Λ (Λ ) Λ (Ge) Hyperball γ ΛN J-PARC Λ dead time J-PARC flash ADC 1 dead time ( ) 1 µsec 3

Size: px
Start display at page:

Download "Λ (Λ ) Λ (Ge) Hyperball γ ΛN J-PARC Λ dead time J-PARC flash ADC 1 dead time ( ) 1 µsec 3"

Transcription

1 19

2 Λ (Λ ) Λ (Ge) Hyperball γ ΛN J-PARC Λ dead time J-PARC flash ADC 1 dead time ( ) 1 µsec 3

3 γ ΛN KEK J-PARC J-PARC Hyperball-J Flash ADC LNS i

4 A 63 B 64 ii

5 1.1 J-PARC ( ) Hyperball-J ( ) STRUCK SIS3302 Flash ADC ADMCA LNS LNS LNS CRM Flash ADC Reduced χ reduced χ ADC-ADC ADC-TDC iii

6 reduced χ 2 ( ) reduced χ 2 ( ) ( ) reduced χ 2 ( ) reduced χ 2 ( ) reduced χ 2 ( ) reduced χ 2 ( ) reduced χ 2 ( ) reduced χ 2 ( ) ( ) ( ) A A B iv

7 1.1 J-PARC ADC ADC 973U UHA SIS3302 bit Flash ADC ( ) ( ) MeV MeV v

8 1 1.1 γ ΛN Λ S = 1 ( ) Λ Λ Λ Λ ΛN [1] 1970 (K, π ) (π +, K + ) 1.5 MeV(FWHM) 1 (e, e K + ) 0.3 MeV(FWHM) ΛN kev γ Ge kev Ge Hyperball 1998 γ γ Λ ΛN p-shell ΛN [2] 1

9 1.2 KEK J-PARC J-PARC J-PARC (Japan Proton Accelerator Research Complex) J-PARC 1.1 ( ) 50 GeV 10 MHz K 2 K γ E13 [3] p-shell Λ sd-shell Λ 4 ΛHe ΛN 1.1 J-PARC ( ) J-PARC 4 ( ) 50 GeV 10 MHz K 2 2

10 1.2.2 Hyperball-J J-PARC 10 MHz K Hyperball Hyperball-J Hyperball-J [4] [5] Ge photo peak efficiency 1.5 Ge 85K BGO PWO Flash ADC (dead time) Ge crystal PWO counter 1.2 Hyperball-J ( ) Hyperball-J 60 % N Ge 32 ( ) Ge PWO Geant4 1 MeV γ 6% photo-peak efficiency Beam Mechanical cooler 3

11 1.3 Hyperball 1.1 KEK Hyperball-J J-PARC γ Ge Hyperball-J Ge Hyperball-J Ge dead time 1) 1.1 J-PARC KEK K K6 (KEK) K1.8 (J-PARC) π + K 2 MHz 10 MHz( ) Ge 50 khz 250 khz Energy deposit rate 0.5 TeV/s 2.5 TeV/s 50 % 100 % 1) 4

12 Ge ( /cm 3 ) 2.1 NaI Ge Ge Si 100 K 2.1 P N 1 ( ) 5

13 2.1.2 Hyperball-J Ge Hyperball 7 cm ϕ 7 cm l N N Ge N [6] 1) 0.4 µsec Ge Hyperball-J Ge Hyperball energy deposit GeV Ge 10 MeV γ MeV [7] energy deposit rate Ge 2.2 Ge 1) 10 5 m/s 6

14 2.1.4 Ge (2 kev) ( 2 ) 2) γ γ 2.3 S N (peak significance) = S N+S S N (N S) (2.1) σ S S = 2πσ 2 H (2.2) H (S+N) 2 2 σ 2 2 ( ) Ge S N kev γ S( ) N( ) ( ) 2) Hyperball (KEK E566) 4 kev 7

15 Hyperball ADC ORTEC 973U Urtra High-rate Amp. (UHA) UHA 0.5 µsec CR-RC Gated Integrator(GI) UHA Ge 2.4 ADC µsec ADC dead time energy depodit rate dead time 8

16 Flash ADC Hyperball Ge energy deposit rate Flash ADC 3) 973U UHA Gated Integrator CR-RC Flash ADC µsec 1 MHz 2.5 Flash ADC Ge ADC Flash ADC 3) bit 19 bit 9

17 ORTEC 671 CR-RC µsec CR-RC ORTEC Ge (G14) ADC (FWHM) 60 Co 1.33 MeV 1 MeV γ γ γ 10 1 dead time 3.1 ADC 671 [µsec] FWHM [kev] γ [µsec] [µsec] [khz]

18 973U UHA 3.2 UHA Gated Intergrator ( ) 3.2 ADC 973U UHA Gated Integrator [µsec] FWHM [kev] γ [µsec] [µsec] [khz] Flash ADC Flash ADC STRUCK SIS3302, 3.1 VME 100 MHz 16 bit Flash ADC Flash ADC Flash ADC 3.1 STRUCK SIS3302 Flash ADC SIS bit (13 bit ) 100 MHz VME Flash ADC 32 M 5 V ( 5 V + 5 V ) 11

19 3.1.2 Flash ADC bit SIS3302 ADC 16 bit 16 bit ADC Flash ADC bit 3.3 bit RMS 13 bit 13 bit ADC 5 V/2 MeV 0.24 kev Ge 3.3 SIS3302 bit 5 V ch (16 bit) RMS ± 3 ch bit ( bit ) 13 bit ch RMS [ch] mv ADC Ge MHz (PHADC ) ADC SIS3302 ADC 60 Co 1.33 MeV SIS3302 PHADC ADC 3.4 Flash ADC 671 [µsec] FWHM [kev]

20 ADC 60 Co 100 MHz Flash ADC 1 50 MHz ( 3.2) 20 MHz FWHM [kev] Shaping Time [µsec] Sampling Frequency [MHz] 3.2 µ 1 MHz 1 13

21 3.1.3 Ge Amptek ADMCA ADC (MCA8000A) WEB [8] ADMCA 3.3 ADMCA FWHM Ge FWHM ADMCA ADMCA kev 0.1 kev 3.3 ADMCA FWHM 14

22 3.2 CR-RC LNS energy deposit rate (LNS) Ge 2 khz KEK 4 energy deposit rate 60 Co γ Ge energy deposit K π + LNS (MIP) Ge (2.2 Gbyte) 3.4 LNS MeV 2 STB 1.2 GeV γ GeV γ 3 GeV γ RTAGX γ MeV 1 % 3 khz 3.5 Ge energy deposit rate Ge 60 Co Co 60 Co 1) β 60 Co γ 60 Co 20 kbq 100 Hz 2) γ 1) β ( 60 Co 60 Ni ) γ ( 60 Ni 60 Ni) 2) β 15

23 3.4 LNS MeV 1.2 GeV 2 γ 3 GeV γ RTAGX LNS Ge Ge Ge Ge 60 Co β β γ 16

24 3.6 Ge 2 1 ORTEC µsec 1 ORTEC 579 Timing Filter Amp. (TFA) Flash ADC (SIS MHz) ADC (AD413A) ADC Flash ADC Flash ADC TFA Constant Fraction Discriminator (CFD) CFD (Constant Fraction) CFD (gamma ) 1 1 Time-to-Amplitude Converter (TAC) TAC AD413A Co discriminator (beta ) beta ADC 3.6 LNS 2 µsec Flash ADC ADC TAC 60 Co γ Ge CFD Co 3 70 µsec 60 Co γ 17

25 gamma beta ( 3) ) Ge 60 Co γ 671 Flash ADC TAC γ Hz 70 µsec 2 khz (1 s 140 msec ) 100 Hz (10 msec ) β, γ Co 70 µsec 2 khz 100 Hz 14 Hz (3.1) Flash ADC 1 DAQ dead time 4) DAQ dead time 3) Ge 4) 1 SIS3302 PC DAQ 30 Hz dead time 18

