自然免疫と獲得免疫 免疫 自然免疫 獲得免疫 病原体 異物の貪食 消化と炎症反応 ( 非特異的免疫応答 ) 抗体 ( 液性免疫 ) キラー T 細胞 ( 細胞性免疫 )

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "自然免疫と獲得免疫 免疫 自然免疫 獲得免疫 病原体 異物の貪食 消化と炎症反応 ( 非特異的免疫応答 ) 抗体 ( 液性免疫 ) キラー T 細胞 ( 細胞性免疫 )"

Transcription

1 ワクチンフォーラム東京 自然免疫の最近の進歩 大阪大学 WPI 免疫学フロンティア研究センター 審良静男

2 自然免疫と獲得免疫 免疫 自然免疫 獲得免疫 病原体 異物の貪食 消化と炎症反応 ( 非特異的免疫応答 ) 抗体 ( 液性免疫 ) キラー T 細胞 ( 細胞性免疫 )

3 獲得免疫を担当する主な細胞群 T 細胞 B 細胞 細胞性免疫 抗体産生 ワクチンの効果発揮には これらの細胞に免疫記憶を与えることがキーとなる

4 獲得免疫における遺伝子再構成と多様性 T 細胞受容体 1.2 x 10 7 通り H 鎖 L 鎖 T 細胞 抗体 ( 免疫グロブリン ) B 細胞 H 鎖 L 鎖 可変部定常部可変部定常部 V D J C V J C 1.2 x 10 4 通り 1x 10 3 通り V (250 種 ) D (12 種 ) J(4 種 ) C V (250 種 ) J(4 種 ) C

5 自己に反応する免疫細胞の除去 胸腺 T 細胞 B 細胞 骨髄 自己に反応する細胞が除去される 非自己に反応する細胞のみが体内に存在する

6 抗体 免疫の二次応答 ( 日 ) 抗原 A を 0 及び 28 日目に投与した際の A に対する抗体産生 抗原 B を 28 日目に投与した際の B に対する抗体産生

7 免疫記憶の原理 B 細胞 メモリー B 細胞 抗体産生 予防接種やワクチンの原理

8 免疫応答の基本 メモリー B 細胞 B 細胞 骨髄 未分化 B 細胞 免疫グロブリン遺伝子再構成 自己に反応する細胞が除去される 抗体産生

9 自然免疫に関わる細胞群 マクロファージ 好中球 Phagocytosed Salmonella 病原体の貪食 消化サイトカイン産生 ( 炎症 ) 樹状細胞 食細胞 病原体の貪食 消化サイトカイン産生 抗原提示

10 病原体 自然免疫と獲得免疫 病原体の発見と初期攻撃 樹状細胞 ( 抗原提示細胞 ) 攻撃 NK 細胞 好中球 マクロファージ自然免疫抗原ペプチド リンパ節へ移動 病原体への集中攻撃と防御 キラー T 細胞 ( 細胞性免疫 ) 抗体 ( 液性免疫 ) B 細胞 B 細胞 T 細胞情報交換 獲得免疫

11 アジュバント受容体としての Toll-like receptors 抗原だけを投与しても免疫反応は誘導されない アジュバント : 免疫補助剤抗原とともに生体に投与されたとき その抗原に対する免疫応答を非特異的に増強させる物質 フロイント完全アジュバント (BCG 菌や結核菌の死菌 + フロイント不完全アジュバント ) 皮下で water in oil エマルジョンとして堆積し 少しずつ漏出するため体内滞在時間を延ばす効果 アジュバントは TLR を刺激することにより 自然免疫系の細胞の活性化に関わる

12 自然免疫も特異的に病原体を認識する 従来の考え方 上皮 新しい概念 上皮 病原体 非特異的貪食 病原体 TLR を介した特異的認識 マクロファージ樹状細胞など マクロファージ樹状細胞など

13 自然免疫系による病原体の貪食 ( 非特異的免疫 ) ( 従来の免疫応答の考え方 ) 樹状細胞による病原体特異抗原の提示 特異的受容体をもった T 細胞の活性化 病原体 感染組織 樹状細胞 輸入リンパ管 T 細胞 所属リンパ節 輸出リンパ管 末梢循環系

14 自然免疫系による病原体の認識 病原体認識による樹状細胞の活性化 特異的受容体をもった T 細胞の活性化 病原体 感染組織 樹状細胞 輸入リンパ管 T 細胞 所属リンパ節 輸出リンパ管 末梢循環系

15 病原体関連分子パターン LPS, CpG DNA, リポタンパク質など ) 認識 抗体産生 TLRs 樹状細胞 抗原提示 ヘルパー T 細胞補助機能分子 (CD40, CD80, CD86) 炎症性サイトカイン (IL-12, TNF-a) B 細胞 キラー T 細胞

16 細菌ウィルス寄生虫 体内 病原体 or 自己 ( 病原体のみに白血球存在する分子 ) マクロファージ樹状細胞 自然免疫 獲得免疫 T 細胞 B 細胞 病原体に対する特異的反応 ( ペプチド ) 免疫反応

17 癌ワクチン William B. Coley, MD (New York, Sloan Kettering Cancer Center, from 1893 until 1936) Coley 療法 (Coley toxins) 過去 100 例の肉腫患者を調べ 肉腫の手術の後 細菌感染を併発したものは予後が良好であることを発見 streptococcus や serratia の生菌や死菌を投与して癌免疫療法を開始 BCG(bacillus Calmette-Guerin): 初期の膀胱癌治療 BCG-CWS, ピシバニール, 丸山ワクチンなど 非特異的癌免疫療法

18 ウィリアム コーリー (William Coley) ( ) ガン免疫療法の祖 最初に投与されたのは巨大な腹部腫瘍の 16 歳の少年であった コーリーは数日おきに腫瘍に直接ワクチンを投与した 投与後 強い発熱と悪寒が襲ったが 腫瘍は徐々に縮小した 治療開始 4 ヶ月後 腫瘍は当初の 1/5 に縮小した この患者は治療 26 年後 心臓発作により死亡した

19 樹状細胞 ナイーブ CD4 + ヘルパー T 細胞 細胞傷害性 T 細胞 貪食 腫瘍細胞 腫瘍細胞 腫瘍細胞

20 TLRs の活性化 TLRs 静止状態の樹状細胞 活性化樹状細胞 IL-12 細胞傷害性 T 細胞の活性化 増殖 ナイーブ CD4 + ヘルパー T 細胞 貪食 腫瘍細胞 腫瘍細胞 抗腫瘍活性の誘導 腫瘍細胞 癌ワクチン 1. 非特異的癌免疫療法 不活性化病原微生物や部分精製物質 2. 癌抗原特異的免疫療法 癌特異ペプチド抗原

21 担当細胞 受容体 認識機構 自然免疫 Innate immunity マクロファージ樹状細胞 再構成を行わない (Toll-like receptors) 微生物間で保存された共通の分子パターン (LPS リポプロテイン ペプチドグリカンなど ) 獲得免疫 Adaptive immunity T B 細胞 ( リンパ球 ) 再構成を行う 詳細な分子構造 ( タンパク質 ペプチドなど )

22 IL-1R / TLR family IL-1a, b IL-18 IL-1R IL-18R (IL-1Rrp) TLR1 TLR3 TLR5 TLR2 TLR4 TLR7 TLR6 TLR8 TLR9 TLR11 TLR10 TLR12

23 TLR2 TLR4 は細菌表層を認識する 細菌表層構造 リポ多糖 (LPS) TLR2 リポ蛋白 ペプチドグリカン TLR4 細菌 細胞壁

24 Structure of lipopeptides derived from pathogens Bacterial lipopeptide (Pam 3 CSK 4 ) O O O O O S H N CH 2 C C H O TLR2/1 SerLysLysLysLys Mycoplasmal lipopeptide (MALP-2) O O O O S TLR2/6 H H N CH 2 C C H O GlyAsnAsnAspGlu-

25 TLR5 は鞭毛構成成分 flagellin を認識する Bacteria with Flagella Flagellin monotrichous Hook lophotrichous Flagellin amphitrichous Basal Body peritrichous Flagellum

26 TLR7, TLR9 によるウイルス核酸の認識 RNA ウイルス DNA ウイルス 細胞膜 ウイルス由来 一本鎖 RNA TLR7 ウイルス由来 DNA CpG TLR9 取り込み 食胞 インターフェロンサイトカイン

27 イミダゾキノリン (The imidazoquinolines) イミダゾキノリンは 様々な細胞から IFNa など各種サイトカインの産生を誘導する化学合成物質であり 生体への投与により抗ウイルス反応 抗腫瘍反応を誘導する N NH 2 N N N NH 2 N N O イミダゾキノリンとして 特にイミキモド (imiquimod) やその誘導体である R-848 (resiquimod) が知られている Imiquimod R-848 OH イミキモドは 免疫反応調整剤 Aldala として世界 42 カ国で ヒトパピローマウイルスの感染により発症する尖圭コンジロームの治療薬として臨床応用されている R-848 は イミキモドの約 100 倍の活性を示し 現在 性器ヘルペスへの第 Ⅲ 相試験が行われている これら免疫反応調整剤は ヒトの免疫システムに刺激を与えそれを活性化させることによりウイルス感染と戦う新しい治療法として注目されている

28 NH 2 TLR7 ligands N N N Imiquimod NH 2 NH 2 N O N N N O N O Br N N O HO O NH 2 N N R-848 OH Imidazoquinolines IFN production Anti-viral immunity Imiquimod is clinically used against genital warts. OH OH Loxoribine IFN production Th1 response NK activity Bropirimine IFN production phase 3 trial (against bladder cancer )

29 TLR ファミリーによる病原体 ( 細菌 ウィルス ) の認識 グラム陽性菌 ペプチドグリカンリポタイコ酸リポ蛋白 細菌感染 腸内細菌 フラジェリン グラム陰性菌 LPS ウイルス膜蛋白 細菌 DNA ウイルス DNA ウィルス感染 imidazoquinolines 一本鎖 RNA 二本鎖 RNA TLR2 TLR5 TLR9 TLR4 TLR7 TLR3

30 病原体の TLRs による認識からのエスケープ ある種のアデノウイルスはゲノム上の CpG 配列を減らしているー TLR9 による認識からエスケープ ある種の病原体 ( ウイルス 細菌 原虫など ) は TLR シグナル伝達をブロックする蛋白質を産生する Prophyromonas gingivalis( 歯周菌 ) や Leprospira の LPS は構造を変え TLR4 に対する応答性が低い Helicobacter pylori の Flagellin は TLR5 によって認識されない

31 One TLR recognizes structurally different ligands LPS Taxol MD-2 HSP60 G T C C G T A G C T T C CpG-DNA Hemozoine TLR4 TLR9

32 Bacterial Lipopeptide TLR family member の細胞内局在 Mycoplasmal Lipopeptide LPS Flagellin MD-2 TLR1 TLR2 TLR2 TLR6 TLR4 TLR 3 TLR5 dsrna Viral ssrna, TLR7 CpG DNA CpG TLR9

33 Toll-like receptors: ligands and signaling pathways Imidazoquinolines (anti-viral compounds) ssrna dsrna LPS lipoprotein NH flagellin CpG DNA 2 N N N TLR3 MD-2 TLR4 TLR1 or TLR6 TLR2 TLR5 TLR7 TLR9 IKK-i TBK1 TRIF TRAM TRIF IRF3 TIRAP TIRAP MyD88 MyD88 NF-kB MyD88 MyD88 MyD88 IRF7 Plasmacytoid DC specific TIR domain Type I interferons Inflammatory cytokines Type I interferons

34 自然免疫と獲得免疫の橋渡しとしての TLR 病原体に特徴的な構造 ( 細胞壁構成成分 鞭毛など ) Toll-like receptors( 病原体センサー ) 自然免疫応答 ( 炎症反応 ) 自然免疫担当細胞 サイトカイン ケモカイン 局所炎症反応 ( 白血球遊走など ) 抗菌ペプチド 抗細菌作用 インターフェロン 抗ウイルス反応 獲得免疫の活性化 ( 樹状細胞による抗原提示 ) 獲得免疫 : 病原体特異的蛋白 ( 抗原 ) に対する受容体 (T 細胞受体 抗体による病原体への特異的攻撃 )

35 細胞質内病原体認識受容体

36 細胞質内二本鎖 RNA センサー 二本鎖 RNA RIG-I CARD CARD RNA helicase 領域 1,025 a.a. Mda5 925 a.a.

