振動と波動

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "振動と波動"

Transcription

1 Report JS0.5 J Simplicity February 4, 2012

2 1 J Simplicity HOME

3 Preface 2 Report 2

4 Contents I : : : : II

5 CONTENTS

6 Part I 5

7 Chapter Report Chapter 1 m d2 x(t) dt 2 = mω 2 x(t) m[kg] ω[rad/s] x(t) = A sin(ωt + θ 0 ) A[m] θ 0 [rad] x(t)[m] x(t)[m] ψ(t) ψ(t) 4 Section Section 6

8 CHAPTER : 4 Section x f (x) 2 f (x) Figure 1.1: f (x + 2) = f (x) 2 f (x) 2 f (x) = a a 1 cos πx + b 1 sin πx + a 2 cos 2πx + b 2 sin 2πx + f (x) = a (a n cos nπx n=1 + b n sin nπx ) (1.1) f (x) a n, b n cos nπx sin nπx cos nπx mπx cos dx = δ nm (n, m = 1, 2, ) (1.2) mπx sin dx = δ nm (n, m = 1, 2, ) (1.3) mπx sin dx = 0 (n, m = 1, 2, ) (1.4) (n = m) δ nm = 0 (n m)

9 CHAPTER 1. 8 e ix = cos x + i sin x e ix = cos x i sin x cos x = eix + e ix 2 sin x = eix e ix 2i (1.2) cos nπx mπx cos dx = 1 4 = 1 4 k {exp (i nπx {exp i(n + m)πx ) + exp ( inπx + exp )}{exp (imπx) + exp ( imπx )}dx i(n m)πx + exp i(m n)πx + exp i(n + m)πx }dx exp (i kπx )dx = cos nπx = [ kπ cos kπx dx + i sin kπx dx 1dx + i 0dx = [x] mπx cos dx = = 2 (k = 0) kπx sin ] + i[ kπx cos kπ ] = 0 (k 0) 1 ( ) = (n = m) 4 0 (n m) (1.2) (1.3) (1.4) (1.2) (1.3) (1.4) (1.1) a n, b n a n (1.1) cos mπx (m = 0, 1, 2, ) x f (x) cos mπx dx = a 0 2 cos mπx dx+ {a n n=1 1 m 0 m = 0 cos nπx cos mπx dx = [ mπx sin mπ ] = 0 cos 0πx dx = 1dx = [x] = 2 mπx cos dx+b n sin nπx mπx cos dx}

10 CHAPTER 1. 9 f (x) cos mπx dx = a 0 2 2δ 0m + (a n δ nm + b n 0) n=1 = a 0 δ 0m + a m f (x) cos mπx dx = a m (m = 0, 1, 2, ) m n a n a n = 1 b n b n = 1 f (x) cos nπx dx (n = 0, 1, 2, ) (1.5) f (x) sin nπx dx (n = 1, 2, ) (1.6) (1.5) (1.6) (1.1) f (x) = a (a n cos nπx n=1 + b n sin nπx ) f (x) : Section (1.2) (1.3) (1.4) cos nπx sin nπx cos nπx mπx cos dx = δ nm (n, m = 1, 2, ) mπx sin dx = δ nm (n, m = 1, 2, ) mπx sin dx = 0 (n, m = 1, 2, )

11 CHAPTER cos nπx n = 0 (1.2) (1.3) (1.4) ( 1 2 ) 2 dx = 1 ( 1 cos nπx )( 1 cos mπx )dx = δ nm ( 1 sin nπx )( 1 sin mπx )dx = δ nm ( 1 cos nπx )( 1 sin mπx )dx = , 1 cos π x, 1 sin π x, 1 cos 2π x, 1 sin 2π x,, 1 cos nπ x, 1 sin nπ x, < x < a < x < b {ϕ n (x)} b a ϕ n (x)ϕ m (x)dx = δ nm {ϕ n (x)} : 3 cos x = eix + e ix 2 sin x = eix e ix 2i (1.1) f (x) = a (a n cos nπx n=1 + b n sin nπx )

12 CHAPTER f (x) = a exp (i nπx {a n n=1 ) + exp ( inπx ) 2 exp (i nπx ) exp ( inπx + b ) n 2i = a { 1 2 (a n ib n ) exp(i nπx ) (a n + ib n ) exp( i nπx )} n=1 c 0 a 0 2 c n 1 2 (a n ib n ) (n = 1, 2, 3, ) c n 1 2 (a n + ib n ) (n = 1, 2, 3, ) } f (x) = c 0 + {c n exp(i nπx ) + c n exp(i ( n)πx )} n=1 f (x) = n= c n exp(i nπx ) (1.7) (1.7) c n, c n (1.5) (1.6) c n 1 2 (a n ib n ) = 1 2 ( 1 = 1 2 = 1 2 f (x) cos nπx dx i 1 f (x)(cos nπx nπx i sin )dx f (x) exp( i nπx )dx (n = 1, 2, ) f (x) sin nπx dx) c n 1 2 (a n + ib n ) = 1 2 ( 1 = 1 2 = 1 2 = 1 2 f (x) cos nπx dx + i 1 f (x)(cos nπx f (x) exp (i nπx )dx nπx + i sin )dx f (x) sin nπx dx) f (x) exp( i ( n)πx )dx (n = 1, 2, )

13 CHAPTER c n = 1 2 c 0 a 0 2 = = 1 2 f (x) cos 0πx dx f (x) exp( i 0πx )dx f (x) exp( i nπx )dx (n =, 2, 1, 0, 1, 2, ) (1.8) (1.8) : 2 2 f (x) (1.7) (1.8) f (x) = c n = 1 2 n= c n exp(i nπx ) f (ξ) exp( i nπξ )dξ (n =, 2, 1, 0, 1, 2, ) (1.8) (1.7) x ξ (1.8) (1.7) f (x) = n= 1 2 f (ξ) exp( i nπξ )dξ exp(inπx ) k n nπ k = k n+1 k n = π f (x) = 1 2π n= k f (ξ)e iknξ dξ e ik nx

14 CHAPTER k n k 0 k F(k n ) n= f (x) = 1 2π f (x) = 1 2π dk dk (1.9) (1.9) g(k) = f (x) = 1 2π dk F(k) dξ f (ξ)e ikξ e ikx dξ f (ξ)e ik(x ξ) (1.9) dξ f (ξ)e ikξ (1.10) dk g(k)e ikx (1.11) (1.10) f (ξ) g(k) (1.11) g(k) f (x) (1.10) f (ξ) k g(k) (1.10) (1.11) k g(k) f (x) g(k) f (x) 1 2π g(k) f (x) g(k) = 1 f (ξ)e ikξ dξ 2π f (x) = 1 g(k)e ikx dk 2π (1.10) (1.11) ξ x g(k) = 1 2π f (x)e ikx dx (1.12) f (x) = 1 g(k)e ikx dk (1.13) 2π

15 CHAPTER x 3 x = (x, y, z) 1 k 3 k = (k x, k y, k z ) 1 (1.12) g(k x ) = 1 2π g(k y ) = 1 2π g(k z ) = 1 2π g(k x )g(k y )g(k z ) = 1 (2π) 3 dx dy f (x)e ik xx dx f (y)e ik yy dy f (z)e ik zz dz dz f (x) f (y) f (z)e ik xx e ik yy e ik zz g(k x )g(k y )g(k z ) g( k) f (x) f (y) f (z) f ( x) 3 g( k) = 1 (2π) 3 1 (1.13) f (x) = 1 g(k x )e ikxx dk x 2π f (y) = 1 g(k y )e ikyy dk y 2π f (z) = 1 g(k z )e ikzz dk z 2π f (x) f (y) f (z) = 1 (2π) 3 3 f ( x) = 1 (2π) 3 f ( x)e i k x dxdydz (1.14) dk x dk y dk z g(k x )g(k y )g(k z )e ikxx e ikyy e ik zz g( k)e i k x dk x dk y dk z (1.15) 1.6 T[s] ψ(t) f (x)

16 CHAPTER (1.1) 2 T[s] x t[s] ψ(t) = a (a n cos nπt T/2 + b n sin nπt T/2 ) n=1 = a (a n cos n 2π T t + b n sin n 2π T t) n=1 ψ(t) = a (a n cos nωt + b n sin nωt) n=1 ω = 2π T ω, 2ω, 3ω, (1.5) (1.6) a n = 1 T/2 a n = 2 T b n = 1 T/2 b n = 2 T T/2 T/2 T/2 T/2 T/2 T/2 T/2 T/2 ψ(t) cos nπt T/2 dt ψ(t) cos nωt dt (n = 0, 1, 2, ) ψ(t) sin nπt T/2 dt ψ(t) sin nωt dt (n = 1, 2, ) Section T[s] ψ(t) f (x) (1.7) 2 T[s] x t[s] ψ(t) = = ψ(t) = c n exp(i nπt T/2 ) c n exp(in 2π T t) c n e inωt n= n= n=

17 CHAPTER ω = 2π T ω, 2ω, 3ω, (1.8) c n = 1 T c n = 1 T T/2 T/2 T/2 T/2 ψ(t) exp ( i nπt T/2 )dt ψ(t)e inωt dt (n =, 2, 1, 0, 1, 2, ) (1.12) (1.13) g(k) = 1 2π f (x)e ikx dx f (x) = 1 g(k)e ikx dk 2π ψ(t) f (x) (1.12) (1.13) k ω[rad/s] x t[s] (1.12) g(ω) = 1 ψ(t)e iωt dt 2π ψ(t) ω[rad/s] g(ω) (1.13) ψ(t) = 1 g(ω)e iωt dω 2π e iωt ω[rad/s] g(ω) ψ(t) J Simplicity HOME

18 Chapter m d2 x(t) dt 2 = mω 2 x(t) 2mk m d2 x(t) dt 2 d 2 x(t) dt 2 = mω 2 x(t) 2mk dx(t) dt + 2k dx(t) dt + ω 2 x(t) = 0 (2.1) (2.1) d 2 z(t) dt 2 + 2k dz(t) dt + ω 2 z(t) = 0 (z(t) = x(t) + iy(t)) (2.2) (2.1) z(t) (2.2) (2.1) x(t) y(t) x(t) y(t) z(t) = αe λt 17

19 CHAPTER α λ (2.2) λ 2 αe λt + 2kλαe λt + ω 2 αe λt = 0 λ 2 + 2kλ + ω 2 = 0 λ = k ± k 2 ω 2 (2.3) (2.3) 3 k 2 ω 2 < 0 ω 2 ω 2 k 2 (2.3) λ = k ± iω z(t) = α 1 e kt e iω t + α 2 e kt e iω t = (a 1 + ib 1 )e kt (cos ω t + i sin ω t) + (a 2 + ib 2 )e kt (cos ω t i sin ω t) = {( b 1 + b 2 )e kt sin ω t + (a 1 + a 2 )e kt cos ω t} + i{(a 1 a 2 )e kt sin ω t + (b 1 + b 2 )e kt cos ω t} a 1, b 1, a 2, b 2 z(t) (2.1) A 1 b 1 + b 2, A 2 a 1 + a 2 x(t) = A 1 e kt sin ω t + A 2 e kt cos ω t = Ae kt (a sin ω t + b cos ω t) A, a, b x(t) = Ae kt A sin (ω t + θ 0 ) A = a 2 + b 2 B tan θ 0 = b a x(t) = Be kt sin (ω t + θ 0 )

20 CHAPTER k 2 ω 2 > 0 λ 1 = k k 2 ω 2 λ 2 = k + k 2 ω 2 z(t) = A 1 e λ 1t + A 2 e λ 2t A 1, A 2 B 1, B 2 x(t) = B 1 e λ1t + B 2 e λ 2t k 2 ω 2 = 0 z(t) = αe kt z(t) = α(t)e kt (2.2) ( d2 α(t) dt 2 dz(t) = dα(t) e kt kα(t)e kt dt dt d 2 z(t) = d2 α(t) e kt 2k dα(t) e kt + k 2 α(t)e kt dt 2 dt 2 dt 2k dα(t) dt d2 α(t) dt 2 (k 2 ω 2 )α(t) = 0 d2 α(t) dt 2 = 0 α(t) = Ct + D + k 2 α(t))e kt + 2k( dα(t) dt kα(t))e kt + ω 2 α(t)e kt = 0

21 CHAPTER C D (2.2) z(t) = (Ct + D)e kt C D C D (2.1) x(t) = (Ct + D)e kt 2.2 ω 0 [rad/s] ω[rad/s] F cos ωt m d2 x(t) dt 2 = mω 2 0x(t) + F cos ωt d 2 x(t) + ω 2 dt 2 0 x(t) = F cos ωt (2.4) m (2.4) 2 0 x 0 (t) = A sin (ω 0 t + θ 0 ) (2.4) x 1 (t) = b cos ωt (2.4) bω 2 cos ωt + ω 2 0 b cos ωt = F cos ωt m b(ω 2 0 ω2 ) = F m b = F 1 m ω 2 0 ω2 x 1 (t) = F m ω cos ωt ω2

