平成 年 月 7 日 ( 土 第 75 回数学教育実践研究会アスティ 45 ビル F セミナールーム A 札幌医科大学 年 P ab, を正の定数とする 平面上において ( a, を中心とする円 Q 4 C と (, b を中心とする円 C が 原点 O で外接している また P を円 C 上の点と

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "平成 年 月 7 日 ( 土 第 75 回数学教育実践研究会アスティ 45 ビル F セミナールーム A 札幌医科大学 年 P ab, を正の定数とする 平面上において ( a, を中心とする円 Q 4 C と (, b を中心とする円 C が 原点 O で外接している また P を円 C 上の点と"

Transcription

1 平成 年 月 7 日 ( 土 第 75 回数学教育実践研究会アスティ 45 ビル F セミナールーム 微分積分の拡張 変数関数問題へのアプローチ 予選決勝優勝法からラグランジュ未定乗数法 松本睦郎 ( 札幌北高等学校 変数関数の最大値 最小値に関する問題には多様なアプローチ法がある 文字を固定した 予選決勝優勝法, 計算のみで解法する 文字消去法, 微分積分を利用した ラグランジュ未定乗数法 がある 大学入試問題を題材として 色々なアプローチをしてみた 文字固定法 関数 f xy, = sin xcos yについて 定義域 < x <, < y < における最大値 最小値を求めよ 解答例 最大値 f, = ( イ x = で最小値を取る f, y = cos y y = のとき最小となる 最大値 f, = (ⅱ cos y < の場合 つまり < y<, < y< のときについて この範囲で変数 y を固定する f xy, = sin xcos y < x < (ⅰ cos y> の場合 つまり < y < のときについて この範囲 で変数 y を固定する f xy, = sin xcos y < x < ( ア x = で最大値を取る f, y = cos y < y < y = のとき最大となる ( ウ x = で最大値を取る f, y = cos y y = のとき最大となるが y = は範囲外なので 最大値はない ( エ x = で最小値をとる f, y = cos y y =, のとき最小となるが y =, は範囲外なので 最小値はない

2 平成 年 月 7 日 ( 土 第 75 回数学教育実践研究会アスティ 45 ビル F セミナールーム A 札幌医科大学 年 P ab, を正の定数とする 平面上において ( a, を中心とする円 Q 4 C と (, b を中心とする円 C が 原点 O で外接している また P を円 C 上の点と し Q を円 C 上の点とする ただし 点 P,Q は x 軸上にないものとする (P と Q が x 軸に対して同じ側にあるとき 三 角形 OPQ の面積の最大値を ab, を用いて 表せ (P と Q が x 軸に対して異なる側にあるとき 三角形 OPQ の面積の最大値を ab, を用い て表せ ただし 点 O,P,Q は同一直線 上にないものとする 解答例 上図より OQ = b sinα OP = a sin β OPQ の面積を S とする S= OP OQ sin ( α β + B を代入して S= α β ( α β sin >,sin >,sin + > a sin α b sin β sin ( α + β S= absinαsin βsin ( α β + α,β に関す る 変数関数となる ただし PとQが x 軸に対して同じ側にあるので < α + β <, < α <,< β < ( 条件 Ⅰ f ( αβ, absinαsin βsin ( α β = + とおく α,βに関する 変数関数である βを固定してαに関して微分すると df = ab cosαsin βsin ( α + β dα + absinαsin βcos α + β { ( + + ( + } absin β cosαsin α β sinαcos α β 加法定理より = absin β sin ( α + β < α <, < β < から < α + β < となる sin ( α + β = のとき つまり α + β = のとき df dα の符号が正から負になるので極大となる 同様にして についてαを固定してβに関して微分すると df = absinαcos βsin ( α + β dβ + absinαsin βcos α + β =

3 平成 年 月 7 日 ( 土 第 75 回数学教育実践研究会アスティ 45 ビル F セミナールーム = absinαsin ( α + β < α < < β < から < α + β < α + β = のとき df dβ の符号が正から負になる ので極大となる α + β = のとき S は最大となる α βに関 α + β = する連立方程式を解くと α =, β = のとき最大値をとる 最大値は S= absinαsin βsin ( α + β = absin sin sin = 4 ab ( 答 (P と Q は x 軸に関して反対側にあるので < α <,< β < ( 条件 Ⅱ より < α + β < A S = OP OQ sin ( α + β S = ab sinαsin βsin ( α + β S = absinαsin β sin ( α + β α + β = の時は S = となるので除外する sin + > の時 つまり (ⅰ ( α β P < α + β < のとき 4 QB S = absinαsin βsin ( α + β OQ = b sin α = bsinα OP = a sin β βを固定しαに関して微分すると absin ( α β dα = + < α < < α + β <, < α + β < 5 dα < となり S は単調減少関数となる α = のとき最大となるが < α < より最大値は存在しない

4 平成 年 月 7 日 ( 土 第 75 回数学教育実践研究会アスティ 45 ビル F セミナールーム A P (ⅱ ( α β sin + < の時 つまり < α + β < のとき 4 Q B 加関数となる β = で最大となるが 値は存在しない < β < より最大 (ⅰ(ⅱ より最大値は存在しない ( 答 変数関数の最大 最小問題 ( f ( αβ, = absinαsin βsin ( α+ β < α <, < β < の 変数関数のグラフを作成すると 等高線の頂点が存在して 最大値が存在する S = absinαsin βsin ( α + β β を固定して α に関して微分すると absin βsin ( α β dα = + < α<, < α+ β< 5 < α + β < dα = ( α β sin + = から α + β = dα は正から負へ変化するので極大となる α を固定し β に関して微分すると absinαsin ( α β dβ = +, < β <, < α + β < から < α + β < sin ( α + β < より dβ > となり 単調増 4

5 平成 年 月 7 日 ( 土 第 75 回数学教育実践研究会アスティ 45 ビル F セミナールーム ( S = f ( αβ, = absinαsin βsin ( α + β < α < < β <, の 変数関数のグラフを作成すると α+β= の部分が となり 等高線の頂点の部分は端の 部分に ヶ所存在するが 範囲外になるので不適 になる 島根大学 つの円 C ; x + y = と C ; x + y = 4がある 点 P は第 象限おい て円 C 上を動き 点 Q は第 4 象限において円 C 上を動くとする ただし 点 P,Q は原点 O とともに三角形 OPQ を作るものとする このとき三角形 OPQ の面積の最大値を求めよ 解答例 P α β 4 Q 5 xop = α, xoq = β とする 上図より < α <,< β < 円周角の定理より OP = cos α, OQ = 4cos β OPQ の面積 S とすると S = OP OQ sin ( α + β S = 4cosαcos βsin ( α + β (ⅰαを固定しβを変数として扱う をβで微分すると 4 cos sin sin 4 cos cos cos dβ = α β α β α β α β