37 Viral Recognition in the cytoplasm 多くの RNA ウイルス ピコルナ属 RNA ウイルス DNA virus RIG-I TBK1 IKKi CARD CARD Triphosphate ssrna dsrna IPS-1 CARD CARD CARD IKK Mda5 IKKa b long dsrna (>3kb) TBK1 IKKi? dsdna DNA sensor? IKK IKKa b IRF3 NF-kB IkBs IRF3 NF-kB IkBs Type I IFN Inflammatory cytokines Type I IFN Inflammatory cytokines

38 TLR-dependent and -independent recognition of bacterial components PGN TLR2 MyD88 NOD1 NOD2 ie-dap MDP CARD NOD LRR CARD CARD NOD LRR NF-kB

39 TLRs and NLRs LRR TLR1, 2, 4, 5, 6 TIR cytoplasm Cytoplasmic receptors NOD1 CARD NOD LRR TLR3, 7, 8, 9 NOD2 NALP1 &3 NAIP5 CARD CARD NOD LRR PYD NOD LRR BIR NOD LRR LRR TIR Endosome IPAF CARD NOD LRR

40 IL-1, IL-18 activation pathways Inflammatory Stimuli IL-1b gene IL-18 gene Pro-IL-1b Pro-IL-18 Caspase-1 Mature-IL-1b Mature-IL-18 IL-33

41 P. aeruginosa S. typhimurium Caspase-1 activation by Inflammasomes Urate crystals, silica, asbestos, amyloid-b DNA Viruses cytoplasm P2X7R Pannexin1 Phagocytosis Flagellin NAIP5 BIR IPAF PYD CARD BIR CARD BIR NOD NOD LRR ASC CARD Caspase-1 Casp1 LRR K + efflux PYD NOD PYD CARD CARD NALP3 Caspase-1 ROS Cathepsin B? LRR ASC Casp1 PYD PYD CARD CARD HIN200 ASC Caspase-1 dsdna RNA, imidazoquinolines Casp1 AIM2 Pro-IL-1b cleavage IL-1b

42 病原体センサー 細菌ウイルス真菌原虫 センサー TLRs シグナル分子反応 NF-kB MAPKs IRFs サイトカインケモカイン抗ウイルス蛋白 細菌 NLRs Caspase-1 IL-1b 及び IL-18 Flagellin: Ipaf Anthrax: Nalp1b 細菌 RNA, Uric acid: NALP3 ペプチドグリカン : Nod1, Nod2 NF-kB MAPKs IL-8 及び COX-2 ウイルス RLRs Picornavirus: MDA5 NDV, VSV, SV, Influenza, Paramyxoviruses: RIG-I IRFs NF-kB MAPKs 抗ウイルス蛋白

43 C-type lectin receptors (CLR) and their signaling pathway Pneumocystis carinii b-glucan Candida albicans a-mannan Dectin-1 Dectin-2 Mincle Malassezia Mycobacteria Trehalose dimycolate (TDM) P P Syk FcR P P Syk FcR P P Syk cytosol CARD9 CARD CC PYD Casp-L CARD BCL10 MALT1 MAPK NF-kB Proinflammatory cytokines

44 Pathogen recognition to development of acquired immunity Pathogens TLR NLR RLR LRL Ab Acquired immunity Reg T cells NK cells Helper T cells Killer T cells

45 自然免疫からみたワクチン開発

46 ワクチンアジュバントの作用 抗原を長時間局所に留まらせ 抗原刺激を持続させる ( 例 ; 水酸化アルミニウム ) 抗原を細胞内に導入し クロスプレゼンテーションを起こさせる ( 例 ; リポソーム ) 自然免疫細胞を活性化させ 共刺激因子やサイトカイン産生を促す ( 例 ; CpG-DNAなどTLRリガンド ) 獲得免疫細胞を活性化させ抗原特異的反応を助ける ( 例 ;IL-12などのサイトカイン)

47 生ワクチンと不活化ワクチン 生ワクチンと不活化ワクチンの adjuvant 作用は異なる 不活化ワクチンは 死んだ病原体がファゴサイトーシスにより取り込まれ ファゴゾーム内で TLR を活性化して樹状細胞を刺激するのに対して 生ワクチンは それ以外に細胞質内の病原体認識受容体によって認識される このことが 生ワクチンのほうがワクチン作用が強力であることを説明している

48 生ワクチンとサブユニットワクチン 生ワクチンは 病原体由来の抗原以外に免疫刺激作用のある成分を含む 免疫効果は高いが 危険性も高い 生ワクチンはウイルスを人工培養する必要がある 新興感染症にはワクチン開発に時間がかかる 現在 subunit vaccine に移行しつつある サブユニットワクチンは抗原性のある部分の純度が高く 安全性も優れているが 免疫原性が弱く 免疫の効果が弱くなる傾向にある 効果的な adjuvant の開発の必要性

49 インフルエンザウイルスの自然免疫認識機構は細胞によって異なる Influenza virus RIG-I TLR7 IPS-1 エンドゾーム TIR MyD88 線維芽細胞 マクロファージ 上皮細胞 Conventional DC(cDC) など多くの細胞細胞に感染する必要あり Plasmacytoid 樹状細胞 (pdc) 感染の必要がない Type I interferons

50 インフルエンザウイルス 不活化全粒子ワクチン スプリット HA ワクチン ( 現在日本で使用されているワクチン ) インフルエンザワクチンの種類 化学的な不活化 ウイルス表面抗原 (HA 抗原 ) の精製 インフルエンザに罹ったことがない人 感染性をなくした ウイルス RNA を除去した インフルエンザに暴露されたことがある人 自然免疫反応 mdcs RIG-I NLR pdcs TLR7 上皮細胞マクロファージ pdcs TLR7 RNA 自然免疫反応なし 自然免疫反応は必ずしも必要ではない I 型インターフェロン 炎症性サイトカイン I 型インターフェロン 免疫が成立しない 獲得免疫反応 CD8+Tcell CD4+Tcell Bcell メモリー CD4+Tcell 細胞障害活性 メモリー CD4+Tcell IFNγ の産生 Th1 タイプ抗体の産生 IFNγ の産生

51 アジュバント : 水酸化アルミゲル 臨床で最も良く用いられるアジュバント 70 年以上前から使用され 米国では最近まで唯一の承認されたアジュバントであった 局所に抗原を留め DC との接触間を長くする NLRP3 を含む Inflammasome 形成を介して caspase 1 を活性化し IL-1, IL-18 を産生させる しかしながら この経路は 獲得免疫誘導にはかかわらないと思われる 作用機序の詳細は不明 液性免疫 (Th2 反応 ) を誘導する傾向がある

52 アラムと他のアジュバントの併用 Alum プラス MPL(monophosphoryl lipid A) (GlaxoSmithKline) Alum プラス CpG DNA Alum プラス MF59( スクワレンを含むオイルエマルジョン ) Alum プラス QS21 ワクチンの回数と抗原量を下げることができる

53 lipid A (LPS 活性中心 ) とその誘導体 大腸菌由来 lipid A Monophosphoryl lipid A (RC528)

54 Monophosphoryl lipid A(MPL):TLR4 アゴニスト B 型肝炎ワクチン Fendrix( 商品名 ) でアジュバントとして使われている パピローマウイルスや性器ヘルペスに対するワクチンに添加されている マラリアや結核の予防や癌の治療ワクチンとしても臨床治験に入っている

55 フラジェリンは 唯一蛋白性リガンドである 融合蛋白 DNA ワクチン フラジェリン 抗原蛋白 DNA-encoded flaggellin+antigen

56 細菌鞭毛蛋白質フラジェリンの細胞外 細胞内受容体による認識 細菌 フラジェリン TLR5 NF-kB IPAF PYD NOD LRR Inflammasome

57 TLR9 Cytoplasmic DNA sensor

58 Innate immune sensors for dsdna Endosome dsdna Pol III dsdna MyD88 TLR9 ppp-dsrna IPS-1 RIG-I DAI? AIM2 inflammasome AIM2 ASC Caspase-1 NF-kB IRFs Type I IFN Inflammatory cytokines Cell death Pro-IL-1b Pro-IL-18 IL-1b IL-18

59 Production of interferon and cytokines in response to poly I:C intravenous inoculation with 200 ug poly I:C Blood for sera ELISA IFN-a IL-6 IL-12 ng ml IFN-a IL-6 IL-12p WT ng ml -1 ng ml -1 MDA5 -/ TRIF -/- MDA5 -/- 3 TRIF -/ (h) (h) (h) time: polyi:c post injection

60 Role of TLR3 and MDA5 in the response against poly I:C Poly I:C Poly I:C cytosol TLR3 endosome MDA5 CARD Helicase TRIF IL-12p40 IL-6 Type I Interferons

61 液性免疫と細胞性免疫誘導生ワクチンと異なり 成分ワクチンは液性免疫 (Th2 反 応 ) は誘導できるが細胞性免疫は誘導されにくい ウイ ルス 結核菌 サルモネラ クラミジア リケッチア 原虫などの細胞内寄生体に対する感染防御には細胞 性免疫 (Th1 反応 ) が必要となる 細胞性免疫を誘導できる adjuvant の開発の必要性 TLR2,TLR5 刺激は Th2 反応を誘導する TLR7, 9 刺激は Th1 反応を誘導しやすい

62 今後のワクチン開発の問題点 各 TLR 刺激剤の機能の差 ( 活性の違いや分解の違いなど ) TLR 発現細胞の差 異なる TLR 刺激剤の組み合わせ TLR 以外の病原体認識受容体の存在 Delivery system や抗原と adjuvant の結合など 投与ルートの問題 ( 皮下 筋 経口 経粘膜 ) 細胞性免疫か抗体産生か

RNA Poly IC D-IPS-1 概要 自然免疫による病原体成分の認識は炎症反応の誘導や 獲得免疫の成立に重要な役割を果たす生体防御機構です 今回 私達はウイルス RNA を模倣する合成二本鎖 RNA アナログの Poly I:C を用いて 自然免疫応答メカニズムの解析を行いました その結果

RNA Poly IC D-IPS-1 概要 自然免疫による病原体成分の認識は炎症反応の誘導や 獲得免疫の成立に重要な役割を果たす生体防御機構です 今回 私達はウイルス RNA を模倣する合成二本鎖 RNA アナログの Poly I:C を用いて 自然免疫応答メカニズムの解析を行いました その結果 RNA Poly IC D-IPS-1 概要 自然免疫による病原体成分の認識は炎症反応の誘導や 獲得免疫の成立に重要な役割を果たす生体防御機構です 今回 私達はウイルス RNA を模倣する合成二本鎖 RNA アナログの Poly I:C を用いて 自然免疫応答メカニズムの解析を行いました その結果 Poly I:C により一部の樹状細胞にネクローシス様の細胞死が誘導されること さらにこの細胞死がシグナル伝達経路の活性化により制御されていることが分かりました

More information

報道発表資料 2006 年 4 月 13 日 独立行政法人理化学研究所 抗ウイルス免疫発動機構の解明 - 免疫 アレルギー制御のための新たな標的分子を発見 - ポイント 異物センサー TLR のシグナル伝達機構を解析 インターフェロン産生に必須な分子 IKK アルファ を発見 免疫 アレルギーの有効

報道発表資料 2006 年 4 月 13 日 独立行政法人理化学研究所 抗ウイルス免疫発動機構の解明 - 免疫 アレルギー制御のための新たな標的分子を発見 - ポイント 異物センサー TLR のシグナル伝達機構を解析 インターフェロン産生に必須な分子 IKK アルファ を発見 免疫 アレルギーの有効 60 秒でわかるプレスリリース 2006 年 4 月 13 日 独立行政法人理化学研究所 抗ウイルス免疫発動機構の解明 - 免疫 アレルギー制御のための新たな標的分子を発見 - がんやウイルスなど身体を蝕む病原体から身を守る物質として インターフェロン が注目されています このインターフェロンのことは ご存知の方も多いと思いますが 私たちが生まれながらに持っている免疫をつかさどる物質です 免疫細胞の情報の交換やウイルス感染に強い防御を示す役割を担っています

More information

卵管の自然免疫による感染防御機能 Toll 様受容体 (TLR) は微生物成分を認識して サイトカインを発現させて自然免疫応答を誘導し また適応免疫応答にも寄与すると考えられています ニワトリでは TLR-1(type1 と 2) -2(type1 と 2) -3~ の 10

卵管の自然免疫による感染防御機能 Toll 様受容体 (TLR) は微生物成分を認識して サイトカインを発現させて自然免疫応答を誘導し また適応免疫応答にも寄与すると考えられています ニワトリでは TLR-1(type1 と 2) -2(type1 と 2) -3~ の 10 健康な家畜から安全な生産物を 安全な家畜生産物を生産するためには家畜を衛生的に飼育し健康を保つことが必要です そのためには 病原体が侵入してきても感染 発症しないような強靭な免疫機能を有していることが大事です このような家畜を生産するためには動物の免疫機能の詳細なメカニズムを理解することが重要となります 我々の研究室では ニワトリが生産する卵およびウシ ヤギが生産する乳を安全に生産するために 家禽

More information

60 秒でわかるプレスリリース 2008 年 2 月 19 日 独立行政法人理化学研究所 抗ウイルス反応を増強する重要分子 PDC-TREM を発見 - 形質細胞様樹状細胞が Ⅰ 型インターフェロンの産生を増幅する仕組みが明らかに - インフルエンザの猛威が続いています このインフルエンザの元凶であるインフルエンザウイルスは 獲得した免疫力やウイルスに対するワクチンを見透かすよう変異し続けるため 人類はいまだ発病の恐怖から免れることができません

More information

<4D F736F F D208DC58F498F4390B D4C95F189DB8A6D A A838A815B C8EAE814095CA8E86325F616B5F54492E646F63>

<4D F736F F D208DC58F498F4390B D4C95F189DB8A6D A A838A815B C8EAE814095CA8E86325F616B5F54492E646F63> インフルエンザウイルス感染によって起こる炎症反応のメカニズムを解明 1. 発表者 : 一戸猛志東京大学医科学研究所附属感染症国際研究センター感染制御系ウイルス学分野准教授 2. 発表のポイント : ウイルス感染によって起こる炎症反応の分子メカニズムを明らかにした注 炎症反応にはミトコンドリア外膜の mitofusin 2(Mfn2) 1 タンパク質が必要であった ウイルス感染後の過剰な炎症反応を抑えるような治療薬の開発

More information

Microsoft Word - 最終:【広報課】Dectin-2発表資料0519.doc

Microsoft Word - 最終:【広報課】Dectin-2発表資料0519.doc 平成 22 年 5 月 21 日 東京大学医科学研究所 真菌に対する感染防御のしくみを解明 ( 新規治療法の開発や機能性食品の開発に有用 ) JST 課題解決型基礎研究の一環として 東京大学医科学研究所の岩倉洋一郎教授らは 真菌に対する感染防御機構を明らかにしました カンジダなどの真菌は常在菌として健康な人の皮膚や粘膜などに存在し 健康に害を及ぼすことはありません 一方で 免疫力が低下した人に対しては命を脅かす重篤な病態を引き起こすことがあります