22 CHAPTER x(t) = A sin (ω 0 t + θ 0 ) + F m ω cos ωt ω2 1 2 ω = ω 0 Fe iωt m d2 z(t) dt 2 z = mω 2 0z(t) + Feiωt d 2 z(t) dt 2 + ω 2 0 z(t) = F m eiωt (2.5) F cos ωt (2.5) α z(t) = αe iωt ( ω 2 )αe iωt + ω 2 0 αeiωt = F m eiωt α(ω 2 0 ω2 ) = F m α = F 1 m ω 2 0 ω2 α z(t) z(t) = F m = F m 1 ω 2 eiωt 0 ω2 ω 2 0 x 1 (t)[m] x 1 (t) = F m 1 (cos ωt + i sin ωt) ω2 ω cos ωt ω2

23 CHAPTER Section Section m d2 x(t) dt 2 d 2 x(t) dt 2 = mω 2 dx(t) 0x(t) 2mk + F cos ωt dt + 2k dx(t) dt + ω 2 0 x(t) = F cos ωt (2.6) m (2.6) 0 Section (2.6) (2.6) x 1 (t) = A cos (ωt δ) Aω 2 cos (ωt δ) 2kAω sin (ωt δ) + ω 2 0 A cos(ωt δ) = F cos ωt m (ω 2 0 ω2 )A cos(ωt δ) 2ωkA sin(ωt δ) = F cos ωt m (ω 2 0 ω2 )A(cos ωt cos δ + sin ωt sin δ) 2ωkA(sin ωt cos δ cos ωt sin δ) = F cos ωt m {(ω 2 0 ω2 )A cos δ + 2ωkA sin δ} cos ωt + {(ω 2 0 ω2 )A sin δ 2ωkA cos δ} sin ωt = F cos ωt (2.7) m (2.7) t = 0[s] (2.7) t[s] t = 0[s] (ω 2 0 ω2 )A cos δ + 2ωkA sin δ = F m (2.8) (2.8) 2ωk+(2.9) (ω 2 0 ω2 ) (ω 2 0 ω2 )A sin δ 2ωkA cos δ = 0 (2.9) 4ω 2 k 2 A sin δ + (ω 2 0 ω2 ) 2 A sin δ = 2ωk F m 2ωk F A sin δ = (ω 2 0 ω2 ) 2 + 4ω 2 k 2 m (2.8) (ω 2 0 ω2 )-(2.9) 2ωk (ω 2 0 ω2 ) 2 A cos δ + 4ω 2 k 2 A cos δ = (ω 2 0 ω2 ) F m A cos δ = ω 2 0 ω2 (ω 2 0 ω2 ) 2 + 4ω 2 k 2 F m

24 CHAPTER A[m] δ[rad] A 2 cos 2 δ + A 2 sin 2 δ = (ω2 0 ω2 ) 2 + 4ω 2 k 2 {(ω 2 0 ω2 ) 2 + 4ω 2 k 2 } ( F 2 m )2 A 2 1 = (ω 2 0 ω2 ) 2 + 4ω 2 k ( F 2 m )2 1 F A = (ω 2 0 ω2 ) 2 + 4ω 2 k 2 m A sin δ A cos δ = tan δ = 2ωk ω 2 0 ω2 2ωk (ω 2 0 ω2 ) 2 + 4ω 2 k 2 F m ω 2 0 ω2 (ω 2 0 ω2 ) 2 + 4ω 2 k 2 F m m d2 z(t) dt 2 d 2 z(t) dt 2 = mω 2 dz(t) 0z(t) 2mk + Fe iωt dt + 2k dz(t) dt α z(t) = αe iωt (2.10) + ω 2 0 z(t) = F m eiωt (2.10) ( ω 2 )αe iωt + 2k iωαe iωt + ω 2 0 αeiωt = F m eiωt α( ω 2 + 2iωk + ω 2 0 ) = F m 1 F α = (ω 2 0 ω2 ) + i 2ωk m β (ω 2 0 ω2 ) + i 2ωk tan δ = 2ωk ω 2 0 ω2 α = 1 F β m α = 1 F β e iδ m

25 CHAPTER Figure 2.1: A 1 F β m α = Ae iδ z(t) = αe iωt = Ae iδ e iωt = Ae i(ωt δ) x 1 (t)[m] x 1 (t) = A cos(ωt δ) J Simplicity HOME

26 Chapter Chapter (a) 3 Figure 3.1: 2 m[kg] 3 k[n/m] (b) 2 x 1 (t)[m], x 2 (t)[m] (b) 2 m d2 x 1 (t) dt 2 m d2 x 2 (t) dt 2 = kx 1 (t) + k(x 2 (t) x 1 (t)) = kx 2 (t) k(x 2 (t) x 1 (t)) 25

27 CHAPTER m d2 x 1 (t) = 2kx dt 2 1 (t) + kx 2 (t) (3.1) m d2 x 2 (t) = kx dt 2 1 (t) 2kx 2 (t) (3.2) 2 (3.1) +(3.2) (3.1) -(3.2) m d2 dt 2 (x 1(t) + x 2 (t)) = k(x 1 (t) + x 2 (t)) m d2 dt 2 (x 1(t) x 2 (t)) = 3k(x 1 (t) x 2 (t)) q 1 (t) x 1 (t) + x 2 (t) q 2 (t) x 1 (t) x 2 (t) ω 2 1 k m ω 2 2 3k m d 2 q 1 (t) = ω 2 dt 2 1 q 1(t) d 2 q 2 (t) = ω 2 dt 2 2 q 2(t) q 1 (t)[m], q 2 (t)[m] q 1 (t) = A 1 sin(ω 1 t + θ 1 ) q 2 (t) = A 2 sin(ω 2 t + θ 2 ) A 1, A 2, θ 1, θ 2 x 1 (t)[m], x 2 (t)[m] x 1 (t) = 1 2 (q 1(t) + q 2 (t)) x 2 (t) = 1 2 (q 1(t) q 2 (t))

28 CHAPTER (3.1) (3.2) 2k m k m k x m 1 (t) 2k x 2 (t) = d2 x 1 (t) dt 2 x 2 (t) m x i (t) = A i e i(ωt+θ i) (i = 1, 2) 2k k x m m 1 (t) k 2k x 2 (t) = x 1 (t) ω2 x 2 (t) m m 2k m k m k x m 1 (t) 2k x 2 (t) = x 1 (t) ω2 x 2 (t) m (3.3) (3.3) B X(t) = ω 2 X(t) (3.4) (3.3) 2k m ω2 k x m 1 (t) k 2k m m ω2 x 2 (t) = 0 (3.5) (3.3) (3.4) (3.5) x 1 (t)[m], x 2 (t)[m] k m ω2 k m k 2k m m = 0 ω2

29 CHAPTER ( 2k m ω2 ) 2 ( k m )2 = 0 4k2 m 2 4k m ω2 + ω 4 k2 m 2 = 0 ω 4 4k m ω2 + 3k2 m 2 = 0 (ω 2 k m )(ω2 3k m ) = 0 ω 2 = ω 2 1, ω2 2 ω 2 1 k m ω 2 2 3k m ω 2 = ω 2 1 k m (3.5) k m k m k x m 1 (t) k x 2 (t) = 0 m k m x 1(t) k m x 2(t) = 0 k m x 1(t) + k m x 2(t) = 0 x 1 (t) = x 2 (t) x 1 (t) = x 2 (t) = A e i(ω 1t+θ 1 ) x 1 (t) = x 2 (t) = A cos(ω 1 t + θ 1 ) 1 p 1 = 2 1 2

30 CHAPTER (3.5) k m k m ω 2 = ω 2 2 3k m k x m 1 (t) k x 2 (t) = 0 m k m x 1(t) k m x 2(t) = 0 x 1 (t) = x 2 (t) x 1 (t) = x 2 (t) = A e i(ω 2t+θ 2 ) x 1 (t) = x 2 (t) = A cos(ω 2 t + θ 2 ) 1 p 1 = (3.3) 4 x 1 (t) = A cos (ω 1 t + θ 1 ) + A cos(ω 2 t + θ 2 ) (3.6) x 2 (t) = A cos (ω 1 t + θ 1 ) A cos(ω 2 t + θ 2 ) (3.7) 2k k x m m 1 (t) k 2k x 2 (t) = d2 x 1 (t) dt 2 x 2 (t) m m 2k k A m m cos (ω 1 t + θ 1 ) + A cos(ω 2 t + θ 2 ) k 2k A cos (ω 1 t + θ 1 ) A cos(ω 2 t + θ 2 ) = ω 2 1 A cos (ω 1 t + θ 1 ) ω 2 2 A cos(ω 2 t + θ 2 ) ω 2 1 m m A cos (ω 1 t + θ 1 ) + ω 2 2 A cos(ω 2 t + θ 2 ) d 2 A cos (ω 1 t + θ 1 ) + A cos(ω 2 t + θ 2 ) dt 2 A cos (ω 1 t + θ 1 ) A cos(ω 2 t + θ 2 ) = ω 2 1 A cos (ω 1 t + θ 1 ) ω 2 2 A cos(ω 2 t + θ 2 ) ω 2 1 A cos (ω 1 t + θ 1 ) + ω 2 2 A cos(ω 2 t + θ 2 )

31 CHAPTER (3.6) (3.7) B 2 P P = B (3.4) B X(t) = ω 2 X(t) P t B P P t X(t) = ω 2 P t X(t) k m k m 2 2 x 1 (t) 2 k 2k x 2 (t) = 2 x 1 (t) ω2 1 1 x 2 (t) 2 2 m m k 1 k (x 1 (t) + x 2 (t)) (x 1 (t) + x 2 (t)) 2 m 2 m k 2 m 1 3k = ω (x 1 (t) x 2 (t)) (x 1 (t) x 2 (t)) 2 m k 0 m 3k Q(t) = ω 2 Q(t) 0 m P t P Q(t) = P t X(t) q 1 (t) = q 2 (t) 1 (x 1 (t) + x 2 (t)) = 2 1 (x 1 (t) x 2 (t)) 2 J Simplicity HOME

32 Part II 31

33 Chapter v[m/s] 1 1 ψ[m] ψ 32

34 CHAPTER Figure 4.1: 1 ψ ψ ψ J Simplicity x[m] λ[m] A 1 T[s] 1[s] f [Hz][Hz = 1/s] f [Hz] T[s] f = 1 T P 1 T[s] 1 λ[m] 2 Figure 4.2: 2 v = λ T = f λ

35 CHAPTER Section ψ ψ Figure 4.3:

36 CHAPTER : v[m/s] : S (Source) : u S [m/s] : O(Observer) : u O [m/s] : f 0 [Hz] : f [Hz] S O S u S [m/s] O 0[s] S 0 S t[s] S 1 S 0 S 1 u S t[m] t[s] S S O S S 1 A 1 vt u S t[m] f 0 t[] λ [m] λ = vt u S t f 0 t λ = v u S f 0 (4.1) S v[m/s]

37 CHAPTER Figure 4.4: 1 v = f λ f = 1 λ v = f = f 0 v u S v v v u S f 0 (4.2) f [Hz] S S 1 A 2 = vt + u S t[m] f 0 t[] λ [m] λ = vt + u S t f 0 t λ = v + u S f 0 (4.3) S v[m/s] v = f λ f = 1 λ v = f = f 0 v + u S v v v + u S f 0 (4.4) f [Hz]

38 CHAPTER O S O O O S O (a) Figure 4.5: 2 0[s] S O (b) t[s] vt[m] O u O t[m] t[s] O O O B f [Hz] f t[] O t[s] OB O O OO f t = O B λ = vt + u Ot λ f = v + u O λ (4.5) f = (v + u O ) 1 λ = (v + u O ) f 0 v f = v + u O v f 0 (4.6)

39 CHAPTER O (a) 0[s] S Figure 4.6: 3 O (b) t[s] vt[m] O u O t[m] t[s] O O O B f [Hz] f t[] O t[s] OB O O OO f t = O B λ = vt u Ot λ f = v u O λ (4.7) f = (v u O ) 1 λ = (v u O ) f 0 v f = v u O v f 0 (4.8) S O S λ [m] (4.1) (4.3) λ = v ± u S f 0 (4.9)

40 CHAPTER S O f [Hz] (4.5) (4.7) u O [m/s] O f = v ± u O λ = (v ± u O ) 1 λ f 0 = (v ± u O ) v ± u S f = v ± u O v ± u S f 0 (4.10) (4.10) S O (4.10) (4.2) (4.4) (4.6) (4.8) J Simplicity HOME

41 Chapter ψ(t, x = 0) ψ(t, x = 0) = A sin ωt A 0[rad] t [s] ψ(t = t, x) Figure 5.1: 3 x[m] t[s] O x[m] P x v [s] t + x v = t t = t x v 40

42 CHAPTER Figure 5.2: 4 t[s] P (t x )[s] O v ψ( t[s] P ) = { (t x )[s] O } v ψ(t, x) = A sin ω(t x v ) = A sin(ωt ω v x) ψ(t, x) = A sin(ωt kx) k[rad/m] k = ω v = 2π vt k 2π λ 2π[rad] v = ω k ψ t[s] x[m] 2 1 ψ ψ t = 0[s] ψ(t, x) = A sin( kx) ψ(t, x) = A sin kx

43 CHAPTER t = 0[s] O ψ(t, x) = A sin ωt ψ ψ (ωt kx)[rad] Figure 5.3: θ[rad] 1 2π[rad] 1 2π[rad] Section v[m/s] v[m/s] ψ(t, x) = A sin ω{t = A sin ω(t + x v ) x ( v) } ψ(t, x) = A sin(ωt + kx)

