50. (km) A B C C 7 B A 0

Size: px
Start display at page:

Download "50. (km) A B C C 7 B A 0"

Transcription

1 A B C. (. )?.. A A B C. A 4 0

2 50. (km) A B C C 7 B A

3 .. 5 B 5 9 C km.7km A B C 5. A B C A B C A: B: C:.8 B.km B B.9km B 4 A B km(.5km).4. A C A... (vertex) (edge) (arc).7 9

4 5.4 A C 7 B A B. B.9 4 A. B.9 7 C. A.4 8 C.7 0 A 4. 5 C 4. A 4. A 5. 9 A.4 4.7

5 C 7 B A a, b, c,... i j ij.7 9, 5,,,, 4,, 4, 5 i j ij i j ij ji n m V = {,,..., n} E = {e, e,..., e m } V E G = (V, E) (graph) ( ij ji )

6 V E V = f; ; ; 4; 5; g E = f; 4; ; ; 4; 45; 5g. (transshipment problem) (source) (sink) A B C P Q ( ) [ ] ( ),

7 [] 5 [5] [8] [8] -7 [] [5] [4] [0] 7 [4] [5] 5 4 [] [5] [9] [8] [] i j ij i j ( ji ij j i ) ij x ij x ij 0 E E = {, 4, 4, 5,,, 7, 4, 47, 5, 58,, 4, 78, 8} ij c ij c = 8 c 58 = 9 z z = ij E c ij x ij = 8x + 8x 4 + 5x 4 + 4x 5 + x + 5x + 5x 7 + x 4 + 0x x 5 + 9x x + x 4 + x x 8 x 4 x 4 5 x 5 x = x 4 + x 5

8 5 x x x 4 x + = x + x 4 x x x 4 = ( 8) x 58 + x 78 = x 8 + x x x 4 = x x 4 x 5 = 0 x x x 7 + x 4 + x = 5 x 4 + x 4 x 4 x 47 + x 4 = 7 x 5 x 5 x 58 = 9 x + x 5 x x 4 + x 8 = 0 x 7 + x 47 x 78 = 0 x 58 + x 78 x 8 = (.) min 8x + 8x 4 + 5x 4 + 4x 5 + x + 5x + 5x 7 + x 4 +0x x 5 + 9x x + x 4 + x x 8 s.t. x x x 4 = x x 4 x 5 = 0 x x x 7 + x 4 + x = 5 x 4 + x 4 x 4 x 47 + x 4 = 7 x 5 x 5 x 58 = 9 x + x 5 x x 4 + x 8 = 0 x 7 + x 47 x 78 = 0 x 58 + x 78 x 8 = x ij 0, ij E (.) (.) x = 4 x 4 = 8 x 4 = 0 x 5 = 4 x = 0 x = 0 x 7 = 0 x 4 = 5 x 47 = 0 x 5 = 0 x 58 = x = 0 x 4 = 0 x 78 = 0 x 8 = 0.. (.)

9 (.) x = 0 x 4 = 8 x 9 = 4 x 4 = 0 x 5 = 0 x = 0 x = 0 x 7 = 0 x 4 = 5 x 47 = 0 x 49 = 0 x 5 = 0 x 58 = x 59 = x = 0 x 4 = 0 x 78 = 0 x 8 = 0

10 [] 5 [5] [0] [8] [8] -7 [] [5] [4] [0] 7 [0] 4 [] 9 0 [0] [5] [4] 5 [] [5] [9] [8] V E V = f; ; ; 4g E = f; ; ; ; 4; 4; 4g. (V; E). a 4 b c () a = b + c () a > b + c () a < b + c.4.4.

11 (40 ) ( = 40 ) (.) = ( ) min 90x x 0 + 9x x 04 s.t. x 0 x 0 x 0 x 04 = 550 x 0 x x = 0 x + x 0 x x 7 = 0 x + x 0 x 4 x 8 = 0 x 4 + x 04 x 45 x 49 = 0 x 45 = 0, x = 40, x 7 = 0, x 8 = 50, x 49 = 0 x ij 0, ij (.4)

12 [90] [85] [9] [90] (.4) x 0 = 40, x 0 = 40, x 0 = 0, x 04 = 0, x = 0, x = 40, x = 90, x 7 = 0, x 4 = 40, x 8 = 50, x 45 = 0, x 49 = 0, (.) LP. min 90x x 0 + 9x x 04 + x + x + x 4 + x 45 s.t. x 0 x 0 x 0 x 04 = 550 x 0 x x = 0 x + x 0 x x 7 = 0 x + x 0 x 4 x 8 = 0 x 4 + x 04 x 45 x 49 = 0 x 45 = 0, x = 40, x 7 = 0, x 8 = 50, x 49 = 0 x ij 0, ij (.5) x 0 = 40, x 0 = 70, x 0 = 0, x 04 = 40, x = 0, x = 40, x = 50, x 7 = 0, x 4 = 0, x 8 = 50, x 45 = 0, x 49 = 0

13 [90] [85] [9] [90] 4 5 [] [] [] [] [ ] [ ] [ ] [ ] ij x ij x = 80 x 0 = 5 x = 5 x 40 = 5 x 4 = 75 x 50 = 0 x 9 = 5 x 79 = 80 x 80 = 0 x 9, = 5 x 0, = 80 x, = 0

14 . 0 [0] [0] [0] [0] [0] [0] [0] [0] [50] [50] [50] [50] [500] [500] [500] [500] 9 [00] [00] [00] LP.7 ( ) 0 0 p q(> p) r j d j (7 d 7 = 0 )

15 c ij min +c x + c x + c 4 x 4 + c x + c 5 x 5 + c x +c 4 x 4 + c 5 x 5 + c x + c 7 x 7 + c 4 x 4 + c 47 x 47 + c 5 x 5 + c 7 x 7 s.t. x x x 4 = 0 +x x x 5 x = 0 +x + x x 4 x 5 x x 7 = 0 +x 4 + x 4 x 4 x 47 = 0 +x 5 + x 5 + x 5 = +x + x + x 4 x 5 + x 7 = 0 +x 7 + x 47 x 7 = 4 x ij 0, ij (.) (.) ( ) u v u v u v ( ) (cycle)