More information

の感染が阻止されるという いわゆる 二度なし現象 の原理であり 予防接種 ( ワクチン ) を行う根拠でもあります 特定の抗原を認識する記憶 B 細胞は体内を循環していますがその数は非常に少なく その中で抗原に遭遇した僅かな記憶 B 細胞が著しく増殖し 効率良く形質細胞に分化することが 大量の抗体産

の感染が阻止されるという いわゆる 二度なし現象 の原理であり 予防接種 ( ワクチン ) を行う根拠でもあります 特定の抗原を認識する記憶 B 細胞は体内を循環していますがその数は非常に少なく その中で抗原に遭遇した僅かな記憶 B 細胞が著しく増殖し 効率良く形質細胞に分化することが 大量の抗体産 TOKYO UNIVERSITY OF SCIENCE 1-3 KAGURAZAKA, SHINJUKU-KU, TOKYO 162-8601, JAPAN Phone: +81-3-5228-8107 報道関係各位 2018 年 8 月 6 日 免疫細胞が記憶した病原体を効果的に排除する機構の解明 ~ 記憶 B 細胞の二次抗体産生応答は IL-9 シグナルによって促進される ~ 東京理科大学 研究の要旨東京理科大学生命医科学研究所

More information

免疫再試25模範

免疫再試25模範 学籍番号名前 * 穴埋め問題を除き 解答には図を用いてよい 問題 1 免疫は非自己を認識し これを排除するが 自己の細胞に対しては原則反応しない T 細胞の 末梢性寛容 の仕組みを簡単に説明せよ (10 点 ) 講義では 大きく三つに分け 1( 微生物感染などがない場合 また抗原提示細胞以外で自己抗原が提示されていても )CD80/86 などの副刺激分子の発現が生じないため この自己抗原を認識した

More information

報道発表資料 2006 年 8 月 7 日 独立行政法人理化学研究所 国立大学法人大阪大学 栄養素 亜鉛 は免疫のシグナル - 免疫系の活性化に細胞内亜鉛濃度が関与 - ポイント 亜鉛が免疫応答を制御 亜鉛がシグナル伝達分子として作用する 免疫の新領域を開拓独立行政法人理化学研究所 ( 野依良治理事

報道発表資料 2006 年 8 月 7 日 独立行政法人理化学研究所 国立大学法人大阪大学 栄養素 亜鉛 は免疫のシグナル - 免疫系の活性化に細胞内亜鉛濃度が関与 - ポイント 亜鉛が免疫応答を制御 亜鉛がシグナル伝達分子として作用する 免疫の新領域を開拓独立行政法人理化学研究所 ( 野依良治理事 60 秒でわかるプレスリリース 2006 年 8 月 7 日 独立行政法人理化学研究所 国立大学法人大阪大学 栄養素 亜鉛 は免疫のシグナル - 免疫系の活性化に細胞内亜鉛濃度が関与 - 私たちの生命維持を行うのに重要な役割を担う微量金属元素の一つとして知られていた 亜鉛 この亜鉛が欠乏すると 味覚障害や成長障害 免疫不全 神経系の異常などをきたします 理研免疫アレルギー科学総合研究センターサイトカイン制御研究グループと大阪大学の研究グループは

More information

研究成果報告書

研究成果報告書 様式 C-19 科学研究費補助金研究成果報告書 平成 23 年 3 月 28 日現在 機関番号 :3714 研究種目 : 若手研究 研究期間 :28~21 課題番号 :279342 研究課題名 ( 和文 )Toll-like receptor 1 のリガンド探索および機能解析研究課題名 ( 英文 )Functional analysis of Toll-like receptor 1 研究代表者清水隆

More information

報道発表資料 2007 年 4 月 30 日 独立行政法人理化学研究所 炎症反応を制御する新たなメカニズムを解明 - アレルギー 炎症性疾患の病態解明に新たな手掛かり - ポイント 免疫反応を正常に終息させる必須の分子は核内タンパク質 PDLIM2 炎症反応にかかわる転写因子を分解に導く新制御メカニ

報道発表資料 2007 年 4 月 30 日 独立行政法人理化学研究所 炎症反応を制御する新たなメカニズムを解明 - アレルギー 炎症性疾患の病態解明に新たな手掛かり - ポイント 免疫反応を正常に終息させる必須の分子は核内タンパク質 PDLIM2 炎症反応にかかわる転写因子を分解に導く新制御メカニ 60 秒でわかるプレスリリース 2007 年 4 月 30 日 独立行政法人理化学研究所 炎症反応を制御する新たなメカニズムを解明 - アレルギー 炎症性疾患の病態解明に新たな手掛かり - 転んだり 細菌に感染したりすると 私たちは 発熱 疼痛 腫れなどの症状に見まわれます これらの炎症反応は 外敵に対する生体の防御機構の 1 つで 実は私たちの身を守ってくれているのです 異物が侵入すると 抗体を作り

More information

図 B 細胞受容体を介した NF-κB 活性化モデル

図 B 細胞受容体を介した NF-κB 活性化モデル 60 秒でわかるプレスリリース 2007 年 12 月 17 日 独立行政法人理化学研究所 免疫の要 NF-κB の活性化シグナルを増幅する機構を発見 - リン酸化酵素 IKK が正のフィーッドバックを担当 - 身体に病原菌などの異物 ( 抗原 ) が侵入すると 誰にでも備わっている免疫システムが働いて 異物を認識し 排除するために さまざまな反応を起こします その一つに 免疫細胞である B 細胞が

More information

Microsoft PowerPoint - 市民講座 小内 ホームページ用.pptx

Microsoft PowerPoint - 市民講座 小内 ホームページ用.pptx 東京医科歯科大学難治疾患研究所市民講座第 5 回知っておきたいゲノムと免疫システムの話 私たちの体を守る免疫システム その良い面と悪い面 小内伸幸 東京医科歯科大学難治疾患研究所生体防御学分野 免疫って何? 免疫は何をしているのでしょうか? 健康なときには免疫が何をしているのかなんて気にしませんよね? では もし免疫がなかったらどうなるんでしょうか? 免疫不全症 というむずかしい名前の病気があります

More information

Host defense against infection : Immunity Recognition of MHC and peptide continuous attack! α/β ( 免疫担当細胞のいろいろ B細胞 T 細胞 リンパ系 造血幹細胞 NK 細胞 白血球 樹状細胞 好中球好酸球好塩基球 顆粒球多形核白血球 骨髄系 マクロファージ単球 血小板 赤血球 Innate Immunity

More information

(Microsoft Word - \226\306\211u\212w\211\337\213\216\226\ doc)

(Microsoft Word - \226\306\211u\212w\211\337\213\216\226\ doc) 平成 17 年度免疫学追追試 以下の問いの中から 2 問を選び 解答せよ 問 1 B 細胞は 一度抗原に接触し分裂増殖すると その抗原に対する結合力が高く なることが知られている その機構を説明しなさい 問 2 生体内で T 細胞は自己抗原と反応しない その機構を説明しなさい 問 3 遅延型過敏反応によって引き起こされる疾患を 1 つ挙げ その発症機序を説明 しなさい 問 4 インフルエンザウイルスに感染したヒトが

More information

<4D F736F F D F4390B38CE3816A90528DB88C8B89CA2E646F63>

<4D F736F F D F4390B38CE3816A90528DB88C8B89CA2E646F63> 学位論文の内容の要旨 論文提出者氏名 論文審査担当者 論文題目 主査 荒川真一 御給美沙 副査木下淳博横山三紀 Thrombospondin-1 Production is Enhanced by Porphyromonas gingivalis Lipopolysaccharide in THP-1 Cells ( 論文の内容の要旨 ) < 要旨 > 歯周炎はグラム陰性嫌気性細菌によって引き起こされる慢性炎症性疾患であり

More information

CD8 + T Fig. 2 T granulysin MHC 38 kda HSP65 CD8 + T 19 kda Ag85 CFP10 Mtb11 CD8 + T 10) ESAT-6 T HLA-A AMASTEGNV T SCID-PBL/

CD8 + T Fig. 2 T granulysin MHC 38 kda HSP65 CD8 + T 19 kda Ag85 CFP10 Mtb11 CD8 + T 10) ESAT-6 T HLA-A AMASTEGNV T SCID-PBL/ Kekkaku Vol. 85, No. 6: 501_508, 2010 501 ミニ特集 免疫と結核 要旨 3 1 20 940 180 WHO 2008 1) 11) 1998 1999 T Th1 T Mφ DBA/1 BALB/c C57BL/6 DBA/1 BALB/c T 1 T 2 CpG TLR9 CpG 3 Lipocalin 2 SLPI 4 T granulysin HSP

More information

Untitled

Untitled 上原記念生命科学財団研究報告集, 23(2009) 84. ITAM 受容体の免疫生理学的機能の解明 原博満 Key words:itam, 自己免疫疾患, 感染防御, CARD9,CARD11 佐賀大学医学部分子生命科学講座生体機能制御学分野 緒言 Immunoreceptor tyrosine-based activation motifs (ITAMs) は, 獲得免疫を司るリンパ球抗原レセプター

More information

H25Immunol_1_point

H25Immunol_1_point * 穴埋め問題を除き 解答には図を用いてよい 問題 1 免疫は非自己を認識し これを排除するが 自己の細胞に対しては原則反応しない T 細胞の 中枢性寛容 の仕組みを簡単に説明せよ (10 点 ) 中枢性寛容は 胸腺において自己反応性の T 細胞を除去する仕組み ( 現象 ) です 遺伝子の再構成により T 細胞受容体を形成したとき, その T 細胞受容体が自己の MHC を認識できないときは将来役に立たないので除去され

More information

ブック2

ブック2 80 埼玉医科大学雑誌 第 30 巻 第 1 号 平成 15 年 1 月 シンポジウム 細胞内寄生菌感染症と免疫応答 光山 正雄 京都大学大学院医学研究科 感染 免疫学教授 座長 松下 祥 埼玉医科大学免疫学教授 次のご講演は光山正雄先生です 先生は現在京都大学大学院医 学研究科におられます 昭和 48 年 九州大学医学部をご卒業後 51 年九州大学医学部細菌学講座へ出向 53 年同助手 56 年に米国

More information

報道発表資料 2006 年 6 月 21 日 独立行政法人理化学研究所 アレルギー反応を制御する新たなメカニズムを発見 - 謎の免疫細胞 記憶型 T 細胞 がアレルギー反応に必須 - ポイント アレルギー発症の細胞を可視化する緑色蛍光マウスの開発により解明 分化 発生等で重要なノッチ分子への情報伝達

報道発表資料 2006 年 6 月 21 日 独立行政法人理化学研究所 アレルギー反応を制御する新たなメカニズムを発見 - 謎の免疫細胞 記憶型 T 細胞 がアレルギー反応に必須 - ポイント アレルギー発症の細胞を可視化する緑色蛍光マウスの開発により解明 分化 発生等で重要なノッチ分子への情報伝達 60 秒でわかるプレスリリース 2006 年 6 月 21 日 独立行政法人理化学研究所 アレルギー反応を制御する新たなメカニズムを発見 - 謎の免疫細胞 記憶型 T 細胞 がアレルギー反応に必須 - カビが猛威を振るう梅雨の季節 この時期に限って喘息がでるんですよ というあなたは カビ アレルギー アレルギーを引き起こす原因物質は ハウスダストや食べ物 アクセサリなどとさまざまで この季節だけではない

More information

H26分子遺伝-17(自然免疫の仕組みI).ppt

H26分子遺伝-17(自然免疫の仕組みI).ppt 第 17 回 自然免疫の仕組み I 2014 年 11 月 5 日 免疫系 ( 異物排除のためのシステム ) 1. 補体系 2. 貪食 3. 樹状細胞と獲得免疫 附属生命医学研究所 生体情報部門 (1015 号室 ) 松田達志 ( 内線 2431) http://www3.kmu.ac.jp/bioinfo/ 自然免疫 顆粒球 マスト細胞 マクロファージ 樹状細胞 NK 細胞 ゲノムにコードされた情報に基づく異物認識

More information

アラムアジュバント効果に宿主細胞の DNA による自然免疫が鍵を握る 石井健 ( いしいけん ) ( 独 ) 医薬基盤研究所 アジュバント開発プロジェクトリーダー 大阪大学免疫学フロンテイア研究センター ワクチン学 主任研究者 ( 招へい教授 ) アルミニウム塩を主とするアジュバント ( 総称 :

アラムアジュバント効果に宿主細胞の DNA による自然免疫が鍵を握る 石井健 ( いしいけん ) ( 独 ) 医薬基盤研究所 アジュバント開発プロジェクトリーダー 大阪大学免疫学フロンテイア研究センター ワクチン学 主任研究者 ( 招へい教授 ) アルミニウム塩を主とするアジュバント ( 総称 : アラムアジュバント効果に宿主細胞の DNA による自然免疫が鍵を握る 石井健 ( いしいけん ) ( 独 ) 医薬基盤研究所 アジュバント開発プロジェクトリーダー 大阪大学免疫学フロンテイア研究センター ワクチン学 主任研究者 ( 招へい教授 ) アルミニウム塩を主とするアジュバント ( 総称 : アラム ) は世界で最も古く かつもっとも汎用されていますが その生物活性は多岐にわたり アジュバント効果の鍵となるメカニズムは不明のままでした

More information

事務連絡

事務連絡 アレルギー疾患 自己免疫疾患などの発症機構と治療技術 平成 21 年度採択研究代表者 H22 年度 実績報告 谷口維紹 東京大学大学院医学系研究科 教授 核酸を主体とした免疫応答制御機構の解明とその制御法の開発 1. 研究実施の概要核酸を主体とした免疫応答活性化とその制御機構の解明によって 自然免疫系と適応免疫系の連携メカニズムの理解を深め 免疫病態の抑制法の原理の確立とその応用を目指す 当該年度は前年度に引き続き