44 CHAPTER v[m/s] t [s] ψ(t = t, x = 0) ψ(t = t, x = 0) = f (t ) f (t ) x[m] t[s] O x[m] P x v [s] Figure 5.4: 1 t + x v = t t = t x v t[s] P (t x )[s] O v 1 ψ( t[s] P ) = { (t x )[s] O } v ψ(t, x) = f (t x v ) f (t x v )[s] t[s] ψ ψ

45 CHAPTER x[m] ψ v[m/s] v[m/s] ψ(t, x) = f (t + x v ) 1 1 π 2 [rad] ψ(t, x) = A sin (ωt kx) ψ(t, x) = A sin (ωt + kx) ψ(t, x) = A cos (ωt kx) ψ(t, x) = A cos (ωt + kx) ψ(t, x) = A e i(ωt kx) ψ(t, x) = A e i(ωt+kx) kx[rad] kx[rad] Section ψ(t, x) = f (t x v ) ψ(t, x) = f (t + x v ) 1 1 ψ(t, x) ξ t x v

46 CHAPTER ψ(t, x) t[s] 2 ψ(t, x) t 2 ψ(t, x) t 2 = d f (ξ) ξ dξ t = d f (ξ) dξ = d f (ξ) (d dξ dξ ) ξ t = d2 f (ξ) dξ 2 ψ(t, x) x[m] 2 ψ(t, x) x 2 ψ(t, x) x 2 = d f (ξ) ξ dξ x = 1 d f (ξ) v dξ = d dξ ( 1 d f (ξ) v dξ ) ξ x = 1 d 2 f (ξ) v 2 dξ ψ(t, x) = 2 ψ(t, x) (5.1) v 2 t 2 x 2 η t + x v ψ(t, x) t[s] 2 ψ(t, x) t 2 ψ(t, x) t 2 = d f (η) η dη t = d f (η) dη = d f (η) (d dη dη ) η t = d2 f (η) dη 2 ψ(t, x) x[m] 2 ψ(t, x) x 2 ψ(t, x) x 2 = d f (η) η dη x = 1 d f (η) v dη = d dη (1 d f (η) v dη ) η x = 1 d 2 f (η) v 2 dη 2

47 CHAPTER (5.1) ψ(t, x) = f 1 (t x v ) + f 2(t + x v ) ψ(t, x) 1 (5.1) ψ(t, x) t[s] 2 ψ(t, x) t 2 ψ(t, x) t 2 = d f 1(ξ) ξ dξ = d f 1(ξ) dξ t + d f 2(η) dη + d f 2(η) dη = d dξ (d f 1(ξ) ) ξ dξ = d2 f 1 (ξ) dξ 2 η t t + d dη (d f 2(η) dη + d2 f 2 (η) dη 2 ψ(t, x) x[m] 2 ψ(t, x) x 2 ψ(t, x) x 2 = d f 1(ξ) ξ dξ x + d f 2(η) η dη x = 1 d f 1 (ξ) + 1 d f 2 (η) v dξ v dη = d dξ ( 1 v = 1 v 2 (d2 f 1 (ξ) dξ 2 d f 1 (ξ) ) ξ dξ x + d dη (1 v + d2 f 2 (η) dη 2 ) ) η t d f 2 (η) dη ) η x ψ(t, x) 1 (5.1) 1 (5.1) ψ(t, x) = f (t x v ) ψ(t, x) = f (t + x v ) ψ(t, x) = f 1 (t x v ) + f 2(t + x v ) t = 1 (ξ + η) 2 x = v (η ξ) 2 ψ(t, x) = ψ{ξ(t, x), η(t, x)}

48 CHAPTER ψ(t, x) t[s] 2 ψ(t, x) t ψ(ξ, η) ξ ψ(ξ, η) = + ξ t η ψ(ξ, η) ψ(ξ, η) = + ξ η 2 ψ(t, x) = η) ( ψ(ξ, + t 2 ξ ξ η t ψ(ξ, η) ) ξ η t + η) ( ψ(ξ, + η ξ = 2 ψ(ξ, η) + 2 ψ(ξ, η) ψ(ξ, η) ξ 2 η 2 ξ η ψ(t, x) x[m] 2 ψ(t, x) x 2 ψ(t, x) x 2 ψ(ξ, η) ξ ψ(ξ, η) η = + ξ x η x = 1 ψ(ξ, η) + 1 ψ(ξ, η) v ξ v η = ξ ( 1 v ψ(ξ, η) ξ + 1 v ψ(ξ, η) ) ξ η x + η ( 1 ψ(ξ, η) + 1 v ξ v = 1 v 2 ( 2 ψ(ξ, η) ξ ψ(ξ, η) η ψ(ξ, η) ξ η ) 1 (5.1) ψ(ξ, η) ) η η t ψ(ξ, η) ) η η x 1 ψ(ξ, η) v 2 ( ψ(ξ, η) ψ(ξ, η) ξ 2 η 2 ξ η ) = 1 ψ(ξ, η) v 2 ( ψ(ξ, η) 2 2 ψ(ξ, η) ξ 2 η 2 ξ η ) 2 ψ(ξ, η) ξ η = 0 η[s] ψ(ξ, η) ξ = f 1 (ξ) f 1 (ξ) η[s] ξ[s] ξ[s] ψ(ξ, η) = f 1 (ξ)dξ + f 2(η) ψ(ξ, η) = f 1 (ξ) + f 2 (η) ψ(t, x) = f 1 (t x v ) + f 2(t + x v ) f 1, f 2 ξ[s], η[s] 0 1 (5.1) 1 ψ(t, x) = f (t x v ) ψ(t, x) = f (t + x v ) ψ(t, x) = f 1 (t x v ) + f 2(t + x v )

49 CHAPTER u v(= v u)[m/s] t [s] u x = v(t t ) t [s] ψ(t, x) ψ(t, x = 0) = f (t ) f (t ) ψ(t, x) u x[m] t[s] O ψ(t, x) Figure 5.5: 3 u x[m] P u x v [s] t u x + = t v t u x = t v

50 CHAPTER t[s] P (t O 3 ψ( t[s] P ) = { (t u x )[s] O } v ψ(t, x) = f (t u x v ) u x )[s] v v[m/s] v[m/s] ψ(t, x) = f (t + 3 u x v ) 3 3 ψ(t, x) = A sin ω(t u x v ) = A sin (ωt k u x) k k u ψ(t, x) ψ(t, x) = A sin (ωt k x) 3 3 ψ(t, x) = A sin (ωt k x) ψ(t, x) = A sin (ωt + k x) ψ(t, x) = A cos (ωt k x) ψ(t, x) = A cos (ωt + k x) ψ(t, x) = A e i(ωt k x) ψ(t, x) = A e i(ωt+ k x)

51 CHAPTER Section u x ψ(t, x) = f (t v ) ψ(t, x) = f (t + u x v ) 3 3 ψ(t, x) ξ t u x v ψ(t, x) t[s] 2 ψ(t, x) t 2 ψ(t, x) t 2 = d f (ξ) ξ dξ t = d f (ξ) dξ = d f (ξ) (d dξ dξ ) ξ t = d2 f (ξ) dξ 2 ψ(t, x) x[m] 2 ψ(t, x) x 2 ψ(t, x) x 2 y[m], z[m] 2 ψ(t, x) x ψ(t, x) y 2 = d f (ξ) ξ dξ x = u x d f (ξ) v dξ = d dξ ( u x v = u2 x d 2 f (ξ) v 2 dξ ψ(t, x) z 2 d f (ξ) dξ ) ξ x = u2 x + u 2 y + u 2 z v 2 2 f (ξ) ξ 2 u f ξ[s] 2 ψ(t, x) 2 2 ψ(t, x) x ψ(t, x) y ψ(t, x) z 2 = 1 v 2 2 ψ(t, x) t 2

52 CHAPTER ψ(t, x) = ( 2 v 2 t 2 x y + 2 )ψ(t, x) 2 z2 ( x, y, z ) 3 2 = ( x, y, z ) ( x, y, z ) = 2 x y z ψ(t, x) = 2 ψ(t, x) (5.2) v 2 t 2 η t + u x v ψ(t, x) t[s] 2 ψ(t, x) t 2 ψ(t, x) t 2 = d f (η) η dη t = d f (η) dη = d f (η) (d dη dη ) η t = d2 f (η) dη 2 ψ(t, x) x[m] 2 ψ(t, x) x 2 ψ(t, x) x 2 = d f (η) η dη x = u x d f (η) v dη = d dη (u x v = u2 x d 2 f (η) v 2 dη 2 d f (η) dη ) η x

53 CHAPTER y[m], z[m] ψ(t, x) t[s] x[m] 2 ξ[s] η[s] 3 (5.2) ψ(t, x) = f 1 (t u x v ) + f u x 2(t + v ) ψ(t, x) 3 (5.2) ψ(t, x) t[s] 2 ψ(t, x) t 2 ψ(t, x) t 2 = d f 1(ξ) ξ dξ = d f 1(ξ) dξ t + d f 2(η) dη + d f 2(η) dη = d dξ (d f 1(ξ) ) ξ dξ = d2 f 1 (ξ) dξ 2 η t t + d dη (d f 2(η) dη + d2 f 2 (η) dη 2 ψ(t, x) x[m] 2 ψ(t, x) x 2 ψ(t, x) x 2 = d f 1(ξ) ξ dξ x + d f 2(η) η dη x = u x d f 1 (ξ) + u x d f 2 (η) v dξ v dη = d dξ ( u x v y[m], z[m] 2 ψ(t, x) x ψ(t, x) y 2 d f 1 (ξ) ) ξ dξ x + d dη (u x v = u2 x f 1 (ξ) v 2 (d2 + d2 f 2 (η) ) dξ 2 dη ψ(t, x) z 2 ) η t d f 2 (η) dη ) η x = u2 x + u 2 y + u 2 z ( d2 f 1 (ξ) + d2 f 2 (η) ) v 2 dξ 2 dη 2 u ψ(t, x) 2 2 ψ(t, x) x ψ(t, x) y ψ(t, x) z 2 = 1 v 2 2 ψ(t, x) t 2 ψ(t, x) 3 (5.2) 3 (5.2) u x ψ(t, x) = f (t v ) u x ψ(t, x) = f (t + v ) ψ(t, x) = f 1 (t u x v ) + f 2(t + u x v )

54 CHAPTER t = 1 (ξ + η) 2 u x = v (η ξ) 2 ψ(t, x) = ψ{ξ(t, x), η(t, x)} ψ(t, x) t[s] 2 ψ(t, x) t ψ(ξ, η) ξ ψ(ξ, η) = + ξ t η ψ(ξ, η) ψ(ξ, η) = + ξ η 2 ψ(t, x) = η) ( ψ(ξ, + t 2 ξ ξ η t ψ(ξ, η) ) ξ η t + η) ( ψ(ξ, + η ξ = 2 ψ(ξ, η) + 2 ψ(ξ, η) ψ(ξ, η) ξ 2 η 2 ξ η ψ(t, x) x[m] 2 ψ(t, x) x 2 ψ(t, x) x 2 ψ(ξ, η) ξ ψ(ξ, η) η = + ξ x η x = u x ψ(ξ, η) + u x ψ(ξ, η) v ξ v η = ξ ( u x v ψ(ξ, η) ξ + u x v = u2 x v 2 ( 2 ψ(ξ, η) ξ ψ(ξ, η) η ψ(ξ, η) ξ η ) ψ(ξ, η) ) η η t ψ(ξ, η) ) ξ η x + η ( u x ψ(ξ, η) + u x v ξ v ψ(ξ, η) ) η η x y[m], z[m] 3 (5.2) 1 ψ(ξ, η) v 2 ( ψ(ξ, η) ξ ψ(ξ, η) η 2 ξ η ) = u2 x + u 2 y + u 2 z v 2 ( 2 ψ(ξ, η) ξ ψ(ξ, η) η ψ(ξ, η) ξ η ) 2 ψ(ξ, η) + 2 ψ(ξ, η) ψ(ξ, η) = 2 ψ(ξ, η) + 2 ψ(ξ, η) 2 2 ψ(ξ, η) ξ 2 η 2 ξ η ξ 2 η 2 ξ η 2 ψ(ξ, η) = 0 ξ η η[s] ψ(ξ, η) ξ = f 1 (ξ) f 1 (ξ) η[s] ξ[s] ξ[s]

55 CHAPTER ψ(ξ, η) = f 1 (ξ)dξ + f 2(η) ψ(ξ, η) = f 1 (ξ) + f 2 (η) ψ(t, x) = f 1 (t u x v ) + f u x 2(t + v ) f 1, f 2 ξ[s], η[s] 0 3 (5.2) 3 u x ψ(t, x) = f (t v ) u x ψ(t, x) = f (t + v ) ψ(t, x) = f 1 (t u x v ) + f 2(t + u x v ) (5.1) x[m] r[m] r = x 2 + y 2 + z 2 ψ(t, r) x 2 ψ(t, r) x 2 ψ(t, r) r = r x = x ψ(t, r) r r = 1 ψ(t, r) + x( 1 r r 2 = 1 ψ(t, r) r r 2x r) ) ψ(t, + x r3 r r x2 ψ(t, r) + x2 2 ψ(t, r) r 3 r r 2 r 2 2 ψ(t, r) r 2 y[m], z[m] 2 ψ(t, r) + 2 ψ(t, r) + 2 ψ(t, r) = 3 ψ(t, r) x2 + y 2 + z 2 ψ(t, r) + x2 + y 2 + z 2 2 ψ(t, r) x 2 y 2 z 2 r r r 3 r r 2 r 2 = 2 1 ψ(t, r) + 2 ψ(t, r) r r r 2 = 1 2 (rψ(t, r)) r r2 r x

