端面近傍を除いて同じ応力状態になる P 8 P 図 -.7 のような梁についても同様に 荷重点 D 及び支点 A,B の近傍に対しては梁理論の結果が適用できないから 梁理論は高さに比べて長さが非常に長い梁の変形及び荷重点 支点及び端の近傍を除く部分の応力 A D P/ P/ B を解析する場合にのみ適用できる 図 -.7 単純支持梁 例題 を定数として 以下の応力成分が弾性基礎方程式の厳密解であるかどうかを調べ 厳密解ならば どのような境界条件の下での解であるかを図示せよ, 図 -.8 例題 : 単軸引張 解 上の応力成分を式. の応力のつり合い式 及び式. の応力の適合条件式に代入すれば XY なら であるから 両条件式を満足し 厳密解である そして周辺においては ± ± ± ± であるから この解は図 -.8 のように 方向に一様に引張られる長方形板に対する厳密解である 図 -.9 のような場合は ± >c, <c ± ± ± であるから 上の応力成分はこの場合に対す c c る厳密解ではない しかし サンブナンの原理によって両端近傍を除けば一様な応力状 態になり c/ である 図 -.9 端面の部分的な引張 -lstic.-

12 例題 を定数として 以下の応力成分は 図 -. に示すような周辺に一様な圧力を受ける円板に対する厳密解になっていることを示せ -, 解 上の つの応力成分は明らかに応力のつり合い式と適合条件を満足しており これを極座標に変換すれば 以下の座標変換を導け 図 -. 円板の問題 cos sin sincos -cos sin - sin cos - sincos -sin cos sincos cos -sin となるから 境界条件 -, を満足している よって この応力成分は図 -. の場合に対する厳密解である 図 -. の場合は境界条件が -, だから 上の応力成分はこの場合に対する厳密解ではない 図 -. 円管の問題 演習問題 物体力がないとき 次の応力状態は弾性基礎方程式の厳密解であるかどうかを調べよ 厳密解になり得るなら どのような境界条件の下での解であるかを図示せよ A は定数である A, A, -A, A c A,, -A / d A - /, -A /, -A A, < 解 > c つり合い式と適合条件式を満たし 厳密解である : A A / : A / A -lstic.-

13 端部にモーメント が右回りに作用する梁内の応力解である 端部のモーメント は 上下辺に働くせん断応力による左回りのモーメント と 両端部に働くせん断応力による右回りのモーメント の差に対応する - 各量は A A d A A A d A A A / > つり合い式と適合条件式を満たし 厳密解である 図のように によらない一様曲げを受ける梁内の応力を与える, A A d I A -A 図 -. のような台形板の両端に単位面積当り, の等分布荷重が作用するとき /, が厳密解になり得るか否かを調べよ 図 -. < 解 > 方向のつり合い式 : であり 他の条件式は満たす したがっ て 厳密解であるためには 単純引張 である必要がある -lstic.-

14 .5 応力関数を用いた平面応力問題の解法 ある関数を として. と表せば 式. の の応力のつり合い式. は満足され 式.4 の応力の適合条件式は.5 となる したがって 4 を満足する解を求めれば 応力は式. で得られ それらは応力のつり合い式と適合条件を満足して 厳密解になる このように応力をある関数 の微分形で表すとき を応力関数 stss fnction という Ai の応力関数という 例題 長方形板の一軸引張り は式.5 の解である そこで A を未定定数として A と置けば A となるから A/ と置けば 図 -.4 一軸引張り になる そして ± で, となり ± で であるから これは 軸方向に一様に引張られた長方形板 図 -.4 に対する厳密解である 変位を求めるには 応力 ~ ひずみ関係と ひずみ ~ 変位関係を用いて とし を代入して の代わりに を用いれば.6 と表せる 応力の適合条件式によって は調和関数であり 調和関数を,で微分したものも調和関数であるから を任意の調和関数として -lstic.4-

15 -lstic.5-.7 と置けば 式.6 は次のようになる 両辺を あるいは で積分すれば.8 ここで, 4 である そして式.7 に式. を代入すれば と との間に次のような関係があることが分かる.9 故に が決まれば式.9 によって が決まり 式.8 によって変位が求められる 例題 長方形板の一軸引張り 例題 で変位を求める / であるから 式.9 より C g f ここで f,g,c はそれぞれ のみ のみの関数及び定数である これらを全てゼロと考えても は調和関数であるから とすれば となって既知の結果に一致する f,g,c をゼロにしなければ 上記の を使って } ' { } ' { f g そして すなわち γ であるから } ' ' ' ' { f g γ g f とすれば g c,f c 剛体変位 g c -f とすれば g c,f -c 剛体回転 が付加される そこで 一般には fg としてよい

16 -lstic.6- 例題 梁の単純曲げ A と置けば 6A, となるから これは図 -.5 のように長方形板の両端面にのみ垂直応力が一次的に分布する場合を示しており その作用をモ - メント で表現すれば / / A A d 図 -.5 単純曲げしたがって /, である 次に 6A であるから 式.9 を通じて を求めると ' 6 g f A f A A は調和関数でないから が調和関数になるように f-a と決めれば A - そして変位は式.8 より次のように得られる 円板や扇形板の問題では極座標を用いるのが便利であるが 極座標で応力をある関数の微分形で表示することは容易ではない そこで 座標変換によって直角座標における応力から極座標における応力を導くことにする すなわち 座標変換は前節 例題 を参照して cos sin sin sin cos - sin - - / sin cos であるから これに式. を代入すれば sin cos sin sin sin cos.4 cos sin 偏微分の性質を利用して, による微係数を, による微係数に変えると 途中省略

17 -lstic.7-.4 次に, 方向の変位を, とすれば 右図より cossin, -sincos であるから これに式.8 の, を代入すれば sin cos cos sin 両式右辺の微分を, の微分に置き換えるために 応力関数 と ψ.4 なる関係を有する新たな調和関数 Ψ Ψ を導入すれば ψ ψ.4 例題 4 等分布荷重を受ける円板 は重調和関数だから A と置けば 式.4 より A, A, そこで A- と置けば -, -, この解は -, となるから 図 -.6 のように周辺に等分布圧力 を受ける円板の応力状態を表している 変位を求めるためには式.4 より まず Ψ を求めなければならないから - であることに注目して 順次積分すれば図 -.6 円板の問題 / ' f g f g g ψ ψ ψ ψ は調和関数であるから gf と置けば Ψ- であり 式.4 より次式を得る U

18 -lstic.8- 応力成分を求めたあと 応力 ~ ひずみ関係とひずみ ~ 変位関係を用いて, 方向のひずみを積分する形で変位を計算しても同じ答えを得る 例題 5 円孔面に内圧を受ける無限板図 -.7 の円孔を有する無限板では 中心 で応力は無限大になっても良いが ではゼロにならなければならない でゼロになる調和関数は どこかに必ず特異点をもつ必要があるので に特異点をもつ関数を用い 応力が に無関係であることに注目して Blog と置けば B/, -B/, であるから 式.4 より ψ ψ B 図 -.7 円孔の問題ここで - でなければならないから B- となり 結局 次の解を得る 前例題と同様に, 方向のひずみを積分する形で変位を計算すると d 例題 6 内外圧を受ける円板図 -.8 のような場合は 応力関数は同心円内においてのみ特異点をもたないものでなければならず 原点に特異点をもつ関数と無限遠点に特異点をもつ関数の一次結合で与えられる すなわち A Blog と置けば 式.4 より AB/, A-B/, 図 -.8 同心円板の問題

19 -lstic.9- d d d よって -, - と置けば AB/ -,AB/ - c となり 両式を解いて A,B を求め 式 に代入して d 変位を求めるためには 例題 4,5 を参照して Ψ4A になるから B A この結果は材料力学で導いた結果に一致する 材料力学では sind/ d/ として半径方向の平衡式が d - d dd dd 整理して d d, は を含まず は に無関係 平面保持 で { } d d d d d d d d より const.c を に代入して d c d 積分して /ln -c lnconst. -c c B A c c B A c c > 式 境界条件より A,B を決めて 式 d を得る また 変形は { } d d を積分して > 式

20 -lstic.- ある関数を として 薄い板がその面内に Y X.44 なる物体力 X,Y を受ける場合を考える 重力や遠心力などの物体力は全てこのような形で与えられるからである 重力の場合 物体力 :Y-/-mg mg γ 特解は,, であるから.45 は応力のつり合い式. を満足し 適合条件式. に式.44 を代入すれば Y X.46 これに式.45 を代入すれば が満足すべき方程式は次のようになる 平面ひずみでは 4 次に変位を求めるために を任意の調和関数として式.46 より が調和関数 : なら 式.48 に を行うと右辺第 項が消える.48 になるから 式.6 に式 を代入すれば 変位は物体力がない場合と同じ式で表され などより.49 ただし と の関係は異なり 式.48 に式.45 を代入すれば次のようになる.5

21 例題 7 自重を受ける板 図 -.9 のように 垂直に吊るされた長方形板に単位体積当りγの自重が作用すれば Xγ,Y であるから 式.44 より -γ である そして であるから 式.47 よりは 4 を L 満足すればよい そこで A B と置けば 式 を式.45 に代入して 図 -.9 自重を受ける板 B-γ 6A-γ c よって Aγ/6 と置けば ± となり L と置けば BγL/ となり境界条件が満足される 結局 応力関数 とつの応力成分は次式で与えられる L γ d -γ-l,, 6 変位を求めるためには式.5 より γ L γ L f ' γ / L f g c ここで は調和関数ではないから g- /6 f c f となり は調和関数となって 式 df を式.49 に代入すれば 次式を得る γ γ L L g -γ /, -γl/ であるから 辺 で変位が拘束されなければ上の結 果は正しいが が固定される場合には この結果は固定辺近傍を除いて適用できる そして γ L L L となって材料力学で得られる結果に一致する 材料力学では以下のように誘導される γl-, / γ γ L d L L d L -lstic.-