16 4.5 ij () c ij x ij () c ij x ij () c ij x ij (4) c ij x ij (5) c ij x ij () c ij x ij (7) c ij x ij (8) c ij x ij (tree) (spanning tree).. ( ). ( 0 ) 4..(A).. 0

17 [] 5 [5] (A) (B) (C) [8] 0 - [8] 0 - [8] [5] [8] 4 4 [] [5] [4] [5] 5 [4] 0 5 [9] 4 [5] [] [8] [] 4 [] [5] [4] 0 5 [9] 9 [5] [] [8] [] 9 5 [5] [4] [4] 5 [9] -9-7 [] 7 [] [5] 5 [5] [4] 8 [0] [5] [8] [0] [8] [5] 0 [0] [8] 8 7 [] 8 7 [] 8 7 [] 8

18 = = ( + ) 4 = (B) 4 7.(C) ( leaf ) ( root ) (0 ) ( ). ( ) min [ ] s.t. [ ] [ ] = [ or ], [ ]

19 (= ) (= ) i (i =,..., ) j (j = A, B, C) x ij (i =,..., ; j = A, B, C) x ia + x ib + x ic =, i =,..., x A + x A + + x A = x B + x B + + x B = x C + x C + + x C = x ij 0, i =,..., ; j = A, B, C.x A + 4.5x A + +.4x A +.9x B +.9x B + +.8x B + 7.x C +.x C x C (.7) min.x A + 4.5x A + +.4x A +.9x B +.9x B + +.8x B +7.x C +.x C x C s.t. x ia + x ib + x ic =, i =,..., x A + x A + + x A = x B + x B + + x B = x C + x C + + x C = x ij 0, i =,..., ; j = A, B, C (.8)

20 8 x A = x B = x A = x 4A = x 5C = x B = x 7C = x 8C = x 9B = x 0A = x A = x A = 0 0 A,,4,0,, B,,9 C 5,7,8 4.(km).4.7 C. A C 7 B A (.8)

21 a b 5 4 c d e f g h ( ) a b c d e f g h

22 min s.t. n c ij x ij i= j J x ij =, i =,..., n j J n x ij =, i= x ij 0, j J i =,..., n; j J c ij i j J = {a, b,,..., h} ( ) h a c f b e d g a b c d e f g h B D E 4 5

23 .. 7. ( ) 4 5 A B C D 7 9 E j i u ji. ( ).... ( 8 8 ) 0.. a, e, j, c, f, a, b, e, 4 d, f, 5 d, g, a, h, i, k, 7 d, f, 8 g, h, 9 f, g, 0 d, k,

24 7.4.4 s t,,..., 0 s t a, b,..., k t s,,..., 0 a, b,..., k s t 0 ts 0 (.5).5 (cover) M (jmj) C (jcj) jcj jmj M C jc j = jm j

25 .. 7 x j = x c = x e = x 4s = x 5g = x i = x 7d = x 8h = x 9f = x 0k = x ta = x tb = x ts = 9. 9 a b / 7/ 7/ 7/9 7/ 7/ 7/5 7/0 7/ 7/9 7/ 7/ 7/9 7/4 7/9 7/ i j i j i j i j

26 74.8 ( ) ( ) [-] i(i=,..., 8) i (i =,..., 8) 09 min x 09 s.t. x 8 + x 9 =, x 5 + x + x 7 + x 8 + x 9 = x 8 + x 9 =, x 45 + x 4 + x 47 + x 49 + x 49 = x 59 =, x 7 + x 8 + x 9 =, x 78 + x 79 = x 89 =, x 0 =, x 0 =, x 0 =, x 04 = x 5 + x 45 + x 05 =, x + x 4 + x 0 = x 47 + x 7 + x 07 =, x 8 + x 8 + x 8 + x 8 + x 78 + x 08 = 8 x i9 + x 09 = 8 i= 8 x 0j + x 09 = 8 j= x ij 0 ij

27 x 8 = 0 x 9 = x 5 = x = 0 x 7 = 0 x 8 = 0 x 9 = 0 x 8 = 0 x 9 = x 45 = 0 x 4 = x 47 = 0 x 49 = 0 x 49 = 0 x 59 = x 7 = x 8 = 0 x 9 = 0 x 78 = x 79 = 0 x 89 = x 0 = x 0 = x 0 = x 04 = x 05 = 0 x 0 = 0 x 07 = 0 x 08 = 0 x 09 = 4 x ij = ( ) 4 7 n M M n M <> <> <5> <> <4> 5 <0> s <8> 4 <7> <> <9> t.9 s t t s ts (.0 ) x ts

28 7 ( ).0 <> <> <5> <> <4> 5 <0> s <8> 4 <7> <> <9> t [] max x ts s.t. x ts x s x s = 0 x s x x 4 = 0 x s x = 0 x x 5 = 0 x 4 x 45 x 4 = 0 x 5 + x 45 x 5t = 0 x 4 + x x t = 0 x 5t + x t x ts = 0 x s, x s 8, x 5, x 4, x 7 x 5, x 45 4, x 4, x 5t 0, x t 9 x ij 0, ij E (.9) x s = 5 x s = 7 x = x 4 = x = 7 x 5 = x 45 = x 4 = 0 x 5t = 5 x t = 7 x ts =.7. A B C.. ( S )

29 C S 4 C S 4 C. a b c d 4 e 4 f 5 g h 4 i 4 C j 5 A k B l C. (.) A B C. a b c d e f g h i j k l T A B C T T S.0 (.9) A B 9 C (.9)