56 CHAPTER (5.2) 1 2 ψ(t, r) = 1 v 2 t 2 r 2 (rψ(t, r)) r (rψ(t, r)) = (rψ(t, r)) v 2 t2 r2 (5.1) ψ(t, x) rψ(t, r) rψ(t, r) = f 1 (t r v ) + f 2(t + r v ) ψ(t, r) = 1 r f 1(t r v ) + 1 r f 2(t + r v ) 1 v[m/s] 2 v[m/s] r[m] J Simplicity HOME

57 Chapter ψ 1 (t, x) ψ 2 (t, x) ψ(t, x) ψ(t, x) = ψ 1 (t, x) + ψ 2 (t, x) Chapter ψ(t, x) = 2 ψ(t, x) (6.1) v 2 t 2 3 ψ(t, x) ψ 1 (t, x) ψ 2 (t, x) 56

58 CHAPTER Figure 6.1: (6.1) c 1, c 2 ψ(t, x) = c 1 ψ 1 (t, x) + c 2 ψ 2 (t, x) (6.1) 1 2 ψ(t, x) = 1 2 (c 1 ψ 1 (t, x) + c 2 ψ 2 (t, x)) v 2 t 2 v 2 t 2 = 1 v 2 (c 1 2 ψ 1 (t, x) t 2 + c 2 2 ψ 2 (t, x) t 2 ) 1 2 ψ 1 (t, x) 1 2 ψ 2 (t, x) = c 1 + c v 2 t 2 2 v 2 t 2 = c 1 2 ψ 1 (t, x) + c 2 2 ψ 2 (t, x) = 2 (c 1 ψ 1 (t, x) + c 2 ψ 2 (t, x)) = 2 ψ(t, x) N

59 CHAPTER ψ 1 (t, x). ψ N (t, x) (6.1) c 1,, c N ψ(t, x) = N c i ψ i (t, x) = c 1 ψ 1 (t, x) + + c N ψ N (t, x) i=1 1 2 ψ(t, x) = 1 2 (c 1 ψ 1 (t, x) + + c N ψ N (t, x)) v 2 t 2 v 2 t 2 = 1 v (c 2 ψ 1 (t, x) 2 ψ N (t, x) c t 2 N ) t ψ 1 (t, x) 1 2 ψ N (t, x) = c c v 2 t 2 N v 2 t 2 = c 1 2 ψ 1 (t, x) + + c N 2 ψ N (t, x) = 2 (c 1 ψ 1 (t, x) + + c N ψ N (t, x)) = 2 ψ(t, x) 6.1 () Section T 8 [s]

60 CHAPTER λ[m] 1 x 2 ψ 1 (t, x) = A sin (ωt kx) ψ 2 (t, x) = A sin (ωt + kx + θ 0 ) ψ 1 (t, x) ψ 2 (t, x) 0[s] ψ 1 (t, x) 0[rad] ψ 2 (t, x) θ 0 [rad] ψ(t, x) ψ(t, x) = ψ 1 (t, x) + ψ 2 (t, x) = A sin (ωt kx) + A sin (ωt + kx + θ 0 ) = 2A sin{ (ωt kx) + (ωt + kx + θ 0) 2 = 2A sin(ωt + θ 0 2 ) cos( kx θ 0 2 ) = 2A cos(kx + θ 0 2 ) sin(ωt + θ 0 2 ) ψ(t, x) 2A cos(kx + θ 0 2 ) } cos{ (ωt kx) (ωt + kx + θ 0) } 2 0[m] 2A cos (kx + θ 0 2 ) = 0 kx + θ 0 2 = nπ + π (n = 0, ±1, ±2, ) 2

61 CHAPTER A cos(kx + θ 0 2 ) = ±2A cos(kx + θ 0 2 ) = ±1 kx + θ 0 2 = nπ (n = 0, ±1, ±2, ) S 1 S 2 S 1 S 2 P S 1 Figure 6.3: S 2 S 1 P S 2 P = 2λ λ = λ P S 1 P S 2 P = mλ (m = 0, 1, 2, ) r 1 r 2 = mλ (m = 0, ±1, ±2, ) (6.2) S 1 P r 1, S 2 P r 2 Q S 1 S 2

62 CHAPTER S 1 Q S 2 Q = λ 3 2 λ = 1 2 λ Q S 1 Q S 2 Q = m λ + λ 2 (m = 0, 1, 2, ) r 1 r 2 = m λ + λ 2 (m = 0, ±1, ±2, ) (6.3) S 1 Q r 1, S 2 Q r 2 2 S 1 S 2 2 S 1 S 2 S 1, S 2 (6.2) (6.3) S 1 S 2 θ(t)[rad] (6.2) (6.3) R S 1 θ R1 (t)[rad] R S 2 θ R2 (t)[rad] 1 2π[rad] θ R1 = θ(t) 2π S 1R λ θ R2 = θ(t) 2π S 2R λ R P θ P1 (t)[rad] θ P2 (t)[rad] 2π[rad] θ P1 (t) θ P2 (t) = 2πm (m = 0, 1, 2, ) {θ(t) 2π S 1P λ } {θ(t) 2πS 2P } = 2πm λ 2π λ S 1P + S 2 P = 2πm S 1 P S 2 P = mλ (m = 0, 1, 2, ) r 1 r 2 = mλ (m = 0, ±1, ±2, ) (6.2) R Q θ Q1 (t)[rad] θ Q2 (t)[rad] 2π[rad] π[rad]

63 CHAPTER θ Q1 (t) θ Q2 (t) = 2πm + π (m = 0, 1, 2, ) {θ(t) 2π S 1Q λ 2π λ S 1Q + S 2 Q = 2πm + π } {θ(t) 2πS 2Q λ } = 2πm + π S 1 Q S 2 Q = m λ + λ (m = 0, 1, 2, ) 2 r 1 r 2 = m λ + λ 2 (m = 0, ±1, ±2, ) (6.3) 2 3 ψ(t, r) 3 Chapter ψ(t, r) = 1 r f 1(t r v ) + 1 r f 2(t + r v ) r[m] 1 R S 1 ψ 1 (t, r 1 ) S 2 ψ 2 (t, r 2 ) ψ 1 (t, r 1 ) = A r 1 sin (ωt kr 1 ) ψ 2 (t, r 2 ) = A r 2 sin (ωt kr 2 ) A R 2 ψ(t, r 1, r 2 ) ψ(t, r 1, r 2 ) = ψ(t, r 1 ) + ψ(t, r 2 ) = A sin (ωt kr 1 ) + A sin (ωt kr 2 ) r 1 r 2 = A (sin ωt cos kr 1 cos ωt sin kr 1 ) + A (sin ωt cos kr 2 cos ωt sin kr 2 ) r 1 r 2 = ( A cos kr 1 + A cos kr 2 ) sin ωt ( A sin kr 1 + A sin kr 2 ) cos ωt r 1 r 2 r 1 r 2 A r 1 cos kr 1 + A r 2 cos kr 2 = A (r 1, r 2 ) sin δ A r 1 sin kr 1 + A r 2 sin kr 2 = A (r 1, r 2 ) cos δ

64 CHAPTER ψ(t, r 1, r 2 ) = A (r 1, r 2 )(sin δ sin ωt cos δ cos ωt) = A (r 1, r 2 ) cos(ωt + δ) A (r 1, r 2 )[m] A 2 (r 1, r 2 ) sin 2 δ + A 2 (r 1, r 2 ) cos 2 δ = ( A r 1 cos kr 1 + A r 2 cos kr 2 ) 2 + ( A r 1 sin kr 1 + A r 2 sin kr 2 ) 2 A 2 (r 1, r 2 ) = ( A r 1 ) 2 (sin 2 kr 1 + cos 2 kr 1 ) + ( A r 2 ) 2 (sin 2 kr 2 + cos 2 kr 2 ) + 2 A2 r 1 r 2 (cos kr 1 cos kr 2 + sin kr 1 sin kr 2 ) A 2 (r 1, r 2 ) = ( A r 1 ) 2 + ( A r 2 ) A2 r 1 r 2 cos k(r 1 r 2 ) A (r 1, r 2 ) = {( A r 1 ) 2 + ( A r 2 ) A2 r 1 r 2 cos k(r 1 r 2 )} 1 2 (6.4) δ[rad] A (r 1, r 2 ) sin δ A (r 1, r 2 ) cos δ = tan δ = A r 1 cos kr 1 + A r 2 cos kr 2 A r 1 sin kr 1 + A r 2 sin kr 2 A r 1 cos kr 1 + A r 2 cos kr 2 A r 1 sin kr 1 + A r 2 sin kr 2 (6.4) (6.2) cos k(r 1 r 2 ) = 1 2π λ (r 1 r 2 ) = 2πm (m = 0, ±1, ±2, ) r 1 r 2 = mλ (m = 0, ±1, ±2, ) (6.3) cos k(r 1 r 2 ) = 1 2π λ (r 1 r 2 ) = 2πm + π (m = 0, ±1, ±2, ) r 1 r 2 = m λ + λ 2 (m = 0, ±1, ±2, )

65 CHAPTER ψ 1 (t, x) = A sin(ω 1 t k 1 x + θ 1 ) ψ 2 (t, x) = A sin(ω 2 t k 2 x + θ 2 ) ψ(t, x) ψ(t, x) = ψ 1 (t, x) + ψ 2 (t, x) = A{sin(ω 1 t k 1 x + θ 1 ) + sin(ω 2 t k 2 x + θ 2 )} = 2A sin (ω 1t k 1 x + θ 1 ) + (ω 2 t k 2 x + θ 2 ) 2 cos (ω 1t k 1 x + θ 1 ) (ω 2 t k 2 x + θ 2 ) 2 = 2A cos{ 1 2 (ω 1 ω 2 )t 1 2 (k 1 k 2 )x (θ 1 θ 2 )} sin{ 1 2 (ω 1 + ω 2 )t 1 2 (k 1 + k 2 )x (θ 1 + θ 2 )} ω 1 2 (ω 1 ω 2 ) k 1 2 (k 1 k 2 ) θ 1 2 (θ 1 θ 2 ) ω 1 2 (ω 1 + ω 2 ) k 1 2 (k 1 + k 2 ) θ 1 2 (θ 1 + θ 2 ) ψ(t, x) = 2A cos( 1 2 ω t 1 2 k x + 1 θ) sin(ωt kx + θ) 2

66 CHAPTER A(t, x) 2A cos( 1 2 ω t 1 2 k x θ) ξ(t, x) sin(ωt kx + θ) t[s], x[m] ξ(t, x) A(t, x) Figure 6.4: A(t, x) v = ω k v g [m/s] v g = 1 2 ω 1 2 k = ω k v g = dω dk v = ω k 6.6 Chapter Section 2 f (x) f (x) = a (a n cos nπx n=1 + b n sin nπx )

67 CHAPTER a n = 1 b n = 1 2 c n = 1 2 f (x) cos nπx dx (n = 0, 1, 2, ) f (x) sin nπx dx (n = 1, 2, ) f (x) = n= c n exp(i nπx ) f (x) exp( i nπx )dx (n =, 2, 1, 0, 1, 2, ) Chapter x t[s] 2 T[s] f (x) ψ(t) ψ(t) = a (a n cos nωt + b n sin nωt) a n = 2 T b n = 2 T ψ(t) = c n = 1 T n=1 T/2 T/2 T/2 T/2 c n e inωt n= T/2 T/2 ψ(t) cos nωt dt (n = 0, 1, 2, ) ψ(t) sin nωt dt (n = 1, 2, ) ψ(t)e inωt dt (n =, 2, 1, 0, 1, 2, ) 1 ψ(t, x) t[s] x[m] x[m] ψ(t, x) = Ae i(ωt kx) = e iωt Ae ikx ϕ(x) = Ae ikx

68 CHAPTER ϕ(x) x x[m] 2 λ[m] f (x) ψ(t, x) ϕ(x) ϕ(x) ϕ(x) = a (a n cos nπx λ/2 + b n sin nπx λ/2 ) n=1 = a (a n cos n 2π λ x + b n sin n 2π λ x) n=1 = a (a n cos nkx + b n sin nkx) k[rad/m] n=1 k, 2k, 3k, a n = 1 λ/2 a n = 2 λ b n = 1 λ/2 b n = 2 λ λ/2 λ/2 λ/2 λ/2 λ/2 λ/2 λ/2 λ/2 ϕ(x) cos nπx λ/2 dx ϕ(x) cos nkx dx (n = 0, 1, 2, ) ϕ(x) sin nπx λ/2 dx ϕ(x) sin nkx dx (n = 1, 2, ) x x[m] 2 λ[m] f (x) ϕ(x) ϕ(x) = = = c n exp(i nπx λ/2 ) c n exp(in 2π λ x) n= n= c n e inkx n= c n = 1 λ c n = 1 λ λ/2 λ/2 λ/2 λ/2 ϕ(x) exp( i nπx λ/2 )dx ϕ(x)e inkx dx (n =, 2, 1, 0, 1, 2, )