<4D F736F F D2097CD8A7793FC96E582BD82ED82DD8A E6318FCD2E646F63>

<4D F736F F D2097CD8A7793FC96E582BD82ED82DD8A E6318FCD2E646F63> - 第 章たわみ角法の基本式 ポイント : たわみ角法の基本式を理解する たわみ角法の基本式を梁の微分方程式より求める 本章では たわみ角法の基本式を導くことにする 基本式の誘導法は各種あるが ここでは 梁の微分方程式を解いて基本式を求める方法を採用する この本で使用する座標系は 右手 右ネジの法則に従った座標を用いる また ひとつの部材では 図 - に示すように部材の左端の 点を原点とし 軸線を

More information

Microsoft Word - 1B2011.doc

Microsoft Word - 1B2011.doc 第 14 回モールの定理 ( 単純梁の場合 ) ( モールの定理とは何か?p.11) 例題 下記に示す単純梁の C 点のたわみ角 θ C と, たわみ δ C を求めよ ただし, 部材の曲げ 剛性は材軸に沿って一様で とする C D kn B 1.5m 0.5m 1.0m 解答 1 曲げモーメント図を描く,B 点の反力を求める kn kn 4 kn 曲げモーメント図を描く knm 先に得られた曲げモーメントの値を

More information

パソコンシミュレータの現状

パソコンシミュレータの現状 第 2 章微分 偏微分, 写像 豊橋技術科学大学森謙一郎 2. 連続関数と微分 工学において物理現象を支配する方程式は微分方程式で表されていることが多く, 有限要素法も微分方程式を解く数値解析法であり, 定式化においては微分 積分が一般的に用いられており. 数学の基礎知識が必要になる. 図 2. に示すように, 微分は連続な関数 f() の傾きを求めることであり, 微小な に対して傾きを表し, を無限に

More information

静的弾性問題の有限要素法解析アルゴリズム

静的弾性問題の有限要素法解析アルゴリズム 概要 基礎理論. 応力とひずみおよび平衡方程式. 降伏条件式. 構成式 ( 応力 - ひずみ関係式 ) 有限要素法. 有限要素法の概要. 仮想仕事の原理式と変分原理. 平面ひずみ弾性有限要素法定式化 FEM の基礎方程式平衡方程式. G G G ひずみ - 変位関係式 w w w. kl jkl j D 構成式応力 - ひずみ関係式 ) (. 変位の境界条件力の境界条件境界条件式 t S on V

More information

<4D F736F F D208D5C91A297CD8A7793FC96E591E631308FCD2E646F63>

<4D F736F F D208D5C91A297CD8A7793FC96E591E631308FCD2E646F63> 第 1 章モールの定理による静定梁のたわみ 1-1 第 1 章モールの定理による静定梁のたわみ ポイント : モールの定理を用いて 静定梁のたわみを求める 断面力の釣合と梁の微分方程式は良く似ている 前章では 梁の微分方程式を直接積分する方法で 静定梁の断面力と変形状態を求めた 本章では 梁の微分方程式と断面力による力の釣合式が類似していることを利用して 微分方程式を直接解析的に解くのではなく 力の釣合より梁のたわみを求める方法を学ぶ

More information

Microsoft Word - thesis.doc

Microsoft Word - thesis.doc 剛体の基礎理論 -. 剛体の基礎理論初めに本論文で大域的に使用する記号を定義する. 使用する記号トルク撃力力角運動量角速度姿勢対角化された慣性テンソル慣性テンソル運動量速度位置質量時間 J W f F P p .. 質点の並進運動 質点は位置 と速度 P を用いる. ニュートンの運動方程式 という状態を持つ. 但し ここでは速度ではなく運動量 F P F.... より質点の運動は既に明らかであり 質点の状態ベクトル

More information

Microsoft PowerPoint - zairiki_3

Microsoft PowerPoint - zairiki_3 材料力学講義 (3) 応力と変形 Ⅲ ( 曲げモーメント, 垂直応力度, 曲率 ) 今回は, 曲げモーメントに関する, 断面力 - 応力度 - 変形 - 変位の関係について学びます 1 曲げモーメント 曲げモーメント M 静定力学で求めた曲げモーメントも, 仮想的に断面を切ることによって現れる内力です 軸方向力は断面に働く力 曲げモーメント M は断面力 曲げモーメントも, 一つのモーメントとして表しますが,

More information

上式を整理すると d df - N = 両辺を で割れば df d - N = (5) となる ところで

上式を整理すると d df - N = 両辺を で割れば df d - N = (5) となる ところで 長柱の座屈 断面寸法に対して非常に長い柱に圧縮荷重を加えると 初期段階においては一様圧縮変形を生ずるが ある荷重に達すると急に横方向にたわむことがある このように長柱が軸圧縮荷重を受けていて突然横方向にたわむ現象を座屈といい この現象を示す荷重を座屈荷重 cr このときの応力を座屈応力 s cr という 図 に示すように一端を鉛直な剛性壁に固定された長柱が自 図 曲げと圧縮を受けるはり + 由端に圧縮力

More information

2 図微小要素の流体の流入出 方向の断面の流体の流入出の収支断面 Ⅰ から微小要素に流入出する流体の流量 Q 断面 Ⅰ は 以下のように定式化できる Q 断面 Ⅰ 流量 密度 流速 断面 Ⅰ の面積 微小要素の断面 Ⅰ から だけ移動した断面 Ⅱ を流入出する流体の流量 Q 断面 Ⅱ は以下のように

2 図微小要素の流体の流入出 方向の断面の流体の流入出の収支断面 Ⅰ から微小要素に流入出する流体の流量 Q 断面 Ⅰ は 以下のように定式化できる Q 断面 Ⅰ 流量 密度 流速 断面 Ⅰ の面積 微小要素の断面 Ⅰ から だけ移動した断面 Ⅱ を流入出する流体の流量 Q 断面 Ⅱ は以下のように 3 章 Web に Link 解説 連続式 微分表示 の誘導.64 *4. 連続式連続式は ある領域の内部にある流体の質量の収支が その表面からの流入出の合計と等しくなることを定式化したものであり 流体における質量保存則を示したものである 2. 連続式 微分表示 の誘導図のような微小要素 コントロールボリューム の領域内の流体の増減と外部からの流体の流入出を考えることで定式化できる 微小要素 流入

More information

応用数学Ⅱ 偏微分方程式(2) 波動方程式(12/13)

応用数学Ⅱ 偏微分方程式(2) 波動方程式(12/13) 偏微分方程式. 偏微分方程式の形 偏微分 偏導関数 つの独立変数 をもつ関数 があるとき 変数 が一定値をとって だけが変化したとす ると は だけの関数となる このとき を について微分して得られる関数を 関数 の に関する 偏微分係数 略して偏微分 あるいは偏導関数 pil deiie といい 次のように表される についても同様な偏微分を定義できる あるいは あるいは - あるいは あるいは -

More information

OCW-iダランベールの原理

OCW-iダランベールの原理 講義名連続体力学配布資料 OCW- 第 2 回ダランベールの原理 無機材料工学科准教授安田公一 1 はじめに今回の講義では, まず, 前半でダランベールの原理について説明する これを用いると, 動力学の問題を静力学の問題として解くことができ, さらに, 前回の仮想仕事の原理を適用すると動力学問題も簡単に解くことができるようになる また, 後半では, ダランベールの原理の応用として ラグランジュ方程式の導出を示す

More information

第1章 単 位

第1章  単  位 H. Hamano,. 長柱の座屈 - 長柱の座屈 長い柱は圧縮荷重によって折れてしまう場合がある. この現象を座屈といい, 座屈するときの荷重を座屈荷重という.. 換算長 長さ の柱に荷重が作用する場合, その支持方法によって, 柱の理論上の長さ L が異なる. 長柱の計算は, この L を用いて行うと都合がよい. この L を換算長 ( あるいは有効長さという ) という. 座屈荷重は一般に,

More information

Microsoft PowerPoint - H21生物計算化学2.ppt

Microsoft PowerPoint - H21生物計算化学2.ppt 演算子の行列表現 > L いま 次元ベクトル空間の基底をケットと書くことにする この基底は完全系を成すとすると 空間内の任意のケットベクトルは > > > これより 一度基底を与えてしまえば 任意のベクトルはその基底についての成分で完全に記述することができる これらの成分を列行列の形に書くと M これをベクトル の基底 { >} による行列表現という ところで 行列 A の共役 dont 行列は A

More information

Laplace2.rtf

Laplace2.rtf =0 ラプラスの方程式は 階の微分方程式で, 一般的に3つの座標変数をもつ. ここでは, 直角座標系, 円筒座標系, 球座標系におけるラプラスの方程式の解き方を説明しよう. 座標変数ごとに方程式を分離し, それを解いていく方法は変数分離法と呼ばれる. 変数分離解と固有関数展開法. 直角座標系における 3 次元の偏微分方程式 = x + y + z =0 (.) を解くために,x, y, z について互いに独立な関数の積で成り立っていると考え,

More information

第1章 単 位

第1章  単  位 H. Hmno 問題解答 問題解答. 力の釣合い [ 問題.] V : sin. H :.cos. 7 V : sin sin H : cos cos cos 上第 式より これと第 式より.. cos V : sin sin H : coscos cos 上第 式より これと第 式より.98. cos [ 問題.] :. V :. : 9 9. V :. : sin V : sin 8.78 H

More information

vecrot

vecrot 1. ベクトル ベクトル : 方向を持つ量 ベクトルには 1 方向 2 大きさ ( 長さ ) という 2 つの属性がある ベクトルの例 : 物体の移動速度 移動量電場 磁場の強さ風速力トルクなど 2. ベクトルの表現 2.1 矢印で表現される 矢印の長さ : ベクトルの大きさ 矢印の向き : ベクトルの方向 2.2 2 個の点を用いて表現する 始点 () と終点 () を結ぶ半直線の向き : ベクトルの方向