More information

アジュバントの種類と開発状況 分類アジュバント特徴 鉱酸塩 毒素 O/W エマルジョン W/O エマルジョン Bio polymer 植物成分 ( サポニン ) 海綿 水酸化アルミニウム リン酸アルミニウムなど CTB 大腸菌易熱性毒素 MF59 AS03 Provax Montanide ISA

アジュバントの種類と開発状況 分類アジュバント特徴 鉱酸塩 毒素 O/W エマルジョン W/O エマルジョン Bio polymer 植物成分 ( サポニン ) 海綿 水酸化アルミニウム リン酸アルミニウムなど CTB 大腸菌易熱性毒素 MF59 AS03 Provax Montanide ISA 日本国内で販売されているアジュバント添加ワクチン 対象疾患 ワクチン名 アジュヴァント 製造販売 ジフテリア 成人用沈降ジフテリアトキソイド ジフトキ ビケンF リン酸アルミニウム 阪大微研 田辺三菱 沈降破傷風トキソイド 生研 塩化アルミニウムデンカ 田辺三菱 破傷風 DT 沈降破傷風トキソイド 化血研 塩化アルミニウム化血研 アステラス 沈降破傷風トキソイド タケダ アルミニウム塩武田 沈降破傷風トキソイド

More information

免疫本試29本試験模範解答_YM

免疫本試29本試験模範解答_YM 学籍番号 名前 * 穴埋め問題を除き 解答には図を用いてよい 問題 1 (10 点 ) 下記は 病原体感染から免疫活性化 病原体排除までの流れを説明したものである 誤りがあるものを 10 選択せよ (1) 生体内に侵入した感染病原体は 初めにマクロファージや樹状細胞などの獲得免疫細胞に感知される (2) マクロファージや樹状細胞は 病原体を貪食したり 抗菌物質を放出したりすることにより病原体の排除を行う

More information

1. 免疫学概論 免疫とは何か 異物 ( 病原体 ) による侵略を防ぐ生体固有の防御機構 免疫系 = 防衛省 炎症 = 部隊の派遣から撤収まで 免疫系の特徴 ⅰ) 自己と非自己とを識別する ⅱ) 侵入因子間の差異を認識する ( 特異的反応 ) ⅲ) 侵入因子を記憶し 再侵入に対してより強い反応を起こ

1. 免疫学概論 免疫とは何か 異物 ( 病原体 ) による侵略を防ぐ生体固有の防御機構 免疫系 = 防衛省 炎症 = 部隊の派遣から撤収まで 免疫系の特徴 ⅰ) 自己と非自己とを識別する ⅱ) 侵入因子間の差異を認識する ( 特異的反応 ) ⅲ) 侵入因子を記憶し 再侵入に対してより強い反応を起こ 病理学総論 免疫病理 (1/3) 免疫病理学 1. 免疫学概論 2. アレルギー反応 3. 自己免疫疾患 4. 移植組織に対する免疫反応 5. 免疫不全疾患 6. がん免疫療法 担当 分子病理学 / 病理部桑本聡史 1. 免疫学概論 免疫とは何か 異物 ( 病原体 ) による侵略を防ぐ生体固有の防御機構 免疫系 = 防衛省 炎症 = 部隊の派遣から撤収まで 免疫系の特徴 ⅰ) 自己と非自己とを識別する

More information

く 細胞傷害活性の無い CD4 + ヘルパー T 細胞が必須と判明した 吉田らは 1988 年 C57BL/6 マウスが腹腔内に移植した BALB/c マウス由来の Meth A 腫瘍細胞 (CTL 耐性細胞株 ) を拒絶すること 1991 年 同種異系移植によって誘導されるマクロファージ (AIM

く 細胞傷害活性の無い CD4 + ヘルパー T 細胞が必須と判明した 吉田らは 1988 年 C57BL/6 マウスが腹腔内に移植した BALB/c マウス由来の Meth A 腫瘍細胞 (CTL 耐性細胞株 ) を拒絶すること 1991 年 同種異系移植によって誘導されるマクロファージ (AIM ( 様式甲 5) 氏 名 山名秀典 ( ふりがな ) ( やまなひでのり ) 学 位 の 種 類 博士 ( 医学 ) 学位授与番号 甲 第 号 学位審査年月日 平成 26 年 7 月 30 日 学位授与の要件 学位規則第 4 条第 1 項該当 Down-regulated expression of 学位論文題名 monocyte/macrophage major histocompatibility

More information

研究の詳細な説明 1. 背景病原微生物は 様々なタンパク質を作ることにより宿主の生体防御システムに対抗しています その分子メカニズムの一つとして病原微生物のタンパク質分解酵素が宿主の抗体を切断 分解することが知られております 抗体が切断 分解されると宿主は病原微生物を排除することが出来なくなります

研究の詳細な説明 1. 背景病原微生物は 様々なタンパク質を作ることにより宿主の生体防御システムに対抗しています その分子メカニズムの一つとして病原微生物のタンパク質分解酵素が宿主の抗体を切断 分解することが知られております 抗体が切断 分解されると宿主は病原微生物を排除することが出来なくなります 病原微生物を退治する新たな生体防御システムを発見 感染症の予防 治療法開発へ貢献する成果 キーワード : 病原性微生物 抗体 免疫逃避 免疫活性化 感染防御 研究成果のポイント 病原微生物の中には 免疫細胞が作る抗体の機能を無効化し 免疫から逃れるものの存在が知られていた 今回 病原微生物に壊された抗体を認識し 病原微生物を退治する新たな生体防御システムを発見 本研究成果によりマイコプラズマやインフルエンザなど

More information

第一章自然免疫活性化物質による T 細胞機能の修飾に関する検討自然免疫は 感染の初期段階において重要な防御機構である 自然免疫を担当する細胞は パターン認識受容体 (Pattern Recognition Receptors:PRRs) を介して PAMPs の特異的な構造を検知する 機能性食品は

第一章自然免疫活性化物質による T 細胞機能の修飾に関する検討自然免疫は 感染の初期段階において重要な防御機構である 自然免疫を担当する細胞は パターン認識受容体 (Pattern Recognition Receptors:PRRs) を介して PAMPs の特異的な構造を検知する 機能性食品は さとう わたる 氏名 ( 本籍 ) 佐藤亘 ( 静岡県 ) 学位の種類 博士 ( 薬学 ) 学位記番号 学位授与の日付 学位授与の要件 博第 270 号 平成 28 年 3 月 18 日 学位規則第 4 条第 1 項該当 学位論文題目 自然免疫活性化物質による T 細胞ならびに NK 細胞機能の調節作用に関する研究 論文審査委員 ( 主査 ) 教授大野尚仁 教授新槇幸彦 教授平野俊彦 論文内容の要旨

More information

汎発性膿疱性乾癬のうちインターロイキン 36 受容体拮抗因子欠損症の病態の解明と治療法の開発について ポイント 厚生労働省の難治性疾患克服事業における臨床調査研究対象疾患 指定難病の 1 つである汎発性膿疱性乾癬のうち 尋常性乾癬を併発しないものはインターロイキン 36 1 受容体拮抗因子欠損症 (

汎発性膿疱性乾癬のうちインターロイキン 36 受容体拮抗因子欠損症の病態の解明と治療法の開発について ポイント 厚生労働省の難治性疾患克服事業における臨床調査研究対象疾患 指定難病の 1 つである汎発性膿疱性乾癬のうち 尋常性乾癬を併発しないものはインターロイキン 36 1 受容体拮抗因子欠損症 ( 平成 29 年 3 月 1 日 汎発性膿疱性乾癬のうちインターロイキン 36 受容体拮抗因子欠損症の病態の解明と治療法の開発について 名古屋大学大学院医学系研究科 ( 研究科長 髙橋雅英 ) 皮膚科学の秋山真志 ( あきやままさし ) 教授 柴田章貴 ( しばたあきたか ) 客員研究者 ( 岐阜県立多治見病院皮膚科医長 ) 藤田保健衛生大学病院皮膚科の杉浦一充 ( すぎうらかずみつ 前名古屋大学大学院医学系研究科准教授

More information

Research 2 Vol.81, No.12013

Research 2 Vol.81, No.12013 2 5 22 25 4 8 8 9 9 9 10 10 11 12 14 14 15 7 18 16 18 19 20 21 16 17 17 28 19 21 1 Research 2 Vol.81, No.12013 Vol.81, No.12013 3 P r o d u c t s 4 Vol.81, No.12013 Research Vol.81, No.12013 5 6 Vol.81,

More information

平成24年7月x日

平成24年7月x日 < 概要 > 栄養素の過剰摂取が引き金となり発症する生活習慣病 ( 痛風 動脈硬化や2 型糖尿病など ) は 現代社会における重要な健康問題となっています 近年の研究により 生活習慣病の発症には自然免疫機構を介した炎症の誘導が深く関わることが明らかになってきました 自然免疫機構は 病原性微生物を排除するための感染防御機構としてよく知られていますが 過栄養摂取により生じる代謝物にも反応するために 強い炎症を引き起こして生活習慣病の発症要因になってしまいます

More information

のと期待されます 本研究成果は 2011 年 4 月 5 日 ( 英国時間 ) に英国オンライン科学雑誌 Nature Communications で公開されます また 本研究成果は JST 戦略的創造研究推進事業チーム型研究 (CREST) の研究領域 アレルギー疾患 自己免疫疾患などの発症機構

のと期待されます 本研究成果は 2011 年 4 月 5 日 ( 英国時間 ) に英国オンライン科学雑誌 Nature Communications で公開されます また 本研究成果は JST 戦略的創造研究推進事業チーム型研究 (CREST) の研究領域 アレルギー疾患 自己免疫疾患などの発症機構 プレスリリース 2011 年 4 月 5 日 慶應義塾大学医学部 炎症を抑える新しいたんぱく質を発見 - 花粉症などのアレルギー疾患や 炎症性疾患の新たな治療法開発に期待 - 慶應義塾大学医学部の吉村昭彦教授らの研究グループは リンパ球における新たな免疫調節機構を解明 抑制性 T 細胞を人工的につくり出し 炎症性のT 細胞を抑える機能を持った新しいたんぱく質を発見しました 試験管内でこのたんぱく質を発現させたT

More information

研究成果報告書

研究成果報告書 様式 C-19 科学研究費補助金研究成果報告書 平成 21 年 5 月 20 日現在 研究種目 : 基盤研究 (C) 研究期間 :2007~2008 課題番号 :19592419 研究課題名 ( 和文 ) 漢方薬による歯周疾患治療への応用とその作用機序解明 研究課題名 ( 英文 ) Application of Kampo medicine to periodontal disease treatment

More information

2017 年 8 月 9 日放送 結核診療における QFT-3G と T-SPOT 日本赤十字社長崎原爆諫早病院副院長福島喜代康はじめに 2015 年の本邦の新登録結核患者は 18,820 人で 前年より 1,335 人減少しました 新登録結核患者数も人口 10 万対 14.4 と減少傾向にあります

2017 年 8 月 9 日放送 結核診療における QFT-3G と T-SPOT 日本赤十字社長崎原爆諫早病院副院長福島喜代康はじめに 2015 年の本邦の新登録結核患者は 18,820 人で 前年より 1,335 人減少しました 新登録結核患者数も人口 10 万対 14.4 と減少傾向にあります 2017 年 8 月 9 日放送 結核診療における QFT-3G と T-SPOT 日本赤十字社長崎原爆諫早病院副院長福島喜代康はじめに 2015 年の本邦の新登録結核患者は 18,820 人で 前年より 1,335 人減少しました 新登録結核患者数も人口 10 万対 14.4 と減少傾向にありますが 本邦の結核では高齢者結核が多いのが特徴です 結核診療における主な検査法を示します ( 図 1) 従来の細菌学的な抗酸菌の塗抹

More information

60 秒でわかるプレスリリース 2006 年 4 月 21 日 独立行政法人理化学研究所 敗血症の本質にせまる 新規治療法開発 大きく前進 - 制御性樹状細胞を用い 敗血症の治療に世界で初めて成功 - 敗血症 は 細菌などの微生物による感染が全身に広がって 発熱や機能障害などの急激な炎症反応が引き起

60 秒でわかるプレスリリース 2006 年 4 月 21 日 独立行政法人理化学研究所 敗血症の本質にせまる 新規治療法開発 大きく前進 - 制御性樹状細胞を用い 敗血症の治療に世界で初めて成功 - 敗血症 は 細菌などの微生物による感染が全身に広がって 発熱や機能障害などの急激な炎症反応が引き起 60 秒でわかるプレスリリース 2006 年 4 月 21 日 独立行政法人理化学研究所 敗血症の本質にせまる 新規治療法開発 大きく前進 - 制御性樹状細胞を用い 敗血症の治療に世界で初めて成功 - 敗血症 は 細菌などの微生物による感染が全身に広がって 発熱や機能障害などの急激な炎症反応が引き起こされる病態です 免疫力が低下している場合に 急性腎盂腎炎や肺炎 急性白血病 肝硬変 悪性腫瘍などさまざまな疾患によって誘発され

More information

上原記念生命科学財団研究報告集, 30 (2016)

上原記念生命科学財団研究報告集, 30 (2016) 上原記念生命科学財団研究報告集, 30 (2016) 24. インフルエンザウイルスによる自然免疫制御機構の解明 一戸猛志 東京大学医科学研究所感染症国際研究センター感染制御系ウイルス学分野 Key words: インフルエンザウイルス, 自然免疫,NLRP3 緒言 TLRs(Toll-like receptors) や RLRs(RIG-I-like receptors) は ウイルス由来の核酸を認識して