6 平成 年 月 7 日 ( 土 第 75 回数学教育実践研究会アスティ 45 ビル F セミナールーム { } = 4 cosα sin β sin α + β cos β cos α + β { } = 4 cosα cos β cos α + β sin β sin α + β 加法定理より = 4cosαcos β + α < α <,< β < より < α + β < dβ = のとき cos( β + α = β + α = α β = 4 α β 4 dβ + - S 増加極大減少 ( α = sin sinα ( α α = sin + sin ( α ( α = sin sin + α dα + - S 増加極大減少 増減表より α = のとき極大かつ最大となる このとき β = より より最大値は S = 4cos cos sin = となる α S は β = のとき極大かつ最大となる 4 α β = をへ直接代入すると複雑になるので 4 α + β = β を代入する S = 4cosαcos β ( β = cosα + cos = cosα + cos α = sin α + cosα S をαで微分すると cos α sinα dα =

7 平成 年 月 7 日 ( 土 第 75 回数学教育実践研究会アスティ 45 ビル F セミナールーム 埼玉大学 (, z= f xy は放物面を描く xy, x は実数で ( y x + y = x y であるとき + の最大値, 最小値を求めよ 一文字消去法による解答例 x + y = x y ( x + y = k から x を消去して y k y k k = y は実数解をもつので判別式 D = ( k ( k k+ = k + k > 4 + < k < ( 答 条件付き極値問題による解答例 g( xy, = のとき f(, xy の極大 極小値を z = f x y + x y x x + x y y y (, (, (, は放物面上の点,, (, 接平面を表す ( x y f x y を接点とする 求める ことを条件付き極値問題という (, = ( + ( g xy x y x y (, ( f xy = x + y とおく g xy, = は xy 平面上において レミニスケ ート曲線を描く

8 平成 年 月 7 日 ( 土 第 75 回数学教育実践研究会アスティ 45 ビル F セミナールーム g xy, = を t xy 平面上のレミニスケート曲線 平面ベクトル g ar ( df ( x, y = ( x, y, ( x, y を勾配ベクトル 等高線 f( xy, = cと ( (, grad f x y を矢印で をパラメーターとして表示すると, x= p t y = q t とする時空間上の曲線 (, z = f p t q t の変化を調べる ( 表した (, ることが分かる grad f x y が等高線と直交してい 8 (, q( t d f p t dt = ( p( t, q( t p ( t + p( t, q( t q t レミニスケート曲線上の点 ( p( t, q( t クトル p ( t, q ( t と (, である q= p t, q t (, (, θ とすると (, (, q( t の速度ベ grad f x y との内積 grad f x y とのなす角を f p t q t が極大 極小になるとき d f p t dt = θ = grad ( f ( x, y と (, る grad g x y が平行であ

9 平成 年 月 7 日 ( 土 第 75 回数学教育実践研究会アスティ 45 ビル F セミナールーム g g det = この方法を ラグランジュの未定乗数法 という (, = + ( f xy x y = x, = ( y ( (, =,( grad f x y x y (, = ( + ( g xy x y x y g g = 4x + 4xy x, = 4xy + 4y + y ( (, = ( +, + + grad g x y x xy x x y y y x y det = x xy x x y + y + y x x y + y + y y x + xy x = x のとき xy+ y+ y y x+ y = (ⅰ y = のとき へ代入して x + = 5 x = (, = + ( 放物面 f xy x y x + y = (ⅱ y = のとき へ代入して x + = + 5 x = + (, = + ( 放物面 f xy x y x + y = + y + となる へ代入すると へ代入すると < x + < ( 答 展開してまとめると x + y = y x + y = x y レミニスケート曲線 り x を消去すると と よ y = y y y = y = ± 9 松本睦郎 ( 札幌北高等学校

竹田式数学 鉄則集

竹田式数学  鉄則集 合格への鉄則集 数学 ⅡB 竹鉄 ⅡB-01~23 竹鉄 ⅡB-1 式と証明 (1) 方程式の決定 方程式の決定問題 a+bi が解なら,a-bi も解 解と係数の関係を活用する 例題 クリアー 140 a,b は実数とする 3 次方程式 x 3 +ax 2 +bx+10=0 が 1+2i を解にもつとき, 定数 a,b の値を求めよ また, 他の解を求めよ 鉄則集 21 竹鉄 ⅡB-2 式と証明

More information

5 分で解くシリーズ 0 確率 1(+ 英文法 ) 大学受験を終えた仲良し 5 人組の白石君 黒本君 赤木君 青田君 緑川君が卒業旅行で岡山の旅館に泊まりました (1) 旅館では 5 人のために雪と月の 部屋を用意してくれていました しかし 5 人は 全員が 1 つの部屋になってもいいので くじ引き

5 分で解くシリーズ 0 確率 1(+ 英文法 ) 大学受験を終えた仲良し 5 人組の白石君 黒本君 赤木君 青田君 緑川君が卒業旅行で岡山の旅館に泊まりました (1) 旅館では 5 人のために雪と月の 部屋を用意してくれていました しかし 5 人は 全員が 1 つの部屋になってもいいので くじ引き 5 分で解くシリーズ 01 平面図形 1998 年度本試験数学 ⅠA 第 問 [] 四角形 ABCD は円に内接し, ABC は鈍角で 1 AB, BC 6, si ABC 3 とする また, 線分 AC と BD は直角に交わるとする このとき cosabc クケ コ, AC サシ となる 円の半径は スセ ソ であり タツ si CAB チ, si ACB テとなる また,AC と BD の交点を

More information

< 図形と方程式 > 点間の距離 A x, y, B x, y のとき x y x y : に分ける点 æ ç è A x, y, B x, y のとき 線分 AB を : に分ける点は x x y y, ö ø 注 < のとき外分点 三角形の重心 点 A x, y, B x, y, C x, を頂

< 図形と方程式 > 点間の距離 A x, y, B x, y のとき x y x y : に分ける点 æ ç è A x, y, B x, y のとき 線分 AB を : に分ける点は x x y y, ö ø 注 < のとき外分点 三角形の重心 点 A x, y, B x, y, C x, を頂 公式集数学 Ⅱ B < 式と証明 > 整式の割り算縦書きの割り算が出来ること f を g で割って 商が Q で余りが R のときは Q g f /////// R f g Q R と書ける 分数式 分母, 分子をそれぞれ因数分解し 約分する 既約分数式 加法, 減法については 分母を通分し分子の計算をする 繁分数式 分母 分子に同じ多項式をかけて 普通の分数式になおす 恒等式 数値代入法 係数比較法