26 3.2.2 Ge energy deposit CRM (Count Rate Meter) 5) 2 3 khz Ge Ge CRM Co γ CRM 10 khz Co 20 kbq 3.5 MIP ( ) Ge MIP 1 energy deposit 50 MeV 6) Ge threshold 175 MeV 50 MeV energy deposit 3 khz energy deposit rate 0.2 TeV/s KEK 4 Counting rate [khz] CRM Beam Monitor Preamp Reset Time [hour] 3.7 CRM 671 discriminator CRM Ge Ge Ge Ge 5) 671 discriminator 6) 1.37 MeV/g cm 2 ( ) g/cm 3 (Ge ) 7 cm( ) 19

27 ADC (AD413A) 60 Co 1.33 MeV kev 2 µsec 2.7 kev 7) 0-10 µsec TAC 200 µsec 671 AD413A 200 µsec 1 Flash ADC 3.5 ( ) [µsec] FWHM [kev] [%] ) 100 % Ge 20

28 Flash ADC Flash ADC 3.8 (13 bit) 8) µsec γ Flash ADC 5 V 671 Voltage [0.61 mv/ch] Beam pulse Reset pulse Gamma-ray pulse 4000 Beseline Time [20 ns/ch] 3.8 Flash ADC 20 nsec 160 µsec 671 γ 3.9 8) 3 bit 2 3 = 8 21

29 3.9 χ 2 22

30 flash ADC flash ADC % 1 Event Counts Overflow Counts (8192 ) Flash ADC

31 Flash ADC TAC 671 flash ADC TAC 9) Voltage [ mv / ch ] normal waveform Diff. Coefficient [ mv / ch ] Time [ 20 ns/ ch] differential waveform Time [ 20 ns/ ch] ) 4 ch 4 ch ch(20 nsec) 0.61 mv 24

32 kev/ch (2 MeV/13 bit) 80 kev (300 ch), 140 µsec µsec 13 bit Ge Ge 671 flash ADC Y 25

33 RMS 2.0 ch (0.5 kev) 10) (40 µsec) reduced χ 2 1 Voltage [ mv / ch ] Time [ 20 ns/ ch] Residual Error [ mv / ch ] Time [ 20 ns/ ch] ) 16 bit 11 bit 26

34 reduced χ reduced χ 2 χ 2 1 ( ) χ 2 χ χ 2 χ (20 µsec) 3.13 µsec 1000 χ Reduced χ 2 χ 2 χ 2 χ

35 Counts 1 Cut Region [points] Reduced Chi-square 3.15 reduced χ χ 2 χ (20 µsec) 28

36 ) χ PHADC 60 Co 1.33 MeV ) 29

37 30 µsec 1 30 µsec µsec dead time 30 µsec 973U UHA ( 0.5 µsec + Gated Integrator) 20 µsec dead time dead time 671 (2 µsec) 973U UHA (0.5 µsec) ( ) 671 dead time 973U UHA energy deposit rate dead time 3.6 ( ) [µsec] FWHM [kev] [%] (20 µsec ) 1 12) 2. Reduced χ 2 (χ 2 < 2) ) ( ) 30

38 Ge p [sec] f [Hz] f [Hz] 1 sec f f s flash ADC i 1 n n = f i f s (3.2) b n f s p i b = i nf s p (3.3) f s p b = n n n max i 1000 f s p (3.4) f n p f s i 1000 P (f) P (f) = k=n max +1 n k k! e n (3.5) 1000 P (f) P (f) = n max k=0 n k k! e n = 1 P (f) (3.6) 3.17 f P (f) 13 µsec 13) 50 MHz khz 13) 2 µsec

39 Probability Counting Rate [khz] 3.17 (Counting Rate) MHz flash ADC 13 µsec 8000 Ge 70 khz energy deposit rate 1.1 KEK Ge energy deposit rate 70 khz energy deposit rate 0.7 TeV/s threshold 175 MeV 0.7 Tev/s 175 MeV = 4 khz (3.7) 973U UHA( dead time 20 µsec) dead time 20 µsec 4 khz = 0.08 [ 8 % ] (3.8) 671 ( dead time 200 µsec) 200 µsec 4 khz = 0.8 [ 80 % ] (3.9) 671 ( dead time 30 µsec) 2 30 µsec 4 khz 2 = 0.24 [ 24 % ] (3.10) 32

40 4 1 dead time (973U UHA) (671 ) dead time µsec 671 dead time 973U UHA ) J-PARC energy deposit rate 14) 2.9 kev/2.4 kev ( 6 µsec 60 Co 1.33 MeV 33

41 CR-RC flash ADC U UHA 15) U UHA UHA 671 UHA flash ADC 370 kbq 60 Co flash ADC U UHA 2 flash ADC Flash ADC 2 ( U ) U UHA 973U ) 34

42 3.3.2 Flash ADC 3.19 Flash ADC 671 (671 ) 973U UHA (973U ) µsec UHA Gated Integrator 3.0 µsec 973U UHA bit Ge 671 UHA UHA 671 UHA gated integration Voltage [ mv / ch ] Voltage [ mv / ch ] Voltage [ mv / ch ] preamp Time [ 20 ns/ ch] 973U UHA Time [ 20 ns/ ch] 671 amp Voltage [ mv / ch ] Voltage [ mv / ch ] Voltage [ mv / ch ] Time [ 20 ns/ ch] Time [ 20 ns/ ch] Time [ 20 ns/ ch] Time [ 20 ns/ ch] U 973U UHA µsec 2 µsec 35

43 671 ( ) ( ) ( ) ( ) χ 2 36

44 ( ) ( ) CRM 60 Co 1.33 MeV µsec Voltage [ mv / ch ] Time [ 20 ns/ ch] Voltage [ mv / ch ] Time [ 20 ns/ ch] Height Time [ 20 ns/ ch] µsec

45 (1 kev ) 1 30 µsec (1440 ) 3.1 ( 2 µsec) 1.33 MeV γ 1 kev ( ) 1.33 MeV γ 1 kev ( ) ( ) ( ) sumb suma = n data[i] i n data[i + g] (3.11) i n g (gap) 3.22 (suma, sumb) threshold UHA threshold 16) threshold (1 st ) 8 2 threshold (2 nd ) 16) threshold 38

46 Voltage [ mv / ch ] sumb gap suma Time [ 20 ns/ ch] Voltage [ mv / ch ] st 1 threshold nd 2 threshold sumb-suma Time [ 20 ns/ ch] 3.22 (suma, sumb) gap 2 threshold( 8 ) 2 thresould 8 threshold 2 threshold CRM g = 15, n = 20 (FWHM) 60 Co 1.33 MeV 40 kev (FWHM) flash ADC CRM 17) (FWHM) 120 nsec 18) 6 17) Flash ADC 18) Ge 10 nsec 39

47 3.23 ADC-ADC ADC-TDC FWHM 120 nsec ( ) Co 1.33 MeV Gap Size ( g) 15 (300 ns) g (n) g = 15, n = ns 300 ns 19) 1 µsec 19) 2 40

48 FWHM [kev] 2 10 Gap Size [ch] Smoothing Size [ch] g = 15, n = threshold 50 kev flash ADC 40 kev 50 kev 50 kev 50 kev 50 kev χ 2 41

49 Voltage [ mv / ch ] P ulse Height [ mv / ch ] T Ltotal -T T T Ltemplate Time[ 20 ns/ ch] P ulse Position [ 20 ns/ ch] ( ) 20) 3.25 L total n T n N N 1 L total = L template + (T i+1 T i ) (3.12) L template i=n 20) 42

50 ( ) CRM 500 Hz (2 msec ) µsec(8192 ) ( ) (3.12) N=1 ( µsec) 3.26 reduced χ 2 ( ) χ MeV reduced χ 2 χ 2 < 2 99% 1 1% 50 kev Reduced Chi-square Energy [MeV] 3.26 reduced χ 2 ( ) 1 χ