30 78 (.9) min ξ s + 8ξ s + 5ξ + ξ 4 + 7ξ + ξ 5 +4ξ 45 + ξ 4 + 0ξ 5 + 0ξ 5t + 9ξ t s.t. λ s + λ t λ s λ + ξ s 0 λ s λ + ξ s 0 λ λ + ξ 0 λ λ 4 + ξ 4 0 λ λ + ξ 0 λ λ 5 + ξ 5 0 λ 4 λ 5 + ξ 45 0 λ 4 λ + ξ 4 0 λ 5 λ t + ξ 5t 0 λ λ t + ξ t 0 ξ ij 0, ij E (.0) (.0) λ i (i = s,,,...,, t) λ i (i = s,,,...,, t) ξ ij (ij E) δ λ i = λ i + δ, i = s,,,...,, t λ i (i = s,,,...,, t) ξ ij (ij E) λ s = 0 (.0) (λ s, λ,..., λ t, ξ s,..., ξ t ) λ λ 4 + ξ 4 > 0 (ξ ij ) (.0) min ξ s + 8ξ s + 5ξ + ξ 4 + 7ξ + ξ 5 +4ξ 45 + ξ 4 + 0ξ 5 + 0ξ 5t + 9ξ t s.t. λ s + λ t = λ s λ + ξ s = 0 λ s λ + ξ s = 0 λ λ + ξ = 0 λ λ 4 + ξ 4 = 0 λ λ + ξ = 0 λ λ 5 + ξ 5 = 0 λ 4 λ 5 + ξ 45 = 0 λ 4 λ + ξ 4 = 0 λ 5 λ t + ξ 5t = 0 λ λ t + ξ t = 0 λ s = 0 ξ ij 0, ij E (.)

31 s t : s 5 t : s 4 5 t : s 4 t 4 : s t P = {s,, 5, 5t} P = {s, 4, 45, 5t} P = {s, 4, 4, t} P 4 = {s,, t} λ s λ + ξ s = 0 λ λ + ξ = 0 λ λ 5 + ξ 5 = 0 λ 5 λ t + ξ 5t = 0 λ s + λ s = 0 λ t = ij P ξ ij λ t = 0 ij P ξ ij = min ξ s + 8ξ s + 5ξ + ξ 4 + 7ξ + ξ 5 s.t. +4ξ 45 + ξ 4 + 0ξ 5 + 0ξ 5t + 9ξ t ξ ij =, k =,,, 4 ij P k ξ ij 0, ij E (.) ( ) (.0) : λ s = λ = λ = λ = λ 4 = 0 λ 5 = 0 λ = 0 λ t = 0 ξ = 0 ξ 4 = ξ = ξ 5 = ξ 45 = 0 ξ 4 = 0 ξ 5 = 0 ξ 5t = 0 ξ t = 0 ξ s = 0 ξ s = 0

32 ( ).8 (Shortest Path Problem) A B.4?.4 A B ¾ ½ ½ ½¼ ¾ ¾ ¾ A B.5 ( )

33 .8. (Shortest Path Problem) 8 LP (Dijkstra) V = {s,,,..., n} E ij E d ij > 0 s j [ ] : v s = 0 v j =, M = {s} N = j V, j s M i v i = min j M {v j} M N N N {i} M M/{i} 4 v j j V/M ij E v i + d ij < v j 5 v j v i + d ij M M {j} M = d j s j.4.5, (dynamic programming, DP) V =,,..., n, t t (.4 ) i t n k J k (i) k = 0,,..., n J k (i) { J k (i) = min j=,...,n [d ij + J k+ (j)], k = 0,,..., n ; i =,..., n J n (i) = a it, i =,..., n DP (.) (.)

34 8.5 step v = 0, v j =, j =,, 4, 5, M = {}, N = { } step min j M {v j } = v = 0 step M = { }, N = {} step 4 : min{v 0 + d, v } = min{0 +, } = : min{v 0 + d, v } = min{0 + 7, } = 7 M = {, } step 5 M step step min j M {v j } = min{v, v } = min{, 7} = step M = {}, N = {, } step 4 : min{v + d, v } = min{ +, 7} = 4 4: min{v + d 4, v 4 } = min{ +, } = 7 5: min{v + d 5, v 5 } = min{ + 0, } = M = {, 4, 5} step 5 M step step min j M {v j } = min{v, v 4, v 5 } = min{4, 7, }=4 step M = {4, 5}, N = {,, } step 4 4: min{v + d 4, v 4 } = min{4 +, 7} = 5: min{v + d 5, v 5 } = min{4 + 8, } = M = {4, 5} step 5 M step 4 step min j M {v j } = min{v 4, v 5 } = min{, }= 4 step M = {5}, N = {,,, 4} step 4 5: min{v 4 + d 45, v 5 } = min{ +, } = 8 : min{v 4 + d 4, v } = min{ + 5, } = M = {5} step 5 M step 5 step min j M {v j } = min{v 5, v } = min{8, }=8 5 step M = {}, N = {,,, 4, 5} step 4 : min{v 5 + d 5, v } = min{8 +, } = 0 M = {} step 5 M step step min j M {v j } = min{v } = 0 step M = { }, N = {,,, 4, 5, } step 4 M = { } step 5 M = v = 0, v =, v = 4, v 4 =, v 5 = 8, v = 0 : 4 5