More information

PowerPoint Presentation

PowerPoint Presentation 応用数学 Ⅱ (7) 7 連立微分方程式の立て方と解法. 高階微分方程式による解法. ベクトル微分方程式による解法 3. 演算子による解法 連立微分方程式 未知数が複数個あり, 未知数の数だけ微分方程式が与えられている場合, これらを連立微分方程式という. d d 解法 () 高階微分方程式化による解法 つの方程式から つの未知数を消去して, 未知数が つの方程式に変換 のみの方程式にするために,

More information

vecrot

vecrot 1. ベクトル ベクトル : 方向を持つ量 ベクトルには 1 方向 2 大きさ ( 長さ ) という 2 つの属性がある ベクトルの例 : 物体の移動速度 移動量電場 磁場の強さ風速力トルクなど 2. ベクトルの表現 2.1 矢印で表現される 矢印の長さ : ベクトルの大きさ 矢印の向き : ベクトルの方向 2.2 2 個の点を用いて表現する 始点 () と終点 () を結ぶ半直線の向き : ベクトルの方向

More information

今週の内容 後半全体のおさらい ラグランジュの運動方程式の導出 リンク機構のラグランジュの運動方程式 慣性行列 リンク機構のエネルギー保存則 エネルギー パワー 速度 力の関係 外力が作用する場合の運動方程式 粘性 粘性によるエネルギーの消散 慣性 粘性 剛性と微分方程式 拘束条件 ラグランジュの未

今週の内容 後半全体のおさらい ラグランジュの運動方程式の導出 リンク機構のラグランジュの運動方程式 慣性行列 リンク機構のエネルギー保存則 エネルギー パワー 速度 力の関係 外力が作用する場合の運動方程式 粘性 粘性によるエネルギーの消散 慣性 粘性 剛性と微分方程式 拘束条件 ラグランジュの未 力学 III GA 工業力学演習 X5 解析力学 5X 5 週目 立命館大学機械システム系 8 年度後期 今週の内容 後半全体のおさらい ラグランジュの運動方程式の導出 リンク機構のラグランジュの運動方程式 慣性行列 リンク機構のエネルギー保存則 エネルギー パワー 速度 力の関係 外力が作用する場合の運動方程式 粘性 粘性によるエネルギーの消散 慣性 粘性 剛性と微分方程式 拘束条件 ラグランジュの未定乗数法

More information

第1章 単 位

第1章  単  位 H. Hamano,. 長柱の座屈 - 長柱の座屈 長い柱は圧縮荷重によって折れてしまう場合がある. この現象を座屈といい, 座屈するときの荷重を座屈荷重という.. 換算長 長さ の柱に荷重が作用する場合, その支持方法によって, 柱の理論上の長さ L が異なる. 長柱の計算は, この L を用いて行うと都合がよい. この L を換算長 ( あるいは有効長さという ) という. 座屈荷重は一般に,

More information

例 e 指数関数的に減衰する信号を h( a < + a a すると, それらのラプラス変換は, H ( ) { e } e インパルス応答が h( a < ( ただし a >, U( ) { } となるシステムにステップ信号 ( y( のラプラス変換 Y () は, Y ( ) H ( ) X (

例 e 指数関数的に減衰する信号を h( a < + a a すると, それらのラプラス変換は, H ( ) { e } e インパルス応答が h( a < ( ただし a >, U( ) { } となるシステムにステップ信号 ( y( のラプラス変換 Y () は, Y ( ) H ( ) X ( 第 週ラプラス変換 教科書 p.34~ 目標ラプラス変換の定義と意味を理解する フーリエ変換や Z 変換と並ぶ 信号解析やシステム設計における重要なツール ラプラス変換は波動現象や電気回路など様々な分野で 微分方程式を解くために利用されてきた ラプラス変換を用いることで微分方程式は代数方程式に変換される また 工学上使われる主要な関数のラプラス変換は簡単な形の関数で表されるので これを ラプラス変換表

More information

> > <., vs. > x 2 x y = ax 2 + bx + c y = 0 2 ax 2 + bx + c = 0 y = 0 x ( x ) y = ax 2 + bx + c D = b 2 4ac (1) D > 0 x (2) D = 0 x (3

> > <., vs. > x 2 x y = ax 2 + bx + c y = 0 2 ax 2 + bx + c = 0 y = 0 x ( x ) y = ax 2 + bx + c D = b 2 4ac (1) D > 0 x (2) D = 0 x (3 13 2 13.0 2 ( ) ( ) 2 13.1 ( ) ax 2 + bx + c > 0 ( a, b, c ) ( ) 275 > > 2 2 13.3 x 2 x y = ax 2 + bx + c y = 0 2 ax 2 + bx + c = 0 y = 0 x ( x ) y = ax 2 + bx + c D = b 2 4ac (1) D >

More information

そこで ある程度の知識があれば数学と情報の練習もかねて用いてもおもしろいのではないだろうか これはある程度の下準備のされたファイルと FLSH のアプリケーションがあれば計算処理の結果をグラフなどで視覚的に表示することが可能となると思われる 環境が許せば できあがったものをいじ るだけでなく自分で作

そこで ある程度の知識があれば数学と情報の練習もかねて用いてもおもしろいのではないだろうか これはある程度の下準備のされたファイルと FLSH のアプリケーションがあれば計算処理の結果をグラフなどで視覚的に表示することが可能となると思われる 環境が許せば できあがったものをいじ るだけでなく自分で作 五心へのアプローチ札幌新川高等学校吉田奏介 数学 Ⅰ の授業のあと 生徒から 内心や外心と頂点の延長線は中点と一致しないんですか? と質問があった その生徒には角の二等分線の話や鈍角三角形のときの話をしたら納得していたが 確かに一般的な点におけることは紙面上の図を見ただけではわかりづらいだろうし 生徒が自分で描く図は都合のよい図を描いてしまいがちである そんなことを発端にして考えてみた 1 FLSH

More information

4.6: 3 sin 5 sin θ θ t θ 2t θ 4t : sin ωt ω sin θ θ ωt sin ωt 1 ω ω [rad/sec] 1 [sec] ω[rad] [rad/sec] 5.3 ω [rad/sec] 5.7: 2t 4t sin 2t sin 4t

4.6: 3 sin 5 sin θ θ t θ 2t θ 4t : sin ωt ω sin θ θ ωt sin ωt 1 ω ω [rad/sec] 1 [sec] ω[rad] [rad/sec] 5.3 ω [rad/sec] 5.7: 2t 4t sin 2t sin 4t 1 1.1 sin 2π [rad] 3 ft 3 sin 2t π 4 3.1 2 1.1: sin θ 2.2 sin θ ft t t [sec] t sin 2t π 4 [rad] sin 3.1 3 sin θ θ t θ 2t π 4 3.2 3.1 3.4 3.4: 2.2: sin θ θ θ [rad] 2.3 0 [rad] 4 sin θ sin 2t π 4 sin 1 1