More information

第3章 ひずみ

第3章 ひずみ 第 4 章 応力とひずみの関係 4. 単軸応力を受ける弾性体の応力とひずみの関係 温度一定の下で, 負荷による変形が徐荷によって完全に回復する場合を広義の弾性というが, 狭義の弾 性では, 負荷過程と徐荷過程で応力 - ひずみ関係が一致しない場合は含めず ( 図 - 参照 ), 与えられたひ ずみ状態に対して応力が一意に定まる, つまり応力がひずみの関数と して表される. このような物体を狭義の弾性体

More information

第 5 章 構造振動学 棒の振動を縦振動, 捩り振動, 曲げ振動に分けて考える. 5.1 棒の縦振動と捩り振動 まっすぐな棒の縦振動の固有振動数 f[ Hz] f = l 2pL である. ただし, L [ 単位 m] は棒の長さ, [ 2 N / m ] 3 r[ 単位 Kg / m ] E r

第 5 章 構造振動学 棒の振動を縦振動, 捩り振動, 曲げ振動に分けて考える. 5.1 棒の縦振動と捩り振動 まっすぐな棒の縦振動の固有振動数 f[ Hz] f = l 2pL である. ただし, L [ 単位 m] は棒の長さ, [ 2 N / m ] 3 r[ 単位 Kg / m ] E r 第 5 章 構造振動学 棒の振動を縦振動, 捩り振動, 曲げ振動に分けて考える 5 棒の縦振動と捩り振動 まっすぐな棒の縦振動の固有振動数 f[ Hz] f l pl である ただし, L [ 単位 m] は棒の長さ, [ N / m ] [ 単位 Kg / m ] E は (5) E 単位は棒の材料の縦弾性係数 ( ヤング率 ) は棒の材料の単位体積当りの質量である l は境界条件と振動モードによって決まる無

More information

<4D F736F F F696E74202D E94D58B9393AE82F AC82B782E982BD82DF82CC8AEE E707074>

<4D F736F F F696E74202D E94D58B9393AE82F AC82B782E982BD82DF82CC8AEE E707074> 地盤数値解析学特論 防災環境地盤工学研究室村上哲 Mrakam, Satoh. 地盤挙動を把握するための基礎. 変位とひずみ. 力と応力. 地盤の変形と応力. 変位とひずみ 変形勾配テンソルひずみテンソル ひずみテンソル : 材料線素の長さの 乗の変化量の尺度 Green-Lagrange のひずみテンソルと Alman のひずみテンソル 微小変形状態でのひずみテンソル ひずみテンソルの物理的な意味

More information

第1章 序論

第1章 序論 第 章 応力とその性質. 応力.. 垂直応力とせん断応力物体が外力 (external force) を受けているとき, 物体内部では断面に内力 (internal force) が働き, その断面で分離しないように抵抗している. つまり内力は断面を結合する力である. 断面に垂直な内力が働く場合, その単位面積当たりの値を垂直応力 (normal stress) という. 例えば図 -(a) に示すように,

More information

Microsoft Word - 09弾性01応力ひずみ.doc

Microsoft Word - 09弾性01応力ひずみ.doc 第 章応力とひずみ. 応力 ( 応力の定義 単位面積当りの内力を 応力 と呼び q 応力 :plm Δ0 ( F/ (. P F で定義される この Fを面に垂直 平行の 成分 ( F n, F t に分解すると 対応して F P 垂直応力 :lm Δ0 ( F n / せん断応力 :lm Δ0 ( F t / (. が定義される ( 図 -. せん断応力 は更に 面 R R 内の直交座標, 方向のせん断応力に分解できる

More information

新日本技研 ( 株 ) 技術報告 弾性横桁で支持された床版の断面力式 仙台支店 設計部高橋眞太郎 本社 顧問倉方慶夫 元本社 顧問高尾孝二 要旨 橋梁形式は 公共事業費抑制の要求を受けてコスト縮減を図ることができる合理化形式の採用が多くなっている この流れを受けて鈑桁形式では少数鈑桁橋

新日本技研 ( 株 ) 技術報告 弾性横桁で支持された床版の断面力式 仙台支店 設計部高橋眞太郎 本社 顧問倉方慶夫 元本社 顧問高尾孝二 要旨 橋梁形式は 公共事業費抑制の要求を受けてコスト縮減を図ることができる合理化形式の採用が多くなっている この流れを受けて鈑桁形式では少数鈑桁橋 新日本技研 ( 株 技術報告 - 弾性横桁で支持された床版の断面力式 仙台支店 設計部高橋眞太郎 本社 顧問倉方慶夫 元本社 顧問高尾孝二 要旨 橋梁形式は 公共事業費抑制の要求を受けてコスト縮減を図ることができる合理化形式の採用が多くなっている この流れを受けて鈑桁形式では少数鈑桁橋の採用が多くなっている この形式はおよそ 年前に 日本道路公団が欧州の少数鈑桁橋を参考にPC 床版を有する少数鈑桁橋の検討を始め

More information

断面の諸量

断面の諸量 断面の諸量 建設システム工学科高谷富也 断面 次モーメント 定義 G d G d 座標軸の平行移動 断面 次モーメント 軸に平行な X Y 軸に関する断面 次モーメント G X G Y を求める X G d d d Y 0 0 G 0 G d d d 0 0 G 0 重心 軸に関する断面 次モーメントを G G とし 軸に平行な座標軸 X Y の原点が断面の重心に一致するものとする G G, G G

More information

線積分.indd

線積分.indd 線積分 線積分 ( n, n, n ) (ξ n, η n, ζ n ) ( n-, n-, n- ) (ξ k, η k, ζ k ) ( k, k, k ) ( k-, k-, k- ) 物体に力 を作用させて位置ベクトル A の点 A から位置ベクトル の点 まで曲線 に沿って物体を移動させたときの仕事 W は 次式で計算された A, A, W : d 6 d+ d+ d@,,, d+ d+

More information

DVIOUT-SS_Ma

DVIOUT-SS_Ma 第 章 微分方程式 ニュートンはリンゴが落ちるのを見て万有引力を発見した という有名な逸話があります 無重力の宇宙船の中ではリンゴは落ちないで静止していることを考えると 重力が働くと始め静止しているものが動き出して そのスピードはどんどん大きくなる つまり速度の変化が現れることがわかります 速度は一般に時間と共に変化します 速度の瞬間的変化の割合を加速度といい で定義しましょう 速度が変化する, つまり加速度がでなくなるためにはその原因があり

More information

材料の力学解答集

材料の力学解答集 材料の力学 ( 第 章 ) 解答集 ------------------------------------------------------------------------------- 各種応力の計算問題 (No1) 1. 断面積 1mm の材料に 18N の引張荷重が働くとき, 断面に生じる応力はどれほどか ( 18(N/mm ) または 18(MP)) P 18( N) 18 N /

More information

<4D F736F F F696E74202D20906C8D488AC28BAB90DD8C7689F090CD8D488A D91E F1>

<4D F736F F F696E74202D20906C8D488AC28BAB90DD8C7689F090CD8D488A D91E F1> 人工環境設計解析工学構造力学と有限要素法 ( 第 回 ) 東京大学新領域創成科学研究科 鈴木克幸 固体力学の基礎方程式 変位 - ひずみの関係 適合条件式 ひずみ - 応力の関係 構成方程式 応力 - 外力の関係 平衡方程式 境界条件 変位規定境界 反力規定境界 境界条件 荷重応力ひずみ変形 場の方程式 Γ t Γ t 平衡方程式構成方程式適合条件式 構造力学の基礎式 ひずみ 一軸 荷重応力ひずみ変形

More information

Microsoft PowerPoint - elast.ppt [互換モード]

Microsoft PowerPoint - elast.ppt [互換モード] 弾性力学入門 年夏学期 中島研吾 科学技術計算 Ⅰ(48-7) コンピュータ科学特別講義 Ⅰ(48-4) elast 弾性力学 弾性力学の対象 応力 弾性力学の支配方程式 elast 3 弾性力学 連続体力学 (Continuum Mechanics) 固体力学 (Solid Mechanics) の一部 弾性体 (lastic Material) を対象 弾性論 (Theor of lasticit)

More information

Microsoft PowerPoint - シミュレーション工学-2010-第1回.ppt

Microsoft PowerPoint - シミュレーション工学-2010-第1回.ppt シミュレーション工学 ( 後半 ) 東京大学人工物工学研究センター 鈴木克幸 CA( Compter Aded geerg ) r. Jaso Lemo (SC, 98) 設計者が解析ツールを使いこなすことにより 設計の評価 設計の質の向上を図る geerg の本質の 計算機による支援 (CA CAM などより広い名前 ) 様々な汎用ソフトの登場 工業製品の設計に不可欠のツール 構造解析 流体解析

More information

Microsoft PowerPoint - 構造力学Ⅰ第03回.pptx

Microsoft PowerPoint - 構造力学Ⅰ第03回.pptx 分布荷重の合力 ( 効果 ) 前回の復習 ( 第 回 ) p. 分布荷重は平行な力が連続して分布していると考えられる 例 : 三角形分布 l dx P=ql/ q l qx q l 大きさ P dx x 位置 Px 0 x x 0 l ql 0 : 面積に等しい 0 l l 重心に等しいモーメントの釣合より ( バリノンの定理 ) l qx l qx ql q 3 l ql l xdx x0 xdx

More information

19年度一次基礎科目計算問題略解

19年度一次基礎科目計算問題略解 9 年度機械科目 ( 計算問題主体 ) 略解 基礎科目の解析の延長としてわかる範囲でトライしてみたものです Coprigh (c) 7 宮田明則技術士事務所 Coprigh (c) 7 宮田明則技術士事務所 Ⅳ- よってから は許容荷重として は直径をロ - プの断面積 Ⅳ- cr E E E I, から Ⅳ- Ⅳ- : q q q q q q q q q で絶対値が最大 で絶対値が最大モーメントはいずれも中央で最大となる