51 Counts 1 Cut Region [MeV] Reduced Chi-square 3.27 reduced χ 2 ( ) MeV χ Co 2 40 K 208 Tl flash ADC ) χ 2 60 Co Tl 22) 60 Co 1.33 MeV (FWHM) 2.8 ± 0.1 kev 3.1 ( 2 µsec) 21) 22) 1 60 kev 44

52 ( ) 1 Flash ADC Voltage [ mv / ch ] Range limit of Flash ADC Residual Error [ mv / ch ] Time [ 20 ns/ ch] Time [ 20 ns/ ch] Flash ADC 20 1 reduced χ

53 Ge 1.4 khz ( ) ( ) 23) µsec 2 µsec reduced χ 2 1 Voltage [ mv / ch ] Voltage [ mv / ch ] Time [ 20 ns/ ch] Time [ 20 ns/ ch] Residual Error [ mv / ch ] Time [ 20 ns/ ch] Residual Error [ mv / ch ] Time [ 20 ns/ ch] ) 46

54 χ 2 1 ( ) χ 2 1 χ 2 χ 2 χ 2 χ ) χ 2 χ reduced χ 2 χ MeV reduced χ Reduced Chi-square Energy [MeV] 3.31 reduced χ 2 ( ) χ 2 24) 1 χ 2 47

55 Counts 1 Cut Region [MeV] Reduced Chi-square 3.32 reduced χ 2 ( ) MeV χ 2 χ 2 < reduced χ 2 12 µsec µsec 3.1 ( 2 µsec ) χ χ 2 < 3 16 % MeV 25) 25) 48

56 Reduced Chi-square Interval of Pile-up Pulses [µsec] 3.33 reduced χ 2 ( ) χ 2 χ 2 ( ) 2 ( ) 26) 3.34 reduced χ 2 χ MeV reduced χ 2 χ reduced χ χ 2 26) 49

57 Reduced Chi-square Energy [MeV] 3.34 reduced χ 2 ( ) Counts 1 Cut Region [MeV] Reduced Chi-square 3.35 reduced χ 2 ( ) MeV χ 2 50

58 Reduced Chi-square Interval of Pile-up Pulses [µsec] 3.36 reduced χ 2 ( ) 3.32 χ χ 2 < 2 18 % χ A 51

59 PHADC ( ) (FIT ) 973U UHA PHADC 40 K 1.46 MeV PHADC UHA 60 Co FIT 1.8 MeV Flash ADC 27) PHADC ADC ADC 28) Counts / 5 kev Readout Method 671 PHADC 671 Pulse Fitting 973U UHA (3µsec) Energy [MeV] PHADC 973U UHA PHADC 27) UHA ) 52

60 Co 1.33 MeV 1 973U UHA PHADC 973U UHA (Gated Integrator) 60 Co 671 PHADC FIT MeV 973U gated integration time 3 µsec µsec FWHM [kev] 973U UHA (PHADC ) (PHADC ) ± (FIT ) ± f Hz T sec 2 P P = 1 exp ( ft ) (3.13) 1.4 khz 12 µsec (671 ) % 12 µsec 2 100% 973U UHA 3 µsec U UHA ( 1 1 exp ( 1.4 [khz] 3 [µsec]) 1 exp ( 1.4 [khz] 12 [µsec]) ) = 150 (3.14) 150 FIT 1 µsec 1 µsec

61 ( 1 1 exp ( 1.4 [khz] 1 [µsec]) 1 exp ( 1.4 [khz] 12 [µsec]) ) = 184 (3.15) 973U UHA FIT 1.2 FIT 1 µsec FIT 973U UHA PHADC µsec 5µsec 1 2 ADC Co 1.33 MeV 29) ± 0.05 kev 60 Co 1.33 MeV 2.7 kev 3.2 kev 29) 1 54

62 Counts / 1 kev 3 10 Pulse 2 10 Front Rear No Pileup Energy [MeV] 3.39 ( ) (PHADC ) 973U UHA (PHADC ) ) Co 1.33 MeV 3.7 FIT 30) FIT χ 2 55

63 MeV 973U gated integration time 3 µsec µsec FWHM [kev] 973U UHA (PHADC ) (PHADC ) ± (FIT ) ± 0.02 Counts / 5 kev Readout Method 671 PHADC 671 Pulse Fitting 973U UHA (3µsec) Energy [MeV] PHADC 973U UHA PHADC Co 1.33 MeV ± 0.05 kev 60 Co 1.33 MeV 3.2 kev 3.4 kev χ 2 56

64 χ 2 FIT 3.5 kev Counts / 1 kev 3 10 Pulse 2 10 Front Rear No Pileup Energy [MeV] 3.41 ( ) 57

65 1 t 0 = 0 t P (t) t t + dt f f dt t + dt P (t + dt) t P (t) P (t + dt) = P (t)(1 f dt) (3.16) dp (t) dt = P (t) f P (t) = C exp ( ft) (C ) (3.17) P (t 0 ) = 1 C = 1 T P (f) P (f) = 1 exp ( ft ) (3.18) 3.42 T µsec P (f) 1 µsec 300 khz dead time 2 Probability Pulse Pair Resolution [µ sec] Counting Rate [khz]

66 µsec 2 µsec kev 973U UHA 3 1 µsec 59

67 4 J-PARC Ge flash ADC 100 MHz ADC 16 bit flash ADC ORTEC (LNS) 4 energy deposit rate Ge 1 dead time Ultra Highrate Amp 30 µsec (2 µsec) 2.9 kev UHA 2. FIT 2. Ge 60 Co γ ( ) flash ADC ( FIT ) 1 µsec 3 60

68 1 µsec J-PARC 1. FIT 2. FIT Co γ (1 MeV ) (50 MeV ) 4. 1 µsec 5. ( ) Ge 61

69 [1] Y. Yamamoto et al. Prog. Theor. Phys. Suppl, Vol. 117, p. 361, [2] H. Tamura et al. Nucl. Phys, Vol. A754, p. 58c, [3] H. Tamura et al. Gamma-ray spectroscopy of light hypernuclei. J-PARC proposal E13, [4] K. Shirotori. Hypernuclear gamma-ray spectroscopy at J-PARC K1.8 beam line. Master s thesis, Tohoku University, [5] M. Mimori. γ. Master s thesis, Tohoku University, [6] J. Sasao. Master s thesis, Tohoku University, [7] K. Tanida. PhD thesis, Univ. of Tokyo, [8] 62

70 A CR-RC (CR ) 1) A.1 ADC ( ) A.2 ADC flash ADC A.1 A.2 1) R 0 V(t) dt = 0 63

71 B B µsec 50 MHz 25 MHz khz µsec 1 MHz MHz Abs. Magnitude Frequency [MHz] B MHz 8000 (160 µsec) 1 MHz

W 1983 W ± Z cm 10 cm 50 MeV TAC - ADC ADC [ (µs)] = [] (2.08 ± 0.36) 10 6 s 3 χ µ + µ 8 = (1.20 ± 0.1) 10 5 (Ge

W 1983 W ± Z cm 10 cm 50 MeV TAC - ADC ADC [ (µs)] = [] (2.08 ± 0.36) 10 6 s 3 χ µ + µ 8 = (1.20 ± 0.1) 10 5 (Ge 22 2 24 W 1983 W ± Z 0 3 10 cm 10 cm 50 MeV TAC - ADC 65000 18 ADC [ (µs)] = 0.0207[] 0.0151 (2.08 ± 0.36) 10 6 s 3 χ 2 2 1 20 µ + µ 8 = (1.20 ± 0.1) 10 5 (GeV) 2 G µ ( hc) 3 1 1 7 1.1.............................

More information

CdTe γ 02cb059e :

CdTe γ 02cb059e : CdTe γ 02cb059e : 2006 5 2 i 1 1 1.1............................................ 1 1.2............................................. 2 1.3............................................. 2 2 3 2.1....................................