More information

DVIOUT-n_baika

DVIOUT-n_baika 1 三角関数の n 倍角の公式とその応用について述べます. なお Voyage 200 の操作の詳細は http://sci-tech.ksc.kwansei.ac.jp/~yamane にある はじめての数式処理電卓 Voyage 200 をご覧下さい. 2 倍角の公式 cos 2x =2cos 2 x 1=1 2sin 2 x sin 2x =2sinxcos x はよく知られています.3 倍角の公式

More information

Microsoft Word - 力学PC1.doc

Microsoft Word - 力学PC1.doc 基礎物理コース I 第 5 回 A 7/6/5, :-:, 9-49, 後藤貴行 -5B, -8-56, gotoo-t@sophia.ac.jp パソコンで微分方程式を解く. 基本 ( ( ( これが式で与えられる は微小量とする ( 何に比べて小さいかは後で述べる ( ( (. 簡単な例 ただの積分, ( e ( [ もちろん 解析的に解けて ( e ( ( e 6 前の値 78 となる ] (

More information

lim lim lim lim 0 0 d lim 5. d 0 d d d d d d 0 0 lim lim 0 d

lim lim lim lim 0 0 d lim 5. d 0 d d d d d d 0 0 lim lim 0 d lim 5. 0 A B 5-5- A B lim 0 A B A 5. 5- 0 5-5- 0 0 lim lim 0 0 0 lim lim 0 0 d lim 5. d 0 d d d d d d 0 0 lim lim 0 d 0 0 5- 5-3 0 5-3 5-3b 5-3c lim lim d 0 0 5-3b 5-3c lim lim lim d 0 0 0 3 3 3 3 3 3

More information

第86回日本感染症学会総会学術集会後抄録(I)

第86回日本感染症学会総会学術集会後抄録(I) κ κ κ κ κ κ μ μ β β β γ α α β β γ α β α α α γ α β β γ μ β β μ μ α ββ β β β β β β β β β β β β β β β β β β γ β μ μ μ μμ μ μ μ μ β β μ μ μ μ μ μ μ μ μ μ μ μ μ μ β

More information

研修コーナー

研修コーナー l l l l l l l l l l l α α β l µ l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l

More information

ディジタル信号処理

ディジタル信号処理 ディジタルフィルタの設計法. 逆フィルター. 直線位相 FIR フィルタの設計. 窓関数法による FIR フィルタの設計.5 時間領域での FIR フィルタの設計 3. アナログフィルタを基にしたディジタル IIR フィルタの設計法 I 4. アナログフィルタを基にしたディジタル IIR フィルタの設計法 II 5. 双 次フィルタ LI 離散時間システムの基礎式の証明 [ ] 4. ] [ ]*

More information

Microsoft PowerPoint - 2.ppt [互換モード]

Microsoft PowerPoint - 2.ppt [互換モード] 0 章数学基礎 1 大学では 高校より厳密に議論を行う そのために 議論の議論の対象を明確にする必要がある 集合 ( 定義 ) 集合 物の集まりである集合 X に対して X を構成している物を X の要素または元という 集合については 3 セメスタ開講の 離散数学 で詳しく扱う 2 集合の表現 1. 要素を明示する表現 ( 外延的表現 ) 中括弧で 囲う X = {0,1, 2,3} 慣用的に 英大文字を用いる

More information

画像解析論(2) 講義内容

画像解析論(2) 講義内容 画像解析論 画像解析論 東京工業大学長橋宏 主な講義内容 信号処理と画像処理 二次元システムとその表現 二次元システムの特性解析 各種の画像フィルタ 信号処理と画像処理 画像解析論 処理の応答 記憶域 入出力の流れ 信号処理系 実時間性が求められる メモリ容量に対する制限が厳しい オンラインでの対応が厳しく求められる 画像処理系 ある程度の処理時間が許容される 大容量のメモリ使用が容認され易い オフラインでの対応が容認され易い

More information

受信機時計誤差項の が残ったままであるが これをも消去するのが 重位相差である. 重位相差ある時刻に 衛星 から送られてくる搬送波位相データを 台の受信機 でそれぞれ測定する このとき各受信機で測定された衛星 からの搬送波位相データを Φ Φ とし 同様に衛星 からの搬送波位相データを Φ Φ とす

受信機時計誤差項の が残ったままであるが これをも消去するのが 重位相差である. 重位相差ある時刻に 衛星 から送られてくる搬送波位相データを 台の受信機 でそれぞれ測定する このとき各受信機で測定された衛星 からの搬送波位相データを Φ Φ とし 同様に衛星 からの搬送波位相データを Φ Φ とす RTK-GPS 測位計算アルゴリズム -FLOT 解 - 東京海洋大学冨永貴樹. はじめに GPS 測量を行う際 実時間で測位結果を得ることが出来るのは今のところ RTK-GPS 測位のみである GPS 測量では GPS 衛星からの搬送波位相データを使用するため 整数値バイアスを決定しなければならず これが測位計算を複雑にしている所以である この整数値バイアスを決定するためのつの方法として FLOT

More information

Microsoft Word - ミクロ経済学02-01費用関数.doc

Microsoft Word - ミクロ経済学02-01費用関数.doc ミクロ経済学の シナリオ 講義の 3 分の 1 の時間で理解させる技術 国際派公務員養成所 第 2 章 生産者理論 生産者の利潤最大化行動について学び 供給曲線の導出プロセスを確認します 2-1. さまざまな費用曲線 (1) 総費用 (TC) 固定費用 (FC) 可変費用 (VC) 今回は さまざまな費用曲線を学んでいきましょう 費用曲線にはまず 総費用曲線があります 総費用 TC(Total Cost)

More information

8. 自由曲線と曲面の概要 陽関数 陰関数 f x f x x y y y f f x y z g x y z パラメータ表現された 次元曲線 パラメータ表現は xyx 毎のパラメータによる陽関数表現 形状普遍性 座標独立性 曲線上の点を直接に計算可能 多価の曲線も表現可能 gx 低次の多項式は 計

8. 自由曲線と曲面の概要 陽関数 陰関数 f x f x x y y y f f x y z g x y z パラメータ表現された 次元曲線 パラメータ表現は xyx 毎のパラメータによる陽関数表現 形状普遍性 座標独立性 曲線上の点を直接に計算可能 多価の曲線も表現可能 gx 低次の多項式は 計 8. 自由曲線 曲面. 概論. ベジエ曲線 曲面. ベジエ曲線 曲面の数学. OeGLによる実行. URS. スプライン関数. スプライン曲線 曲面. URS 曲線 曲面 4. OeGLによる実行 8. 自由曲線と曲面の概要 陽関数 陰関数 f x f x x y y y f f x y z g x y z パラメータ表現された 次元曲線 パラメータ表現は xyx 毎のパラメータによる陽関数表現 形状普遍性