More information

Microsoft Word - 付録A,Bとその図

Microsoft Word - 付録A,Bとその図 付録 A 1 自由度系 ( 自由振動 ) の解法 はじめに振動現象を解明するのに基本となる 1 自由度不減衰系 ( 自由振動 ) の運動方程式の作成方法とその微分 ( あるいは偏微分 ) 方程式の解法を説明する. 1 自由度系モデルには, 単振動のばね 質量モデルと数学振子を用いる. A.1 運動方程式 ( 微分方程式 ) を立てる A.1.1 ばね 質量の場合 ( 1) 単振動の運動から運動方程式を求める

More information

FEM原理講座 (サンプルテキスト)

FEM原理講座 (サンプルテキスト) サンプルテキスト FEM 原理講座 サイバネットシステム株式会社 8 年 月 9 日作成 サンプルテキストについて 各講師が 講義の内容が伝わりやすいページ を選びました テキストのページは必ずしも連続していません 一部を抜粋しています 幾何光学講座については 実物のテキストではなくガイダンスを掲載いたします 対象とする構造系 物理モデル 連続体 固体 弾性体 / 弾塑性体 / 粘弾性体 / 固体

More information

Microsoft Word - 断面諸量

Microsoft Word - 断面諸量 応用力学 Ⅱ 講義資料 / 断面諸量 断面諸量 断面 次 次モーメントの定義 図 - に示すような形状を有する横断面を考え その全断面積を とする いま任意に定めた直交座標軸 O-, をとり また図中の斜線部の微小面積要素を d とするとき d, d () で定義される, をそれぞれ与えられた横断面の 軸, 軸に関する断面 次モーメント (geometrcal moment of area) という

More information

ベクトル公式.rtf

ベクトル公式.rtf 6 章ラプラシアン, ベクトル公式, 定理 6.1 ラプラシアン Laplacian φ はベクトル量である. そこでさらに発散をとると, φ はどういう形になるであろうか? φ = a + a + a φ a + a φ + a φ = φ + φ + φ = 2 φ + 2 φ 2 + 2 φ 2 2 φ = 2 φ 2 + 2 φ 2 + 2 φ 2 = 2 φ したがって,2 階の偏微分演算となる.

More information

2018年度 東京大・理系数学

2018年度 東京大・理系数学 08 東京大学 ( 理系 ) 前期日程問題 解答解説のページへ関数 f ( ) = + cos (0 < < ) の増減表をつくり, + 0, 0 のと sin きの極限を調べよ 08 東京大学 ( 理系 ) 前期日程問題 解答解説のページへ n+ 数列 a, a, を, Cn a n = ( n =,, ) で定める n! an qn () n とする を既約分数 an p として表したときの分母

More information

5-仮想仕事式と種々の応力.ppt

5-仮想仕事式と種々の応力.ppt 1 以上, 運動の変数についての話を終える. 次は再び力の変数に戻る. その前に, まず次の話が唐突と思われないように 以下は前置き. 先に, 力の変数と運動の変数には対応関係があって, 適当な内積演算によって仕事量を表す ことを述べた. 実は,Cauchy 応力と速度勾配テンソル ( あるいは変位勾配テンソル ) を用いると, それらの内積は内部仮想仕事を表していて, そして, それは外力がなす仮想仕事に等しいという

More information

<4D F736F F D20824F F6490CF95AA82C696CA90CF95AA2E646F63>

<4D F736F F D20824F F6490CF95AA82C696CA90CF95AA2E646F63> 1/15 平成 3 年 3 月 4 日午後 6 時 49 分 5 ベクトルの 重積分と面積分 5 重積分と面積分 Ⅰ. 重積分 と で 回積分することを 重積分 といいます この 重積分は何を意味しているのでしょう? 通常の積分 (1 重積分 ) では C d 図 1a 1 f d (5.1) 1 f d f ( ) は 図形的には図 1a のように面積を表しています つまり 1 f ( ) を高さとしてプロットすると図

More information

5. 変分法 (5. 変分法 汎関数 : 関数の関数 (, (, ( =, = では, の値は変えないで, その間の に対する の値をいろいろと変えるとき, の値が極地をとるような関数 ( はどのような関数形であるかという問題を考える. そのような関数が求められたとし, そのからのずれを変分 δ と

5. 変分法 (5. 変分法 汎関数 : 関数の関数 (, (, ( =, = では, の値は変えないで, その間の に対する の値をいろいろと変えるとき, の値が極地をとるような関数 ( はどのような関数形であるかという問題を考える. そのような関数が求められたとし, そのからのずれを変分 δ と Arl, 6 平成 8 年度学部前期 教科書 : 力学 Ⅱ( 原島鮮著, 裳華房 金用日 :8 限,9 限, 限 (5:35~8: 丸山央峰 htt://www.orootcs.mech.ngo-u.c.j/ Ngo Unverst, Borootcs, Ar L 5. 変分法 (5. 変分法 汎関数 : 関数の関数 (, (, ( =, = では, の値は変えないで, その間の に対する の値をいろいろと変えるとき,

More information

<4D F736F F D208D5C91A297CD8A7793FC96E591E631318FCD2E646F63>

<4D F736F F D208D5C91A297CD8A7793FC96E591E631318FCD2E646F63> 11-1 第 11 章不静定梁のたわみ ポイント : 基本的な不静定梁のたわみ 梁部材の断面力とたわみ 本章では 不静定構造物として 最も単純でしかも最も大切な両端固定梁の応力解析を行う ここでは 梁の微分方程式を用いて解くわけであるが 前章とは異なり 不静定構造物であるため力の釣合から先に断面力を決定することができない そのため 梁のたわみ曲線と同時に断面力を求めることになる この両端固定梁のたわみ曲線や断面力分布は

More information

点におけるひずみの定義 ( その1)-(ε, ε,γ ) の定義ひずみは 構造物の中で変化しているのが一般的である このために 応力と同様に 構造物内の任意の点で定義できるようにした方がよい また 応力と同様に 一つの点に注目しても ひずみは向きによって値が異なる これらを勘案し あ

点におけるひずみの定義 ( その1)-(ε, ε,γ ) の定義ひずみは 構造物の中で変化しているのが一般的である このために 応力と同様に 構造物内の任意の点で定義できるようにした方がよい また 応力と同様に 一つの点に注目しても ひずみは向きによって値が異なる これらを勘案し あ 3. 変位とひずみ 3.1 変位関数構造物は外力の作用の下で変形する いま この変形により構造物内の任意の点 P(,,z) が P (',',z') に移動したものとする ( 図 3.1 参照 ) (,,z) は変形前の点 Pの座標 (',', z') は変形後の座標である このとき 次式で示される変形前後の座標の差 u ='- u ='- u z =z'-z (3.1) を変位成分と呼ぶ 変位 (

More information

Chap2.key

Chap2.key . f( ) V (V V ) V e + V e V V V V ( ) V V ( ) E. - () V (0 ) () V (0 ) () V (0 ) (4) V ( ) E. - () V (0 ) () V (0 ) O r θ ( ) ( ) : (r θ) : { r cos θ r sn θ { r + () V (0 ) (4) V ( ) θ θ arg( ) : π π

More information

補足 中学で学習したフレミング左手の法則 ( 電 磁 力 ) と関連付けると覚えやすい 電磁力は電流と磁界の外積で表される 力 F 磁 電磁力 F li 右ねじの回転の向き電 li ( l は導線の長さ ) 補足 有向線分とベクトル有向線分 : 矢印の位

補足 中学で学習したフレミング左手の法則 ( 電 磁 力 ) と関連付けると覚えやすい 電磁力は電流と磁界の外積で表される 力 F 磁 電磁力 F li 右ねじの回転の向き電 li ( l は導線の長さ ) 補足 有向線分とベクトル有向線分 : 矢印の位 http://totemt.sur.ne.p 外積 ( ベクトル積 ) の活用 ( 面積, 法線ベクトル, 平面の方程式 ) 3 次元空間の つのベクトルの積が つのベクトルを与えるようなベクトルの掛け算 ベクトルの積がベクトルを与えることからベクトル積とも呼ばれる これに対し内積は符号と大きさをもつ量 ( スカラー量 ) を与えるので, スカラー積とも呼ばれる 外積を使うと, 平行四辺形や三角形の面積,

More information

例題1 転がり摩擦

例題1 転がり摩擦 重心 5.. 重心問題解法虎の巻. 半円 分円. 円弧. 扇形. 半球殻 5. 半球体 6. 厚みのある半球殻 7. 三角形 8. 円錐 9. 円錐台. 穴あき板. 空洞のある半球ボール 重心問題解法虎の巻 関西大学工学部物理学教室 齊藤正 重心を求める場合 質点系の重心の求め方が基本 実際の物体では連続体であるので 積分形式で求める場合が多い これらの式は 次元のベクトル形式で書かれている通り つの式は実際には

More information

<4D F736F F F696E74202D AB97CD8A E631318FCD5F AB8D5C90AC8EAE816A2E B8CDD8AB B83685D>

<4D F736F F F696E74202D AB97CD8A E631318FCD5F AB8D5C90AC8EAE816A2E B8CDD8AB B83685D> 弾塑性構成式 弾塑性応力 ひずみ解析における基礎式 応力の平衡方程式 ひずみの適合条件式 構成式 (), 全ひずみ理論 () 硬化則 () 塑性ポテンシャル理論の概要 ひずみ 応力の増分, 速度 弾性丸棒の引張変形を考える ( 簡単のため 公称 で考える ). 時間増分 dt 時刻 t 0 du u 時刻 t t 時刻 t t のひずみ, 応力 u, 微小な時間増分 dt におけるひずみ増分, 応力増分

More information

(Microsoft PowerPoint - \221\34613\211\361)

(Microsoft PowerPoint - \221\34613\211\361) 計算力学 ~ 第 回弾性問題の有限要素解析 (Ⅱ)~ 修士 年後期 ( 選択科目 ) 担当 : 岩佐貴史 講義の概要 全 5 講義. 計算力学概論, ガイダンス. 自然現象の数理モデル化. 行列 場とその演算. 数値計算法 (Ⅰ) 5. 数値計算法 (Ⅱ) 6. 初期値 境界値問題 (Ⅰ) 7. 初期値 境界値問題 (Ⅱ) 8. マトリックス変位法による構造解析 9. トラス構造の有限要素解析. 重み付き残差法と古典的近似解法.