More information

ワクチン免疫の基礎と臨床 ワクチン効果を上げるもの下げるもの Toll 図 1 自然免疫と獲得免疫 る これにより 2 度目の抗原刺激に対して急速な免疫応答が可能となる ワクチンは 病原体の曝露を受ける前に この獲得免疫を成立させておくことが目的である [ 免疫の獲得機序 ] ウイルスに対する獲得免

ワクチン免疫の基礎と臨床 ワクチン効果を上げるもの下げるもの Toll 図 1 自然免疫と獲得免疫 る これにより 2 度目の抗原刺激に対して急速な免疫応答が可能となる ワクチンは 病原体の曝露を受ける前に この獲得免疫を成立させておくことが目的である [ 免疫の獲得機序 ] ウイルスに対する獲得免 総 説 ワクチン免疫の基礎と臨床 ワクチン効果を上げるもの下げるもの 本川賢司 学校法人北里研究所生物製剤研究所 ( 364 0026 埼玉県北本市荒井 6 1111) [ はじめに ] ワクチンとは 病原体やその毒素を弱毒化または不活化した製剤で 感染症を防ぐ目的で宿主に投与され 病原体等に対する特異的な免疫を誘導するものである 即ち 能動免疫 を賦与する製剤を指す 従って 抗生物質のように 病原体に直接作用するものではないので

More information

ウシの免疫機能と乳腺免疫 球は.8 ~ 24.3% T 細胞は 33.5 ~ 42.7% B 細胞は 28.5 ~ 36.2% 単球は 6.9 ~ 8.9% で推移し 有意な変動は認められなかった T 細胞サブセットの割合は γδ T 細胞が最も高く 43.4 ~ 48.3% で CD4 + T 細

ウシの免疫機能と乳腺免疫 球は.8 ~ 24.3% T 細胞は 33.5 ~ 42.7% B 細胞は 28.5 ~ 36.2% 単球は 6.9 ~ 8.9% で推移し 有意な変動は認められなかった T 細胞サブセットの割合は γδ T 細胞が最も高く 43.4 ~ 48.3% で CD4 + T 細 Immune function nd mmmry glnd immunity in cows 総 説 ウシの免疫機能と乳腺免疫 山口高弘東北大学大学院農学研究科 ( 981-8555 仙台市青葉区堤通雨宮町 1-1) 末梢血中の白血球や T 細胞サブセットの存在比率やバランスは 免疫応答を把握する上で重要な指標となるが ウシの末梢血における白血球 ( 顆粒球 T 細胞 B 細胞 単球 ) および T

More information

Untitled

Untitled 上原記念生命科学財団研究報告集, 25 (2011) 114. 抗体産生における核内 IκB 分子,IκBNS の役割とその作用機序の解明 藤間真紀 Key words:nf-κb,b 細胞, 抗体産生 * 新潟大学大学院自然科学研究科生命食糧科学専攻基礎生命科学教育研究群 緒言転写因子 NF-κB (Nuclear factor κb) は活性化 B 細胞において, 免疫グロブリン κ 軽鎖遺伝子のエンハンサー領域に結合するタンパク質として見出されたが,

More information

るマウスを解析したところ XCR1 陽性樹状細胞欠失マウスと同様に 腸管 T 細胞の減少が認められました さらに XCL1 の発現が 脾臓やリンパ節の T 細胞に比較して 腸管組織の T 細胞において高いこと そして 腸管内で T 細胞と XCR1 陽性樹状細胞が密に相互作用していることも明らかにな

るマウスを解析したところ XCR1 陽性樹状細胞欠失マウスと同様に 腸管 T 細胞の減少が認められました さらに XCL1 の発現が 脾臓やリンパ節の T 細胞に比較して 腸管組織の T 細胞において高いこと そして 腸管内で T 細胞と XCR1 陽性樹状細胞が密に相互作用していることも明らかにな 和歌山県立医科大学 先端医学研究所 生体調節機構研究部 樹状細胞の新機能の発見 腸炎制御への新たなアプローチ 要旨和歌山県立医科大学先端医学研究所生体調節機構研究部の改正恒康教授 大田友和大学院生 ( 学振特別研究員 ) を中心とした共同研究グループは 病原体やがんに対する免疫応答に重要な樹状細胞 [1] の一つのサブセットが 腸管の免疫系を維持することによって 腸炎の病態を制御している新たなメカニズムを発見しました

More information

糖尿病診療における早期からの厳格な血糖コントロールの重要性

糖尿病診療における早期からの厳格な血糖コントロールの重要性 2018 年 6 月 13 日放送 近未来のワクチンとアジュバントの役割 医薬基盤 健康 栄養研究所ワクチン アジュバント研究センター長石井健 温故知新 : 近未来のワクチンとはワクチンはいま使われている医療技術の中でもその起源が最も古く 且つ 最も成功を収めたもののひとつであるといえます そのありがたさは普段は気づきませんが 明治維新のころ つまり 150 年前まではもっとも多くの子供たちの命を奪っていた感染症のひとつ

More information

図 Mincle シグナルのマクロファージでの働き

図 Mincle シグナルのマクロファージでの働き 60 秒でわかるプレスリリース 2008 年 9 月 8 日 独立行政法人理化学研究所 組織のダメージを感知して炎症を引き起こす受容体を発見 - マクロファージが担う生体危機管理システムのメカニズムを解明 - 風邪のウイルスやさまざまな病原菌による感染 あるいは火傷や打撲など 私たちの身体は ダメージを受けるとそれに対応するように免疫システムが働き 防御します 通常 細胞は役目を終えたり 寿命になると

More information

Untitled

Untitled 上原記念生命科学財団研究報告集, 23(2009) 190. CD4 + ヘルパー T 細胞の選択的活性化 西川博嘉 Key words:cd4 + ヘルパー T 細胞,CD4 + 制御性 T 細胞, 癌 精巣抗原,co-stimulatory molecules, 抗体療法 三重大学大学院医学系研究科寄付講座がんワクチン講座 緒言 1991 年ヒト腫瘍抗原遺伝子の存在が報告されて以来, これらの腫瘍特異抗原を用いた悪性腫瘍に対する免疫療法が注目を集めている.

More information

<4D F736F F D2096C689758A C A58D528CB492F18EA68DD796452E646F63>

<4D F736F F D2096C689758A C A58D528CB492F18EA68DD796452E646F63> 免疫学 1 第 6 回 / 全 18 回日時 : 10/23( 火 ) 2 講目授業課題 : 自然免疫と適応免疫の関連 2 学習内容 : 抗原提示細胞, 免疫シナプス担当教員 : 鈴木健史主な項目 : 抗原提示細胞 ( 樹状細胞, マクロファージ,B 細胞 ) と抗原提示抗原提示経路 ( 外因性抗原, 内因性抗原 ), クロスプレゼンテーション, 免疫シナプス目的 : 各種抗原提示細胞の特徴と, 抗原提示経路を学ぶ.

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション 細菌の代謝と増殖 感染症学 微生物学概論 A. 微生物学の基本 d. 細菌の代謝 e. 細菌の増殖 6 細菌の主要な代謝経路を産物を列挙する 7 呼吸と発酵の違いを説明する 8 細菌の増殖曲線を説明する B. 感染症学 a. 微生物と宿主の関係 b. 宿主の防御因子 1 微生物と宿主の関係を列挙する 2 共生 偏共生 寄生の違いを説明する 3 感染と発症の違いを説明する 4 微生物の感染に対する宿主の防御因子を説明する

More information

病原体に対する障壁 ( 第一の防衛 ) 小腸のパネート細胞に産生される抗菌ペプチド 杯細胞によって産生されたムチンによって保護されたゾーン 物理的障壁 : 化学的障壁 : 微生物学的障壁 : 上皮細胞 粘液 涙鼻腔の線毛 液体 気体の流れ 低 ph ( 例外 ピロリ菌 ) 酵素 ( リソチーム ペプ

病原体に対する障壁 ( 第一の防衛 ) 小腸のパネート細胞に産生される抗菌ペプチド 杯細胞によって産生されたムチンによって保護されたゾーン 物理的障壁 : 化学的障壁 : 微生物学的障壁 : 上皮細胞 粘液 涙鼻腔の線毛 液体 気体の流れ 低 ph ( 例外 ピロリ菌 ) 酵素 ( リソチーム ペプ 医学部医学科 2 年免疫学講義 10/5/2017 第 2 章 -1: 宿主防御と感染に関する自然免疫 久留米大学医学部免疫学准教授 溝口恵美子 病原体に対する障壁 ( 第一の防衛 ) 小腸のパネート細胞に産生される抗菌ペプチド 杯細胞によって産生されたムチンによって保護されたゾーン 物理的障壁 : 化学的障壁 : 微生物学的障壁 : 上皮細胞 粘液 涙鼻腔の線毛 液体 気体の流れ 低 ph ( 例外

More information

<4D F736F F D20312E834C B548DD CC82CD82BD82E782AB82F092B290DF82B782E98EF CC95AA8E7182F094AD8CA92E646F63>

<4D F736F F D20312E834C B548DD CC82CD82BD82E782AB82F092B290DF82B782E98EF CC95AA8E7182F094AD8CA92E646F63> 解禁時間 ( テレビ ラジオ WEB): 平成 20 年 9 月 9 日 ( 火 ) 午前 6 時 ( 新聞 ) : 平成 20 年 9 月 9 日 ( 火 ) 付朝刊 平成 20 年 9 月 2 日 報道機関各位 仙台市青葉区星陵町 4-1 東北大学加齢医学研究所研究推進委員会電話 022-717-8442 ( 庶務係 ) 東京都千代田区四番町 5 番地 3 科学技術振興機構 (JST) 電話 03-5214-8404(

More information

VACCINE PART.2 VACCINE PART.2 VACCINE PART.2 VACCINE PART.2 VACCINE 第 1 章 その魔力は薬か毒か ワクチンの効果を高める目的で添加されている補助剤がです しかし よいことだけではありません とはいったいどのようなもので ワクチンの

VACCINE PART.2 VACCINE PART.2 VACCINE PART.2 VACCINE PART.2 VACCINE 第 1 章 その魔力は薬か毒か ワクチンの効果を高める目的で添加されている補助剤がです しかし よいことだけではありません とはいったいどのようなもので ワクチンの PART.2 特集 VACCINE PART.2 VACCINE PART.2 VACCINE PART.2 VACCINE PART.2 ワクチン PART. 2 ワクチンに添加される物質 の正体と HPV ワクチン 特集 浜六郎 を 徹底解剖する 第 1 章 その魔力は薬か毒か 48 第 2 章とくに HPV ワクチンのについて 51 第 3 章病 56 ( はまろくろう : 内科医 本誌編集委員

More information

<4D F736F F D DC58F49288A6D92E A96C E837C AA8E714C41472D3382C982E682E996C D90A78B408D5C82F089F096BE E646F6378>

<4D F736F F D DC58F49288A6D92E A96C E837C AA8E714C41472D3382C982E682E996C D90A78B408D5C82F089F096BE E646F6378> 平成 30 年 10 月 22 日 ( 注意 : 本研究の報道解禁日時は10 月 22 日午前 11 時 (U.S.ET)( 日本時間 2 3 日午前 0 時 ) です ) PD-1 と CTLA-4 に続く第 3 の免疫チェックポイント分子 LAG-3 による 免疫抑制機構を解明 徳島大学先端酵素学研究所の丸橋拓海特任助教 岡崎拓教授らの研究グループは 免疫チェックポイント分子である LAG-3(Lymphocyte

More information

研究の中間報告

研究の中間報告 動物と免疫 ー病気を防ぐ生体機構 久米新一 京都大学大学院農学研究科 免疫 自然免疫( 食細胞 ) と獲得免疫 ( 液性免疫と細胞性免疫 ) による病原体の除去 リンパ球(T 細胞とB 細胞 ) には1 種類だけの抗原レセプター ( 受容体 ) がある 液性免疫は抗体が血液 体液などで細菌などを排除し 細胞性免疫は細菌に感染した細胞などをT 細胞が直接攻撃する 免疫器官ー 1 一次リンパ器官: リンパ球がつくられる器官

More information

Microsoft PowerPoint - 2_(廣瀬宗孝).ppt

Microsoft PowerPoint - 2_(廣瀬宗孝).ppt TrkA を標的とした疼痛と腫瘍増殖 に効果のあるペプチド 福井大学医学部 器官制御医学講座麻酔 蘇生学領域 准教授 廣瀬宗孝 1 研究背景 癌による痛みはWHOの指針に沿って治療すれば 8 割の患者さんで痛みが取れ 残りの内 1 割は痛みの専門医の治療を受ければ痛みが取れる しかし最後の1 割は QOLを良好に保ったまま痛み治療を行うことは困難であるのが現状である TrkAは神経成長因子 (NGF)

More information

第14〜15回 T細胞を介する免疫系.pptx

第14〜15回 T細胞を介する免疫系.pptx MBL CD8 CD4 8.1 8.2 5.20 8.3 8.4 8.5 8.6 8.7 8.8 8.9 8.10 8.18 B7 CD28 CD28 B7 CD28 8.13 2.22 NK Toll(TLR) LBP! LPS dsrna ssrna TLR1/2/6! TLR4 TLR5 TLR3 TLR7/9 CD14! JNK/p38! MyD88! IRAK! TRAF! NFκB! TNF-α

More information

ランゲルハンス細胞の過去まず LC の過去についてお話しします LC は 1868 年に 当時ドイツのベルリン大学の医学生であった Paul Langerhans により発見されました しかしながら 当初は 細胞の形状から神経のように見えたため 神経細胞と勘違いされていました その後 約 100 年