More information

Title 高等学校における微積分の初歩としての二次関数の指導過程 Author(s) 大田, 邦郎 Citation 北海道大學教育學部紀要 = THE ANNUAL REPORTS ON EDUCATIONAL SCIENCE, 40: 31-87 Issue Date 1982-03 DOI Doc URLhttp://hdl.handle.net/2115/29254 Right Type

More information

統計的データ解析

統計的データ解析 統計的データ解析 011 011.11.9 林田清 ( 大阪大学大学院理学研究科 ) 連続確率分布の平均値 分散 比較のため P(c ) c 分布 自由度 の ( カイ c 平均値 0, 標準偏差 1の正規分布 に従う変数 xの自乗和 c x =1 が従う分布を自由度 の分布と呼ぶ 一般に自由度の分布は f /1 c / / ( c ) {( c ) e }/ ( / ) 期待値 二乗 ) 分布 c

More information

1 6 2011 3 2011 3 7 1 2 1.1....................................... 2 1.2................................. 3 1.3............................................. 4 6 2.1................................................

More information

untitled

untitled 20 7 1 22 7 1 1 2 3 7 8 9 10 11 13 14 15 17 18 19 21 22 - 1 - - 2 - - 3 - - 4 - 50 200 50 200-5 - 50 200 50 200 50 200 - 6 - - 7 - () - 8 - (XY) - 9 - 112-10 - - 11 - - 12 - - 13 - - 14 - - 15 - - 16 -

More information

untitled

untitled 19 1 19 19 3 8 1 19 1 61 2 479 1965 64 1237 148 1272 58 183 X 1 X 2 12 2 15 A B 5 18 B 29 X 1 12 10 31 A 1 58 Y B 14 1 25 3 31 1 5 5 15 Y B 1 232 Y B 1 4235 14 11 8 5350 2409 X 1 15 10 10 B Y Y 2 X 1 X

More information

Microsoft Word 国家2種経済.doc

Microsoft Word 国家2種経済.doc NO.36 X 財と Y 財の 2 財について 所得変化及び価格変化が需要量に与える効果に関する次の記 述のうち妥当なのはどれか 1.X 財が下級財の場合には その財の需要の所得弾力性は1よりも小さくなり X 財と Y 財の間に描くことのできる所得 消費曲線は右上がりとなる 2.X 財 Y 財ともに上級財であり 両財が代替財の関係にある場合 X 財の価格が低下すると Y 財は代替効果によっても所得効果によっても需要量が減少するので

More information

英語                                    英-1

英語                                    英-1 数学 出題のねらい 数と式, 図形, 関数, 資料の活用 の 4 領域について, 基礎的な概念や原理 法則の理解と, それらに基づき, 数学的に考察したり, 表現したり, 処理したりする力をみることをねらいとした () 数と式 では, 数の概念についての理解の程度, 文字を用いた式を処理したり, 文字を用いて式に表現したりする力, 目的に応じて式を変形する力をみるものとした () 図形 では, 平面図形や空間図形についての理解の程度,

More information

...3 1-1...3 1-1...6 1-3...16 2....17...21 3-1...21 3-2...21 3-2...22 3-3...23 3-4...24...25 4-1....25 4-2...27 4-3...28 4-4...33 4-5...36...37 5-1...

...3 1-1...3 1-1...6 1-3...16 2....17...21 3-1...21 3-2...21 3-2...22 3-3...23 3-4...24...25 4-1....25 4-2...27 4-3...28 4-4...33 4-5...36...37 5-1... DT-870/5100 &DT-5042RFB ...3 1-1...3 1-1...6 1-3...16 2....17...21 3-1...21 3-2...21 3-2...22 3-3...23 3-4...24...25 4-1....25 4-2...27 4-3...28 4-4...33 4-5...36...37 5-1....39 5-2...40 5-3...43...49

More information

6 6. 圧密理論 6. 圧密理論 6.. 圧密方程式の誘導 粘土層の圧密原因とメカニズム 地下水位の低下 盛土建設 最終圧縮量と圧縮速度 6. 圧密理論 記号の統一間隙水圧 ( 絶対圧 ): u 間隙水圧 (gauge 圧 ): u u p a ( 大気圧 ) 過剰間隙水圧 : Δu ( 教科書は これを u と記している 初期状態が u p a で u の時で uδu の状態を対象にしている ) 微小の増分

More information

としてもよいし,* を省略し, その代わりにスペースを空けてもよい. In[5]:= 2 3 Out[5]= 6 数値計算 厳密な代数計算 整数および有理数については, 厳密な計算がなされます. In[6]:= Out[6]= In[7]:= Out[7]= 2^

としてもよいし,* を省略し, その代わりにスペースを空けてもよい. In[5]:= 2 3 Out[5]= 6 数値計算 厳密な代数計算 整数および有理数については, 厳密な計算がなされます. In[6]:= Out[6]= In[7]:= Out[7]= 2^ Mathematica 入門 はじめに Mathematica は極めて高度かつ有用な機能を有する研究支援統合ソフトウェアです. 理工系学生にとって ( それどころか研究者にとっても ) 非常に便利なツールですから, 基本的な操作方法に慣れておくと, いざというときにとても重宝します. 入力方法 キーボードからの入力 Mathematica では, 数式はすべてキーボードから入力できるようになっています.

More information

関数のグラフ

関数のグラフ エクセルを使ったグラフ教材の作成について 1 y=aχ+bのグラフの作成 (1)x とyの対応表を作成する 右図のように数値等を打ち込む まず, y=ax のグラフをセルB2に =$E$2*A2 と入力 B2のフィルハンドルをB22 までドラッグして表を完成 表はグラフの作成上, 縦型が都合がよい 数式 =$E$2*A2 は E2 A2 を表している $ のマークは数式をコピーした時に, ずれてしまうのを防いでいる

More information

Processingをはじめよう

Processingをはじめよう Processing をはじめよう 第 7 章 動きその 2 目次 フレームレート スピードと方向 移動 回転 拡大 縮小 2 点間の移動 乱数 タイマー 円運動 今回はここまで 2 2 点間の移動 Example 7-6 (EX_08_06) 始点 (startx, starty) から終点 (stopx, stopy) まで移動する 座標更新の計算方法は後述 始点と終点を変更しても動作する 変更して確認