35 .8. (Shortest Path Problem) 8 d ij ij d ii = 0 k = n 0 (.) ( ) DP.4 k = 4 ( t ) J 4 (4) = 5 J 4 (5) = k = ( t ) J (5) = min {d 5j + J 4 (j)} = d 55 + J 4 (5) = 0 + = j=,...,n J (4) = min{d 44 + J 4 (4), d 45 + J 4 (5)} = {0 + 5, + } = 4 J () = min{d 4 + J 4 (4), d 5 + J 4 (5)} = { + 5, 8 + } = 7 J () = min{d 4 + J 4 (4), d 5 + J 4 (5)} = { + 5, 0 + } = k = ( t ) J (5) = min{d 55 + J (5)} = 0 + = J (4) = min{d 44 + J (4), d 45 + J (5)} = {0 + 4, + } = 4 J () = min{d + J (), d 4 + J (4), d 5 + J (5)} = {0 + 7, + 4, 8 + } = J () = min{d + J (), d + J (), d 4 + J (4), d 5 + J (5)} = {0 +, + 7, + 4, 0 + } = 0 J () = min{d + J (), d + J ()} = min{ +, 7 + 7} = k = (4 t ) J (5) = min{d 55 + J (5)} = 0 + = J (4) = min{d 44 + J (4), d 45 + J (5)} = {0 + 4, + } = 4 J () = min{d + J (), d 4 + J (4), d 5 + J (5)} = {0 +, + 4, 8 + } = J () = min{d + J (), d + J (), d 4 + J (4), d 5 + J (5)} = {0 + 0, +, + 4, 0 + } = 9 J () = min{d + J (), d + J (), d + J ()} = min{0 +, + 0, 7 + } = k = 0 (5 t ) J 0 (5) = min{d 55 + J (5)} = 0 + = J 0 (4) = min{d 44 + J (4), d 45 + J (5)} = {0 + 4, + } = 4 J 0 () = min{d + J (), d 4 + J (4), d 5 + J (5)} = {0 +, + 4, 8 + } = J 0 () = min{d + J (), d + J (), d 4 + J (4), d 5 + J (5)} = {0 + 9, +, + 4, 0 + } = 9 J 0 () = min{d + J (), d + J (), d + J ()} = min{0 +, + 9, 7 + } = 0

36 84. J k (i) k = 0 i = ( ) 4 5 (0). DP 5 4 i k ( ) 5 00 [ ] = = ( ) 0 = ( ) 4 8 = = ( ) 8 =

37 .9. PERT/CPM 85.7 <700> 0 <800> <4700> <400> <7700> 8 4 <400>.9 PERT/CPM.9. [?] PERT/CPM.9. PERT program evaluation and review technique Booz Allen & Hammilton ( )

38 8 PERT PERT PERT ([4] ) PERT ( activity ).8 i. d. f. d f.8 ( ) a. b. a 4 c. b 0 d. c 7 e. c 4 f. e 5 g. c h. g 7 i. d, f 8 j. e, h 9 k. i 4 l. i 5 m. j n. k, l PERT (activity on node; AoN) (activity on arc; AoA)

39 .9. PERT/CPM 87 i d f d f i a n s t 0.9 (AoN ) s (0) (7) (8) (4) d i k n () () (0) (4) a c e f (5) l (5) b (4) () g h j (7) m (9) () (0) t.9. AoA (event) /.8 AOA.40 i d f d f 7 i 7 7 f d i 0.40 (AoA ) g () a () b (4) 4 c (0) e (4) 5 h (7) 8 (0) 7 f (5) j (9) m () i (8) 0 9 k (4) l (5) n () d (7)

40 (earliest start time) (latest finish time) (critical path). ( ) j E j E j = max i P(j) {E i + d i } P(j) j a h i P(i) = {d, f} E d = d d = 7 E f = 0 d f = 5 E i = max + 7, = 5.8 E t = ( )

41 .9. PERT/CPM 89 j L j L j = min i S(j) {L i d i } S(j) j t k n i S(i) = {k, l} L k = 8 d l = 4 L l = 8 d l = 5 L i = min 8 4, 8 5 =. E j L j E j + d j = L j.4.4 d j, [E j, L j ] s 0 [0,0] 7 [,5] d 8 [5,] i 4 [,8] k n [8,44] [0,] 0 [,] 4 [,0] a c e f 5 [0,5] l 5 [,8] [,] b g h j m t 4 [,] 7 [,] 9 [9,4] [8,44] 0 [ 44,44] (total slack, total float) j E j j L j d j j TS j TS j = L j E j d j j

42 90 (free slack, free float) j S(j) j FS j FS j = min i S(j) {E i} E j d j j j (safety slack, safety float) j P(j) j SS j SS j = L j d j max i P(j) {L i} j j.4.4 s a. s b. a c. b d. c 7 5 e. c f. e g. c h. g i. d, f j. e, h k. i 4 8 l. i m. j n. k, l t. m, n j

43 .9. PERT/CPM a b a b a b.9. PERT (Three-Estimated Approach).44 /

44 9.4 probability 5 duration.44 S T S T ( ) CPM PERT

45 .9. PERT/CPM 9 ( ) CPM(Critical Path Method).45 α j cost T j c n T j time CPM (time cost curve).45 (normal point) (crash point) CPM CPM V j V T n j T c j β j α j E x j (j V) y j (j V) s t T min j V (α j + β j x j ) s.t. y s = 0, x s = 0, x t = 0 y j + x j y k 0, jk E y t T Tj c x j Tj n, j V y j 0, j V (.4) T T (.4)

46 94 T T ( ) A 5 B 0 C D A E C F B G A H C,G I 8 E,F..47 CPM.47 (normal time 0 ) a b c a d -0. a e b, c

s t 1, 2,..., 10 s t a, b,..., k t s 1, 2,..., 10 1 a, b,..., k 1 s t ts 1 0 ( 2.25) ½ ¾ ½¼ x 1j = 1 x 2c = 1 x 3e = 1

s t 1, 2,..., 10 s t a, b,..., k t s 1, 2,..., 10 1 a, b,..., k 1 s t ts 1 0 ( 2.25) ½ ¾ ½¼ x 1j = 1 x 2c = 1 x 3e = 1 72 2 2 2 2.24 2 s t, 2,..., 0 s t a, b,..., k t s, 2,..., 0 a, b,..., k s t 0 ts 0 ( 2.25) 2.24 2 ½ ¾ ½¼ x j = x 2c = x 3e = x 4s = x 5g = x 6i = x 7d = x 8h = x 9f = x 0k = x ta = x tb = x ts = 9 2.26

More information

例題で学ぶオペレーションズ リサーチ入門 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

例題で学ぶオペレーションズ リサーチ入門 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 例題で学ぶオペレーションズ リサーチ入門 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/009641 このサンプルページの内容は, 初版 1 刷発行時のものです. i OR OR OR OR OR OR OR OR OR 2015 5 ii 1 OR 1 1.1 OR... 1 1.2 OR...