More information

<4D F736F F D208D5C91A297CD8A7793FC96E591E6398FCD2E646F63>

<4D F736F F D208D5C91A297CD8A7793FC96E591E6398FCD2E646F63> 9-1 第 9 章静定梁のたわみ ポイント : 梁の微分方程式を用いて梁のたわみを求める 静定梁のたわみを計算 前章では 梁の微分方程式を導き 等分布荷重を受ける単純梁の解析を行った 本節では 導いた梁の微分方程式を利用し さらに多くの静定構造物の解析を行い 梁の最大たわみや変形状態を求めることにする さらに を用いて課題で解析した構造を数値計算し 解析結果を比較 検討しよう 9.1 はじめに キーワード梁の微分方程式単純梁の応力解析片持ち梁の応力解析

More information

2011年度 筑波大・理系数学

2011年度 筑波大・理系数学 0 筑波大学 ( 理系 ) 前期日程問題 解答解説のページへ O を原点とするy 平面において, 直線 y= の を満たす部分をC とする () C 上に点 A( t, ) をとるとき, 線分 OA の垂直二等分線の方程式を求めよ () 点 A が C 全体を動くとき, 線分 OA の垂直二等分線が通過する範囲を求め, それ を図示せよ -- 0 筑波大学 ( 理系 ) 前期日程問題 解答解説のページへ

More information

Microsoft PowerPoint - fuseitei_6

Microsoft PowerPoint - fuseitei_6 不静定力学 Ⅱ 骨組の崩壊荷重の計算 不静定力学 Ⅱ では, 最後の問題となりますが, 骨組の崩壊荷重の計算法について学びます 1 参考書 松本慎也著 よくわかる構造力学の基本, 秀和システム このスライドの説明には, 主にこの参考書の説明を引用しています 2 崩壊荷重 構造物に作用する荷重が徐々に増大すると, 構造物内に発生する応力は増加し, やがて, 構造物は荷重に耐えられなくなる そのときの荷重を崩壊荷重あるいは終局荷重という

More information

PowerPoint Presentation

PowerPoint Presentation 付録 2 2 次元アフィン変換 直交変換 たたみ込み 1.2 次元のアフィン変換 座標 (x,y ) を (x,y) に移すことを 2 次元での変換. 特に, 変換が と書けるとき, アフィン変換, アフィン変換は, その 1 次の項による変換 と 0 次の項による変換 アフィン変換 0 次の項は平行移動 1 次の項は座標 (x, y ) をベクトルと考えて とすれば このようなもの 2 次元ベクトルの線形写像

More information

<4D F736F F D2091E6368FCD92508F838E788E9D82CC8BE98C6094C582F089F082AD4E CC95FB96402E646F63>

<4D F736F F D2091E6368FCD92508F838E788E9D82CC8BE98C6094C582F089F082AD4E CC95FB96402E646F63> 57-6 第 6 章 単純支持の矩形板を解く Nvier の方法 目次 第 6 章単純支持の矩形板を解く Nvier の方法 6. 概説 6. 正弦型の分布荷重を受ける単純支持の矩形板 Ⅰ 6.3 正弦型の分布荷重を受ける単純支持の矩形板 Ⅱ 5 6. 任意の分布荷重をうける単純支持の矩形板 6 6.5 例題 9 [ 例題 ] 満載等分布荷重をうける 辺単純支持の矩形板 9 [ 例題 ] 中心部に矩形型の等分布荷重が作用する

More information

<4D F736F F D20824F B CC92E8979D814696CA90CF95AA82C691CC90CF95AA2E646F63>

<4D F736F F D20824F B CC92E8979D814696CA90CF95AA82C691CC90CF95AA2E646F63> 1/1 平成 23 年 3 月 24 日午後 6 時 52 分 6 ガウスの定理 : 面積分と体積分 6 ガウスの定理 : 面積分と体積分 Ⅰ. 直交座標系 ガウスの定理は 微分して すぐに積分すると元に戻るというルールを 3 次元積分に適用した定理になります よく知っているのは 簡単化のため 変数が1つの場合は dj ( d ( ににします全微分 = 偏微分 d = d = J ( + C d です

More information

Microsoft PowerPoint - 10.pptx

Microsoft PowerPoint - 10.pptx m u. 固有値とその応用 8/7/( 水 ). 固有値とその応用 固有値と固有ベクトル 行列による写像から固有ベクトルへ m m 行列 によって線形写像 f : R R が表せることを見てきた ここでは 次元平面の行列による写像を調べる とし 写像 f : を考える R R まず 単位ベクトルの像 u y y f : R R u u, u この事から 線形写像の性質を用いると 次の格子上の点全ての写像先が求まる

More information

0 21 カラー反射率 slope aspect 図 2.9: 復元結果例 2.4 画像生成技術としての計算フォトグラフィ 3 次元情報を復元することにより, 画像生成 ( レンダリング ) に応用することが可能である. 近年, コンピュータにより, カメラで直接得られない画像を生成する技術分野が生

0 21 カラー反射率 slope aspect 図 2.9: 復元結果例 2.4 画像生成技術としての計算フォトグラフィ 3 次元情報を復元することにより, 画像生成 ( レンダリング ) に応用することが可能である. 近年, コンピュータにより, カメラで直接得られない画像を生成する技術分野が生 0 21 カラー反射率 slope aspect 図 2.9: 復元結果例 2.4 画像生成技術としての計算フォトグラフィ 3 次元情報を復元することにより, 画像生成 ( レンダリング ) に応用することが可能である. 近年, コンピュータにより, カメラで直接得られない画像を生成する技術分野が生まれ, コンピューテーショナルフォトグラフィ ( 計算フォトグラフィ ) と呼ばれている.3 次元画像認識技術の計算フォトグラフィへの応用として,

More information

<4D F736F F D EBF97CD8A B7982D189898F4B A95748E9197BF4E6F31312E646F63>

<4D F736F F D EBF97CD8A B7982D189898F4B A95748E9197BF4E6F31312E646F63> 土質力学 Ⅰ 及び演習 (B 班 : 小高担当 ) 配付資料 N.11 (6.1.1) モールの応力円 (1) モールの応力円を使う上での3つの約束 1 垂直応力は圧縮を正とし, 軸の右側を正の方向とする 反時計まわりのモーメントを起こさせるせん断応力 の組を正とする 3 物体内で着目する面が,θ だけ回転すると, モールの応力円上では θ 回転する 1とは物理的な実際の作用面とモールの応力円上との回転の方向を一致させるために都合の良い約束である

More information

Microsoft PowerPoint - 9.pptx

Microsoft PowerPoint - 9.pptx 9/7/8( 水 9. 線形写像 ここでは 行列の積によって 写像を定義できることをみていく また 行列の積によって定義される写像の性質を調べていく 拡大とスカラー倍 行列演算と写像 ( 次変換 拡大後 k 倍 k 倍 k 倍拡大の関係は スカラー倍を用いて次のように表現できる p = (, ' = k ' 拡大前 p ' = ( ', ' = ( k, k 拡大 4 拡大と行列の積 拡大後 k 倍

More information

1

1 半剛節が部材上の任意点にある部材剛性方程式 米子高専 川端康洋 稲田祐二. ピン半剛節を有する部材の解析の歴史 ()940 二見秀雄材の途中にピン接合点を有するラーメン材の算式とその応用建築学会論文集 つのピン節を含む部材の撓角法基本式と荷重項ピン節を含む部材の撓角法基本式と荷重項が求められている 以降 固定モーメント法や異形ラーメンの解法への応用が研究された 戦後には 関連する論文は見当たらない

More information

2015-2017年度 2次数学セレクション(複素数)解答解説

2015-2017年度 2次数学セレクション(複素数)解答解説 05 次数学セレクション解答解説 [ 筑波大 ] ( + より, 0 となり, + から, ( (,, よって, の描く図形 C は, 点 を中心とし半径が の円である すなわち, 原 点を通る円となる ( は虚数, は正の実数より, である さて, w ( ( とおくと, ( ( ( w ( ( ( ここで, w は純虚数より, は純虚数となる すると, の描く図形 L は, 点 を通り, 点 と点

More information

p tn tn したがって, 点 の 座標は p p tn tn tn また, 直線 l と直線 p の交点 の 座標は p p tn p tn よって, 点 の座標 (, ) は p p, tn tn と表され p 4p p 4p 4p tn tn tn より, 点 は放物線 4 p 上を動くこと

p tn tn したがって, 点 の 座標は p p tn tn tn また, 直線 l と直線 p の交点 の 座標は p p tn p tn よって, 点 の座標 (, ) は p p, tn tn と表され p 4p p 4p 4p tn tn tn より, 点 は放物線 4 p 上を動くこと 567_ 次曲線の三角関数による媒介変数表示 次曲線の三角関数による媒介変数表示 次曲線 ( 放物線 楕円 双曲線 ) の標準形の, についての方程式と, 三角関数による媒介変数表示は次のように対応している.. 放物線 () 4 p (, ) ( ptn, ptn ) (). 楕円. 双曲線 () () (, p p ), tn tn (, ) ( cos, sin ) (, ), tn cos (,

More information

2014年度 筑波大・理系数学

2014年度 筑波大・理系数学 筑波大学 ( 理系 ) 前期日程問題 解答解説のページへ f ( x) = x x とする y = f ( x ) のグラフに点 P(, ) から引いた接線は 本あるとする つの接点 A (, f ( )), B(, f ( )), C(, f ( )) を頂点とする三角形の 重心を G とする () + +, + + および を, を用いて表せ () 点 G の座標を, を用いて表せ () 点 G

More information

Microsoft Word - NumericalComputation.docx

Microsoft Word - NumericalComputation.docx 数値計算入門 武尾英哉. 離散数学と数値計算 数学的解法の中には理論計算では求められないものもある. 例えば, 定積分は, まずは積分 ( 被積分関数の原始関数をみつけること できなければ値を得ることはできない. また, ある関数の所定の値における微分値を得るには, まずその関数の微分ができなければならない. さらに代数方程式の解を得るためには, 解析的に代数方程式を解く必要がある. ところが, これらは必ずしも解析的に導けるとは限らない.