More information

分析のステップ Step 1: Y( 目的変数 ) に対する値の順序を確認 Step 2: モデルのあてはめ を実行 適切なモデルの指定 Step 3: オプションを指定し オッズ比とその信頼区間を表示 以下 このステップに沿って JMP の操作をご説明します Step 1: Y( 目的変数 ) の

分析のステップ Step 1: Y( 目的変数 ) に対する値の順序を確認 Step 2: モデルのあてはめ を実行 適切なモデルの指定 Step 3: オプションを指定し オッズ比とその信頼区間を表示 以下 このステップに沿って JMP の操作をご説明します Step 1: Y( 目的変数 ) の JMP によるオッズ比 リスク比 ( ハザード比 ) の算出と注意点 SAS Institute Japan 株式会社 JMP ジャパン事業部 2011 年 10 月改定 1. はじめに 本文書は JMP でロジスティック回帰モデルによるオッズ比 比例ハザードモデルによるリスク比 それぞれに対する信頼区間を求める操作方法と注意点を述べたものです 本文書は JMP 7 以降のバージョンに対応しております

More information

No2 4 y =sinx (5) y = p sin(2x +3) (6) y = 1 tan(3x 2) (7) y =cos 2 (4x +5) (8) y = cos x 1+sinx 5 (1) y =sinx cos x 6 f(x) = sin(sin x) f 0 (π) (2) y

No2 4 y =sinx (5) y = p sin(2x +3) (6) y = 1 tan(3x 2) (7) y =cos 2 (4x +5) (8) y = cos x 1+sinx 5 (1) y =sinx cos x 6 f(x) = sin(sin x) f 0 (π) (2) y No1 1 (1) 2 f(x) =1+x + x 2 + + x n, g(x) = 1 (n +1)xn + nx n+1 (1 x) 2 x 6= 1 f 0 (x) =g(x) y = f(x)g(x) y 0 = f 0 (x)g(x)+f(x)g 0 (x) 3 (1) y = x2 x +1 x (2) y = 1 g(x) y0 = g0 (x) {g(x)} 2 (2) y = µ

More information

演習2

演習2 神戸市立工業高等専門学校電気工学科 / 電子工学科専門科目 数値解析 2017.6.2 演習 2 山浦剛 (tyamaura@riken.jp) 講義資料ページ h t t p://clim ate.aic s. riken. jp/m embers/yamaura/num erical_analysis. html 曲線の推定 N 次多項式ラグランジュ補間 y = p N x = σ N x x

More information

のスペクトル ( 実部と虚部 ) をスケッチせよ. Re c n Δω = π T Im c n Δω = π T 問題 例題 では, 虚部のスペクトルに負の振動数が現れる. 負の振動数は何を意味するか. また, 原点について対称 ( 奇関数 ) となるのはどのような意味があるか. 例題 において,

のスペクトル ( 実部と虚部 ) をスケッチせよ. Re c n Δω = π T Im c n Δω = π T 問題 例題 では, 虚部のスペクトルに負の振動数が現れる. 負の振動数は何を意味するか. また, 原点について対称 ( 奇関数 ) となるのはどのような意味があるか. 例題 において, 3 章フーリエ変換 テーマと目標 単発現象に含まれる振動数を分析する方法とその考え方 フーリエ係数からフーリエ変換への橋渡しの数学的操作 フーリエ変換とフーリエ逆変換の定義 フーリエ変換の実例 デルタ関数の定義と使い方 フーリエ変換の性質 たたみ込み積分とフーリエ変換 パーセバルの等式 3. フーリエ変換の定義 [ 周期現象から非周期現象へ ] 前章まで, 周期現象を扱う数学の道具を学んだ. 周期現象には基本振動数があり,

More information

4 次元多面体から空間のかたちをみるー空間が曲がっているとはどういうことか 河野俊丈 2016 年 7 月 7 日学術俯瞰講義 図形から拡がる数理科学

4 次元多面体から空間のかたちをみるー空間が曲がっているとはどういうことか 河野俊丈 2016 年 7 月 7 日学術俯瞰講義 図形から拡がる数理科学 クレジット : UTokyo Online Education 学術俯瞰講義 2016 河野俊丈 ライセンス : 利用者は 本講義資料を 教育的な目的に限ってページ単位で利用することができます 特に記載のない限り 本講義資料はページ単位でクリエイティブ コモンズ表示 - 非営利 - 改変禁止ライセンスの下に提供されています http://creativecommons.org/licenses/by-nc-nd/4.0/

More information

グラフを作成

グラフを作成 Microsoft Office を使ってグラフを作成する方法について 一例です 操作ができなかったら色々試してください 山際 1 グラフ用紙に手書きでグラフを書いた場合の利点 (1) 副目盛があるので プロットした点の座標を確認しやすい (2) 上付きや下付きの文字 分数を書きやすい (3) データ点を結んで線を引くときに 全体の傾向を正しく認識しやすい 2 Office を使って書いたグラフの欠点

More information

ネットショップ・オーナー2 ユーザーマニュアル

ネットショップ・オーナー2  ユーザーマニュアル 1 1-1 1-2 1-3 1-4 1 1-5 2 2-1 A C 2-2 A 2 C D E F G H I 2-3 2-4 2 C D E E A 3 3-1 A 3 A A 3 3 3 3-2 3-3 3-4 3 C 4 4-1 A A 4 B B C D C D E F G 4 H I J K L 4-2 4 C D E B D C A C B D 4 E F B E C 4-3 4

More information

EPSON エプソンプリンタ共通 取扱説明書 ネットワーク編

EPSON エプソンプリンタ共通 取扱説明書 ネットワーク編 K L N K N N N N N N N N N N N N L A B C N N N A AB B C L D N N N N N L N N N A L B N N A B C N L N N N N L N A B C D N N A L N A L B C D N L N A L N B C N N D E F N K G H N A B C A L N N N N D D

More information

ありがとうございました

ありがとうございました - 1 - - 2 - - 3 - - 4 - - 5 - 1 2 AB C A B C - 6 - - 7 - - 8 - 10 1 3 1 10 400 8 9-9 - 2600 1 119 26.44 63 50 15 325.37 131.99 457.36-10 - 5 977 1688 1805 200 7 80-11 - - 12 - - 13 - - 14 - 2-1 - 15 -

More information

EPSON エプソンプリンタ共通 取扱説明書 ネットワーク編

EPSON エプソンプリンタ共通 取扱説明書 ネットワーク編 K L N K N N N N N N N N N N N N L A B C N N N A AB B C L D N N N N N L N N N A L B N N A B C N L N N N N L N A B C D N N A L N A L B C D N L N A L N B C N N D E F N K G H N A B C A L N N N N D D