More information

AHPを用いた大相撲の新しい番付編成

AHPを用いた大相撲の新しい番付編成 5304050 2008/2/15 1 2008/2/15 2 42 2008/2/15 3 2008/2/15 4 195 2008/2/15 5 2008/2/15 6 i j ij >1 ij ij1/>1 i j i 1 ji 1/ j ij 2008/2/15 7 1 =2.01/=0.5 =1.51/=0.67 2008/2/15 8 1 2008/2/15 9 () u ) i i i

More information

3 65 1 4 5 67 1 2 5 5 3 6 68 23 69 2 6 8m 10m 1. 2. 3. 70 66 600km 11 3 16 21 3 0 3m 2m 0 5m 71 11 3 17 0 5 0 0 72 73 74 75 3 76 77 4 78 79 5 80 81 82 83 2 83 . 84 6 a b c d e f g a b c 3 85 16 86 87 7

More information

パワーMOS FET π-MOS

パワーMOS FET π-MOS 7 VDSS VDSS SJ147 TO-0IS 60 1 0. SJ55 L - 30 5 0.1 P 15 SJ183 L - 60 5 0.35 SJ537 L - TO-9MOD 50 5 0.19 P 15 SJ00 180 10 0.83 SJ567 00.5.0 SJ01 00 1 0.63 SJ570 L - TO-0AB 60 30 0.038 P 15 SJ4 TO-0FL/SM

More information

1 911 9001030 9:00 A B C D E F G H I J K L M 1A0900 1B0900 1C0900 1D0900 1E0900 1F0900 1G0900 1H0900 1I0900 1J0900 1K0900 1L0900 1M0900 9:15 1A0915 1B0915 1C0915 1D0915 1E0915 1F0915 1G0915 1H0915 1I0915

More information

untitled

untitled ,, 2 2.,, A, PC/AT, MB, 5GB,,,, ( ) MB, GB 2,5,, 8MB, A, MB, GB 2 A,,,? x MB, y GB, A (), x + 2y () 4 (,, ) (hanba@eee.u-ryukyu.ac.jp), A, x + 2y() x y, A, MB ( ) 8 MB ( ) 5GB ( ) ( ), x x x 8 (2) y y

More information

1 12 *1 *2 (1991) (1992) (2002) (1991) (1992) (2002) 13 (1991) (1992) (2002) *1 (2003) *2 (1997) 1

1 12 *1 *2 (1991) (1992) (2002) (1991) (1992) (2002) 13 (1991) (1992) (2002) *1 (2003) *2 (1997) 1 2005 1 1991 1996 5 i 1 12 *1 *2 (1991) (1992) (2002) (1991) (1992) (2002) 13 (1991) (1992) (2002) *1 (2003) *2 (1997) 1 2 13 *3 *4 200 1 14 2 250m :64.3km 457mm :76.4km 200 1 548mm 16 9 12 589 13 8 50m

More information

106 4 4.1 1 25.1 25.4 20.4 17.9 21.2 23.1 26.2 1 24 12 14 18 36 42 24 10 5 15 120 30 15 20 10 25 35 20 18 30 12 4.1 7 min. z = 602.5x 1 + 305.0x 2 + 2

106 4 4.1 1 25.1 25.4 20.4 17.9 21.2 23.1 26.2 1 24 12 14 18 36 42 24 10 5 15 120 30 15 20 10 25 35 20 18 30 12 4.1 7 min. z = 602.5x 1 + 305.0x 2 + 2 105 4 0 1? 1 LP 0 1 4.1 4.1.1 (intger programming problem) 1 0.5 x 1 = 447.7 448 / / 2 1.1.2 1. 2. 1000 3. 40 4. 20 106 4 4.1 1 25.1 25.4 20.4 17.9 21.2 23.1 26.2 1 24 12 14 18 36 42 24 10 5 15 120 30

More information

G (n) (x 1, x 2,..., x n ) = 1 Dφe is φ(x 1 )φ(x 2 ) φ(x n ) (5) N N = Dφe is (6) G (n) (generating functional) 1 Z[J] d 4 x 1 d 4 x n G (n) (x 1, x 2

G (n) (x 1, x 2,..., x n ) = 1 Dφe is φ(x 1 )φ(x 2 ) φ(x n ) (5) N N = Dφe is (6) G (n) (generating functional) 1 Z[J] d 4 x 1 d 4 x n G (n) (x 1, x 2 6 Feynman (Green ) Feynman 6.1 Green generating functional Z[J] φ 4 L = 1 2 µφ µ φ m 2 φ2 λ 4! φ4 (1) ( 1 S[φ] = d 4 x 2 φkφ λ ) 4! φ4 (2) K = ( 2 + m 2 ) (3) n G (n) (x 1, x 2,..., x n ) = φ(x 1 )φ(x

More information

( ) () () ( ) () () () ()

( ) () () ( ) () () () () 5 1! (Linear Programming, LP) LP OR LP 1.1 1.1.1 1. 2. 3. 4. 4 5. 1000 4 1.1? 1.2 1 1 http://allrecipes.com/ 6 1 1.1 ( ) () 1 0.5 1 0.75 200 () 1.5 1 0.5 1 50 ( ) 2 2 1 30 () 2.25 0.5 2 2.25 30 () 2 100

More information

n 2 n (Dynamic Programming : DP) (Genetic Algorithm : GA) 2 i

n 2 n (Dynamic Programming : DP) (Genetic Algorithm : GA) 2 i 15 Comparison and Evaluation of Dynamic Programming and Genetic Algorithm for a Knapsack Problem 1040277 2004 2 25 n 2 n (Dynamic Programming : DP) (Genetic Algorithm : GA) 2 i Abstract Comparison and

More information

‚åŁÎ“·„´Šš‡ðŠp‡¢‡½‹âfi`fiI…A…‰…S…−…Y…•‡ÌMarkovŸA“½fiI›ð’Í

‚åŁÎ“·„´Šš‡ðŠp‡¢‡½‹âfi`fiI…A…‰…S…−…Y…•‡ÌMarkovŸA“½fiI›ð’Í Markov 2009 10 2 Markov 2009 10 2 1 / 25 1 (GA) 2 GA 3 4 Markov 2009 10 2 2 / 25 (GA) (GA) L ( 1) I := {0, 1} L f : I (0, ) M( 2) S := I M GA (GA) f (i) i I Markov 2009 10 2 3 / 25 (GA) ρ(i, j), i, j I