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション 電磁波工学 第 5 回平面波の媒質への垂直および射入射と透過 柴田幸司 Bounda Plan Rgon ε μ Rgon Mdum ( ガラスなど ε μ z 平面波の反射と透過 垂直入射の場合 左図に示す様に 平面波が境界面に対して垂直に入射する場合を考える この時の入射波を とすると 入射波は境界において 透過波 と とに分解される この時の透過量を 反射量を Γ とおくと 領域 における媒質の誘電率に対して透過量

More information

1/10 平成 29 年 3 月 24 日午後 1 時 37 分第 5 章ローレンツ変換と回転 第 5 章ローレンツ変換と回転 Ⅰ. 回転 第 3 章光速度不変の原理とローレンツ変換 では 時間の遅れをローレンツ変換 ct 移動 v相対 v相対 ct - x x - ct = c, x c 2 移動

1/10 平成 29 年 3 月 24 日午後 1 時 37 分第 5 章ローレンツ変換と回転 第 5 章ローレンツ変換と回転 Ⅰ. 回転 第 3 章光速度不変の原理とローレンツ変換 では 時間の遅れをローレンツ変換 ct 移動 v相対 v相対 ct - x x - ct = c, x c 2 移動 / 平成 9 年 3 月 4 日午後 時 37 分第 5 章ローレンツ変換と回転 第 5 章ローレンツ変換と回転 Ⅰ. 回転 第 3 章光速度不変の原理とローレンツ変換 では 時間の遅れをローレンツ変換 t t - x x - t, x 静止静止静止静止 を導いた これを 図の場合に当てはめると t - x x - t t, x t + x x + t t, x (5.) (5.) (5.3) を得る

More information

<4D F736F F D208D5C91A297CD8A7793FC96E591E6388FCD2E646F63>

<4D F736F F D208D5C91A297CD8A7793FC96E591E6388FCD2E646F63> 8-1 第 8 章梁の微分方程式 ポイント : ベルヌーイ オイラー梁による梁の微分方程式 平面保持と法線保持の仮定 本章では 梁理論の基本となるベルヌーイ オイラー梁に従い 3 次元物体である梁を 1 次元の線材に置換し その挙動を支配する梁の微分方程式を誘導する このベルヌーイ オイラー梁は 平面保持と法線保持の両仮定で成立しており この 種の仮定を用いることで 梁内の応力やひずみを容易に求めることができる

More information

Math-Aquarium 例題 図形と計量 図形と計量 1 直角三角形と三角比 P 木の先端を P, 根元を Q とする A 地点の目の位置 A' から 木の先端への仰角が 30,A から 7m 離れた AQB=90 と なる B 地点の目の位置 B' から木の先端への仰角が 45 であ るとき,

Math-Aquarium 例題 図形と計量 図形と計量 1 直角三角形と三角比 P 木の先端を P, 根元を Q とする A 地点の目の位置 A' から 木の先端への仰角が 30,A から 7m 離れた AQB=90 と なる B 地点の目の位置 B' から木の先端への仰角が 45 であ るとき, 図形と計量 直角三角形と三角比 P 木の先端を P, 根元を Q とする 地点の目の位置 ' から 木の先端への仰角が 0, から 7m 離れた Q=90 と なる 地点の目の位置 ' から木の先端への仰角が であ るとき, 木の高さを求めよ ただし, 目の高さを.m とし, Q' を右の図のように定める ' 0 Q' '.m Q 7m 要点 PQ PQ PQ' =x とおき,' Q',' Q' を

More information

座標系.rtf

座標系.rtf 2 章座標系 場 空間は3 次元なので, ベクトルを表現するには少なくとも3 成分を指定する必要がある. そのために座標系が必要となる. 座標系として最も一般的なものは,,, 成分を使った直角座標系である. しかし, 他にも円柱座標, 球座標, だ円座標, 放物線座標など様々なものがある. 現在までに3 成分で変数分離可能な座標系は11 個あるといわれている (Moon & Spencer, Field

More information

学習指導要領

学習指導要領 (1 ) 数と式 ア数と集合 ( ア ) 実数数を実数まで拡張する意義を理解し 簡単な無理数の四則計算をすること 自然数 整数 有理数 無理数の包含関係など 実 数の構成を理解する ( 例 ) 次の空欄に適当な言葉をいれて, 数の集合を表しなさい 実数の絶対値が実数と対応する点と原点との距離で あることを理解する ( 例 ) 次の値を求めよ (1) () 6 置き換えなどを利用して 三項の無理数の乗法の計

More information

数値計算で学ぶ物理学 4 放物運動と惑星運動 地上のように下向きに重力がはたらいているような場においては 物体を投げると放物運動をする 一方 中心星のまわりの重力場中では 惑星は 円 だ円 放物線または双曲線を描きながら運動する ここでは 放物運動と惑星運動を 運動方程式を導出したうえで 数値シミュ

数値計算で学ぶ物理学 4 放物運動と惑星運動 地上のように下向きに重力がはたらいているような場においては 物体を投げると放物運動をする 一方 中心星のまわりの重力場中では 惑星は 円 だ円 放物線または双曲線を描きながら運動する ここでは 放物運動と惑星運動を 運動方程式を導出したうえで 数値シミュ 数値計算で学ぶ物理学 4 放物運動と惑星運動 地上のように下向きに重力がはたらいているような場においては 物体を投げると放物運動をする 一方 中心星のまわりの重力場中では 惑星は 円 だ円 放物線または双曲線を描きながら運動する ここでは 放物運動と惑星運動を 運動方程式を導出したうえで 数値シミュレーションによって計算してみる 4.1 放物運動一様な重力場における放物運動を考える 一般に質量の物体に作用する力をとすると運動方程式は

More information

物理演習問題

物理演習問題 < 物理 > =0 問 ビルの高さを, ある速さ ( 初速 をとおく,において等加速度運動の公式より (- : -= t - t : -=- t - t (-, 式よりを消去すると t - t =- t - t ( + - ( + ( - =0 0 t t t t t t ( t + t - ( t - =0 t=t t=t t - 地面 ( t - t t +t 0 より, = 3 図 問 が最高点では速度が

More information

重要例題113

重要例題113 04_ 高校 数学 Ⅱ 必須基本公式 定理集 数学 Ⅱ 第 章式の計算と方程式 0 商と余り についての整式 A をについての整式 B で割ったときの商を Q, 余りを R とすると, ABQ+R (R の次数 ) > 0

More information

1/17 平成 29 年 3 月 25 日 ( 土 ) 午前 11 時 1 分量子力学とクライン ゴルドン方程式 ( 学部 3 年次秋学期向 ) 量子力学とクライン ゴルドン方程式 素粒子の満たす場 y ( x,t) の運動方程式 : クライン ゴルドン方程式 : æ 3 ö ç å è m= 0

1/17 平成 29 年 3 月 25 日 ( 土 ) 午前 11 時 1 分量子力学とクライン ゴルドン方程式 ( 学部 3 年次秋学期向 ) 量子力学とクライン ゴルドン方程式 素粒子の満たす場 y ( x,t) の運動方程式 : クライン ゴルドン方程式 : æ 3 ö ç å è m= 0 /7 平成 9 年 月 5 日 ( 土 午前 時 分量子力学とクライン ゴルドン方程式 ( 学部 年次秋学期向 量子力学とクライン ゴルドン方程式 素粒子の満たす場 (,t の運動方程式 : クライン ゴルドン方程式 : æ ö ç å è = 0 c + ( t =, 0 (. = 0 ì æ = = = ö æ ö æ ö ç ì =,,,,,,, ç 0 = ç Ñ 0 = ç Ñ 0 Ñ Ñ

More information

スライド 1

スライド 1 概要材料に外から力が作用すると応力が発生し それに見合った変形が生じる 変形が発生すると 材料に内力が発生し 内力は外力と釣り合い変形が止まる この応力と変形 ( 歪 ) の関係を本講座では復習する 学習の内容. 応力と歪. 真っ直ぐな軸に外力が軸方向に作用する場合 3. 真っ直ぐな梁の曲げ. 軸のねじり 5. 座屈 6. エネルギー法 第 章 : 釣り合いの状態力の釣り合いとモーメントの釣り合いを満たすことによる.