ランゲルハンス細胞の過去まず LC の過去についてお話しします LC は 1868 年に 当時ドイツのベルリン大学の医学生であった Paul Langerhans により発見されました しかしながら 当初は 細胞の形状から神経のように見えたため 神経細胞と勘違いされていました その後 約 100 年 2015 年 10 月 1 日放送 第 64 回日本アレルギー学会 1 教育講演 11 ランゲルハンス細胞 過去 現在 未来 京都大学大学院皮膚科教授椛島健治 はじめに生体は 細菌 ウイルス 真菌といった病原体などの外来異物や刺激に曝露されていますが 主に免疫システムを介して巧妙に防御しています ところが そもそも有害ではない花粉や埃などの外来抗原に対してさえも皮膚が曝露された場合に 過剰な免疫応答を起こすことは

More information

リンパ組織における抗原特異的なナイーブ T 細胞の捕捉と活性化 捕捉 活性化 ナイーブT 細胞末梢循環中移動所属リンパ節でAgを提示した樹状細胞に出会う TCR を介して活性化される 5 日以内 エフェクター T 細胞 Ag 認識後 5 日以内に増加 リンパ節を出て局所へ移動

リンパ組織における抗原特異的なナイーブ T 細胞の捕捉と活性化 捕捉 活性化 ナイーブT 細胞末梢循環中移動所属リンパ節でAgを提示した樹状細胞に出会う TCR を介して活性化される 5 日以内 エフェクター T 細胞 Ag 認識後 5 日以内に増加 リンパ節を出て局所へ移動 医学部医学科 2 年免疫学講義 10/26/201 第 8 章 -1: T 細胞免疫応答 ( 前編 ) 久留米大学医学部免疫学准教授 溝口恵美子 リンパ組織における抗原特異的なナイーブ T 細胞の捕捉と活性化 捕捉 活性化 ナイーブT 細胞末梢循環中移動所属リンパ節でAgを提示した樹状細胞に出会う TCR を介して活性化される 5 日以内 エフェクター T 細胞 Ag 認識後 5 日以内に増加 リンパ節を出て局所へ移動

More information

方法について教えてください A 妊娠中の接種に関する有効性および安全性が確立されていないため 3 回接種を完了する前に妊娠していることがわかった場合には一旦接種を中断し 出産後に残りの接種を行うようにしてください 接種が中断しても 最初から接種し直す必要はありません 具体的には 1 回目接種後に妊娠

方法について教えてください A 妊娠中の接種に関する有効性および安全性が確立されていないため 3 回接種を完了する前に妊娠していることがわかった場合には一旦接種を中断し 出産後に残りの接種を行うようにしてください 接種が中断しても 最初から接種し直す必要はありません 具体的には 1 回目接種後に妊娠 子宮予防ワクチン接種にかかる Q アンド A 参考 : HPV : ヒトパピローマウイルスのこと Q1 HPV ワクチンが最も効果的と考えられる対象は誰でしょうか A HPV の主な感染ルートは性的接触であるため 初交前の年代 ( 多くは 10 歳から 14 歳 ) が最も効果的と考えられています 日本産婦人科学会 日本小児科学会 日本婦人科腫瘍学会 日本産婦人科医会などから 11~14 歳の女児での接種が推奨されています

More information

2. Tハイブリドーマによる抗原認識二重特異性を有する (BALB/c X C57BL/6)F 1 T 細胞ハイブリドーマを作製した このT 細胞ハイブリドーマは I-A d に拘束された抗原 KLH と自己の I-A b 単独を二重に認識した 外来抗原に反応するT 細胞が自己のMHCによって絶えず

2. Tハイブリドーマによる抗原認識二重特異性を有する (BALB/c X C57BL/6)F 1 T 細胞ハイブリドーマを作製した このT 細胞ハイブリドーマは I-A d に拘束された抗原 KLH と自己の I-A b 単独を二重に認識した 外来抗原に反応するT 細胞が自己のMHCによって絶えず 健康文化 最終講義 免疫応答とトリプトファン代謝 長瀬文彦 今春 名古屋大学を定年退職しました 在職中の主な研究を紹介します 1. ニワトリの免疫応答機構 1974 年 名古屋大学医学部細菌学教室の中島泉先生のもとでニワトリの免疫機構の研究を始めた 当時 マウスを中心とする研究において哺乳類のタンパク抗原に対する抗体産生応答や免疫記憶と免疫寛容 ( トレランス ) の誘導は T 細胞とB 細胞の相互作用によって誘導されることが知られていた

More information

Microsoft Word _前立腺がん統計解析資料.docx

Microsoft Word _前立腺がん統計解析資料.docx 治療症例数第 6 位 : (2015/1-2017/9) 統計解析資料 A) はじめに免疫治療効果の成否に大きく関与するT 細胞を中心とした免疫機構は 細胞内に進入した外来生物の排除ならびに対移植片拒絶や自己免疫疾患 悪性腫瘍の発生進展に深く関与している これら細胞性免疫機構は担癌者においてその機能の低下が明らかとなり 近年では腫瘍免疫基礎研究において各種免疫学的パラメータ解析によるエビデンスに基づいた治療手法が大きく注目されるようになった

More information

目次 1. 抗体治療とは? 2. 免疫とは? 3. 免疫の働きとは? 4. 抗体が主役の免疫とは? 5. 抗体とは? 6. 抗体の構造とは? 7. 抗体の種類とは? 8. 抗体の働きとは? 9. 抗体医薬品とは? 10. 抗体医薬品の特徴とは? 10. モノクローナル抗体とは? 11. モノクローナ

目次 1. 抗体治療とは? 2. 免疫とは? 3. 免疫の働きとは? 4. 抗体が主役の免疫とは? 5. 抗体とは? 6. 抗体の構造とは? 7. 抗体の種類とは? 8. 抗体の働きとは? 9. 抗体医薬品とは? 10. 抗体医薬品の特徴とは? 10. モノクローナル抗体とは? 11. モノクローナ 私たちの身体には免疫というすばらしい防御システムがあります 抗体医薬はこのシステムを利用しています 倍尾学先生 ( ばいおまなぶ ) バイオ大学教授 未来ちゃん ( みらい ) 好奇心旺盛な小学 3 年生の女の子 理科とお料理が得意 ゲノム君 1 号 倍尾先生が開発したロボット 案内役を務めます 監修 : 東北大学大学院工学研究科バイオ工学専攻名誉教授 客員教授熊谷泉先生 目次 1. 抗体治療とは?

More information

No146三浦.indd

No146三浦.indd 三浦光一秋田大学大学院医学系研究科医学専攻腫瘍制御医学系消化器内科特任講師 非アルコール性脂肪性肝炎 ( 以下 NASH) はメタボリック症候群の肝臓での表現型とされ 肝硬変や肝臓癌へ進展する可能性のある疾患である 近年 NASH 患者数は増加傾向にあり 今後重要な健康問題となると予想されるが いまだ有効な治療法は少ない NASH 発症メカニズムに関して不明な点が多いことから その解明が有効な治療法の開発につながると考えられる

More information

研究成果の概要 今回発表した研究では 独自に開発した B 細胞初代培養法 ( 誘導性胚中心様 B (igb) 細胞培養法 ; 野嶋ら, Nat. Commun. 2011) を用いて 膜型 IgE と他のクラスの抗原受容体を培養した B 細胞に発現させ それらの機能を比較しました その結果 他のクラ

研究成果の概要 今回発表した研究では 独自に開発した B 細胞初代培養法 ( 誘導性胚中心様 B (igb) 細胞培養法 ; 野嶋ら, Nat. Commun. 2011) を用いて 膜型 IgE と他のクラスの抗原受容体を培養した B 細胞に発現させ それらの機能を比較しました その結果 他のクラ TOKYO UNIVERSITY OF SCIENCE 1-3 KAGURAZAKA, SHINJUKU-KU, TOKYO 162-8601, JAPAN Phone: +81-3-5228-8107 2016 年 7 月 報道関係各位 どうして健康な人がアレルギーを発症するのか? IgE 型 B 細胞による免疫記憶がアレルギーを引き起こす 東京理科大学 東京理科大学生命医科学研究所分子生物学研究部門教授北村大介および助教羽生田圭らの研究グループは

More information

原提示細胞によって調査すること 2 イベントの異なる黄砂のアレルギー喘息への影響を評価すること 3 黄砂に付着している微生物成分 (LPS 真菌 ) や化学物質 ( タール成分 ) のアレルギー喘息や花粉症への影響を評価すること 4 アレルギー喘息等の増悪メカニズムを 病原体分子パターン認識受容体

原提示細胞によって調査すること 2 イベントの異なる黄砂のアレルギー喘息への影響を評価すること 3 黄砂に付着している微生物成分 (LPS 真菌 ) や化学物質 ( タール成分 ) のアレルギー喘息や花粉症への影響を評価すること 4 アレルギー喘息等の増悪メカニズムを 病原体分子パターン認識受容体 5C-1155 黄砂エアロゾル及び付着微生物 化学物質の生体影響とそのメカニズム解明に関す る研究 H23 H25 累計予算額 115,612 千円 市瀬 孝道 大分県立看護科学大学 1 研究実施体制 1 黄砂エアロゾル及び付着微生物 化学物質による呼吸器系 生殖器系 免疫系への影響と そのメカニズム解明 1-1)黄砂エアロゾル及び付着微生物 化学物質による呼吸器 免疫系への影響とそのメカ ニズム解明

More information

研究成果報告書

研究成果報告書 様式 C-19 科学研究費補助金研究成果報告書 平成 22 年 5 月 19 日現在 研究種目 : 基盤研究 (B) 研究期間 :2007~2009 課題番号 :19390477 研究課題名 ( 和文 ) Toll 様受容体と C- タイプレクチン受容体とのクロストーク 研究課題名 ( 英文 ) A crosstalk between Toll-like receptor and C-type lectin

More information

70,71 図 2.32, 図 2.33, 図 2.34 C3b,Bb C3bBb 70,71 図 2.32, 図 2.33, 図 2.34 C3b2,Bb C3b2Bb 72 7 行目 C3 転換酵素 (C4b2b) C3 転換酵素 (C4b2a) 91 図 2.50 キャプション 12 行目 リ

70,71 図 2.32, 図 2.33, 図 2.34 C3b,Bb C3bBb 70,71 図 2.32, 図 2.33, 図 2.34 C3b2,Bb C3b2Bb 72 7 行目 C3 転換酵素 (C4b2b) C3 転換酵素 (C4b2a) 91 図 2.50 キャプション 12 行目 リ 正誤表 免疫生物学( 原書第 7 版第 1 刷 ) 下記の箇所に誤りがございました 謹んでお詫びし訂正いたします 頁該当箇所誤正 5 下から 12 13 行目その成熟型である単球 monocyte は, 血液中を循環し 単球 monocyte の成熟型である. 単球は, 血液中を循環し 14 図 1.11 最下段図図内 エフェクター細胞クローンからの活性化特異的リンパ球 の増殖と分化 エフェクター細胞クローン形成のための活性化特異的リ

More information

Microsoft Word _肺がん統計解析資料.docx

Microsoft Word _肺がん統計解析資料.docx 治療症例数第 2 位 : (2015/1-2017/9) 統計解析資料 A) はじめに免疫治療効果の成否に大きく関与するT 細胞を中心とした免疫機構は 細胞内に進入した外来生物の排除ならびに対移植片拒絶や自己免疫疾患 悪性腫瘍の発生進展に深く関与している これら細胞性免疫機構は担癌者においてその機能の低下が明らかとなり 近年では腫瘍免疫基礎研究において各種免疫学的パラメータ解析によるエビデンスに基づいた治療手法が大きく注目されるようになった

More information

研究の詳細な説明 1. 背景細菌 ウイルス ワクチンなどの抗原が人の体内に入るとリンパ組織の中で胚中心が形成されます メモリー B 細胞は胚中心に存在する胚中心 B 細胞から誘導されてくること知られています しかし その誘導の仕組みについてはよくわかっておらず その仕組みの解明は重要な課題として残っ

研究の詳細な説明 1. 背景細菌 ウイルス ワクチンなどの抗原が人の体内に入るとリンパ組織の中で胚中心が形成されます メモリー B 細胞は胚中心に存在する胚中心 B 細胞から誘導されてくること知られています しかし その誘導の仕組みについてはよくわかっておらず その仕組みの解明は重要な課題として残っ メモリー B 細胞の分化誘導メカニズムを解明 抗原を記憶する免疫細胞を効率的に誘導し 新たなワクチン開発へ キーワード : 免疫 メモリー B 細胞 胚中心 親和性成熟 転写因子 Bach2 研究成果のポイント 抗原を記憶する免疫細胞 : メモリー B 細胞注 1 がどのように分化誘導されていくのかは不明だった リンパ節における胚中心注 2 B 細胞からメモリー B 細胞への分化誘導は初期の胚中心で起こりやすく

More information

がん免疫療法モデルの概要 1. TGN1412 第 Ⅰ 相試験事件 2. がん免疫療法での動物モデルの有用性がんワクチン抗 CTLA-4 抗体抗 PD-1 抗体 2

がん免疫療法モデルの概要 1. TGN1412 第 Ⅰ 相試験事件 2. がん免疫療法での動物モデルの有用性がんワクチン抗 CTLA-4 抗体抗 PD-1 抗体 2 020315 科学委員会 非臨床試験の活用に関する専門部会 ( 独 ) 医薬品医療機器総合機構会議室 資料 1 2 がん免疫療法モデルの概要 川 博嘉 1 がん免疫療法モデルの概要 1. TGN1412 第 Ⅰ 相試験事件 2. がん免疫療法での動物モデルの有用性がんワクチン抗 CTLA-4 抗体抗 PD-1 抗体 2 TGN1412 第 Ⅰ 相試験事件 2006 年 3 月 13 日英国でヒトで全く初めての物質が使用された第

More information

Untitled

Untitled 上原記念生命科学財団研究報告集, 23(2009) 149. サルエイズウイルスのヒトへの感染伝播を規定する宿主制御因子の解明 武内寛明 Key words: エイズウイルス, 異種間感染, 感染症, 人畜共通感染症, 新興感染症 東京大学医科学研究所感染症国際研究センター微生物学分野 緒言ヒト後天性免疫不全症候群 ( ヒトエイズ ) は, ヒト免疫不全ウイルス (HIV) によって引き起こされる慢性持続感染症である.