More information

平成17年度 マスターセンター補助事業

平成17年度 マスターセンター補助事業 - 1 - - 2 - - 3 - - 4 - - 5 - - 6 - - 7 - - 8 - - 9 - - 10 - - 11 - - 12 - - 13 - - 14 - - 15 - - 16 - - 17 - - 18 - - 19 - - 20 - - 21 - - 22 - - 23 - - 24 - - 25 - - 26 - - 27 - - 28 - IC IC - 29 - IT

More information

量子力学 問題

量子力学 問題 3 : 203 : 0. H = 0 0 2 6 0 () = 6, 2 = 2, 3 = 3 3 H 6 2 3 ϵ,2,3 (2) ψ = (, 2, 3 ) ψ Hψ H (3) P i = i i P P 2 = P 2 P 3 = P 3 P = O, P 2 i = P i (4) P + P 2 + P 3 = E 3 (5) i ϵ ip i H 0 0 (6) R = 0 0 [H,

More information

(Basic of Proability Theory). (Probability Spacees ad Radom Variables , (Expectatios, Meas) (Weak Law

(Basic of Proability Theory). (Probability Spacees ad Radom Variables , (Expectatios, Meas) (Weak Law I (Radom Walks ad Percolatios) 3 4 7 ( -2 ) (Preface),.,,,...,,.,,,,.,.,,.,,. (,.) (Basic of Proability Theory). (Probability Spacees ad Radom Variables...............2, (Expectatios, Meas).............................

More information

行列代数2010A

行列代数2010A (,) A (,) B C = AB a 11 a 1 a 1 b 11 b 1 b 1 c 11 c 1 c a A = 1 a a, B = b 1 b b, C = AB = c 1 c c a 1 a a b 1 b b c 1 c c i j ij a i1 a i a i b 1j b j b j c ij = a ik b kj b 1j b j AB = a i1 a i a ik

More information

soturon.dvi

soturon.dvi 12 Exploration Method of Various Routes with Genetic Algorithm 1010369 2001 2 5 ( Genetic Algorithm: GA ) GA 2 3 Dijkstra Dijkstra i Abstract Exploration Method of Various Routes with Genetic Algorithm

More information

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t 6 6.1 6.1 (1 Z ( X = e Z, Y = Im Z ( Z = X + iy, i = 1 (2 Z E[ e Z ] < E[ Im Z ] < Z E[Z] = E[e Z] + ie[im Z] 6.2 Z E[Z] E[ Z ] : E[ Z ] < e Z Z, Im Z Z E[Z] α = E[Z], Z = Z Z 1 {Z } E[Z] = α = α [ α ]

More information

ii

ii i 2013 5 143 5.1...................................... 143 5.2.................................. 144 5.3....................................... 148 5.4.................................. 153 5.5...................................

More information

untitled

untitled 5 29 ( ) 5 30 ( ) 9 Max 107 10 21 5 30 ( ) 5 31 ( ) 6 1 ( ) 13 48 IC JCT 11 35 29 1 (1593) ( ) 7 1611 5 7 40 (1965) 40 2m 2 400 ( ) (1968 )8 22 20 ( ) 1796 16.5 () 3 2 4 ( ) ( ) 400 35 5 5 30 JTB 20 10

More information

Grund.dvi

Grund.dvi 24 24 23 411M133 i 1 1 1.1........................................ 1 2 4 2.1...................................... 4 2.2.................................. 6 2.2.1........................... 6 2.2.2 viterbi...........................

More information

行列代数2010A

行列代数2010A a ij i j 1) i +j i, j) ij ij 1 j a i1 a ij a i a 1 a j a ij 1) i +j 1,j 1,j +1 a i1,1 a i1,j 1 a i1,j +1 a i1, a i +1,1 a i +1.j 1 a i +1,j +1 a i +1, a 1 a,j 1 a,j +1 a, ij i j 1,j 1,j +1 ij 1) i +j a

More information

,,,,., = (),, (1) (4) :,,,, (1),. (2),, =. (3),,. (4),,,,.. (1) (3), (4).,,., () : = , ( ) : = F 1 + F 2 + F 3 + ( ) : = i Fj j=1 2

,,,,., = (),, (1) (4) :,,,, (1),. (2),, =. (3),,. (4),,,,.. (1) (3), (4).,,., () : = , ( ) : = F 1 + F 2 + F 3 + ( ) : = i Fj j=1 2 6 2 6.1 2 2, 2 5.2 R 2, 2 (R 2, B, µ)., R 2,,., 1, 2, 3,., 1, 2, 3,,. () : = 1 + 2 + 3 + (6.1.1).,,, 1 ,,,,., = (),, (1) (4) :,,,, (1),. (2),, =. (3),,. (4),,,,.. (1) (3), (4).,,., () : = 1 + 2 + 3 +,

More information

n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................

More information

chap9.dvi

chap9.dvi 9 AR (i) (ii) MA (iii) (iv) (v) 9.1 2 1 AR 1 9.1.1 S S y j = (α i + β i j) D ij + η j, η j = ρ S η j S + ε j (j =1,,T) (1) i=1 {ε j } i.i.d(,σ 2 ) η j (j ) D ij j i S 1 S =1 D ij =1 S>1 S =4 (1) y j =

More information

<B54CB5684E31A4E9C0CBA4E5AA6BC160BEE3B27AA544A5552E706466>

<B54CB5684E31A4E9C0CBA4E5AA6BC160BEE3B27AA544A5552E706466> N1 2 3 1 16 17 18 19 20 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 4 2 38 39 40 41 42 44 45 46 47 48 50 51 52 53 54 55 56 57 58 59 60 61 5 3 62 63 64 65 66 68 69 70 70 72 74 75 76 77 78 80 81 82 83