More information

Mott散乱によるParity対称性の破れを検証

Mott散乱によるParity対称性の破れを検証 Mott Parity P2 Mott target Mott Parity Parity Γ = 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 t P P ),,, ( 3 2 1 0 1 γ γ γ γ γ γ ν ν µ µ = = Γ 1 : : : Γ P P P P x x P ν ν µ µ vector axial vector ν ν µ µ γ γ Γ ν γ

More information

thesis.dvi

thesis.dvi 3 17 03SA210A 2005 3 1 introduction 1 1.1 Positronium............ 1 1.2 Positronium....................... 4 1.2.1 moderation....................... 5 1.2.2..................... 6 1.2.3...................

More information

positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) MeV : thermalization m psec 100

positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) MeV : thermalization m psec 100 positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) 0.5 1.5MeV : thermalization 10 100 m psec 100psec nsec E total = 2mc 2 + E e + + E e Ee+ Ee-c mc

More information

24 10 10 1 2 1.1............................ 2 2 3 3 8 3.1............................ 8 3.2............................ 8 3.3.............................. 11 3.4........................ 12 3.5.........................

More information

untitled

untitled BELLE TOP 12 1 3 2 BELLE 4 2.1 BELLE........................... 4 2.1.1......................... 4 2.1.2 B B........................ 7 2.1.3 B CP............... 8 2.2 BELLE...................... 9 2.3

More information

Muon Muon Muon lif

Muon Muon Muon lif 2005 2005 3 23 1 2 2 2 2.1 Muon.......................................... 2 2.2 Muon........................... 2 2.3................................. 3 2.4 Muon life time.........................................

More information

LEPS

LEPS LEPS2 2016 2 17 LEPS2 SPring-8 γ 3 GeV γ 10 Mcps LEPS2 7 120 LEPS Λ(1405) LEPS2 LEPS2 Silicon Strip Detector (SSD) SSD 100 µm 512 ch 6 cm 3 x y 2 SSD 6 3072 ch APV25-s1 APVDAQ VME APV25-s1 SSD 128 ch

More information

25 3 4

25 3 4 25 3 4 1 µ e + ν e +ν µ µ + e + +ν e + ν µ e e + TAC START STOP START veto START (2.04 ± 0.18)µs 1/2 STOP (2.09 ± 0.11)µs 1/8 G F /( c) 3 (1.21±0.09) 5 /GeV 2 (1.19±0.05) 5 /GeV 2 Weinberg θ W sin θ W

More information

news

news ETL NEWS 1999.9 ETL NEWS 1999.11 Establishment of an Evaluation Technique for Laser Pulse Timing Fluctuations Optoelectronics Division Hidemi Tsuchida e-mail:tsuchida@etl.go.jp A new technique has been

More information

Drift Chamber

Drift Chamber Quench Gas Drift Chamber 23 25 1 2 5 2.1 Drift Chamber.............................................. 5 2.2.............................................. 6 2.2.1..............................................

More information

JPS2016_Aut_Takahashi_ver4

JPS2016_Aut_Takahashi_ver4 CTA 111: CTA 7 A B A C D A E F G D H I J K H H J L H I A C B I A J I H A M H D G Dang Viet Tan G Daniela Hadasch A Daniel Mazin A C CTA-Japan A, B, Max-Planck-Inst. fuer Phys. C, D, ISEE E, F, G, H, I,

More information

π + e + ν e

π + e + ν e π + e + ν e 2 2013 2 5 π + e + ν e π + µ + ν µ R = Γ(π + e + ν e )/Γ(π + µ + ν µ ) 0.1% PIENU 2009 TRIUMF R 0.01% 10 R 0.1% 1000TeV PIENU 0.1% 1980 TRIUMF π + e + ν e π + µ + ν µ KEK COPPER 500MHz Flash

More information

1 3 1.1 PET..................................... 3 1.1.1......................................... 3 1.1.2 PET................................. 4 1.2..

1 3 1.1 PET..................................... 3 1.1.1......................................... 3 1.1.2 PET................................. 4 1.2.. 21 PET 06S2037G 2010 3 1 3 1.1 PET..................................... 3 1.1.1......................................... 3 1.1.2 PET................................. 4 1.2........................................

More information

soturon.dvi

soturon.dvi Stopped Muon 94S2003J 11 3 10 1 2 2 3 2.1 Muon : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 3 2.2 : : : : : : : : 4 2.3 : : : : : : : : : : : : : 6 3 7 3.1 : : : : : : : : : : : : : : : :

More information

BESS Introduction Detector BESS (BESS-TeVspectrometer) Experimetns Data analysis (1) (2) Results Summary

BESS Introduction Detector BESS (BESS-TeVspectrometer) Experimetns Data analysis (1) (2) Results Summary Measurements of Galactic and Atmospheric Cosmic-Ray Absolute Fluxes BESS Introduction Detector BESS (BESS-TeVspectrometer) Experimetns Data analysis (1) (2) Results Summary Introduction 90% 9% 100~10 6

More information

main.dvi

main.dvi CeF 3 1 1 3 1.1 KEK E391a... 3 1.1.1 KL 0 π0 νν... 3 1.1.2 E391a... 4 1.1.3... 5 1.2... 6 2 8 2.1... 8 2.2... 10 2.3 CeF 3... 12 2.4... 13 3 15 3.1... 15 3.2... 15 3.3... 18 3.4... 22 4 23 4.1... 23 4.2...

More information

1 1 (proton, p) (neutron, n) (uud), (udd) u ( ) d ( ) u d ( ) 1: 2: /2 1 0 ( ) ( 2) 0 (γ) 0 (g) ( fm) W Z 0 0 β( )

1 1 (proton, p) (neutron, n) (uud), (udd) u ( ) d ( ) u d ( ) 1: 2: /2 1 0 ( ) ( 2) 0 (γ) 0 (g) ( fm) W Z 0 0 β( ) ( ) TA 2234 oda@phys.kyushu-u.ac.jp TA (M1) 2161 sumi@epp.phys.kyushu-u.ac.jp TA (M1) 2161 takada@epp.phys.kyushu-u.ac.jp TA (M1) 2254 tanaka@epp.phys.kyushu-u.ac.jp µ ( ) 1 2 1.1...............................................

More information

23 1 Section ( ) ( ) ( 46 ) , 238( 235,238 U) 232( 232 Th) 40( 40 K, % ) (Rn) (Ra). 7( 7 Be) 14( 14 C) 22( 22 Na) (1 ) (2 ) 1 µ 2 4

23 1 Section ( ) ( ) ( 46 ) , 238( 235,238 U) 232( 232 Th) 40( 40 K, % ) (Rn) (Ra). 7( 7 Be) 14( 14 C) 22( 22 Na) (1 ) (2 ) 1 µ 2 4 23 1 Section 1.1 1 ( ) ( ) ( 46 ) 2 3 235, 238( 235,238 U) 232( 232 Th) 40( 40 K, 0.0118% ) (Rn) (Ra). 7( 7 Be) 14( 14 C) 22( 22 Na) (1 ) (2 ) 1 µ 2 4 2 ( )2 4( 4 He) 12 3 16 12 56( 56 Fe) 4 56( 56 Ni)

More information

rcnp01may-2

rcnp01may-2 E22 RCP Ring-Cyclotron 97 953 K beam K-atom HF X K, +,K + e,e K + -spectroscopy OK U U I= First-order -exchange - coupling I= U LS U LS Meson-exchange model /5/ I= Symmetric LS Anti-symmetric LS ( σ Λ

More information

3-2 PET ( : CYRIC ) ( 0 ) (3-1 ) PET PET [min] 11 C 13 N 15 O 18 F 68 Ga [MeV] [mm] [MeV]