69 CHAPTER g(k) = 1 2π f (x)e ikx dx f (x) = 1 g(k)e ikx dk 2π k ω[rad/s] x t[s] f (x) ψ(t) g(ω) = 1 ψ(t)e iωt dt 2π ψ(t) ω[rad/s] g(ω) ψ(t) = 1 g(ω)e iωt dω 2π e iωt ω[rad/s] g(ω) ψ(t) ψ(t, x) ϕ(x) k k[rad/m] x x[m] f (x) ϕ(x) g(k) = 1 ϕ(x)e ikx dx 2π ϕ(x) k[rad/m] g(k) ϕ(x) = 1 g(k)e ikx dk 2π e ikx k[rad/m] g(k) ϕ(x) 3 3 g( k) = 1 (2π) 3 3 f ( x) = 1 (2π) 3 f ( x)e i k x dxdydz g( k)e i k x dk x dk y dk z

70 CHAPTER ψ(t, x) ϕ( x) ϕ( x) ψ(t, x) = Ae i(ωt k x) = e iωt Ae i k x ϕ(x) = Ae i k x ϕ( x) k k[rad/m] x x[m] f ( x) ϕ( x) 3 g( k) = 1 (2π) 3 3 ϕ( x) = 1 (2π) 3 ϕ( x)e i k x dxdydz g( k)e i k x dk x dk y dk z J Simplicity HOME

71 Chapter x ψ(t, x) T[N] ψ(t, x) θ[rad] T sin θ T tan θ ψ(t, x) = T x ψ(t, x) [ ψ(t, x) ] x=0 = 0 (7.1) x ψ(t, x) (7.1) x < 0 ψ i (t, x) = f 1 (t x v ) ψ r (t, x) = g 1 (t + x v ) 70

72 CHAPTER ψ(t, x) = f 1 (t x v ) + g 1(t + x v ) ξ t x v η t + x v (7.1) [ ψ(t, x) x ] x=0 = 1 v [ f 1(ξ) ] x=0 + 1 ξ v [ g 1(η) η ] x=0 = 0 [ f 1(ξ) ] x=0 = [ g 1(η) ξ η ] x=0 x = 0[m] ξ = η = t[s] f 1 (t) t = g 1(t) t f 1 (t) = g 1 (t) + const f 1 (t) 0 g 1 (t) = 0 const = 0 f 1 (t) = g 1 (t) t[s] η[s] f 1 (η) = g 1 (η) ψ r (t, x) = g 1 (t + x v ) = f 1 (t + x v ) ψ r (t, x) = ψ i (t, x) x > 0

73 CHAPTER Figure 7.1: ψ(t, x)[m] ψ(t, x = 0) = 0 (7.2) (7.2) ψ(t, x) ψ(t, x) (7.2) x < 0 ψ i (t, x) = f 1 (t x v ) ψ r (t, x) = g 1 (t + x v ) ψ(t, x) = f 1 (t x v ) + g 1(t + x v ) (7.2) ψ(t, x = 0) = f 1 (t) + g 1 (t) = 0 g 1 (t) = f 1 (t)

74 CHAPTER t[s] η[s] g 1 (η) = f 1 (η) ψ r (t, x) = g 1 (t + x v ) = f 1 (t + x v ) ψ r (t, x) = ψ i (t, x) x > 0 Figure 7.2: 2 1 x < 0 ψ i (t, x) = f 1 (t x v 1 )

75 CHAPTER ψ r (t, x) = g 1 (t + x v 1 ) x > 0 ψ t (t, x) = f 2 (t x v 2 ) x < 0 1 v 1 [m/s] x > 0 2 v 2 [m/s] ψ(t, x) 1 2 ψ i (t, x = 0) + ψ r (t, x = 0) = ψ t (t, x = 0) ψ(t, x) 1 2 [ ψ i(t, x) x ] x=0 + [ ψ r(t, x) x ] x=0 = [ ψ t(t, x) ] x=0 x f 1 (t) + g 1 (t) = f 2 (t) (7.3) [ f 1(t, x) x ] x=0 + [ g 1(t, x) x ξ 1 [s], η 1 [s], ξ 2 [s] (7.4) ξ 1 t x v 1 η 1 t + x v 1 ξ 2 t x v 2 ] x=0 = [ f 2(t, x) ] x=0 (7.4) x 1 [ f 1(ξ 1 ) ] x=0 + 1 [ g 1(η 1 ) ] x=0 = 1 [ f 2(ξ 2 ) ] x=0 v 1 ξ 1 v 1 η 1 v 2 ξ 2 x = 0 ξ 1 = η 1 = ξ 2 = t 1 ( f 1(t) v 1 t g 1(t) ) = 1 f 2 (t) t v 2 t 1 v 1 { f 1 (t) g 1 (t)} = 1 v 2 f 2 (t) + C

76 CHAPTER f 1 (t) 0 g 1 (t) = f 2 (t) = 0 C 0 (7.3) v 2 (7.5) 1 v 1 { f 1 (t) g 1 (t)} = 1 v 2 f 2 (t) (7.5) { f 1 (t) + g 1 (t)} v 2 v 1 { f 1 (t) g 1 (t)} = 0 (1 + v 2 v 1 )g 1 (t) = ( 1 + v 2 v 1 ) f 1 (t) g 1 (t) = v 1 v 2 v 1 + v 2 f 1 (t) (7.3) +v 1 (7.5) 2 f 1 (t) = f 2 (t) + v 1 v 2 f 2 (t) v 1 + v 2 v 2 f 2 (t) = 2 f 1 (t) f 2 (t) = 2v 2 v 1 + v 2 f 1 (t) t[s] η 1 [s] ξ 2 [s] g 1 (t + x v 1 ) = v 1 v 2 v 1 + v 2 f 1 (t + x v 1 ) f 2 (t x v 2 ) = 2v 2 v 1 + v 2 f 1 (t x v 2 ) v 1 [m/s] v 2 [m/s] ψ 1 (t, x) = A sin (ωt k 1 x) ψ 1 (t, x) = B sin (ωt k 1 x) ψ 2 (t, x) = C sin (ωt k 2 x)

77 CHAPTER k xy xz ψ(t, x) Figure 7.3: ψ 1 (t, x) + ψ 1 (t, x) = ψ 2(t, x) A sin (ωt k 1 x) + B sin (ωt k 1 x) = C sin (ωt k 2 x) 3 ωt k 1 x = ωt k 1 x = ωt k 2 x k 1 x = k 1 x = k 2 x (7.6) (7.6) x xy x = (x, y, 0) xz k 1 = (k 1x, 0, k 1z ) k 1 = (k 1x, k 1y, k 1z ) k 2 = (k 2x, k 2y, k 2z )

78 CHAPTER (7.6) k 1x x = k 1x x + k 1y y = k 2xx + k 2y y x = (x, y, 0) x[m] y[m] k 1x = k 1x = k 2x (7.7) k 1y = k 2y = 0 (7.8) (7.8) xz 1 2 v 1 [m/s], v 2 [m/s] k 1 = ω v 1 k 1 = ω v 1 k 2 = ω v 2 (7.7) k 1 sin θ 1 = k 1 sin θ 1 = k 2 sin θ 2 ω v 1 sin θ 1 = ω v 1 sin θ 1 = ω v 2 sin θ 2 sin θ 1 v 1 = sin θ 1 v 1 = sin θ 2 v 2 θ 1 = θ 1 sin θ 1 sin θ 2 = v 1 v 2 n v 1 [m/s] 2 v 2 [m/s] n

79 CHAPTER Figure 7.4: θ 1 [rad] θ 1 [rad] AB Figure 7.5: A 2 DC D ABD DCA ABD = DCA = 90

80 CHAPTER AD AD = DA B D t[s] t[s] A C v[m/s] BD = CA(= vt) BAD = CDA θ 1 = θ θ 1 [rad] θ 2 [rad] Figure 7.6: AB A 2 CD D B D t[s] A C

81 CHAPTER BD sin θ 1 = AD sin θ 2 AC AD = BD AC = v 1t v 2 t = v 1 v 2 n 1 2 n 1 2 = sin θ 1 sin θ 2 = v 1 v 2 = λ 1 λ J Simplicity HOME

chap1.dvi

chap1.dvi 1 1 007 1 e iθ = cos θ + isin θ 1) θ = π e iπ + 1 = 0 1 ) 3 11 f 0 r 1 1 ) k f k = 1 + r) k f 0 f k k = 01) f k+1 = 1 + r)f k ) f k+1 f k = rf k 3) 1 ) ) ) 1+r/)f 0 1 1 + r/) f 0 = 1 + r + r /4)f 0 1 f

More information

pdf

pdf http://www.ns.kogakuin.ac.jp/~ft13389/lecture/physics1a2b/ pdf I 1 1 1.1 ( ) 1. 30 m µm 2. 20 cm km 3. 10 m 2 cm 2 4. 5 cm 3 km 3 5. 1 6. 1 7. 1 1.2 ( ) 1. 1 m + 10 cm 2. 1 hr + 6400 sec 3. 3.0 10 5 kg

More information

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT I (008 4 0 de Broglie (de Broglie p λ k h Planck ( 6.63 0 34 Js p = h λ = k ( h π : Dirac k B Boltzmann (.38 0 3 J/K T U = 3 k BT ( = λ m k B T h m = 0.067m 0 m 0 = 9. 0 3 kg GaAs( a T = 300 K 3 fg 07345

More information

1.2 y + P (x)y + Q(x)y = 0 (1) y 1 (x), y 2 (x) y 1 (x), y 2 (x) (1) y(x) c 1, c 2 y(x) = c 1 y 1 (x) + c 2 y 2 (x) 3 y 1 (x) y 1 (x) e R P (x)dx y 2

1.2 y + P (x)y + Q(x)y = 0 (1) y 1 (x), y 2 (x) y 1 (x), y 2 (x) (1) y(x) c 1, c 2 y(x) = c 1 y 1 (x) + c 2 y 2 (x) 3 y 1 (x) y 1 (x) e R P (x)dx y 2 1 1.1 R(x) = 0 y + P (x)y + Q(x)y = R(x)...(1) y + P (x)y + Q(x)y = 0...(2) 1 2 u(x) v(x) c 1 u(x)+ c 2 v(x) = 0 c 1 = c 2 = 0 c 1 = c 2 = 0 2 0 2 u(x) v(x) u(x) u (x) W (u, v)(x) = v(x) v (x) 0 1 1.2

More information

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2) 3 215 4 27 1 1 u u(x, t) u tt a 2 u xx, a > (1) D : {(x, t) : x, t } u (, t), u (, t), t (2) u(x, ) f(x), u(x, ) t 2, x (3) u(x, t) X(x)T (t) u (1) 1 T (t) a 2 T (t) X (x) X(x) α (2) T (t) αa 2 T (t) (4)

More information

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x [ ] IC. f(x) = e x () f(x) f (x) () lim f(x) lim f(x) x + x (3) lim f(x) lim f(x) x + x (4) y = f(x) ( ) ( s46). < a < () a () lim a log xdx a log xdx ( ) n (3) lim log k log n n n k=.3 z = log(x + y ),

More information

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y [ ] 7 0.1 2 2 + y = t sin t IC ( 9) ( s090101) 0.2 y = d2 y 2, y = x 3 y + y 2 = 0 (2) y + 2y 3y = e 2x 0.3 1 ( y ) = f x C u = y x ( 15) ( s150102) [ ] y/x du x = Cexp f(u) u (2) x y = xey/x ( 16) ( s160101)

More information

5. [1 ] 1 [], u(x, t) t c u(x, t) x (5.3) ξ x + ct, η x ct (5.4),u(x, t) ξ, η u(ξ, η), ξ t,, ( u(ξ,η) ξ η u(x, t) t ) u(x, t) { ( u(ξ, η) c t ξ ξ { (

5. [1 ] 1 [], u(x, t) t c u(x, t) x (5.3) ξ x + ct, η x ct (5.4),u(x, t) ξ, η u(ξ, η), ξ t,, ( u(ξ,η) ξ η u(x, t) t ) u(x, t) { ( u(ξ, η) c t ξ ξ { ( 5 5.1 [ ] ) d f(t) + a d f(t) + bf(t) : f(t) 1 dt dt ) u(x, t) c u(x, t) : u(x, t) t x : ( ) ) 1 : y + ay, : y + ay + by : ( ) 1 ) : y + ay, : yy + ay 3 ( ): ( ) ) : y + ay, : y + ay b [],,, [ ] au xx

More information

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2 No.2 1 2 2 δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i δx j (5) δs 2 = δx i δx i + 2 u i δx i δx j = δs 2 + 2s ij δx i δx j

More information

29

29 9 .,,, 3 () C k k C k C + C + C + + C 8 + C 9 + C k C + C + C + C 3 + C 4 + C 5 + + 45 + + + 5 + + 9 + 4 + 4 + 5 4 C k k k ( + ) 4 C k k ( k) 3 n( ) n n n ( ) n ( ) n 3 ( ) 3 3 3 n 4 ( ) 4 4 4 ( ) n n

More information

n Y 1 (x),..., Y n (x) 1 W (Y 1 (x),..., Y n (x)) 0 W (Y 1 (x),..., Y n (x)) = Y 1 (x)... Y n (x) Y 1(x)... Y n(x) (x)... Y n (n 1) (x) Y (n 1)

n Y 1 (x),..., Y n (x) 1 W (Y 1 (x),..., Y n (x)) 0 W (Y 1 (x),..., Y n (x)) = Y 1 (x)... Y n (x) Y 1(x)... Y n(x) (x)... Y n (n 1) (x) Y (n 1) D d dx 1 1.1 n d n y a 0 dx n + a d n 1 y 1 dx n 1 +... + a dy n 1 dx + a ny = f(x)...(1) dk y dx k = y (k) a 0 y (n) + a 1 y (n 1) +... + a n 1 y + a n y = f(x)...(2) (2) (2) f(x) 0 a 0 y (n) + a 1 y

More information

phs.dvi

phs.dvi 483F 3 6.........3... 6.4... 7 7.... 7.... 9.5 N (... 3.6 N (... 5.7... 5 3 6 3.... 6 3.... 7 3.3... 9 3.4... 3 4 7 4.... 7 4.... 9 4.3... 3 4.4... 34 4.4.... 34 4.4.... 35 4.5... 38 4.6... 39 5 4 5....