More information

v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i

v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i 1. 1 1.1 1.1.1 1.1.1.1 v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) R ij R ik = δ jk (4) δ ij Kronecker δ ij = { 1 (i = j) 0 (i j) (5) 1 1.1. v1.1 2011/04/10 1. 1 2 v i = R ij v j (6) [

More information

linearal1.dvi

linearal1.dvi 19 4 30 I 1 1 11 1 12 2 13 3 131 3 132 4 133 5 134 6 14 7 2 9 21 9 211 9 212 10 213 13 214 14 22 15 221 15 222 16 223 17 224 20 3 21 31 21 32 21 33 22 34 23 341 23 342 24 343 27 344 29 35 31 351 31 352

More information

研修コーナー

研修コーナー l l l l l l l l l l l α α β l µ l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l

More information

ito.dvi

ito.dvi 1 2 1006 214 542 160 120 160 1 1916 49 1710 55 1716 1 2 1995 1 2 3 4 2 3 1950 1973 1969 1989 1 4 3 3.1 3.1.1 1989 2 3.1.2 214 542 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

More information

(Basics of Proability Theory). (Probability Spacees ad Radom Variables,, (Ω, F, P ),, X,. (Ω, F, P ) (probability space) Ω ( ω Ω ) F ( 2 Ω ) Ω σ (σ-fi

(Basics of Proability Theory). (Probability Spacees ad Radom Variables,, (Ω, F, P ),, X,. (Ω, F, P ) (probability space) Ω ( ω Ω ) F ( 2 Ω ) Ω σ (σ-fi I (Basics of Probability Theory ad Radom Walks) 25 4 5 ( 4 ) (Preface),.,,,.,,,...,,.,.,,.,,. (,.) (Basics of Proability Theory). (Probability Spacees ad Radom Variables...............2, (Expectatios,

More information

日本統計学会誌, 第44巻, 第2号, 251頁-270頁

日本統計学会誌, 第44巻, 第2号, 251頁-270頁 44, 2, 205 3 25 270 Multiple Comparison Procedures for Checking Differences among Sequence of Normal Means with Ordered Restriction Tsunehisa Imada Lee and Spurrier (995) Lee and Spurrier (995) (204) (2006)

More information

II (Percolation) ( 3-4 ) 1. [ ],,,,,,,. 2. [ ],.. 3. [ ],. 4. [ ] [ ] G. Grimmett Percolation Springer-Verlag New-York [ ] 3

II (Percolation) ( 3-4 ) 1. [ ],,,,,,,. 2. [ ],.. 3. [ ],. 4. [ ] [ ] G. Grimmett Percolation Springer-Verlag New-York [ ] 3 II (Percolation) 12 9 27 ( 3-4 ) 1 [ ] 2 [ ] 3 [ ] 4 [ ] 1992 5 [ ] G Grimmett Percolation Springer-Verlag New-York 1989 6 [ ] 3 1 3 p H 2 3 2 FKG BK Russo 2 p H = p T (=: p c ) 3 2 Kesten p c =1/2 ( )

More information

DVIOUT-HYOU

DVIOUT-HYOU () P. () AB () AB ³ ³, BA, BA ³ ³ P. A B B A IA (B B)A B (BA) B A ³, A ³ ³ B ³ ³ x z ³ A AA w ³ AA ³ x z ³ x + z +w ³ w x + z +w ½ x + ½ z +w x + z +w x,,z,w ³ A ³ AA I x,, z, w ³ A ³ ³ + + A ³ A A P.

More information

x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ dt iωζ = ẍ + ω2 x (2.1) ζ ζ = Aωe iωt = Aω cos ωt + iaω sin

x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ dt iωζ = ẍ + ω2 x (2.1) ζ ζ = Aωe iωt = Aω cos ωt + iaω sin 2 2.1 F (t) 2.1.1 mẍ + kx = F (t). m ẍ + ω 2 x = F (t)/m ω = k/m. 1 : (ẋ, x) x = A sin ωt, ẋ = Aω cos ωt 1 2-1 x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ

More information

T rank A max{rank Q[R Q, J] t-rank T [R T, C \ J] J C} 2 ([1, p.138, Theorem 4.2.5]) A = ( ) Q rank A = min{ρ(j) γ(j) J J C} C, (5) ρ(j) = rank Q[R Q,

T rank A max{rank Q[R Q, J] t-rank T [R T, C \ J] J C} 2 ([1, p.138, Theorem 4.2.5]) A = ( ) Q rank A = min{ρ(j) γ(j) J J C} C, (5) ρ(j) = rank Q[R Q, (ver. 4:. 2005-07-27) 1 1.1 (mixed matrix) (layered mixed matrix, LM-matrix) m n A = Q T (2m) (m n) ( ) ( ) Q I m Q à = = (1) T diag [t 1,, t m ] T rank à = m rank A (2) 1.2 [ ] B rank [B C] rank B rank

More information

2 1/2 1/4 x 1 x 2 x 1, x 2 9 3x 1 + 2x 2 9 (1.1) 1/3 RDA 1 15 x /4 RDA 1 6 x /6 1 x 1 3 x 2 15 x (1.2) (1.3) (1.4) 1 2 (1.5) x 1

2 1/2 1/4 x 1 x 2 x 1, x 2 9 3x 1 + 2x 2 9 (1.1) 1/3 RDA 1 15 x /4 RDA 1 6 x /6 1 x 1 3 x 2 15 x (1.2) (1.3) (1.4) 1 2 (1.5) x 1 1 1 [1] 1.1 1.1. TS 9 1/3 RDA 1/4 RDA 1 1/2 1/4 50 65 3 2 1/15 RDA 2/15 RDA 1/6 RDA 1 1/6 1 1960 2 1/2 1/4 x 1 x 2 x 1, x 2 9 3x 1 + 2x 2 9 (1.1) 1/3 RDA 1 15 x 1 + 2 1/4 RDA 1 6 x 1 1 4 1 1/6 1 x 1 3

More information

http://www.ike-dyn.ritsumei.ac.jp/ hyoo/wave.html 1 1, 5 3 1.1 1..................................... 3 1.2 5.1................................... 4 1.3.......................... 5 1.4 5.2, 5.3....................