3-2 PET ( : CYRIC ) ( 0 ) (3-1 ) PET PET [min] 11 C 13 N 15 O 18 F 68 Ga [MeV] [mm] [MeV] 3 PET 3-1 PET 3-1-1 PET PET 1-1 X CT MRI(Magnetic Resonance Imaging) X CT MRI PET 3-1 PET [1] H1 D2 11 C-doxepin 11 C-raclopride PET H1 D2 3-2 PET 0 0 H1 D2 3-1 PET 3-2 PET ( : CYRIC ) ( 0 ) 3-1-2 (3-1

More information

修士論文

修士論文 SAW 14 2 M3622 i 1 1 1-1 1 1-2 2 1-3 2 2 3 2-1 3 2-2 5 2-3 7 2-3-1 7 2-3-2 2-3-3 SAW 12 3 13 3-1 13 3-2 14 4 SAW 19 4-1 19 4-2 21 4-2-1 21 4-2-2 22 4-3 24 4-4 35 5 SAW 36 5-1 Wedge 36 5-1-1 SAW 36 5-1-2

More information

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63> 通信方式第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/072662 このサンプルページの内容は, 第 2 版発行当時のものです. i 2 2 2 2012 5 ii,.,,,,,,.,.,,,,,.,,.,,..,,,,.,,.,.,,.,,.. 1990 5 iii 1 1

More information

LLG-R8.Nisus.pdf

LLG-R8.Nisus.pdf d M d t = γ M H + α M d M d t M γ [ 1/ ( Oe sec) ] α γ γ = gµ B h g g µ B h / π γ g = γ = 1.76 10 [ 7 1/ ( Oe sec) ] α α = λ γ λ λ λ α γ α α H α = γ H ω ω H α α H K K H K / M 1 1 > 0 α 1 M > 0 γ α γ =

More information

untitled

untitled MPPC 18 2 16 MPPC(Multi Pixel Photon Counter), MPPC T2K MPPC T2K (HPK) CPTA, MPPC T2K p,π T2K > 5 10 5 < 1MHz > 15% 200p.e. MIP 5p.e. p/π MPPC HPK MPPC 2 1 MPPC 5 1.1...................................

More information

ohpr.dvi

ohpr.dvi 2003/12/04 TASK PAF A. Fukuyama et al., Comp. Phys. Rep. 4(1986) 137 A. Fukuyama et al., Nucl. Fusion 26(1986) 151 TASK/WM MHD ψ θ ϕ ψ θ e 1 = ψ, e 2 = θ, e 3 = ϕ ϕ E = E 1 e 1 + E 2 e 2 + E 3 e 3 J :

More information

NaI(Tl) CsI(Tl) GSO(Ce) LaBr 3 (Ce) γ Photo Multiplier Tube PMT PIN PIN Photo Diode PIN PD Avalanche Photo Diode APD MPPC Multi-Pixel Photon Counter L

NaI(Tl) CsI(Tl) GSO(Ce) LaBr 3 (Ce) γ Photo Multiplier Tube PMT PIN PIN Photo Diode PIN PD Avalanche Photo Diode APD MPPC Multi-Pixel Photon Counter L 19 P6 γ 2 3 27 NaI(Tl) CsI(Tl) GSO(Ce) LaBr 3 (Ce) γ Photo Multiplier Tube PMT PIN PIN Photo Diode PIN PD Avalanche Photo Diode APD MPPC Multi-Pixel Photon Counter LaBr 3 (Ce) PMT 662keV 2.9% CsI(Tl) 7.1%

More information

= hυ = h c λ υ λ (ev) = 1240 λ W=NE = Nhc λ W= N 2 10-16 λ / / Φe = dqe dt J/s Φ = km Φe(λ)v(λ)dλ THBV3_0101JA Qe = Φedt (W s) Q = Φdt lm s Ee = dφe ds E = dφ ds Φ Φ THBV3_0102JA Me = dφe ds M = dφ ds

More information

2005 4 18 3 31 1 1 8 1.1.................................. 8 1.2............................... 8 1.3.......................... 8 1.4.............................. 9 1.5.............................. 9

More information

Donald Carl J. Choi, β ( )

Donald Carl J. Choi, β ( ) :: α β γ 200612296 20 10 17 1 3 2 α 3 2.1................................... 3 2.2................................... 4 2.3....................................... 6 2.4.......................................

More information

main.dvi

main.dvi MICE Sci-Fi 2 15 3 7 1 1 5 1.1 MICE(Muon Ionization Cooling Experiment)............. 5 1.1.1........................... 5 1.1.2............................... 7 1.1.3 MICE.......................... 10

More information

Μ粒子電子転換事象探索実験による世界最高感度での 荷電LFV探索 第3回機構シンポジューム 2009年5月11日 素粒子原子核研究所 三原 智

Μ粒子電子転換事象探索実験による世界最高感度での 荷電LFV探索  第3回機構シンポジューム 2009年5月11日 素粒子原子核研究所 三原 智 µ COMET LFV esys clfv (Charged Lepton Flavor Violation) J-PARC µ COMET ( ) ( ) ( ) ( ) B ( ) B ( ) B ( ) B ( ) B ( ) B ( ) B 2016 J- PARC µ KEK 3 3 3 3 3 3 3 3 3 3 3 clfv clfv clfv clfv clfv clfv clfv

More information

KamLAND (µ) ν e RSFP + ν e RSFP(Resonant Spin Flavor Precession) ν e RSFP 1. ν e ν µ ν e RSFP.ν e νµ ν e νe µ KamLAND νe KamLAND (ʼ4). kton-day 8.3 < E ν < 14.8 MeV candidates Φ(νe) < 37 cm - s -1 P(νe

More information

SPECT(Single Photon Emission Computer Tomography ) SPECT FWHM 3 4mm [] MPPC SPECT MPPC LSO 6mm 67.5 photo electron 78% kev γ 4.6 photo electron SPECT

SPECT(Single Photon Emission Computer Tomography ) SPECT FWHM 3 4mm [] MPPC SPECT MPPC LSO 6mm 67.5 photo electron 78% kev γ 4.6 photo electron SPECT 3 SPECT SJ SPECT(Single Photon Emission Computer Tomography ) SPECT FWHM 3 4mm [] MPPC SPECT MPPC LSO 6mm 67.5 photo electron 78% kev γ 4.6 photo electron SPECT 9ch MPPC array 3 3 9 3 3 9.mm(sigma) . SPECT..................................................................3............

More information

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H 199 1 1 199 1 1. Vx) m e V cos x π x π Vx) = x < π, x > π V i) x = Vx) V 1 x /)) n n d f dξ ξ d f dξ + n f = H n ξ) ii) H n ξ) = 1) n expξ ) dn dξ n exp ξ )) H n ξ)h m ξ) exp ξ )dξ = π n n!δ n,m x = Vx)

More information

<4D F736F F D B B BB2D834A836F815B82D082C88C602E646F63>

<4D F736F F D B B BB2D834A836F815B82D082C88C602E646F63> 入門モーター工学 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/074351 このサンプルページの内容は, 初版 1 刷発行当時のものです. 10 kw 21 20 50 2 20 IGBT IGBT IGBT 21 (1) 1 2 (2) (3) ii 20 2013 2 iii iv...

More information

J-PARC October 14-15, 2005 KEK

J-PARC October 14-15, 2005 KEK J-PARC October 14-15, 2005 KEK 目次 ミューオン 電子転換過程の紹介 MECO実験 PRISM/PRIME実験 @J-PARC まとめ GIM-like mixing! µ! e W e 3 SUSY-GUT Large top Yukawa couplings result in sizable off-diagonal components in a slepton

More information

2

2 Rb Rb Rb :10256010 2 3 1 5 1.1....................................... 5 1.2............................................. 5 1.3........................................ 6 2 7 2.1.........................................