More information

読んで見てわかる免疫腫瘍

読んで見てわかる免疫腫瘍 第 Ⅰ 部 免疫学の基本的な知識 本来, 生物あるいは生命には精神学的かつ細胞生物学的に 生の本能 が与えられ, この本能はさらに個体保存本能と種族保存本能に概念的に分けられる. 精神学的には, 著名な Sigmund Freud( 独国,1856-1939) は前者を自我本能, 後者を性本能と呼び, 精神分析に二元論を展開している. 生物学的には, 個体保存本能の一部は免疫が担い, 種族保存本能は不幸にもがんの増殖に関連し細胞の不死化を誘導している.

More information

法医学問題「想定問答」(記者会見後:平成15年  月  日)

法医学問題「想定問答」(記者会見後:平成15年  月  日) 平成 28 年 5 月 26 日 肺がんに対する新たな分子標的治療を発見! 本研究成果のポイント 肺がんのうち 5% 程度を占める KRAS( 1) 遺伝子変異肺がんは, 上皮間葉移行 ( 2) 状態により上皮系と間葉系の 2 種類に分類される KRAS 遺伝子変異を有する肺がんに対し現在臨床試験中の MEK 阻害薬は, 投与後に細胞表面受容体を活性化することにより効果が減弱され, 活性化される細胞表面受容体は上皮間葉移行状態により異なる

More information

様式 C-19 科学研究費補助金研究成果報告書 平成 21 年 6 月 16 日現在研究種目 : 若手研究 (B) 研究期間 :26~28 課題番号 : 研究課題名 ( 和文 ) 好酸球性気道炎症における Th2 サイトカインと TLR3 受容体のクロストーク研究課題名 ( 英文 )

様式 C-19 科学研究費補助金研究成果報告書 平成 21 年 6 月 16 日現在研究種目 : 若手研究 (B) 研究期間 :26~28 課題番号 : 研究課題名 ( 和文 ) 好酸球性気道炎症における Th2 サイトカインと TLR3 受容体のクロストーク研究課題名 ( 英文 ) Powered by TCPDF (www.tcpdf.org) Title Sub Title Author 好酸球性気道炎症におけるTh2サイトカインとTLR3 受容体のクロストーク Crosstalk between Th2 cytokines and Toll-like 3 receptor in the pathophysiology of eosinophilic airway inflammation

More information

従来のペプチド免疫療法の問題点 樹状細胞 CTL CTL CTL CTL CTL CTL CTL CTL 腫瘍組織 腫瘍細胞を殺す 細胞傷害性 T 細胞 (CTL) の大半は 腫瘍の存在に気づかず 血管内を通り過ぎている! 腫瘍抗原の提示を考えると それは当然! 2

従来のペプチド免疫療法の問題点 樹状細胞 CTL CTL CTL CTL CTL CTL CTL CTL 腫瘍組織 腫瘍細胞を殺す 細胞傷害性 T 細胞 (CTL) の大半は 腫瘍の存在に気づかず 血管内を通り過ぎている! 腫瘍抗原の提示を考えると それは当然! 2 1 In vivo 抗腫瘍活性の高い Th/CTL 誘導法の開発 高知大学 医 免疫教授宇高恵子 従来のペプチド免疫療法の問題点 樹状細胞 CTL CTL CTL CTL CTL CTL CTL CTL 腫瘍組織 腫瘍細胞を殺す 細胞傷害性 T 細胞 (CTL) の大半は 腫瘍の存在に気づかず 血管内を通り過ぎている! 腫瘍抗原の提示を考えると それは当然! 2 3 がん細胞ウイルス感染細胞 内因性抗原の提示経路

More information

研究目的 1. 電波ばく露による免疫細胞への影響に関する研究 我々の体には 恒常性を保つために 生体内に侵入した異物を生体外に排除する 免疫と呼ばれる防御システムが存在する 免疫力の低下は感染を引き起こしやすくなり 健康を損ないやすくなる そこで 2 10W/kgのSARで電波ばく露を行い 免疫細胞

研究目的 1. 電波ばく露による免疫細胞への影響に関する研究 我々の体には 恒常性を保つために 生体内に侵入した異物を生体外に排除する 免疫と呼ばれる防御システムが存在する 免疫力の低下は感染を引き起こしやすくなり 健康を損ないやすくなる そこで 2 10W/kgのSARで電波ばく露を行い 免疫細胞 資料 - 生電 6-3 免疫細胞及び神経膠細胞を対象としたマイクロ波照射影響に関する実験評価 京都大学首都大学東京 宮越順二 成田英二郎 櫻井智徳多氣昌生 鈴木敏久 日 : 平成 23 年 7 月 22 日 ( 金 ) 場所 : 総務省第 1 特別会議室 研究目的 1. 電波ばく露による免疫細胞への影響に関する研究 我々の体には 恒常性を保つために 生体内に侵入した異物を生体外に排除する 免疫と呼ばれる防御システムが存在する

More information

株式会社 デンドリックス

株式会社 デンドリックス 癌を対象とした免疫細胞治療 - 第 3 種再生医療の最先端 - がんの発生 放射線 紫外線 化学物質 等 DNA 修復酵素 損傷 免疫系による変異細胞の除去 損傷 n がん 免疫監視機構からの逸脱 がん治療の限界について 手術 放射線は多くの塊を除去できるが 100 % ではない 除去しきれていなかったがん細胞は 免疫系の細胞が処理する 体力低下等の理由で免疫系が十分働けないと再発 転移という結果になる

More information

Microsoft Word - FHA_13FD0159_Y.doc

Microsoft Word - FHA_13FD0159_Y.doc 1 要約 Pin1 inhibitor PiB prevents tumor progression by inactivating NF-κB in a HCC xenograft mouse model (HCC 皮下移植マウスモデルにおいて Pin1 インヒビターである PiB は NF-κB 活性を低下させることにより腫瘍進展を抑制する ) 千葉大学大学院医学薬学府先端医学薬学専攻 ( 主任

More information

学位論文の要約 免疫抑制機構の観点からの ペプチドワクチン療法の効果増強を目指した研究 Programmed death-1 blockade enhances the antitumor effects of peptide vaccine-induced peptide-specific cyt

学位論文の要約 免疫抑制機構の観点からの ペプチドワクチン療法の効果増強を目指した研究 Programmed death-1 blockade enhances the antitumor effects of peptide vaccine-induced peptide-specific cyt 学位論文の要約 免疫抑制機構の観点からの ペプチドワクチン療法の効果増強を目指した研究 Programmed death-1 blockade enhances the antitumor effects of peptide vaccine-induced peptide-specific cytotoxic T lymphocytes 澤田雄 Yu Sawada 横浜市立大学大学院医学研究科消化器

More information

上原記念生命科学財団研究報告集, 30 (2016)

上原記念生命科学財団研究報告集, 30 (2016) 上原記念生命科学財団研究報告集, 30 (2016) 164. 血管内皮抗原特異的免疫抑制療法は動脈硬化を抑制する 笠木伸平 神戸大学医学部附属病院検査部 Key words: 血管内皮抗原特異的免疫抑制療法, 免疫寛容, 動脈硬化 緒言動脈硬化は 致死的な合併症やその高い罹患率を背景とする医療経済学的な観点等の理由からその予防はわが国の大変重要な課題となっている 近年 動脈硬化は血管内皮障害から始まる血管内皮の慢性炎症であるという考えが一般的となりつつあり

More information

学位論文要旨 牛白血病ウイルス感染牛における臨床免疫学的研究 - 細胞性免疫低下が及ぼす他の疾病発生について - C linical immunological studies on cows infected with bovine leukemia virus: Occurrence of ot

学位論文要旨 牛白血病ウイルス感染牛における臨床免疫学的研究 - 細胞性免疫低下が及ぼす他の疾病発生について - C linical immunological studies on cows infected with bovine leukemia virus: Occurrence of ot 学位論文要旨 牛白血病ウイルス感染牛における臨床免疫学的研究 - 細胞性免疫低下が及ぼす他の疾病発生について - C linical immunological studies on cows infected with bovine leukemia virus: Occurrence of other disea s e a f f e c t e d b y cellular immune depression.

More information

図形の表現 5 チャートの作成 1, 作成チャート 右図は 平成 23 年 10 月 8 日付け朝日新聞 3 面より 下図は実際作成した図です 2, 樹状細胞について本年のノーベル医学生理学賞は 樹状細胞 を発見した功績に対して 米ロックフェラー大のラルフ スタインマン教授が選ばれた この樹状細胞は

図形の表現 5 チャートの作成 1, 作成チャート 右図は 平成 23 年 10 月 8 日付け朝日新聞 3 面より 下図は実際作成した図です 2, 樹状細胞について本年のノーベル医学生理学賞は 樹状細胞 を発見した功績に対して 米ロックフェラー大のラルフ スタインマン教授が選ばれた この樹状細胞は 機関誌 No.38 放送大学山口学習センターサークル Oct. 16, 11. 文責 井手明雄 1, 第四十三回パソコン同好会 (1) 開催日 : 9 月 25 日 ( 日 )15:00~17:00 (2) 場所 : 放送大学山口学習センター小講義室 ( 山口大学 大学会館内 ) (3) 内容 : 1 ワードによる図形表現 -5- 模式図の作成 ピロリ菌が胃の中に住み着き 胃潰瘍や胃癌を引き起こす仕組みの模式図をワードで描いた

More information

報道関係者各位

報道関係者各位 報道関係者各位 2018 年 10 月 6 日 東京薬科大学理化学研究所兵庫医科大学熊本大学 炎症の回復期に出現し 組織修復を促す新しい免疫細胞を発見 炎症性疾患や組織傷害の新たな治療標的として期待 ポイント 炎症や組織傷害の回復期に骨髄で産生される 新たな単球細胞を発見した この単球細胞は組織傷害部位に集積し 炎症抑制や組織修復を担う この細胞を欠損したマウスでは 腸炎からの回復が有意に遅延する

More information

細胞 THE CELL 2011年6月臨時増刊号 (立ち読み)

細胞 THE CELL 2011年6月臨時増刊号 (立ち読み) 総論 HPV と悪性腫瘍 HPV and Cancer 吉川裕之 Hiroyuki Yoshikawa Key words HPV, がん, ワクチン 要約パピローマウイルスはウサギなどでも造腫瘍性が証明されている ヒトパピローマウイルス (HPV) のがんとの関連については, 子宮頸がんではほぼ明らかになっているが,HPV16/18 ワクチンで予防できることを確認することが絶対的な証明となる 子宮頸がん以外に,

More information

前立腺癌は男性特有の癌で 米国においては癌死亡者数の第 2 位 ( 約 20%) を占めてい ます 日本でも前立腺癌の罹患率 死亡者数は急激に上昇しており 現在は重篤な男性悪性腫瘍疾患の1つとなって図 1 います 図 1 初期段階の前立腺癌は男性ホルモン ( アンドロゲン ) に反応し増殖します そ

前立腺癌は男性特有の癌で 米国においては癌死亡者数の第 2 位 ( 約 20%) を占めてい ます 日本でも前立腺癌の罹患率 死亡者数は急激に上昇しており 現在は重篤な男性悪性腫瘍疾患の1つとなって図 1 います 図 1 初期段階の前立腺癌は男性ホルモン ( アンドロゲン ) に反応し増殖します そ 再発した前立腺癌の増殖を制御する新たな分子メカニズムの発見乳癌治療薬が効果的 発表者筑波大学先端領域学際研究センター教授柳澤純 (junny@agbi.tsukuba.ac.jp TEL: 029-853-7320) ポイント 女性ホルモンが制御する新たな前立腺癌の増殖 細胞死メカニズムを発見 女性ホルモン及び女性ホルモン抑制剤は ERβ 及び KLF5 を通じ FOXO1 の発現量を変化することで前立腺癌の増殖

More information

H24_大和証券_研究業績_p indd

H24_大和証券_研究業績_p indd インフルエンザウィルス感染症におけるエピジェネティック制御 慶應義塾大学医学部呼吸器内科 助教石井誠 ( 共同研究者 ) 慶應義塾大学医学部呼吸器内科助教溝口孝輔 はじめにインフルエンザウィルス感染症は 2009 年に新型インフルエンザウィルス (H1N1) が流行するなど現在でも社会的な脅威であり 重症化した場合の致命率は高く その病態のさらなる解明と適切な治療法の確立が急務である 遺伝子発現のエピジェネティクス

More information

32 章皮膚の構造と機能 a b 暗帯 (dark zone) 胚中心 (germinal center) 明帯 (light zone) c 辺縁帯 (marginal zone) マントル帯 子として Th0 から誘導され,IL-23 刺激により生存維持される. 上皮細胞や線維芽細胞を介して好中

32 章皮膚の構造と機能 a b 暗帯 (dark zone) 胚中心 (germinal center) 明帯 (light zone) c 辺縁帯 (marginal zone) マントル帯 子として Th0 から誘導され,IL-23 刺激により生存維持される. 上皮細胞や線維芽細胞を介して好中 F. 皮膚の免疫機構 / b. 免疫担当細胞 3 ついで複雑な経路で次々と補体が反応し, 最終的には病原体や感染細胞を穿孔させるに至る. この古典経路 (classical pathway) のほかに, 細菌などが抗体非依存性に C3,B 因子,D 因子を活性化することにより反応が開始する第二経路 (alternative pathway) と, 微生物表面の糖鎖に血清中のマンノース結合レクチンなどが結合して活性化されるレクチン経路