More information

測量試補 重要事項

測量試補 重要事項 用地測量面積計算 < 試験合格へのポイント > 座標法による面積計算に関する問題は その出題回数からも定番問題と言えるが 計算自体はさほど難しいものではなく 計算表を作成しその中に数値を当てはめていくことで答えを導くことができる 過去問をしっかりとこなし 計算手順を覚えれば点の取りやすい問題と言える 士補試験に出題される問題は過去の例を見ても 座標が簡単な数値に置き換えることができるようになっている

More information

スライド 1

スライド 1 第 3 章 鉄筋コンクリート工学の復習 鉄筋によるコンクリートの補強 ( 圧縮 ) 鉄筋で補強したコンクリート柱の圧縮を考えてみよう 鉄筋とコンクリートの付着は十分で, コンクリートと鉄筋は全く同じように動くものとする ( 平面保持の仮定 ) l Δl 長さの柱に荷重を載荷したときの縮み量をとする 鉄筋及びコンクリートの圧縮ひずみは同じ量なのでで表す = Δl l 鉄筋及びコンクリートの応力はそれぞれの弾性定数を用いて次式で与えられる

More information

4.3 材料試験 材料試験とは材料の応力 -ひずみの関係や強度を明らかにするために その材料で作成した供試体( 試験体 ) に荷重を負荷し そのときのひずみ挙動や強度を調べる作業を材料試験という 材料試験では 供試体に一様な応力が発生することが望ましい 一様な応力 とは 至るところ ある

4.3 材料試験 材料試験とは材料の応力 -ひずみの関係や強度を明らかにするために その材料で作成した供試体( 試験体 ) に荷重を負荷し そのときのひずみ挙動や強度を調べる作業を材料試験という 材料試験では 供試体に一様な応力が発生することが望ましい 一様な応力 とは 至るところ ある 4. 均質 等方弾性体の応力とひずみの関係 ( 構成方程式 ) およびひずみエネルギ 4.1 はじめに材料が応力を受けると それに応じてひずみが発生する この応力とひずみの関係は 応力 -ひずみの関係または構成方程式と呼ばれ 一般に材料によって異なる しかも同一の材料でも 応力やひずみを負荷する速度によって発生するひずみ ( または応力 ) の大きさが異なる すなわち ゆっくりと負荷すれば 粘性的な性質が強く現れ

More information

を入れて,,, について解けば ( ) ( ) 得る. よって となるが ( / ( ) ( ) と無次元化している ), これを { N ( ) } { d} と表現して内部変位 と節点変位 { d} とを結びつける { } { ( ) ( ) } (.) (.) 節点での F と M は図. の

を入れて,,, について解けば ( ) ( ) 得る. よって となるが ( / ( ) ( ) と無次元化している ), これを { N ( ) } { d} と表現して内部変位 と節点変位 { d} とを結びつける { } { ( ) ( ) } (.) (.) 節点での F と M は図. の 第 章有限要素法 ( その ). 梁要素 有限要素法においては外力も境界条件も節点で考える. もちろん分布荷重は考慮でき るが, 要素上の分布荷重は適当に節点への等価は集中荷重として置き換える. こう考える と梁の曲げの方程式 (.8) において分布荷重無し (p()) の d d (.) である. この一般解は先に解いたように (.) となる. 梁の有限要素の長さを とすると, その両端, にて境界条件を導入して解い

More information

平面波

平面波 平面波 図.に示すように, 波源 ( 送信アンテナあるいは散乱点 ) から遠い位置で, 観測点 Pにおける波の状態を考えてみる. 遠いとは, 波長 λ に比べて距離 が十分大きいことを意味しており, 観測点 Pの近くでは, 等位相面が平面とみなせる状態にある. 平面波とは波の等位相面が平面になっている波のことである. 通信や計測を行うとき, 遠方における波の振舞いは平面波で近似できる. したがって平面波の性質を理解することが最も重要である.

More information

2016年度 筑波大・理系数学

2016年度 筑波大・理系数学 06 筑波大学 ( 理系 ) 前期日程問題 解答解説のページへ k を実数とする y 平面の曲線 C : y とC : y- + k+ -k が異なる共 有点 P, Q をもつとする ただし点 P, Q の 座標は正であるとする また, 原点を O とする () k のとりうる値の範囲を求めよ () k が () の範囲を動くとき, OPQ の重心 G の軌跡を求めよ () OPQ の面積を S とするとき,

More information

PowerPoint Presentation

PowerPoint Presentation 応用数学 Ⅱ (7) 7 連立微分方程式の立て方と解法. 高階微分方程式による解法. ベクトル微分方程式による解法 3. 演算子による解法 連立微分方程式 未知数が複数個あり, 未知数の数だけ微分方程式が与えられている場合, これらを連立微分方程式という. d d 解法 () 高階微分方程式化による解法 つの方程式から つの未知数を消去して, 未知数が つの方程式に変換 のみの方程式にするために,

More information

θ T [N] φ T os φ mg T sin φ mg tn φ T sin φ mg tn φ θ 0 sin θ tn θ θ sin φ tn φ φ θ φ mg θ f J mg f π J mg π J J 4π f mg 4π f () () /8

θ T [N] φ T os φ mg T sin φ mg tn φ T sin φ mg tn φ θ 0 sin θ tn θ θ sin φ tn φ φ θ φ mg θ f J mg f π J mg π J J 4π f mg 4π f () () /8 [N/m] m[g] mẍ x (N) x. f[hz] f π ω π m ω πf[rd/s] m ω 4π f [Nm/rd] J[gm ] J θ θ (gm ) θ. f[hz] f π ω π J J ω 4π f /8 θ T [N] φ T os φ mg T sin φ mg tn φ T sin φ mg tn φ θ 0 sin θ tn θ θ sin φ tn φ φ θ

More information

Microsoft Word - 201hyouka-tangen-1.doc

Microsoft Word - 201hyouka-tangen-1.doc 数学 Ⅰ 評価規準の作成 ( 単元ごと ) 数学 Ⅰ の目標及び図形と計量について理解させ 基礎的な知識の習得と技能の習熟を図り それらを的確に活用する機能を伸ばすとともに 数学的な見方や考え方のよさを認識できるようにする 評価の観点の趣旨 式と不等式 二次関数及び図形と計量における考え方に関 心をもつとともに 数学的な見方や考え方のよさを認識し それらを事象の考察に活用しようとする 式と不等式 二次関数及び図形と計量における数学的な見

More information

Microsoft Word - 圧縮材

Microsoft Word - 圧縮材 応用力学 Ⅱ 講義資料 / 圧縮材 1 圧縮材 圧縮材 (compssion mm) または柱 (column): 軸方向の圧縮力を受ける部材 圧縮材の破壊形態による分類 ( 破壊形態 ) 短柱 (shot column): 比較的太く短い圧縮材 圧潰 (cushing failu) 長柱 (long column) : 比較的細長い圧縮材 座屈 (uckling) 細長比 (slndnss atio):

More information

<4D F736F F F696E74202D AD482DC82C682DF2E B8CDD8AB B83685D>

<4D F736F F F696E74202D AD482DC82C682DF2E B8CDD8AB B83685D> 力のつり合い反力 ( 集中荷重 ) V 8 V 4 X H Y V V V 8 トラス部材に生じる力 トラスの解法 4k Y 4k 4k 4k ' 4k X ' 30 E ' 30 H' 節点を引張る力節点を押す力部材に生じる力を表す矢印の向きに注意 V 0k 反力の算定 V' 0k 力のつり合いによる解法 リッターの切断法 部材 の軸力を求める k k k 引張側に仮定 3 X cos30 Y 04

More information

例 e 指数関数的に減衰する信号を h( a < + a a すると, それらのラプラス変換は, H ( ) { e } e インパルス応答が h( a < ( ただし a >, U( ) { } となるシステムにステップ信号 ( y( のラプラス変換 Y () は, Y ( ) H ( ) X (

例 e 指数関数的に減衰する信号を h( a < + a a すると, それらのラプラス変換は, H ( ) { e } e インパルス応答が h( a < ( ただし a >, U( ) { } となるシステムにステップ信号 ( y( のラプラス変換 Y () は, Y ( ) H ( ) X ( 第 週ラプラス変換 教科書 p.34~ 目標ラプラス変換の定義と意味を理解する フーリエ変換や Z 変換と並ぶ 信号解析やシステム設計における重要なツール ラプラス変換は波動現象や電気回路など様々な分野で 微分方程式を解くために利用されてきた ラプラス変換を用いることで微分方程式は代数方程式に変換される また 工学上使われる主要な関数のラプラス変換は簡単な形の関数で表されるので これを ラプラス変換表

More information

SPACEstJ User's Manual

SPACEstJ User's Manual 6-1 第 6 章部材の断面力計算 ポイント : 部材断面力の計算 両端の変位より両端外力を計算する 本章では 両端の変位を用いて部材両端の材端力を求め 断面内の応力との釣合より 断面力を求める方法を学ぶ ここでは 部材荷重は等分布荷重を考慮しているため 基本応力と節点荷重による断面力を重ね合わせて 実際の部材断面力を求める 6.1 はじめに キーワード 部材断面力の計算部材座標系の変位等分布荷重による基本応力

More information

" 01 JJM 予選 4 番 # 四角形 の辺 上に点 があり, 直線 と は平行である.=,=, =5,=,= のとき, を求めよ. ただし,XY で線分 XY の長さを表すものとする. 辺 と辺 の延長線の交点を, 辺 と辺 の延長線の交点を G とする. 5 四角形 は直線 に関して線対称な

 01 JJM 予選 4 番 # 四角形 の辺 上に点 があり, 直線 と は平行である.=,=, =5,=,= のとき, を求めよ. ただし,XY で線分 XY の長さを表すものとする. 辺 と辺 の延長線の交点を, 辺 と辺 の延長線の交点を G とする. 5 四角形 は直線 に関して線対称な 1 " 数学発想ゼミナール # ( 改題 ) 直径を とする半円周上に一定の長さの弦がある. この弦の中点と, 弦の両端の各点から直径 への垂線の足は三角形をつくる. この三角形は二等辺三角形であり, かつその三角形は弦の位置にかかわらず相似であることを示せ. ( 証明 ) 弦の両端を X,Y とし,M を線分 XY の中点,, をそれぞれ X,Y から直径 への垂線の足とする. また,M の直径

More information

学習指導要領

学習指導要領 (1) いろいろな式 学習指導要領紅葉川高校学力スタンダードア式と証明展開の公式を用いて 3 乗に関わる式を展開すること ( ア ) 整式の乗法 除法 分数式の計算ができるようにする 三次の乗法公式及び因数分解の公式を理解し そ 3 次の因数分解の公式を理解し それらを用いて因数れらを用いて式の展開や因数分解をすること また 分解することができるようにする 整式の除法や分数式の四則計算について理解し

More information

Chap3.key

Chap3.key 区分求積法. 面積 ( )/ f () > n + n, S 長方形の和集合で近似 n f (n ) リーマン和 f (n ) 区分求積法 リーマン和 S S n n / n n f ()d リーマン積分 ( + ) + S (, f ( )) 微分の心 Zoom In して局所的な性質を調べる 積分の心 Zoom Ou して大域的な性質を調べる 曲線の長さ 領域の面積や体積 ある領域に含まれる物質の質量