More information

201711grade1ouyou.pdf

201711grade1ouyou.pdf 2017 11 26 1 2 52 3 12 13 22 23 32 33 42 3 5 3 4 90 5 6 A 1 2 Web Web 3 4 1 2... 5 6 7 7 44 8 9 1 2 3 1 p p >2 2 A 1 2 0.6 0.4 0.52... (a) 0.6 0.4...... B 1 2 0.8-0.2 0.52..... (b) 0.6 0.52.... 1 A B 2

More information

[ ] [ ] [ ] [ ] [ ] [ ] ADC

[ ] [ ] [ ] [ ] [ ] [ ] ADC [ ] [ ] [ ] [ ] [ ] [ ] ADC BS1 m1 PMT m2 BS2 PMT1 PMT ADC PMT2 α PMT α α = n ω n n Pn TMath::Poisson(x,[0]) 0.35 0.3 0.25 0.2 0.15 λ 1.5 ω n 2 = ( α 2 ) n n! e α 2 α 2 = λ = λn n! e λ Poisson Pn 0.1

More information

untitled

untitled masato@icrr.u-tokyo.ac.jp 996 Start 997 998 999 000 00 00 003 004 005 006 007 008 SK-I Accident Partial Reconstruction SK-II Full reconstruction ( SK-III ( ),46 (40%) 5,8 (9%),9 (40%) 5MeV 7MeV 4MeV(plan)

More information

Bethe-Bloch Bethe-Bloch (stopping range) Bethe-Bloch FNAL (Fermi National Accelerator Laboratory) - (SciBooNE ) SciBooNE Bethe-Bloch FNAL - (SciBooNE

Bethe-Bloch Bethe-Bloch (stopping range) Bethe-Bloch FNAL (Fermi National Accelerator Laboratory) - (SciBooNE ) SciBooNE Bethe-Bloch FNAL - (SciBooNE 21 2 27 Bethe-Bloch Bethe-Bloch (stopping range) Bethe-Bloch FNAL (Fermi National Accelerator Laboratory) - (SciBooNE ) SciBooNE Bethe-Bloch FNAL - (SciBooNE ) Bethe-Bloch 1 0.1..............................

More information

高速データ変換

高速データ変換 Application Report JAJA206 V+ R 5 V BIAS Q 6 Q R R 2 Q 2 Q 4 R 4 R 3 Q 3 V BIAS2 Q 5 R 6 V Ω Q V GS + R Q 4 V+ Q 2 Q 3 + V BE V R 2 Q 5 R Op Amp + Q 6 V BE R 3 Q 7 R 4 R 2 A A 2 Buffer 2 ± Ω Ω R G V+ Q.4.2

More information

http://www.ike-dyn.ritsumei.ac.jp/ hyoo/wave.html 1 1, 5 3 1.1 1..................................... 3 1.2 5.1................................... 4 1.3.......................... 5 1.4 5.2, 5.3....................

More information

untitled

untitled 71 7 3,000 1 MeV t = 1 MeV = c 1 MeV c 200 MeV fm 1 MeV 3.0 10 8 10 15 fm/s 0.67 10 21 s (1) 1fm t = 1fm c 1fm 3.0 10 8 10 15 fm/s 0.33 10 23 s (2) 10 22 s 7.1 ( ) a + b + B(+X +...) (3) a b B( X,...)

More information

* n x 11,, x 1n N(µ 1, σ 2 ) x 21,, x 2n N(µ 2, σ 2 ) H 0 µ 1 = µ 2 (= µ ) H 1 µ 1 µ 2 H 0, H 1 *2 σ 2 σ 2 0, σ 2 1 *1 *2 H 0 H

* n x 11,, x 1n N(µ 1, σ 2 ) x 21,, x 2n N(µ 2, σ 2 ) H 0 µ 1 = µ 2 (= µ ) H 1 µ 1 µ 2 H 0, H 1 *2 σ 2 σ 2 0, σ 2 1 *1 *2 H 0 H 1 1 1.1 *1 1. 1.3.1 n x 11,, x 1n Nµ 1, σ x 1,, x n Nµ, σ H 0 µ 1 = µ = µ H 1 µ 1 µ H 0, H 1 * σ σ 0, σ 1 *1 * H 0 H 0, H 1 H 1 1 H 0 µ, σ 0 H 1 µ 1, µ, σ 1 L 0 µ, σ x L 1 µ 1, µ, σ x x H 0 L 0 µ, σ 0

More information

陽電子科学 第4号 (2015) 3-8

陽電子科学 第4号 (2015) 3-8 4 (2015) 3 8 Japanese Positron Science Society Positron annihilation age momentum correlation (AMOC) measurement Abstract: Positron annihilation Age-MOmentum Correlation (AMOC) measurement is the coincidence

More information

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2 1 6 6.1 (??) (P = ρ rad /3) ρ rad T 4 d(ρv ) + PdV = 0 (6.1) dρ rad ρ rad + 4 da a = 0 (6.2) dt T + da a = 0 T 1 a (6.3) ( ) n ρ m = n (m + 12 ) m v2 = n (m + 32 ) T, P = nt (6.4) (6.1) d [(nm + 32 ] )a

More information

J-PARC E15 K K-pp Missing mass Invariant mass K - 3 He Formation K - pp cluster neutron Mode to decay charged particles p Λ π - Decay p Decay E15 dete

J-PARC E15 K K-pp Missing mass Invariant mass K - 3 He Formation K - pp cluster neutron Mode to decay charged particles p Λ π - Decay p Decay E15 dete J-PARC E15 (TGEM-TPC) TGEM M1 ( ) J-PARC E15 TPC TGEM TGEM J-PARC E15 K K-pp Missing mass Invariant mass K - 3 He Formation K - pp cluster neutron Mode to decay charged particles p Λ π - Decay p Decay

More information

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 第 2 版 1 刷発行時のものです. 医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/009192 このサンプルページの内容は, 第 2 版 1 刷発行時のものです. i 2 t 1. 2. 3 2 3. 6 4. 7 5. n 2 ν 6. 2 7. 2003 ii 2 2013 10 iii 1987

More information

B

B B07557 0 0 (AGN) AGN AGN X X AGN AGN Geant4 AGN X X X (AGN) AGN AGN X AGN. AGN AGN Seyfert Seyfert Seyfert AGN 94 Carl Seyfert Seyfert Seyfert z < 0. Seyfert I II I 000 km/s 00 km/s II AGN (BLR) (NLR)

More information

1 2 1 a(=,incident particle A(target nucleus) b (projectile B( product nucleus, residual nucleus, ) ; a + A B + b a A B b 1: A(a,b)B A=B,a=b 2 1. ( 10

1 2 1 a(=,incident particle A(target nucleus) b (projectile B( product nucleus, residual nucleus, ) ; a + A B + b a A B b 1: A(a,b)B A=B,a=b 2 1. ( 10 1 2 1 a(=,incident particle A(target nucleus) b (projectile B( product nucleus, residual nucleus, ) ; a + A B + b a A B b 1: A(a,b)B A=B,a=b 2 1. ( 10 14 m) ( 10 10 m) 2., 3 1 =reaction-text20181101b.tex

More information

0.1 I I : 0.2 I

0.1 I I : 0.2 I 1, 14 12 4 1 : 1 436 (445-6585), E-mail : sxiida@sci.toyama-u.ac.jp 0.1 I I 1. 2. 3. + 10 11 4. 12 1: 0.2 I + 0.3 2 1 109 1 14 3,4 0.6 ( 10 10, 2 11 10, 12/6( ) 3 12 4, 4 14 4 ) 0.6.1 I 1. 2. 3. 0.4 (1)

More information

3 1 4 1.1......................... 4 1.1.1....................... 4 1.1.2.................. 4 1.1.3 Coulomb potential.............. 5 1.2.............

3 1 4 1.1......................... 4 1.1.1....................... 4 1.1.2.................. 4 1.1.3 Coulomb potential.............. 5 1.2............. Fe muonic atom X 25 5 21 3 1 4 1.1......................... 4 1.1.1....................... 4 1.1.2.................. 4 1.1.3 Coulomb potential.............. 5 1.2.......................... 6 1.2.1...................