More information

公務員人件費のシミュレーション分析

公務員人件費のシミュレーション分析 47 50 (a) (b) (c) (7) 11 10 2018 20 2028 16 17 18 19 20 21 22 20 90.1 9.9 20 87.2 12.8 2018 10 17 6.916.0 7.87.4 40.511.6 23 0.0% 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2.0% 4.0% 6.0% 8.0%

More information

Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 A B (A/B) 1 1,185 17,801 6.66% 2 943 26,598 3.55% 3 3,779 112,231 3.37% 4 8,174 246,350 3.32% 5 671 22,775 2.95% 6 2,606 89,705 2.91% 7 738 25,700 2.87% 8 1,134

More information

橡hashik-f.PDF

橡hashik-f.PDF 1 1 1 11 12 13 2 2 21 22 3 3 3 4 4 8 22 10 23 10 11 11 24 12 12 13 25 14 15 16 18 19 20 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 144 142 140 140 29.7 70.0 0.7 22.1 16.4 13.6 9.3 5.0 2.9 0.0

More information

198

198 197 198 199 200 201 202 A B C D E F G H I J K L 203 204 205 A B 206 A B C D E F 207 208 209 210 211 212 213 214 215 A B 216 217 218 219 220 221 222 223 224 225 226 227 228 229 A B C D 230 231 232 233 A

More information

1

1 1 2 3 4 5 (2,433 ) 4,026 2710 243.3 2728 402.6 6 402.6 402.6 243.3 7 8 20.5 11.5 1.51 0.50.5 1.5 9 10 11 12 13 100 99 4 97 14 A AB A 12 14.615/100 1.096/1000 B B 1.096/1000 300 A1.5 B1.25 24 4,182,500

More information

C#の基本

C#の基本 C# の基本 ~ 開発環境の使い方 ~ C# とは プログラミング言語のひとつであり C C++ Java 等に並ぶ代表的な言語の一つである 容易に GUI( グラフィックやボタンとの連携ができる ) プログラミングが可能である メモリ管理等の煩雑な操作が必要なく 比較的初心者向きの言語である C# の利点 C C++ に比べて メモリ管理が必要ない GUIが作りやすい Javaに比べて コードの制限が少ない

More information

Microsoft PowerPoint - fuseitei_6

Microsoft PowerPoint - fuseitei_6 不静定力学 Ⅱ 骨組の崩壊荷重の計算 不静定力学 Ⅱ では, 最後の問題となりますが, 骨組の崩壊荷重の計算法について学びます 1 参考書 松本慎也著 よくわかる構造力学の基本, 秀和システム このスライドの説明には, 主にこの参考書の説明を引用しています 2 崩壊荷重 構造物に作用する荷重が徐々に増大すると, 構造物内に発生する応力は増加し, やがて, 構造物は荷重に耐えられなくなる そのときの荷重を崩壊荷重あるいは終局荷重という

More information

Microsoft PowerPoint - stat-2014-[9] pptx

Microsoft PowerPoint - stat-2014-[9] pptx 統計学 第 17 回 講義 母平均の区間推定 Part-1 014 年 6 17 ( )6-7 限 担当教員 : 唐渡 広志 ( からと こうじ ) 研究室 : 経済学研究棟 4 階 43 号室 email: kkarato@eco.u-toyama.ac.j website: htt://www3.u-toyama.ac.j/kkarato/ 1 講義の目的 標本平均は正規分布に従うという性質を

More information

第2章

第2章 第 2 章 企業の行動 : 第二部 ここでは 短期の供給曲線がなぜ右上がりになるのか述べます 企業は利潤を最大化すると仮定します (1) π = TR TC π : 利潤 TR : 総収入 TC : 総費用 企業は自己の生産物の価格 P に影響をしない と仮定します このことは 生 産物市場が完全競争市場であるということを意味します 詳しくは 完全競争 市場の定義について教科書などを参考にしてください

More information

xyr x y r x y r u u

xyr x y r x y r u u xyr x y r x y r u u y a b u a b a b c d e f g u a b c d e g u u e e f yx a b a b a b c a b c a b a b c a b a b c a b c a b c a u xy a b u a b c d a b c d u ar ar a xy u a b c a b c a b p a b a b c a

More information

<4D F736F F D20837D834E838D97FB8F4B96E291E889F090E091E682528FCD81698FAC97D1816A>

<4D F736F F D20837D834E838D97FB8F4B96E291E889F090E091E682528FCD81698FAC97D1816A> 第 3 章 GDP の決定 練習問題の解説 1. 下表はある国の家計所得と消費支出です 下記の設問に答えなさい 年 所得 (Y) 消費支出 (C) 1 年目 25 15 2 年目 3 174 (1) 1 年目の平均消費性向と平均貯蓄性向を求めなさい (2) 1 年面から 2 年目にかけての限界消費性向を求めなさい 解答 (1).6 と.4 (2).48 解説 (3 頁参照 ) (1) 所得に対する消費の割合が平均消費性向です

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション ロボティックス Robotics 先端工学基礎課程講義 小泉憲裕 2016/5/6 講義情報 当面はこちらのサイト, http://www.medigit.mi.uec.ac.jp/lect_robotics.html ロボットの運動学 ロボットの運動学 ロボットの運動学は現在 ニュートン力学を発展させた解析力学を基盤とすることが多い 解析力学では物体を 剛体としてあらわす 第 4 回 座標変換平行

More information

PSCHG000.PS

PSCHG000.PS a b c a ac bc ab bc a b c a c a b bc a b c a ac bc ab bc a b c a ac bc ab bc a b c a ac bc ab bc de df d d d d df d d d d d d d a a b c a b b a b c a b c b a a a a b a b a

More information

21 年 1 月 29 日発行 TVI( タス空室インデックス )( 過去 2 年推移 ) ポイント 1 都 3 県 TVI 推移 ( 過去 2 年間 ) 全域 23 区市部神奈川県埼玉県千葉県 年月 東京都全域 23 区市部 神奈川県 埼玉県 千葉県 28 年

21 年 1 月 29 日発行 TVI( タス空室インデックス )( 過去 2 年推移 ) ポイント 1 都 3 県 TVI 推移 ( 過去 2 年間 ) 全域 23 区市部神奈川県埼玉県千葉県 年月 東京都全域 23 区市部 神奈川県 埼玉県 千葉県 28 年 21 年 1 月 29 日発行 21 年 8 月期 1 都 3 県賃貸住宅指標 ~ 意外と広い? 東京 23 区内の賃貸住宅専有面積 ~ 1. 賃貸住宅指標概況 東京都 全域 23 区 市部 会社名 : 株式会社タス所在地 : 東京都中央区八丁堀 2-25-9 トヨタ八丁堀ビル 7F 3-6222-123( 代表 ) 3-6222-124(FAX) http://www.tas-japan.com/