More information

e a b a b b a a a 1 a a 1 = a 1 a = e G G G : x ( x =, 8, 1 ) x 1,, 60 θ, ϕ ψ θ G G H H G x. n n 1 n 1 n σ = (σ 1, σ,..., σ N ) i σ i i n S n n = 1,,

e a b a b b a a a 1 a a 1 = a 1 a = e G G G : x ( x =, 8, 1 ) x 1,, 60 θ, ϕ ψ θ G G H H G x. n n 1 n 1 n σ = (σ 1, σ,..., σ N ) i σ i i n S n n = 1,, 01 10 18 ( ) 1 6 6 1 8 8 1 6 1 0 0 0 0 1 Table 1: 10 0 8 180 1 1 1. ( : 60 60 ) : 1. 1 e a b a b b a a a 1 a a 1 = a 1 a = e G G G : x ( x =, 8, 1 ) x 1,, 60 θ, ϕ ψ θ G G H H G x. n n 1 n 1 n σ = (σ 1,

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ dt iωζ = ẍ + ω2 x (2.1) ζ ζ = Aωe iωt = Aω cos ωt + iaω sin

x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ dt iωζ = ẍ + ω2 x (2.1) ζ ζ = Aωe iωt = Aω cos ωt + iaω sin 2 2.1 F (t) 2.1.1 mẍ + kx = F (t). m ẍ + ω 2 x = F (t)/m ω = k/m. 1 : (ẋ, x) x = A sin ωt, ẋ = Aω cos ωt 1 2-1 x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ

More information

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s ... x, y z = x + iy x z y z x = Rez, y = Imz z = x + iy x iy z z () z + z = (z + z )() z z = (z z )(3) z z = ( z z )(4)z z = z z = x + y z = x + iy ()Rez = (z + z), Imz = (z z) i () z z z + z z + z.. z

More information

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt S I. x yx y y, y,. F x, y, y, y,, y n http://ayapin.film.s.dendai.ac.jp/~matuda n /TeX/lecture.html PDF PS yx.................................... 3.3.................... 9.4................5..............

More information

http://www.ike-dyn.ritsumei.ac.jp/ hyoo/wave.html 1 1, 5 3 1.1 1..................................... 3 1.2 5.1................................... 4 1.3.......................... 5 1.4 5.2, 5.3....................

More information

c 2009 i

c 2009 i I 2009 c 2009 i 0 1 0.0................................... 1 0.1.............................. 3 0.2.............................. 5 1 7 1.1................................. 7 1.2..............................

More information

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4 1. k λ ν ω T v p v g k = π λ ω = πν = π T v p = λν = ω k v g = dω dk 1) ) 3) 4). p = hk = h λ 5) E = hν = hω 6) h = h π 7) h =6.6618 1 34 J sec) hc=197.3 MeV fm = 197.3 kev pm= 197.3 ev nm = 1.97 1 3 ev

More information

1. 2 P 2 (x, y) 2 x y (0, 0) R 2 = {(x, y) x, y R} x, y R P = (x, y) O = (0, 0) OP ( ) OP x x, y y ( ) x v = y ( ) x 2 1 v = P = (x, y) y ( x y ) 2 (x

1. 2 P 2 (x, y) 2 x y (0, 0) R 2 = {(x, y) x, y R} x, y R P = (x, y) O = (0, 0) OP ( ) OP x x, y y ( ) x v = y ( ) x 2 1 v = P = (x, y) y ( x y ) 2 (x . P (, (0, 0 R {(,, R}, R P (, O (0, 0 OP OP, v v P (, ( (, (, { R, R} v (, (, (,, z 3 w z R 3,, z R z n R n.,..., n R n n w, t w ( z z Ke Words:. A P 3 0 B P 0 a. A P b B P 3. A π/90 B a + b c π/ 3. +

More information

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n 003...............................3 Debye................. 3.4................ 3 3 3 3. Larmor Cyclotron... 3 3................ 4 3.3.......... 4 3.3............ 4 3.3...... 4 3.3.3............ 5 3.4.........

More information

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi) 0. A A = 4 IC () det A () A () x + y + z = x y z X Y Z = A x y z ( 5) ( s5590) 0. a + b + c b c () a a + b + c c a b a + b + c 0 a b c () a 0 c b b c 0 a c b a 0 0. A A = 7 5 4 5 0 ( 5) ( s5590) () A ()

More information

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5. A 1. Boltzmann Planck u(ν, T )dν = 8πh ν 3 c 3 kt 1 dν h 6.63 10 34 J s Planck k 1.38 10 23 J K 1 Boltzmann u(ν, T ) T ν e hν c = 3 10 8 m s 1 2. Planck λ = c/ν Rayleigh-Jeans u(ν, T )dν = 8πν2 kt dν c

More information

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d S I.. http://ayapin.film.s.dendai.ac.jp/~matuda /TeX/lecture.html PDF PS.................................... 3.3.................... 9.4................5.............. 3 5. Laplace................. 5....

More information

2.2 ( y = y(x ( (x 0, y 0 y (x 0 (y 0 = y(x 0 y = y(x ( y (x 0 = F (x 0, y(x 0 = F (x 0, y 0 (x 0, y 0 ( (x 0, y 0 F (x 0, y 0 xy (x, y (, F (x, y ( (

2.2 ( y = y(x ( (x 0, y 0 y (x 0 (y 0 = y(x 0 y = y(x ( y (x 0 = F (x 0, y(x 0 = F (x 0, y 0 (x 0, y 0 ( (x 0, y 0 F (x 0, y 0 xy (x, y (, F (x, y ( ( (. x y y x f y = f(x y x y = y(x y x y dx = d dx y(x = y (x = f (x y = y(x x ( (differential equation ( + y 2 dx + xy = 0 dx = xy + y 2 2 2 x y 2 F (x, y = xy + y 2 y = y(x x x xy(x = F (x, y(x + y(x 2

More information

23 7 28 i i 1 1 1.1................................... 2 1.2............................... 3 1.2.1.................................... 3 1.2.2............................... 4 1.2.3 SI..............................

More information

ẍ = kx, (k > ) (.) x x(t) = A cos(ωt + α) (.). d/ = D. d dt x + k ( x = D + k ) ( ) ( ) k k x = D + i D i x =... ( ) k D + i x = or ( ) k D i x =.. k.

ẍ = kx, (k > ) (.) x x(t) = A cos(ωt + α) (.). d/ = D. d dt x + k ( x = D + k ) ( ) ( ) k k x = D + i D i x =... ( ) k D + i x = or ( ) k D i x =.. k. K E N Z OU 8 9 8. F = kx x 3 678 ẍ = kx, (k > ) (.) x x(t) = A cos(ωt + α) (.). d/ = D. d dt x + k ( x = D + k ) ( ) ( ) k k x = D + i D i x =... ( ) k D + i x = or ( ) k D i x =.. k. D = ±i dt = ±iωx,

More information

v er.1/ c /(21)

v er.1/ c /(21) 12 -- 1 1 2009 1 17 1-1 1-2 1-3 1-4 2 2 2 1-5 1 1-6 1 1-7 1-1 1-2 1-3 1-4 1-5 1-6 1-7 c 2011 1/(21) 12 -- 1 -- 1 1--1 1--1--1 1 2009 1 n n α { n } α α { n } lim n = α, n α n n ε n > N n α < ε N {1, 1,

More information

() (, y) E(, y) () E(, y) (3) q ( ) () E(, y) = k q q (, y) () E(, y) = k r r (3).3 [.7 ] f y = f y () f(, y) = y () f(, y) = tan y y ( ) () f y = f y

() (, y) E(, y) () E(, y) (3) q ( ) () E(, y) = k q q (, y) () E(, y) = k r r (3).3 [.7 ] f y = f y () f(, y) = y () f(, y) = tan y y ( ) () f y = f y 5. [. ] z = f(, y) () z = 3 4 y + y + 3y () z = y (3) z = sin( y) (4) z = cos y (5) z = 4y (6) z = tan y (7) z = log( + y ) (8) z = tan y + + y ( ) () z = 3 8y + y z y = 4 + + 6y () z = y z y = (3) z =

More information

I 1

I 1 I 1 1 1.1 1. 3 m = 3 1 7 µm. cm = 1 4 km 3. 1 m = 1 1 5 cm 4. 5 cm 3 = 5 1 15 km 3 5. 1 = 36 6. 1 = 8.64 1 4 7. 1 = 3.15 1 7 1 =3 1 7 1 3 π 1. 1. 1 m + 1 cm = 1.1 m. 1 hr + 64 sec = 1 4 sec 3. 3. 1 5 kg

More information

chap03.dvi

chap03.dvi 99 3 (Coriolis) cm m (free surface wave) 3.1 Φ 2.5 (2.25) Φ 100 3 r =(x, y, z) x y z F (x, y, z, t) =0 ( DF ) Dt = t + Φ F =0 onf =0. (3.1) n = F/ F (3.1) F n Φ = Φ n = 1 F F t Vn on F = 0 (3.2) Φ (3.1)

More information

p = mv p x > h/4π λ = h p m v Ψ 2 Ψ

p = mv p x > h/4π λ = h p m v Ψ 2 Ψ II p = mv p x > h/4π λ = h p m v Ψ 2 Ψ Ψ Ψ 2 0 x P'(x) m d 2 x = mω 2 x = kx = F(x) dt 2 x = cos(ωt + φ) mω 2 = k ω = m k v = dx = -ωsin(ωt + φ) dt = d 2 x dt 2 0 y v θ P(x,y) θ = ωt + φ ν = ω [Hz] 2π

More information

meiji_resume_1.PDF

meiji_resume_1.PDF β β β (q 1,q,..., q n ; p 1, p,..., p n ) H(q 1,q,..., q n ; p 1, p,..., p n ) Hψ = εψ ε k = k +1/ ε k = k(k 1) (x, y, z; p x, p y, p z ) (r; p r ), (θ; p θ ), (ϕ; p ϕ ) ε k = 1/ k p i dq i E total = E

More information

ii p ϕ x, t = C ϕ xe i ħ E t +C ϕ xe i ħ E t ψ x,t ψ x,t p79 やは時間変化しないことに注意 振動 粒子はだいたい このあたりにいる 粒子はだいたい このあたりにいる p35 D.3 Aψ Cϕdx = aψ ψ C Aϕ dx

ii p ϕ x, t = C ϕ xe i ħ E t +C ϕ xe i ħ E t ψ x,t ψ x,t p79 やは時間変化しないことに注意 振動 粒子はだいたい このあたりにいる 粒子はだいたい このあたりにいる p35 D.3 Aψ Cϕdx = aψ ψ C Aϕ dx i B5 7.8. p89 4. ψ x, tψx, t = ψ R x, t iψ I x, t ψ R x, t + iψ I x, t = ψ R x, t + ψ I x, t p 5.8 π π π F e ix + F e ix + F 3 e 3ix F e ix + F e ix + F 3 e 3ix dx πψ x πψx p39 7. AX = X A [ a b c d x

More information

4.6: 3 sin 5 sin θ θ t θ 2t θ 4t : sin ωt ω sin θ θ ωt sin ωt 1 ω ω [rad/sec] 1 [sec] ω[rad] [rad/sec] 5.3 ω [rad/sec] 5.7: 2t 4t sin 2t sin 4t

4.6: 3 sin 5 sin θ θ t θ 2t θ 4t : sin ωt ω sin θ θ ωt sin ωt 1 ω ω [rad/sec] 1 [sec] ω[rad] [rad/sec] 5.3 ω [rad/sec] 5.7: 2t 4t sin 2t sin 4t 1 1.1 sin 2π [rad] 3 ft 3 sin 2t π 4 3.1 2 1.1: sin θ 2.2 sin θ ft t t [sec] t sin 2t π 4 [rad] sin 3.1 3 sin θ θ t θ 2t π 4 3.2 3.1 3.4 3.4: 2.2: sin θ θ θ [rad] 2.3 0 [rad] 4 sin θ sin 2t π 4 sin 1 1