More information

19 σ = P/A o σ B Maximum tensile strength σ % 0.2% proof stress σ EL Elastic limit Work hardening coefficient failure necking σ PL Proportional

19 σ = P/A o σ B Maximum tensile strength σ % 0.2% proof stress σ EL Elastic limit Work hardening coefficient failure necking σ PL Proportional 19 σ = P/A o σ B Maximum tensile strength σ 0. 0.% 0.% proof stress σ EL Elastic limit Work hardening coefficient failure necking σ PL Proportional limit ε p = 0.% ε e = σ 0. /E plastic strain ε = ε e

More information

1 2 2 (Dielecrics) Maxwell ( ) D H

1 2 2 (Dielecrics) Maxwell ( ) D H 2003.02.13 1 2 2 (Dielecrics) 4 2.1... 4 2.2... 5 2.3... 6 2.4... 6 3 Maxwell ( ) 9 3.1... 9 3.2 D H... 11 3.3... 13 4 14 4.1... 14 4.2... 14 4.3... 17 4.4... 19 5 22 6 THz 24 6.1... 24 6.2... 25 7 26

More information

II (No.2) 2 4,.. (1) (cm) (2) (cm) , (

II (No.2) 2 4,.. (1) (cm) (2) (cm) , ( II (No.1) 1 x 1, x 2,..., x µ = 1 V = 1 k=1 x k (x k µ) 2 k=1 σ = V. V = σ 2 = 1 x 2 k µ 2 k=1 1 µ, V σ. (1) 4, 7, 3, 1, 9, 6 (2) 14, 17, 13, 11, 19, 16 (3) 12, 21, 9, 3, 27, 18 (4) 27.2, 29.3, 29.1, 26.0,

More information

PET. PET, PET., PET 1, TPC 3.,. TPC,,.

PET. PET, PET., PET 1, TPC 3.,. TPC,,. PET TPC 21 2 9 PET. PET, PET., PET 1, TPC 3.,. TPC,,. 1 6 2 PET 7 2.1........................... 7 2.1.1 PET..................... 7 2.1.2.......................... 10 2.2..............................

More information

ADC121S Bit, ksps, Diff Input, Micro Pwr Sampling ADC (jp)

ADC121S Bit, ksps, Diff Input, Micro Pwr Sampling ADC (jp) ADC121S625 ADC121S625 12-Bit, 50 ksps to 200 ksps, Differential Input, Micro Power Sampling A/D Converter Literature Number: JAJSAB8 ADC121S625 12 50kSPS 200kSPS A/D ADC121S625 50kSPS 200kSPS 12 A/D 500mV

More information

スーパーカミオカンデにおける 高エネルギーニュートリノ研究

スーパーカミオカンデにおける 高エネルギーニュートリノ研究 2009 11 20 Cosmic Ray PD D M P4 ? CR M f M PD MOA M1 ν ν p+p+p+p 4 He +2e - +2ν e MeV e - + p n+ ν e γ e + + e - ν x + ν x p + p, γ + p π + X π µ + ν µ e + ν µ + ν e TeV p + p π + X π µ + ν µ e + ν µ +

More information

29 1 29 1 K O TO (J-PARC E14 ) BHCV K O TO J-PARC K L π ν ν BHCV BHCV K L π ν ν BHCV 99.5% BHCV CF 4 MWPC BHCV 99.8% BHCV 2 1 K O TO 4 1.1........................................ 4 1.2 K L π ν ν................................

More information

E930

E930 PS review June 7, 2004 γ-ray Spectroscopy of Λ Hypernuclei E419, E509, E518 Dept. of Physics, Tohoku University H. Tamura Contents 1. Motivation and Hyperball 2. E419 ( 7 ΛLi) and after 3. E518 ( 11 ΛB)

More information

1-x x µ (+) +z µ ( ) Co 2p 3d µ = µ (+) µ ( ) W. Grange et al., PRB 58, 6298 (1998). 1.0 0.5 0.0 2 1 XMCD 0-1 -2-3x10-3 7.1 7.2 7.7 7.8 8.3 8.4 up E down ρ + (E) ρ (E) H, M µ f + f E F f + f f + f X L

More information

NL-22/NL-32取扱説明書_操作編

NL-22/NL-32取扱説明書_操作編 MIC / Preamp ATT NL-32 A C ATT AMP 1 AMP 2 AMP 3 FLAT FLAT CAL.SIG. OVER LOAD DET. AMP 4 AMP 5 A/D D/A CONV. AMP 6 AMP 7 A/D CONV. Vref. AMP 8 AMP 10 DC OUT AMP 9 FILTER OUT AC DC OUT AC OUT KEY SW Start

More information

untitled

untitled TOF ENMA JAEA-RMS) TOF Pre-scission JAERI-RMS (m-state 16 O + 27 Al 150MeV d TOF Nucl. Phys. A444, 349-364 (1985). l = m d Pre-scission Scission 10-19 (Post_scission) (Pre-scission) Proton_fission Alpha_fission

More information

untitled

untitled N0 N8 N0 N8 N0 * 49MeV/nuceon β 0.3c γ Hgh Z Target Pb Equvaent Photon Method 0 d σ dωde σ π γ γ π E 3 γ [!! ] dnπ σ dω π γ Eγ c h C.A.Bertuan and G.Baur Phys.Rep.63,99 988. J.D. Jackson Cassca Eectrodynamcs

More information

c 2009 i

c 2009 i I 2009 c 2009 i 0 1 0.0................................... 1 0.1.............................. 3 0.2.............................. 5 1 7 1.1................................. 7 1.2..............................

More information

keisoku01.dvi

keisoku01.dvi 2.,, Mon, 2006, 401, SAGA, JAPAN Dept. of Mechanical Engineering, Saga Univ., JAPAN 4 Mon, 2006, 401, SAGA, JAPAN Dept. of Mechanical Engineering, Saga Univ., JAPAN 5 Mon, 2006, 401, SAGA, JAPAN Dept.

More information

2004 A1 10 4 1 2 2 3 2.1................................................ 3 2.2............................................. 4 2.3.................................................. 5 2.3.1.......................

More information

放射線化学, 92, 39 (2011)

放射線化学, 92, 39 (2011) V. M. S. V. 1 Contents of the lecture note by Prof. V. M. Byakov and Dr. S. V. Stepanov (Institute of Theoretical and Experimental Physics, Russia) are described in a series of articles. The first article

More information

OPA134/2134/4134('98.03)

OPA134/2134/4134('98.03) OPA OPA OPA OPA OPA OPA OPA OPA OPA TM µ Ω ± ± ± ± + OPA OPA OPA Offset Trim Offset Trim Out A V+ Out A Out D In +In V+ Output In A +In A A B Out B In B In A +In A A D In D +In D V NC V +In B V+ V +In

More information

輻射の量子論、選択則、禁制線、許容線

輻射の量子論、選択則、禁制線、許容線 Radiative Processes in Astrophysics 005/8/1 http://wwwxray.ess.sci.osaka- u.ac.jp/~hayasida Semi-Classical Theory of Radiative Transitions r r 1/ 4 H = ( cp ea) m c + + eφ nonrelativistic limit, Coulomb

More information

Operation_test_of_SOFIST

Operation_test_of_SOFIST ILC :SOFIST 2 29 1 18 SOI ILC SOI SOFIST SOFISTver.1 SOFISTver.1 SOFIST SOFISTver.1 S/N BPW 1 1 4 1.1............... 4 1.1.1... 4 1.1.2... 5 1.2 ILC... 6 1.2.1 ILC... 6 1.2.2 ILD...........................