More information

<4D F736F F D2089FC92E82D D4B CF591AA92E882C CA82C982C282A282C42E727466>

<4D F736F F D2089FC92E82D D4B CF591AA92E882C CA82C982C282A282C42E727466> 11 Application Note 光測定と単位について 1. 概要 LED の性質を表すには 光の強さ 明るさ等が重要となり これらはその LED をどのようなアプリケーションに使用するかを決定するために必須のものになることが殆どです しかし 測定の方法は多種存在し 何をどのような測定器で測定するかにより 測定結果が異なってきます 本書では光測定とその単位について説明していきます 2. 色とは

More information

進捗状況の確認 1. gj も gjp も動いた 2. gj は動いた 3. gj も動かない 2

進捗状況の確認 1. gj も gjp も動いた 2. gj は動いた 3. gj も動かない 2 連立 1 次方程式の数値解法 小規模な連立 1 次方程式の解法 消去法 Gauss 消去法 Gauss-Jordan 法 ( 大規模な連立 1 次方程式の解法 ) ( 反復法 ) (Jacobi 法 ) 講義では扱わない 1 進捗状況の確認 1. gj も gjp も動いた 2. gj は動いた 3. gj も動かない 2 パターン認識入門 パターン認識 音や画像に中に隠れたパターンを認識する 音素

More information

第9回 配列(array)型の変数

第9回 配列(array)型の変数 第 12 回 配列型の変数 情報処理演習 ( テキスト : 第 4 章, 第 8 章 ) 今日の内容 1. 配列の必要性 2. 配列の宣言 3. 配列変数のイメージ 4. 配列変数を使用した例 5. 範囲を超えた添字を使うと? 6. 多次元配列変数 7. 多次元配列変数を使用した例 8. データのソーティング 9. 今日の練習問題 多数のデータ処理 1. 配列の必要性 ( テキスト 31 ページ )

More information

Microsoft PowerPoint - DA2_2017.pptx

Microsoft PowerPoint - DA2_2017.pptx // データ構造とアルゴリズム IⅠ 第 回単一始点最短路 (II)/ 全点対最短路 トポロジカル ソート順による緩和 トポロジカル ソート順に緩和 閉路のない有向グラフ限定 閉路がないならトポロジカル ソート順に緩和するのがベルマン フォードより速い Θ(V + E) 方針 グラフをトポロジカル ソートして頂点に線形順序を与える ソート順に頂点を選び, その頂点の出辺を緩和する 各頂点は一回だけ選択される

More information

学習内容と日常生活との関連性の研究-第2部-第6章

学習内容と日常生活との関連性の研究-第2部-第6章 378 379 10% 10%10% 10% 100% 380 381 2000 BSE CJD 5700 18 1996 2001 100 CJD 1 310-7 10-12 10-6 CJD 100 1 10 100 100 1 1 100 1 10-6 1 1 10-6 382 2002 14 5 1014 10 10.4 1014 100 110-6 1 383 384 385 2002 4

More information

Javaによるアルゴリズムとデータ構造

Javaによるアルゴリズムとデータ構造 1 algorithm List 1-1 a, b, c List 1-1 // import java.util.scanner; class Max3 { public static void main(string[] args) { Scanner stdin = new Scanner(System.in); int a, b, c; int max; // Chap01/Max3.java

More information

連続講座 断層映像法の基礎第 34 回 : 篠原 広行 他 放射状に 線を照射し 対面に検出器の列を置いておき 一度に 1 つの角度データを取得する 後は全体を 1 回転しながら次々と角度データを取得することで計測を終了する この計測で得られる投影はとなる ここで l はファンビームのファンに沿った

連続講座 断層映像法の基礎第 34 回 : 篠原 広行 他 放射状に 線を照射し 対面に検出器の列を置いておき 一度に 1 つの角度データを取得する 後は全体を 1 回転しながら次々と角度データを取得することで計測を終了する この計測で得られる投影はとなる ここで l はファンビームのファンに沿った 連続講座 断層映像法の基礎第 34 回 : 篠原広行 他 篠原 広行 桑山 潤 小川 亙 中世古 和真 断層映像法の基礎第 34 回スパイラルスキャン CT 1) 軽部修平 2) 橋本雄幸 1) 小島慎也 1) 藤堂幸宏 1) 3) 首都大学東京人間健康科学研究科放射線科学域 2) 東邦大学医療センター大橋病院 3) 横浜創英短期大学情報学科 1) はじめに第 33 回では検出確率 C ij の関係を行列とベクトルの計算式に置き換えて解を求める最小二乗法を利用した方法について解説した

More information

中学 2 年数学 2 次の計算をしなさい () 8x y (-x) (-9x y) (2) 4x y (- 2 x) 2 右の図は, 長さ 2 cmの線香が燃え始めてからの 時間と, 線香の長さの関係を表したグラフです 次の各問いに答えなさい () 線香が燃え始めてから 2 cm燃えるのにかかった

中学 2 年数学 2 次の計算をしなさい () 8x y (-x) (-9x y) (2) 4x y (- 2 x) 2 右の図は, 長さ 2 cmの線香が燃え始めてからの 時間と, 線香の長さの関係を表したグラフです 次の各問いに答えなさい () 線香が燃え始めてから 2 cm燃えるのにかかった 中学 2 年数学 次の各問いに答えなさい () 座標 (4,-8) を通る比例のグラフを表す式はどれか 次のアからエの中から つ選びなさい ア y=2x イ y=-2x ウ y= 2 - x エ y=2 x () イ (2) エ (2) 2けたの自然数の十の位の数を x, 一の位の数を y とするとき, その2けたの自然数を表す式を, 下のアからエの中からつ選びなさい ア x y イ x+y ウ 0

More information

丹沢のブナの立ち枯れと東名高速道路にっいて 図3 夏型の高気圧におおわれ 風の弱い日の南関東 東海道の風の1日変化 矢は風向を 矢先の数字は風速 m s を示す この地区のアメダス地点は御殿場のみ 風向の方向に長軸をもっ楕円で囲んだ 午後から夕方に かけて南 南西風が卓越している 全体に午後に海風と谷風 平地から山地へ が卓越している 東名高速道路と国道246号線および地方道 まとめて東 名高速道路という

More information

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e 7 -a 7 -a February 4, 2007 1. 2. 3. 4. 1. 2. 3. 1 Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e z

More information

EndoPaper.pdf

EndoPaper.pdf Research on Nonlinear Oscillation in the Field of Electrical, Electronics, and Communication Engineering Tetsuro ENDO.,.,, (NLP), 1. 3. (1973 ),. (, ),..., 191, 1970,. 191 1967,,, 196 1967,,. 1967 1. 1988

More information