More information

dynamics-solution2.dvi

dynamics-solution2.dvi 1 1. (1) a + b = i +3i + k () a b =5i 5j +3k (3) a b =1 (4) a b = 7i j +1k. a = 14 l =/ 14, m=1/ 14, n=3/ 14 3. 4. 5. df (t) d [a(t)e(t)] =ti +9t j +4k, = d a(t) d[a(t)e(t)] e(t)+ da(t) d f (t) =i +18tj

More information

II Karel Švadlenka * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* u = au + bv v = cu + dv v u a, b, c, d R

II Karel Švadlenka * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* u = au + bv v = cu + dv v u a, b, c, d R II Karel Švadlenka 2018 5 26 * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* 5 23 1 u = au + bv v = cu + dv v u a, b, c, d R 1.3 14 14 60% 1.4 5 23 a, b R a 2 4b < 0 λ 2 + aλ + b = 0 λ =

More information

1. (8) (1) (x + y) + (x + y) = 0 () (x + y ) 5xy = 0 (3) (x y + 3y 3 ) (x 3 + xy ) = 0 (4) x tan y x y + x = 0 (5) x = y + x + y (6) = x + y 1 x y 3 (

1. (8) (1) (x + y) + (x + y) = 0 () (x + y ) 5xy = 0 (3) (x y + 3y 3 ) (x 3 + xy ) = 0 (4) x tan y x y + x = 0 (5) x = y + x + y (6) = x + y 1 x y 3 ( 1 1.1 (1) (1 + x) + (1 + y) = 0 () x + y = 0 (3) xy = x (4) x(y + 3) + y(y + 3) = 0 (5) (a + y ) = x ax a (6) x y 1 + y x 1 = 0 (7) cos x + sin x cos y = 0 (8) = tan y tan x (9) = (y 1) tan x (10) (1 +

More information

untitled

untitled - k k k = y. k = ky. y du dx = ε ux ( ) ux ( ) = ax+ b x u() = ; u( ) = AE u() = b= u () = a= ; a= d x du ε x = = = dx dx N = σ da = E ε da = EA ε A x A x x - σ x σ x = Eε x N = EAε x = EA = N = EA k =

More information

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a =

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a = II 6 ishimori@phys.titech.ac.jp 6.. 5.4.. f Rx = f Lx = fx fx + lim = lim x x + x x f c = f x + x < c < x x x + lim x x fx fx x x = lim x x f c = f x x < c < x cosmx cosxdx = {cosm x + cosm + x} dx = [

More information

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a =

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a = [ ] 9 IC. dx = 3x 4y dt dy dt = x y u xt = expλt u yt λ u u t = u u u + u = xt yt 6 3. u = x, y, z = x + y + z u u 9 s9 grad u ux, y, z = c c : grad u = u x i + u y j + u k i, j, k z x, y, z grad u v =

More information

( ) ( )

( ) ( ) 20 21 2 8 1 2 2 3 21 3 22 3 23 4 24 5 25 5 26 6 27 8 28 ( ) 9 3 10 31 10 32 ( ) 12 4 13 41 0 13 42 14 43 0 15 44 17 5 18 6 18 1 1 2 2 1 2 1 0 2 0 3 0 4 0 2 2 21 t (x(t) y(t)) 2 x(t) y(t) γ(t) (x(t) y(t))

More information

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2 2005 9/8-11 2 2.2 ( 2-5) γ ( ) γ cos θ 2πr πρhr 2 g h = 2γ cos θ ρgr (2.1) γ = ρgrh (2.2) 2 cos θ θ cos θ = 1 (2.2) γ = 1 ρgrh (2.) 2 2. p p ρgh p ( ) p p = p ρgh (2.) h p p = 2γ r 1 1 (Berry,1975) 2-6

More information

d (K + U) = v [ma F(r)] = (2.4.4) t = t r(t ) = r t 1 r(t 1 ) = r 1 U(r 1 ) U(r ) = t1 t du t1 = t F(r(t)) dr(t) r1 = F dr (2.4.5) r F 2 F ( F) r A r

d (K + U) = v [ma F(r)] = (2.4.4) t = t r(t ) = r t 1 r(t 1 ) = r 1 U(r 1 ) U(r ) = t1 t du t1 = t F(r(t)) dr(t) r1 = F dr (2.4.5) r F 2 F ( F) r A r 2.4 ( ) U(r) ( ) ( ) U F(r) = x, U y, U = U(r) (2.4.1) z 2 1 K = mv 2 /2 dk = d ( ) 1 2 mv2 = mv dv = v (ma) (2.4.2) ( ) U(r(t)) r(t) r(t) + dr(t) du du = U(r(t) + dr(t)) U(r(t)) = U x = U(r(t)) dr(t)

More information

A 2008 10 (2010 4 ) 1 1 1.1................................. 1 1.2..................................... 1 1.3............................ 3 1.3.1............................. 3 1.3.2..................................

More information

0 0. 0

0 0. 0 60 0 ( ) Web http://www.phys.u-ryukyu.ac.jp/~maeno/wave00/index.html Java Web maeno sci.u-ryukyu.ac.jp () () (3) 0 0. 0 0.. 3 () () (3) () () (3) () (3) () 0. 3 0Hz 0000Hz Hz 4 3 4 Hertz 4 0 A 4 440Hz

More information

Chap11.dvi

Chap11.dvi . () x 3 + dx () (x )(x ) dx + sin x sin x( + cos x) dx () x 3 3 x + + 3 x + 3 x x + x 3 + dx 3 x + dx 6 x x x + dx + 3 log x + 6 log x x + + 3 rctn ( ) dx x + 3 4 ( x 3 ) + C x () t x t tn x dx x. t x

More information

LCR e ix LC AM m k x m x x > 0 x < 0 F x > 0 x < 0 F = k x (k > 0) k x = x(t)

LCR e ix LC AM m k x m x x > 0 x < 0 F x > 0 x < 0 F = k x (k > 0) k x = x(t) 338 7 7.3 LCR 2.4.3 e ix LC AM 7.3.1 7.3.1.1 m k x m x x > 0 x < 0 F x > 0 x < 0 F = k x k > 0 k 5.3.1.1 x = xt 7.3 339 m 2 x t 2 = k x 2 x t 2 = ω 2 0 x ω0 = k m ω 0 1.4.4.3 2 +α 14.9.3.1 5.3.2.1 2 x

More information

7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa, f a g b g f a g f a g bf a

7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa, f a g b g f a g f a g bf a 9 203 6 7 WWW http://www.math.meiji.ac.jp/~mk/lectue/tahensuu-203/ 2 8 8 7. 7 7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa,

More information

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8)

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8) 4 4 ) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8) a b a b = 6i j 4 b c b c 9) a b = 4 a b) c = 7

More information

QMII_10.dvi

QMII_10.dvi 65 1 1.1 1.1.1 1.1 H H () = E (), (1.1) H ν () = E ν () ν (). (1.) () () = δ, (1.3) μ () ν () = δ(μ ν). (1.4) E E ν () E () H 1.1: H α(t) = c (t) () + dνc ν (t) ν (), (1.5) H () () + dν ν () ν () = 1 (1.6)

More information

2.2 h h l L h L = l cot h (1) (1) L l L l l = L tan h (2) (2) L l 2 l 3 h 2.3 a h a h (a, h)

2.2 h h l L h L = l cot h (1) (1) L l L l l = L tan h (2) (2) L l 2 l 3 h 2.3 a h a h (a, h) 1 16 10 5 1 2 2.1 a a a 1 1 1 2.2 h h l L h L = l cot h (1) (1) L l L l l = L tan h (2) (2) L l 2 l 3 h 2.3 a h a h (a, h) 4 2 3 4 2 5 2.4 x y (x,y) l a x = l cot h cos a, (3) y = l cot h sin a (4) h a

More information

Radiation from moving charges#1 Liénard-Wiechert potential Yuji Chinone 1 Maxwell Maxwell MKS E (x, t) + B (x, t) t = 0 (1) B (x, t) = 0 (2) B (x, t)

Radiation from moving charges#1 Liénard-Wiechert potential Yuji Chinone 1 Maxwell Maxwell MKS E (x, t) + B (x, t) t = 0 (1) B (x, t) = 0 (2) B (x, t) Radiation from moving harges# Liénard-Wiehert potential Yuji Chinone Maxwell Maxwell MKS E x, t + B x, t = B x, t = B x, t E x, t = µ j x, t 3 E x, t = ε ρ x, t 4 ε µ ε µ = E B ρ j A x, t φ x, t A x, t

More information

II 2 II

II 2 II II 2 II 2005 yugami@cc.utsunomiya-u.ac.jp 2005 4 1 1 2 5 2.1.................................... 5 2.2................................. 6 2.3............................. 6 2.4.................................

More information

構造と連続体の力学基礎

構造と連続体の力学基礎 II 37 Wabash Avenue Bridge, Illinois 州 Winnipeg にある歩道橋 Esplanade Riel 橋6 6 斜張橋である必要は多分無いと思われる すぐ横に道路用桁橋有り しかも塔基部のレストランは 8 年には営業していなかった 9 9. 9.. () 97 [3] [5] k 9. m w(t) f (t) = f (t) + mg k w(t) Newton

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

30

30 3 ............................................2 2...........................................2....................................2.2...................................2.3..............................

More information

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1)

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1) 1. 1.1...,. 1.1.1 V, V x, y, x y x + y x + y V,, V x α, αx αx V,, (i) (viii) : x, y, z V, α, β C, (i) x + y = y + x. (ii) (x + y) + z = x + (y + z). 1 (iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y

More information

熊本県数学問題正解

熊本県数学問題正解 00 y O x Typed by L A TEX ε ( ) (00 ) 5 4 4 ( ) http://www.ocn.ne.jp/ oboetene/plan/. ( ) (009 ) ( ).. http://www.ocn.ne.jp/ oboetene/plan/eng.html 8 i i..................................... ( )0... (

More information

2019 1 5 0 3 1 4 1.1.................... 4 1.1.1......................... 4 1.1.2........................ 5 1.1.3................... 5 1.1.4........................ 6 1.1.5......................... 6 1.2..........................

More information

量子力学 問題

量子力学 問題 3 : 203 : 0. H = 0 0 2 6 0 () = 6, 2 = 2, 3 = 3 3 H 6 2 3 ϵ,2,3 (2) ψ = (, 2, 3 ) ψ Hψ H (3) P i = i i P P 2 = P 2 P 3 = P 3 P = O, P 2 i = P i (4) P + P 2 + P 3 = E 3 (5) i ϵ ip i H 0 0 (6) R = 0 0 [H,

More information

DE-resume

DE-resume - 2011, http://c-faculty.chuo-u.ac.jp/ nishioka/ 2 11 21131 : 4 1 x y(x, y (x,y (x,,y (n, (1.1 F (x, y, y,y,,y (n =0. (1.1 n. (1.1 y(x. y(x (1.1. 1 1 1 1.1... 2 1.2... 9 1.3 1... 26 2 2 34 2.1,... 35 2.2

More information

Fr

Fr 2007 04 02 12 1 2 2 3 2.1............................ 4 3 6 3.1............................. 7 3.2....................... 9 3.3............................. 10 4 Frenet 12 5 14 6 Frenet-Serret 15 6.1 Frenet-Serret.......................

More information

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =,

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =, [ ] IC. r, θ r, θ π, y y = 3 3 = r cos θ r sin θ D D = {, y ; y }, y D r, θ ep y yddy D D 9 s96. d y dt + 3dy + y = cos t dt t = y = e π + e π +. t = π y =.9 s6.3 d y d + dy d + y = y =, dy d = 3 a, b

More information

X G P G (X) G BG [X, BG] S 2 2 2 S 2 2 S 2 = { (x 1, x 2, x 3 ) R 3 x 2 1 + x 2 2 + x 2 3 = 1 } R 3 S 2 S 2 v x S 2 x x v(x) T x S 2 T x S 2 S 2 x T x S 2 = { ξ R 3 x ξ } R 3 T x S 2 S 2 x x T x S 2

More information

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e 7 -a 7 -a February 4, 2007 1. 2. 3. 4. 1. 2. 3. 1 Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e z

More information

M3 x y f(x, y) (= x) (= y) x + y f(x, y) = x + y + *. f(x, y) π y f(x, y) x f(x + x, y) f(x, y) lim x x () f(x,y) x 3 -

M3 x y f(x, y) (= x) (= y) x + y f(x, y) = x + y + *. f(x, y) π y f(x, y) x f(x + x, y) f(x, y) lim x x () f(x,y) x 3 - M3............................................................................................ 3.3................................................... 3 6........................................... 6..........................................