More information

From Evans Application Notes

From Evans Application Notes 3 From Evans Application Notes http://www.eaglabs.com From Evans Application Notes http://www.eaglabs.com XPS AES ISS SSIMS ATR-IR 1-10keV µ 1 V() r = kx 2 = 2π µν x mm 1 2 µ= m + m 1 2 1 k ν = OSC 2

More information

PDF

PDF 1 1 1 1-1 1 1-9 1-3 1-1 13-17 -3 6-4 6 3 3-1 35 3-37 3-3 38 4 4-1 39 4- Fe C TEM 41 4-3 C TEM 44 4-4 Fe TEM 46 4-5 5 4-6 5 5 51 6 5 1 1-1 1991 1,1 multiwall nanotube 1993 singlewall nanotube ( 1,) sp 7.4eV

More information

untitled

untitled 2 : n =1, 2,, 10000 0.5125 0.51 0.5075 0.505 0.5025 0.5 0.4975 0.495 0 2000 4000 6000 8000 10000 2 weak law of large numbers 1. X 1,X 2,,X n 2. µ = E(X i ),i=1, 2,,n 3. σi 2 = V (X i ) σ 2,i=1, 2,,n ɛ>0

More information

Unidirectional Measurement Current-Shunt Monitor with Dual Comparators (Rev. B

Unidirectional Measurement Current-Shunt Monitor with Dual Comparators (Rev. B www.tij.co.jp INA206 INA207 INA208 INA206-INA208 INA206-INA208 V S 1 14 V IN+ V S 1 10 V IN+ OUT CMP1 IN /0.6V REF 2 3 1.2V REF 13 12 V IN 1.2V REF OUT OUT CMP1 IN+ 2 3 9 8 V IN CMP1 OUT CMP1 IN+ 4 11

More information

Introduction MPPC is new semiconductor photon sensor Technology is very similar to SiPM. Under development by Hamamatsu Photonics (HPK) MPPC have not

Introduction MPPC is new semiconductor photon sensor Technology is very similar to SiPM. Under development by Hamamatsu Photonics (HPK) MPPC have not Multi Pixel Photon Counter T. Nakadaira KEK Introduction MPPC is new semiconductor photon sensor Technology is very similar to SiPM. Under development by Hamamatsu Photonics (HPK) MPPC have not been listed

More information

PowerPoint Presentation

PowerPoint Presentation / 2008/04/04 Ferran Salleras 1 2 40Gb/s 40Gb/s PC QD PC: QD: e.g. PCQD PC/QD 3 CP-ON SP T CP-OFF PC/QD-SMZ T ~ps, 40Gb/s ~100fJ T CP-ON CP-OFF 500µm500µm Photonic Crystal SMZ K. Tajima, JJAP, 1993. Control

More information

[Ver. 0.2] 1 2 3 4 5 6 7 1 1.1 1.2 1.3 1.4 1.5 1 1.1 1 1.2 1. (elasticity) 2. (plasticity) 3. (strength) 4. 5. (toughness) 6. 1 1.2 1. (elasticity) } 1 1.2 2. (plasticity), 1 1.2 3. (strength) a < b F

More information

Table 1: Basic parameter set. Aperture values indicate the radius. δ is relative momentum deviation. Parameter Value Unit Initial emittance 10 mm.mrad

Table 1: Basic parameter set. Aperture values indicate the radius. δ is relative momentum deviation. Parameter Value Unit Initial emittance 10 mm.mrad SuperKEKB EMITTANCE GROWTH BY MISALIGNMENTS AND JITTERS IN SUPERKEKB INJECTOR LINAC Y. Seimiya, M. Satoh, T. Suwada, T. Higo, Y. Enomoto, F. Miyahara, K. Furukawa High Energy Accelerator Research Organization

More information

Chadwick [ 1 ] 1919,, electron number Q kinetic energy [MeV] 8.1: 8.1, 1 internal conversion electron E γ E e =

Chadwick [ 1 ] 1919,, electron number Q kinetic energy [MeV] 8.1: 8.1, 1 internal conversion electron E γ E e = 8 8.1 8.1.1 1 Chadwick [ 1 ] 1919,, electron number Q 0.0 0. 0.4 0.6 0.8 1.0 kinetic energy [MeV] 8.1: 8.1, 1 internal conversion electron E γ E e = E γ φ φ E e X 153 154 8, 3 H 3 He, ( ) 3 H( 1 ) 3 He(

More information

C: PC H19 A5 2.BUN Ohm s law

C: PC H19 A5 2.BUN Ohm s law C: PC H19 A5 2.BUN 19 8 6 3 19 3.1........................... 19 3.2 Ohm s law.................... 21 3.3.......................... 24 4 26 4.1................................. 26 4.2.................................

More information

OHO.dvi

OHO.dvi 1 Coil D-shaped electrodes ( [1] ) Vacuum chamber Ion source Oscillator 1.1 m e v B F = evb (1) r m v2 = evb r v = erb (2) m r T = 2πr v = 2πm (3) eb v

More information

SFGÇÃÉXÉyÉNÉgÉãå`.pdf

SFGÇÃÉXÉyÉNÉgÉãå`.pdf SFG 1 SFG SFG I SFG (ω) χ SFG (ω). SFG χ χ SFG (ω) = χ NR e iϕ +. ω ω + iγ SFG φ = ±π/, χ φ = ±π 3 χ SFG χ SFG = χ NR + χ (ω ω ) + Γ + χ NR χ (ω ω ) (ω ω ) + Γ cosϕ χ NR χ Γ (ω ω ) + Γ sinϕ. 3 (θ) 180

More information

untitled

untitled SPring-8 RFgun JASRI/SPring-8 6..7 Contents.. 3.. 5. 6. 7. 8. . 3 cavity γ E A = er 3 πε γ vb r B = v E c r c A B A ( ) F = e E + v B A A A A B dp e( v B+ E) = = m d dt dt ( γ v) dv e ( ) dt v B E v E

More information

I ( ) 2019

I ( ) 2019 I ( ) 2019 i 1 I,, III,, 1,,,, III,,,, (1 ) (,,, ), :...,, : NHK... NHK, (YouTube ),!!, manaba http://pen.envr.tsukuba.ac.jp/lec/physics/,, Richard Feynman Lectures on Physics Addison-Wesley,,,, x χ,

More information

( ) ,

( ) , II 2007 4 0. 0 1 0 2 ( ) 0 3 1 2 3 4, - 5 6 7 1 1 1 1 1) 2) 3) 4) ( ) () H 2.79 10 10 He 2.72 10 9 C 1.01 10 7 N 3.13 10 6 O 2.38 10 7 Ne 3.44 10 6 Mg 1.076 10 6 Si 1 10 6 S 5.15 10 5 Ar 1.01 10 5 Fe 9.00

More information

JIS Z803: (substitution method) 3 LCR LCR GPIB

JIS Z803: (substitution method) 3 LCR LCR GPIB LCR NMIJ 003 Agilent 8A 500 ppm JIS Z803:000 50 (substitution method) 3 LCR LCR GPIB Taylor 5 LCR LCR meter (Agilent 8A: Basic accuracy 500 ppm) V D z o I V DUT Z 3 V 3 I A Z V = I V = 0 3 6 V, A LCR meter

More information

(e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ,µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) [ ] [ ] [ ] ν e ν µ ν τ e µ τ, e R,µ R,τ R (2.1a

(e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ,µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) [ ] [ ] [ ] ν e ν µ ν τ e µ τ, e R,µ R,τ R (2.1a 1 2 2.1 (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ,µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) [ ] [ ] [ ] ν e ν µ ν τ e µ τ, e R,µ R,τ R (2.1a) L ( ) ) * 2) W Z 1/2 ( - ) d u + e + ν e 1 1 0 0

More information

tokei01.dvi

tokei01.dvi 2. :,,,. :.... Apr. - Jul., 26FY Dept. of Mechanical Engineering, Saga Univ., JAPAN 4 3. (probability),, 1. : : n, α A, A a/n. :, p, p Apr. - Jul., 26FY Dept. of Mechanical Engineering, Saga Univ., JAPAN

More information