More information

Mincle は死細胞由来の内因性リガンドを認識し 炎症応答を誘導することが報告されているが 非感染性炎症における Mincle の意義は全く不明である 最近 肥満の脂肪組織で生じる線維化により 脂肪組織の脂肪蓄積量が制限され 肝臓などの非脂肪組織に脂肪が沈着し ( 異所性脂肪蓄積 ) 全身のインス

Mincle は死細胞由来の内因性リガンドを認識し 炎症応答を誘導することが報告されているが 非感染性炎症における Mincle の意義は全く不明である 最近 肥満の脂肪組織で生じる線維化により 脂肪組織の脂肪蓄積量が制限され 肝臓などの非脂肪組織に脂肪が沈着し ( 異所性脂肪蓄積 ) 全身のインス 学位論文の内容の要旨 論文提出者氏名 池田賢司 論文審査担当者 主査下門顕太郎副査鍔田武志 竹田秀 論文題目 Macrophage-inducible C-type lectin underlies obesity-induced adipose tissue fibrosis ( 論文内容の要旨 ) < 要旨 > 肥満では 脂肪細胞とマクロファージの持続的な相互作用による悪循環が形成され 慢性炎症性の変化を生じており

More information

難病 です これまでの研究により この病気の原因には免疫を担当する細胞 腸内細菌などに加えて 腸上皮 が密接に関わり 腸上皮 が本来持つ機能や炎症への応答が大事な役割を担っていることが分かっています また 腸上皮 が適切な再生を全うすることが治療を行う上で極めて重要であることも分かっています しかし

難病 です これまでの研究により この病気の原因には免疫を担当する細胞 腸内細菌などに加えて 腸上皮 が密接に関わり 腸上皮 が本来持つ機能や炎症への応答が大事な役割を担っていることが分かっています また 腸上皮 が適切な再生を全うすることが治療を行う上で極めて重要であることも分かっています しかし 解禁日時 :2018 年 12 月 12 日 ( 水 ) 午後 6 時 ( 日本時間 ) プレス通知資料 ( 研究成果 ) 報道関係各位 2018 年 12 月 11 日国立大学法人東京医科歯科大学国立研究開発法人日本医療研究開発機構 炎症性腸疾患の腸上皮における新たな炎症 再生応答の協調機構を解明 早期の治療効果予測に期待 ポイント 炎症性腸疾患 ( 潰瘍性大腸炎 クローン病 ) は消化管に原因不明の炎症と腸上皮の傷害

More information

Microsoft Word - ③中牟田誠先生.docx

Microsoft Word - ③中牟田誠先生.docx RA 治療と肝炎 中牟田誠国立病院機構九州医療センター肝臓センター (2012 年 第 13 回博多リウマチセミナー ) はじめに RA 治療の基本は免疫抑制をかけることになると思われるが そのためには種々の薬剤 ステロイド メトトレキサートを代表として 特に最近は生物学的製剤と呼ばれ強力な免疫抑制効果を持つ インフリキシマブ エタネルセプトなどが使用されている これらの治療経過中に肝障害が出現してくることも稀なことではなく

More information

ISO

ISO ISO ISO ISO(International Standardization Organization) 135 ISO CD(Committee Draft) DIS(Draft for International Standard) FDIS(Final DIS) ISO ISO23500 2004.01.13 ANSI/AAMI RD52 2004.04.13 6 2004.08.09

More information

研究の背景 1 細菌 ウイルス 寄生虫などの病原体が人体に侵入し感染すると 血液中を流れている炎症性単球注と呼ばれる免疫細胞が血管壁を通過し 感染局所に集積します ( 図 1) 炎症性単球は そこで病原体を貪食するマクロファ 1 ージ注と呼ばれる細胞に分化して感染から体を守る重要な働きをしています

研究の背景 1 細菌 ウイルス 寄生虫などの病原体が人体に侵入し感染すると 血液中を流れている炎症性単球注と呼ばれる免疫細胞が血管壁を通過し 感染局所に集積します ( 図 1) 炎症性単球は そこで病原体を貪食するマクロファ 1 ージ注と呼ばれる細胞に分化して感染から体を守る重要な働きをしています 平成 26 年 8 月 19 日 報道関係者各位 国立大学法人筑波大学 Tel:029-853-2039( 広報室 ) 科学技術振興機構 ( J S T ) Tel:03-5214-8404( 広報課 ) 貪食細胞が細菌感染を感知する仕組みを解明 研究成果のポイント 1. 病原体を貪食する免疫細胞が細菌感染を感知する重要な分子を発見しました 2. この免疫分子の介在により貪食細胞が感染局所に集積するメカニズムの一端を解明しました

More information

ヒト慢性根尖性歯周炎のbasic fibroblast growth factor とそのreceptor

ヒト慢性根尖性歯周炎のbasic fibroblast growth factor とそのreceptor α μ μ μ μ 慢性化膿性根尖性歯周炎の病態像 Ⅰ型 A D Ⅱ型 E H Ⅰ型では 線維芽細胞と新生毛細血管が豊富で線維成分 に乏しく マクロファージ リンパ球や形質細胞を主とす る炎症性細胞の多数浸潤を認める Ⅱ型では Ⅰ型よりも線維成分が多く 肉芽組織中の炎 症性細胞浸潤や新生毛細管血管の減少や Ⅰ型よりも太い 膠原線維束の形成を認める A C E G B D F H A B E F HE

More information

< 研究の背景と経緯 > 私たちの消化管は 食物や腸内細菌などの外来抗原に常にさらされています 消化管粘膜の免疫系は 有害な病原体の侵入を防ぐと同時に 生体に有益な抗原に対しては過剰に反応しないよう巧妙に調節されています 消化管に常在するマクロファージはCX3CR1を発現し インターロイキン-10(

< 研究の背景と経緯 > 私たちの消化管は 食物や腸内細菌などの外来抗原に常にさらされています 消化管粘膜の免疫系は 有害な病原体の侵入を防ぐと同時に 生体に有益な抗原に対しては過剰に反応しないよう巧妙に調節されています 消化管に常在するマクロファージはCX3CR1を発現し インターロイキン-10( 1 平成 27 年 7 月 21 日 科学技術振興機構 (JST) Tel: 03-5 2 1 4-8 4 0 4 ( 広報課 ) 東京薬科大学 Tel: 0 42-676- 1649( 総務法人広報課 ) 腸炎発症を引き起こすマクロファージ集団を発見 ~ 消化管の炎症に特化した新たな治療法開発に期待 ~ ポイント 腸炎発症にマクロファージ ( 大食細胞 ) の関与が想定されるが その機能は不明だった

More information

の活性化が背景となるヒト悪性腫瘍の治療薬開発につながる 図4 研究である 研究内容 私たちは図3に示すようなyeast two hybrid 法を用いて AKT分子に結合する細胞内分子のスクリーニングを行った この結果 これまで機能の分からなかったプロトオンコジン TCL1がAKTと結合し多量体を形

の活性化が背景となるヒト悪性腫瘍の治療薬開発につながる 図4 研究である 研究内容 私たちは図3に示すようなyeast two hybrid 法を用いて AKT分子に結合する細胞内分子のスクリーニングを行った この結果 これまで機能の分からなかったプロトオンコジン TCL1がAKTと結合し多量体を形 AKT活性を抑制するペプチ ド阻害剤の開発 野口 昌幸 北海道大学遺伝子病制御研究所 教授 広村 信 北海道大学遺伝子病制御研究所 ポスドク 岡田 太 北海道大学遺伝子病制御研究所 助手 柳舘 拓也 株式会社ラボ 研究員 ナーゼAKTに結合するタンパク分子を検索し これまで機能の 分からなかったプロトオンコジンTCL1がAKTと結合し AKT の活性化を促す AKT活性補助因子 であることを見い出し

More information

1. Caov-3 細胞株 A2780 細胞株においてシスプラチン単剤 シスプラチンとトポテカン併用添加での殺細胞効果を MTS assay を用い検討した 2. Caov-3 細胞株においてシスプラチンによって誘導される Akt の活性化に対し トポテカンが影響するか否かを調べるために シスプラチ

1. Caov-3 細胞株 A2780 細胞株においてシスプラチン単剤 シスプラチンとトポテカン併用添加での殺細胞効果を MTS assay を用い検討した 2. Caov-3 細胞株においてシスプラチンによって誘導される Akt の活性化に対し トポテカンが影響するか否かを調べるために シスプラチ ( 様式甲 5) 学位論文内容の要旨 論文提出者氏名 論文審査担当者 主査 朝日通雄 恒遠啓示 副査副査 瀧内比呂也谷川允彦 副査 勝岡洋治 主論文題名 Topotecan as a molecular targeting agent which blocks the Akt and VEGF cascade in platinum-resistant ovarian cancers ( 白金製剤耐性卵巣癌における

More information

平成 28 年 2 月 1 日 膠芽腫に対する新たな治療法の開発 ポドプラニンに対するキメラ遺伝子改変 T 細胞受容体 T 細胞療法 名古屋大学大学院医学系研究科 ( 研究科長 髙橋雅英 ) 脳神経外科学の夏目敦至 ( なつめあつし ) 准教授 及び東北大学大学院医学系研究科 ( 研究科長 下瀬川徹

平成 28 年 2 月 1 日 膠芽腫に対する新たな治療法の開発 ポドプラニンに対するキメラ遺伝子改変 T 細胞受容体 T 細胞療法 名古屋大学大学院医学系研究科 ( 研究科長 髙橋雅英 ) 脳神経外科学の夏目敦至 ( なつめあつし ) 准教授 及び東北大学大学院医学系研究科 ( 研究科長 下瀬川徹 平成 28 年 2 月 1 日 膠芽腫に対する新たな治療法の開発 ポドプラニンに対するキメラ遺伝子改変 T 細胞受容体 T 細胞療法 名古屋大学大学院医学系研究科 ( 研究科長 髙橋雅英 ) 脳神経外科学の夏目敦至 ( なつめあつし ) 准教授 及び東北大学大学院医学系研究科 ( 研究科長 下瀬川徹 ) 地域イノベーション分野の加藤幸成 ( かとうゆきなり ) 教授を中心とした研究グループは 腫瘍抗原であるポドプラニンに対する

More information

<4D F736F F D B82C982C282A282C482512E646F63>

<4D F736F F D B82C982C282A282C482512E646F63> サンプル条件および固定化分子の選択 Biacoreの実験ではセンサーチップに固定化する分子をリガンド それに対して結合を測定する分子をアナライトと呼びます いずれの分子をリガンドとし アナライトとするかは 実験系を構築する上で重要です 以下にサンプルに適したリガンド アナライトの設計方法やサンプルの必要条件などをご紹介します アナライト リガンド センサーチップ (1) タンパク質リガンドとしてもアナライトとしても用いることができます

More information

実践!輸血ポケットマニュアル

実践!輸血ポケットマニュアル Ⅰ. 輸血療法概論 1. 輸血療法について 1 輸血療法について (1) 輸血療法の基本的な考え方輸血療法は, 他人 ( 同種血製剤 ) あるいは自分 ( 自己血製剤 ) の血液成分 ( 血球, 血漿 ) の補充を基本とする細胞治療である. 血漿製剤を除く同種血製剤であれば, 他人の生きた細胞 ( 血球 ) を使って, 患者に不足している機能を補う治療法といえる. 輸血療法は補充療法であり, 血液の成分ごとに補う成分輸血が現代の輸血療法である.

More information

一次サンプル採取マニュアル PM 共通 0001 Department of Clinical Laboratory, Kyoto University Hospital その他の検体検査 >> 8C. 遺伝子関連検査受託終了項目 23th May EGFR 遺伝子変異検

一次サンプル採取マニュアル PM 共通 0001 Department of Clinical Laboratory, Kyoto University Hospital その他の検体検査 >> 8C. 遺伝子関連検査受託終了項目 23th May EGFR 遺伝子変異検 Department of Clinical Laboratory, Kyoto University Hospital 6459 8. その他の検体検査 >> 8C. 遺伝子関連検査受託終了項目 23th May. 2017 EGFR 遺伝子変異検査 ( 院内測定 ) c-erbb/egfr [tissues] 基本情報 8C051 c-erbb/egfr JLAC10 診療報酬 分析物 識別材料測定法

More information

医薬品タンパク質は 安全性の面からヒト型が常識です ではなぜ 肌につける化粧品用コラーゲンは ヒト型でなくても良いのでしょうか? アレルギーは皮膚から 最近の学説では 皮膚から侵入したアレルゲンが 食物アレルギー アトピー性皮膚炎 喘息 アレルギー性鼻炎などのアレルギー症状を引き起こすきっかけになる

医薬品タンパク質は 安全性の面からヒト型が常識です ではなぜ 肌につける化粧品用コラーゲンは ヒト型でなくても良いのでしょうか? アレルギーは皮膚から 最近の学説では 皮膚から侵入したアレルゲンが 食物アレルギー アトピー性皮膚炎 喘息 アレルギー性鼻炎などのアレルギー症状を引き起こすきっかけになる 化粧品用コラーゲンの原料 現在は 魚由来が中心 かつては ウシの皮膚由来がほとんど BSE 等病原体混入の危険 人に感染する病原体をもたない アレルギーの問題は未解決 ( むしろ問題は大きくなったかもしれない ) アレルギーを引き起こす可能性 医薬品タンパク質は 安全性の面からヒト型が常識です ではなぜ 肌につける化粧品用コラーゲンは ヒト型でなくても良いのでしょうか? アレルギーは皮膚から 最近の学説では

More information