More information

(interferometer) 1 N *3 2 ω λ k = ω/c = 2π/λ ( ) r E = A 1 e iφ1(r) e iωt + A 2 e iφ2(r) e iωt (1) φ 1 (r), φ 2 (r) r λ 2π 2 I = E 2 = A A 2 2 +

(interferometer) 1 N *3 2 ω λ k = ω/c = 2π/λ ( ) r E = A 1 e iφ1(r) e iωt + A 2 e iφ2(r) e iωt (1) φ 1 (r), φ 2 (r) r λ 2π 2 I = E 2 = A A 2 2 + 7 1 (Young) *1 *2 (interference) *1 (1802 1804) *2 2 (2005) (1993) 1 (interferometer) 1 N *3 2 ω λ k = ω/c = 2π/λ ( ) r E = A 1 e iφ1(r) e iωt + A 2 e iφ2(r) e iωt (1) φ 1 (r), φ 2 (r) r λ 2π 2 I = E 2

More information

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy z fz fz x, y, u, v, r, θ r > z = x + iy, f = u + iv γ D fz fz D fz fz z, Rm z, z. z = x + iy = re iθ = r cos θ + i sin θ z = x iy = re iθ = r cos θ i sin θ x = z + z = Re z, y = z z = Im z i r = z = z

More information

i I II I II II IC IIC I II ii 5 8 5 3 7 8 iii I 3........................... 5......................... 7........................... 4........................ 8.3......................... 33.4...................

More information

液晶の物理1:連続体理論(弾性,粘性)

液晶の物理1:連続体理論(弾性,粘性) The Physics of Liquid Crystals P. G. de Gennes and J. Prost (Oxford University Press, 1993) Liquid crystals are beautiful and mysterious; I am fond of them for both reasons. My hope is that some readers

More information

Microsoft Word - 信号処理3.doc

Microsoft Word - 信号処理3.doc Junji OHTSUBO 2012 FFT FFT SN sin cos x v ψ(x,t) = f (x vt) (1.1) t=0 (1.1) ψ(x,t) = A 0 cos{k(x vt) + φ} = A 0 cos(kx ωt + φ) (1.2) A 0 v=ω/k φ ω k 1.3 (1.2) (1.2) (1.2) (1.1) 1.1 c c = a + ib, a = Re[c],

More information

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 +

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 + 2.6 2.6.1 ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.121) Z ω ω j γ j f j

More information

[ ] 0.1 lim x 0 e 3x 1 x IC ( 11) ( s114901) 0.2 (1) y = e 2x (x 2 + 1) (2) y = x/(x 2 + 1) 0.3 dx (1) 1 4x 2 (2) e x sin 2xdx (3) sin 2 xdx ( 11) ( s

[ ] 0.1 lim x 0 e 3x 1 x IC ( 11) ( s114901) 0.2 (1) y = e 2x (x 2 + 1) (2) y = x/(x 2 + 1) 0.3 dx (1) 1 4x 2 (2) e x sin 2xdx (3) sin 2 xdx ( 11) ( s [ ]. lim e 3 IC ) s49). y = e + ) ) y = / + ).3 d 4 ) e sin d 3) sin d ) s49) s493).4 z = y z z y s494).5 + y = 4 =.6 s495) dy = 3e ) d dy d = y s496).7 lim ) lim e s49).8 y = e sin ) y = sin e 3) y =

More information

II 1 3 2 5 3 7 4 8 5 11 6 13 7 16 8 18 2 1 1. x 2 + xy x y (1 lim (x,y (1,1 x 1 x 3 + y 3 (2 lim (x,y (, x 2 + y 2 x 2 (3 lim (x,y (, x 2 + y 2 xy (4 lim (x,y (, x 2 + y 2 x y (5 lim (x,y (, x + y x 3y

More information

, 1.,,,.,., (Lin, 1955).,.,.,.,. f, 2,. main.tex 2011/08/13( )

, 1.,,,.,., (Lin, 1955).,.,.,.,. f, 2,. main.tex 2011/08/13( ) 81 4 2 4.1, 1.,,,.,., (Lin, 1955).,.,.,.,. f, 2,. 82 4.2. ζ t + V (ζ + βy) = 0 (4.2.1), V = 0 (4.2.2). (4.2.1), (3.3.66) R 1 Φ / Z, Γ., F 1 ( 3.2 ). 7,., ( )., (4.2.1) 500 hpa., 500 hpa (4.2.1) 1949,.,

More information

B ver B

B ver B B ver. 2017.02.24 B Contents 1 11 1.1....................... 11 1.1.1............. 11 1.1.2.......................... 12 1.2............................. 14 1.2.1................ 14 1.2.2.......................

More information

A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B

A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B 9 7 A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B x x B } B C y C y + x B y C x C C x C y B = A

More information

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A .. Laplace ). A... i),. ω i i ). {ω,..., ω } Ω,. ii) Ω. Ω. A ) r, A P A) P A) r... ).. Ω {,, 3, 4, 5, 6}. i i 6). A {, 4, 6} P A) P A) 3 6. ).. i, j i, j) ) Ω {i, j) i 6, j 6}., 36. A. A {i, j) i j }.

More information

.1 z = e x +xy y z y 1 1 x 0 1 z x y α β γ z = αx + βy + γ (.1) ax + by + cz = d (.1') a, b, c, d x-y-z (a, b, c). x-y-z 3 (0,

.1 z = e x +xy y z y 1 1 x 0 1 z x y α β γ z = αx + βy + γ (.1) ax + by + cz = d (.1') a, b, c, d x-y-z (a, b, c). x-y-z 3 (0, .1.1 Y K L Y = K 1 3 L 3 L K K (K + ) 1 1 3 L 3 K 3 L 3 K 0 (K + K) 1 3 L 3 K 1 3 L 3 lim K 0 K = L (K + K) 1 3 K 1 3 3 lim K 0 K = 1 3 K 3 L 3 z = f(x, y) x y z x-y-z.1 z = e x +xy y 3 x-y ( ) z 0 f(x,

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

x x x 2, A 4 2 Ax.4 A A A A λ λ 4 λ 2 A λe λ λ2 5λ + 6 0,...λ 2, λ 2 3 E 0 E 0 p p Ap λp λ 2 p 4 2 p p 2 p { 4p 2 2p p + 2 p, p 2 λ {

x x x 2, A 4 2 Ax.4 A A A A λ λ 4 λ 2 A λe λ λ2 5λ + 6 0,...λ 2, λ 2 3 E 0 E 0 p p Ap λp λ 2 p 4 2 p p 2 p { 4p 2 2p p + 2 p, p 2 λ { K E N Z OU 2008 8. 4x 2x 2 2 2 x + x 2. x 2 2x 2, 2 2 d 2 x 2 2.2 2 3x 2... d 2 x 2 5 + 6x 0 2 2 d 2 x 2 + P t + P 2tx Qx x x, x 2 2 2 x 2 P 2 tx P tx 2 + Qx x, x 2. d x 4 2 x 2 x x 2.3 x x x 2, A 4 2

More information

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) =

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) = 1 1 1.1 I R 1.1.1 c : I R 2 (i) c C (ii) t I c (t) (0, 0) c (t) c(i) c c(t) 1.1.2 (1) (2) (3) (1) r > 0 c : R R 2 : t (r cos t, r sin t) (2) C f : I R c : I R 2 : t (t, f(t)) (3) y = x c : R R 2 : t (t,

More information

2011de.dvi

2011de.dvi 211 ( 4 2 1. 3 1.1............................... 3 1.2 1- -......................... 13 1.3 2-1 -................... 19 1.4 3- -......................... 29 2. 37 2.1................................ 37

More information

Kroneher Levi-Civita 1 i = j δ i j = i j 1 if i jk is an even permutation of 1,2,3. ε i jk = 1 if i jk is an odd permutation of 1,2,3. otherwise. 3 4

Kroneher Levi-Civita 1 i = j δ i j = i j 1 if i jk is an even permutation of 1,2,3. ε i jk = 1 if i jk is an odd permutation of 1,2,3. otherwise. 3 4 [2642 ] Yuji Chinone 1 1-1 ρ t + j = 1 1-1 V S ds ds Eq.1 ρ t + j dv = ρ t dv = t V V V ρdv = Q t Q V jdv = j ds V ds V I Q t + j ds = ; S S [ Q t ] + I = Eq.1 2 2 Kroneher Levi-Civita 1 i = j δ i j =

More information

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes ) ( 3 7 4 ) 2 2 ) 8 2 954 2) 955 3) 5) J = σe 2 6) 955 7) 9) 955 Statistical-Mechanical Theory of Irreversible Processes 957 ) 3 4 2 A B H (t) = Ae iωt B(t) = B(ω)e iωt B(ω) = [ Φ R (ω) Φ R () ] iω Φ R (t)

More information

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k 63 3 Section 3.1 g 3.1 3.1: : 64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () 3 9.8 m/s 2 3.2 3.2: : a) b) 5 15 4 1 1. 1 3 14. 1 3 kg/m 3 2 3.3 1 3 5.8 1 3 kg/m 3 3 2.65 1 3 kg/m 3 4 6 m 3.1. 65 5

More information

215 11 13 1 2 1.1....................... 2 1.2.................... 2 1.3..................... 2 1.4...................... 3 1.5............... 3 1.6........................... 4 1.7.................. 4

More information

さくらの個別指導 ( さくら教育研究所 ) A 2 P Q 3 R S T R S T P Q ( ) ( ) m n m n m n n n

さくらの個別指導 ( さくら教育研究所 ) A 2 P Q 3 R S T R S T P Q ( ) ( ) m n m n m n n n 1 1.1 1.1.1 A 2 P Q 3 R S T R S T P 80 50 60 Q 90 40 70 80 50 60 90 40 70 8 5 6 1 1 2 9 4 7 2 1 2 3 1 2 m n m n m n n n n 1.1 8 5 6 9 4 7 2 6 0 8 2 3 2 2 2 1 2 1 1.1 2 4 7 1 1 3 7 5 2 3 5 0 3 4 1 6 9 1

More information

x E E E e i ω = t + ikx 0 k λ λ 2π k 2π/λ k ω/v v n v c/n k = nω c c ω/2π λ k 2πn/λ 2π/(λ/n) κ n n κ N n iκ k = Nω c iωt + inωx c iωt + i( n+ iκ ) ωx

x E E E e i ω = t + ikx 0 k λ λ 2π k 2π/λ k ω/v v n v c/n k = nω c c ω/2π λ k 2πn/λ 2π/(λ/n) κ n n κ N n iκ k = Nω c iωt + inωx c iωt + i( n+ iκ ) ωx x E E E e i ω t + ikx k λ λ π k π/λ k ω/v v n v c/n k nω c c ω/π λ k πn/λ π/(λ/n) κ n n κ N n iκ k Nω c iωt + inωx c iωt + i( n+ iκ ) ωx c κω x c iω ( t nx c) E E e E e E e e κ e ωκx/c e iω(t nx/c) I I

More information

Gmech08.dvi

Gmech08.dvi 51 5 5.1 5.1.1 P r P z θ P P P z e r e, z ) r, θ, ) 5.1 z r e θ,, z r, θ, = r sin θ cos = r sin θ sin 5.1) e θ e z = r cos θ r, θ, 5.1: 0 r

More information

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google I4 - : April, 4 Version :. Kwhir, Tomoki TA (Kondo, Hirotk) Google http://www.mth.ngoy-u.c.jp/~kwhir/courses/4s-biseki.html pdf 4 4 4 4 8 e 5 5 9 etc. 5 6 6 6 9 n etc. 6 6 6 3 6 3 7 7 etc 7 4 7 7 8 5 59

More information

i

i 18 16 i 1 1 1.1....................................... 1 1.................................. 3 1.3............................. 5 1.4........................................... 6 7.1..................................

More information

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g(

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g( 06 5.. ( y = x x y 5 y 5 = (x y = x + ( y = x + y = x y.. ( Y = C + I = 50 + 0.5Y + 50 r r = 00 0.5Y ( L = M Y r = 00 r = 0.5Y 50 (3 00 0.5Y = 0.5Y 50 Y = 50, r = 5 .3. (x, x = (, u = = 4 (, x x = 4 x,

More information

2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n

2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n . X {x, x 2, x 3,... x n } X X {, 2, 3, 4, 5, 6} X x i P i. 0 P i 2. n P i = 3. P (i ω) = i ω P i P 3 {x, x 2, x 3,... x n } ω P i = 6 X f(x) f(x) X n n f(x i )P i n x n i P i X n 2 G(k) e ikx = (ik) n

More information

4 4 4 a b c d a b A c d A a da ad bce O E O n A n O ad bc a d n A n O 5 {a n } S n a k n a n + k S n a a n+ S n n S n n log x x {xy } x, y x + y 7 fx

4 4 4 a b c d a b A c d A a da ad bce O E O n A n O ad bc a d n A n O 5 {a n } S n a k n a n + k S n a a n+ S n n S n n log x x {xy } x, y x + y 7 fx 4 4 5 4 I II III A B C, 5 7 I II A B,, 8, 9 I II A B O A,, Bb, b, Cc, c, c b c b b c c c OA BC P BC OP BC P AP BC n f n x xn e x! e n! n f n x f n x f n x f k x k 4 e > f n x dx k k! fx sin x cos x tan

More information

Z: Q: R: C: 3. Green Cauchy

Z: Q: R: C: 3. Green Cauchy 7 Z: Q: R: C: 3. Green.............................. 3.............................. 5.3................................. 6.4 Cauchy..................... 6.5 Taylor..........................6...............................

More information

dvipsj.8449.dvi

dvipsj.8449.dvi 9 1 9 9.1 9 2 (1) 9.1 9.2 σ a = σ Y FS σ a : σ Y : σ b = M I c = M W FS : M : I : c : = σ b

More information