More information

<4D F736F F D E4F8E9F82C982A882AF82E98D7397F1>

<4D F736F F D E4F8E9F82C982A882AF82E98D7397F1> 3 三次における行列 要旨高校では ほとんど 2 2 の正方行列しか扱ってなく 三次の正方行列について考えてみたかったため 数 C で学んだ定理を三次の正方行列に応用して 自分たちで仮説を立てて求めていったら 空間における回転移動を表す行列 三次のケーリー ハミルトンの定理 三次における逆行列を求めたり 仮説をたてることができた. 目的 数 C で学んだ定理を三次の正方行列に応用する 2. 概要目的の到達点として

More information

今週の内容 後半全体のおさらい ラグランジュの運動方程式の導出 リンク機構のラグランジュの運動方程式 慣性行列 リンク機構のエネルギー保存則 エネルギー パワー 速度 力の関係 外力が作用する場合の運動方程式 粘性 粘性によるエネルギーの消散 慣性 粘性 剛性と微分方程式 拘束条件 ラグランジュの未

今週の内容 後半全体のおさらい ラグランジュの運動方程式の導出 リンク機構のラグランジュの運動方程式 慣性行列 リンク機構のエネルギー保存則 エネルギー パワー 速度 力の関係 外力が作用する場合の運動方程式 粘性 粘性によるエネルギーの消散 慣性 粘性 剛性と微分方程式 拘束条件 ラグランジュの未 力学 III GA 工業力学演習 X5 解析力学 5X 5 週目 立命館大学機械システム系 8 年度後期 今週の内容 後半全体のおさらい ラグランジュの運動方程式の導出 リンク機構のラグランジュの運動方程式 慣性行列 リンク機構のエネルギー保存則 エネルギー パワー 速度 力の関係 外力が作用する場合の運動方程式 粘性 粘性によるエネルギーの消散 慣性 粘性 剛性と微分方程式 拘束条件 ラグランジュの未定乗数法

More information

1/30 平成 29 年 3 月 24 日 ( 金 ) 午前 11 時 25 分第三章フェルミ量子場 : スピノール場 ( 次元あり ) 第三章フェルミ量子場 : スピノール場 フェルミ型 ボーズ量子場のエネルギーは 第二章ボーズ量子場 : スカラー場 の (2.18) より ˆ dp 1 1 =

1/30 平成 29 年 3 月 24 日 ( 金 ) 午前 11 時 25 分第三章フェルミ量子場 : スピノール場 ( 次元あり ) 第三章フェルミ量子場 : スピノール場 フェルミ型 ボーズ量子場のエネルギーは 第二章ボーズ量子場 : スカラー場 の (2.18) より ˆ dp 1 1 = / 平成 9 年 月 日 ( 金 午前 時 5 分第三章フェルミ量子場 : スピノール場 ( 次元あり 第三章フェルミ量子場 : スピノール場 フェルミ型 ボーズ量子場のエネルギーは 第二章ボーズ量子場 : スカラー場 の (.8 より ˆ ( ( ( q -, ( ( c ( H c c ë é ù û - Ü + c ( ( - に限る (. である 一方 フェルミ型は 成分をもち その成分を,,,,

More information

Microsoft PowerPoint - 10.pptx

Microsoft PowerPoint - 10.pptx 0. 固有値とその応用 固有値と固有ベクトル 2 行列による写像から固有ベクトルへ m n A : m n n m 行列によって線形写像 f R R A が表せることを見てきた ここでは 2 次元平面の行列による写像を調べる 2 = 2 A 2 2 とし 写像 まず 単位ベクトルの像を求める u 2 x = v 2 y f : R A R を考える u 2 2 u, 2 2 0 = = v 2 0

More information

PowerPoint Presentation

PowerPoint Presentation CAE 演習 :Eas-σ lite に よる応力解析 目標 : 機械工学実験 はりの曲げと応力集中 の有限要素法による応力解析を行う 用語 CAD: Computer Aided Design CAE: Computer Aided Engineering コンピュータシミュレーション CAM: Computer Aided Manufacturing スケジュール. 有限要素法の基礎と応用例 2.

More information

耳桁の剛性の考慮分配係数の計算条件は 主桁本数 n 格子剛度 zです 通常の並列鋼桁橋では 主桁はすべて同じ断面を使います しかし 分配の効率を上げる場合 耳桁 ( 幅員端側の桁 ) の断面を大きくすることがあります 最近の桁橋では 上下線を別橋梁とすることがあり また 防音壁などの敷設が片側に有る

耳桁の剛性の考慮分配係数の計算条件は 主桁本数 n 格子剛度 zです 通常の並列鋼桁橋では 主桁はすべて同じ断面を使います しかし 分配の効率を上げる場合 耳桁 ( 幅員端側の桁 ) の断面を大きくすることがあります 最近の桁橋では 上下線を別橋梁とすることがあり また 防音壁などの敷設が片側に有る 格子桁の分配係数の計算 ( デモ版 ) 理論と解析の背景主桁を並列した鋼単純桁の設計では 幅員方向の横桁の剛性を考えて 複数の主桁が協力して活荷重を分担する効果を計算します これを 単純な (1,0) 分配に対して格子分配と言います レオンハルト (F.Leonhardt,1909-1999) が 1950 年初頭に発表した論文が元になっていて 理論仮定 記号などの使い方は その論文を踏襲して設計に応用しています

More information

機構学 平面機構の運動学

機構学 平面機構の運動学 問題 1 静止座標系 - 平面上を運動する節 b 上に2 定点,Bを考える. いま,2 点の座標は(0,0),B(50,0) である. 2 点間の距離は 50 mm, 点の速度が a 150 mm/s, 点 Bの速度の向きが150 である. 以下の問いに答えよ. (1) 点 Bの速度を求めよ. (2) 瞬間中心を求めよ. 節 b a (0,0) b 150 B(50,0) 問題 1(1) 解答 b

More information

Microsoft Word - 補論3.2

Microsoft Word - 補論3.2 補論 3. 多変量 GARC モデル 07//6 新谷元嗣 藪友良 対数尤度関数 3 章 7 節では 変量の対数尤度を求めた ここでは多変量の場合 とくに 変量について対数尤度を求める 誤差項 は平均 0 で 次元の正規分布に従うとする 単純化のため 分散と共分散は時間を通じて一定としよう ( この仮定は後で変更される ) したがって ij から添え字 を除くことができる このとき と の尤度関数は

More information

座標軸以外の直線のまわりの回転体の体積 ( バウムクーヘン分割公式 ) の問題の解答 立体の体積の求め方 図 1 の立体の体積 V を求める方法を考えてみる 図 1 図 1 のように 軸の から までの長さを 等分する そして とおく とすると となる 図 1 のように のときの 軸に垂直な平面 に

座標軸以外の直線のまわりの回転体の体積 ( バウムクーヘン分割公式 ) の問題の解答 立体の体積の求め方 図 1 の立体の体積 V を求める方法を考えてみる 図 1 図 1 のように 軸の から までの長さを 等分する そして とおく とすると となる 図 1 のように のときの 軸に垂直な平面 に 立体の体積の求め方 図 1 の立体の体積 V を求める方法を考えてみる 図 1 図 1 のように 軸の から までの長さを 等分する そして とおく とすると となる 図 1 のように のときの 軸に垂直な平面 による立体の断面積を とする 図 1の から までの斜線部分の立体 の体積を とすると, 図 2のように は 底面積 高さ の角柱の体積とみなせる よって 図 2 と表せる ただし とすると,

More information

材料強度試験 ( 曲げ試験 ) [1] 概要 実験 実習 Ⅰ の引張り試験に引続き, 曲げ試験による機械特性評価法を実施する. 材料力学で学ぶ梁 の曲げおよびたわみの基礎式の理解, 材料への理解を深めることが目的である. [2] 材料の変形抵抗変形抵抗は, 外力が付与された時の変形に対する各材料固有

材料強度試験 ( 曲げ試験 ) [1] 概要 実験 実習 Ⅰ の引張り試験に引続き, 曲げ試験による機械特性評価法を実施する. 材料力学で学ぶ梁 の曲げおよびたわみの基礎式の理解, 材料への理解を深めることが目的である. [2] 材料の変形抵抗変形抵抗は, 外力が付与された時の変形に対する各材料固有 材料強度試験 ( 曲げ試験 [] 概要 実験 実習 Ⅰ の引張り試験に引続き, 曲げ試験による機械特性評価法を実施する. 材料力学で学ぶ梁 の曲げおよびたわみの基礎式の理解, 材料への理解を深めることが目的である. [] 材料の変形抵抗変形抵抗は, 外力が付与された時の変形に対する各材料固有の抵抗値のことであり, 一般に素材の真応力 - 真塑性ひずみ曲線で表される. 多くの金属材料は加工硬化するため,

More information

1.民営化

1.民営化 参考資料 最小二乗法 数学的性質 経済統計分析 3 年度秋学期 回帰分析と最小二乗法 被説明変数 の動きを説明変数 の動きで説明 = 回帰分析 説明変数がつ 単回帰 説明変数がつ以上 重回帰 被説明変数 従属変数 係数 定数項傾き 説明変数 独立変数 残差... で説明できる部分 説明できない部分 説明できない部分が小さくなるように回帰式の係数 を推定する有力な方法 = 最小二乗法 最小二乗法による回帰の考え方

More information

<4D F736F F D2089F082AF82E997CD8A7796E291E A282EB82A282EB82C8895E93AE2E646F63>

<4D F736F F D2089F082AF82E997CD8A7796E291E A282EB82A282EB82C8895E93AE2E646F63> いろいろな運動. 自由落下. 投げ上げ 3. 放物運動 4. 標的にボールを当てる 5. 斜面に向かって投げ上げる 6. ブレーキをかけた自動車 7. 摩擦のある斜面上を滑り落ちる物体 8. ばね振り子 ( 単振動 ) 9. 摩擦を受けるばね振り子. 補足 : 微分方程式の解き方 自由落下質量 の質点を高さ h の地点から初速 で落とした. 鉛直上向きを 軸正 の向き, 地表を原点とし, 重力加速度の大きさを

More information