More information

数値計算:有限要素法

数値計算:有限要素法 ( ) 1 / 61 1 2 3 4 ( ) 2 / 61 ( ) 3 / 61 P(0) P(x) u(x) P(L) f P(0) P(x) P(L) ( ) 4 / 61 L P(x) E(x) A(x) x P(x) P(x) u(x) P(x) u(x) (0 x L) ( ) 5 / 61 u(x) 0 L x ( ) 6 / 61 P(0) P(L) f d dx ( EA du dx

More information

1. 2 P 2 (x, y) 2 x y (0, 0) R 2 = {(x, y) x, y R} x, y R P = (x, y) O = (0, 0) OP ( ) OP x x, y y ( ) x v = y ( ) x 2 1 v = P = (x, y) y ( x y ) 2 (x

1. 2 P 2 (x, y) 2 x y (0, 0) R 2 = {(x, y) x, y R} x, y R P = (x, y) O = (0, 0) OP ( ) OP x x, y y ( ) x v = y ( ) x 2 1 v = P = (x, y) y ( x y ) 2 (x . P (, (0, 0 R {(,, R}, R P (, O (0, 0 OP OP, v v P (, ( (, (, { R, R} v (, (, (,, z 3 w z R 3,, z R z n R n.,..., n R n n w, t w ( z z Ke Words:. A P 3 0 B P 0 a. A P b B P 3. A π/90 B a + b c π/ 3. +

More information

( ) ,

( ) , II 2007 4 0. 0 1 0 2 ( ) 0 3 1 2 3 4, - 5 6 7 1 1 1 1 1) 2) 3) 4) ( ) () H 2.79 10 10 He 2.72 10 9 C 1.01 10 7 N 3.13 10 6 O 2.38 10 7 Ne 3.44 10 6 Mg 1.076 10 6 Si 1 10 6 S 5.15 10 5 Ar 1.01 10 5 Fe 9.00

More information

O x y z O ( O ) O (O ) 3 x y z O O x v t = t = 0 ( 1 ) O t = 0 c t r = ct P (x, y, z) r 2 = x 2 + y 2 + z 2 (t, x, y, z) (ct) 2 x 2 y 2 z 2 = 0

O x y z O ( O ) O (O ) 3 x y z O O x v t = t = 0 ( 1 ) O t = 0 c t r = ct P (x, y, z) r 2 = x 2 + y 2 + z 2 (t, x, y, z) (ct) 2 x 2 y 2 z 2 = 0 9 O y O ( O ) O (O ) 3 y O O v t = t = 0 ( ) O t = 0 t r = t P (, y, ) r = + y + (t,, y, ) (t) y = 0 () ( )O O t (t ) y = 0 () (t) y = (t ) y = 0 (3) O O v O O v O O O y y O O v P(, y,, t) t (, y,, t )

More information

IA hara@math.kyushu-u.ac.jp Last updated: January,......................................................................................................................................................................................

More information

Mathematical Logic I 12 Contents I Zorn

Mathematical Logic I 12 Contents I Zorn Mathematical Logic I 12 Contents I 2 1 3 1.1............................. 3 1.2.......................... 5 1.3 Zorn.................. 5 2 6 2.1.............................. 6 2.2..............................

More information

7

7 01111() 7.1 (ii) 7. (iii) 7.1 poit defect d hkl d * hkl ε Δd hkl d hkl ~ Δd * hkl * d hkl (7.1) f ( ε ) 1 πσ e ε σ (7.) σ relative strai root ea square d * siθ λ (7.) Δd * cosθ Δθ λ (7.4) ε Δθ ( Δθ ) Δd

More information

(Basics of Proability Theory). (Probability Spacees ad Radom Variables,, (Ω, F, P ),, X,. (Ω, F, P ) (probability space) Ω ( ω Ω ) F ( 2 Ω ) Ω σ (σ-fi

(Basics of Proability Theory). (Probability Spacees ad Radom Variables,, (Ω, F, P ),, X,. (Ω, F, P ) (probability space) Ω ( ω Ω ) F ( 2 Ω ) Ω σ (σ-fi II (Basics of Probability Theory ad Radom Walks) (Preface),.,,,.,,,...,,.,.,,.,,. (Basics of Proability Theory). (Probability Spacees ad Radom Variables...............2, (Expectatios, Meas).............................

More information

19 σ = P/A o σ B Maximum tensile strength σ % 0.2% proof stress σ EL Elastic limit Work hardening coefficient failure necking σ PL Proportional

19 σ = P/A o σ B Maximum tensile strength σ % 0.2% proof stress σ EL Elastic limit Work hardening coefficient failure necking σ PL Proportional 19 σ = P/A o σ B Maximum tensile strength σ 0. 0.% 0.% proof stress σ EL Elastic limit Work hardening coefficient failure necking σ PL Proportional limit ε p = 0.% ε e = σ 0. /E plastic strain ε = ε e

More information

IA 2013 : :10722 : 2 : :2 :761 :1 (23-27) : : ( / ) (1 /, ) / e.g. (Taylar ) e x = 1 + x + x xn n! +... sin x = x x3 6 + x5 x2n+1 + (

IA 2013 : :10722 : 2 : :2 :761 :1 (23-27) : : ( / ) (1 /, ) / e.g. (Taylar ) e x = 1 + x + x xn n! +... sin x = x x3 6 + x5 x2n+1 + ( IA 2013 : :10722 : 2 : :2 :761 :1 23-27) : : 1 1.1 / ) 1 /, ) / e.g. Taylar ) e x = 1 + x + x2 2 +... + xn n! +... sin x = x x3 6 + x5 x2n+1 + 1)n 5! 2n + 1)! 2 2.1 = 1 e.g. 0 = 0.00..., π = 3.14..., 1

More information

C (q, p) (1)(2) C (Q, P ) ( Qi (q, p) P i (q, p) dq j + Q ) i(q, p) dp j P i dq i (5) q j p j C i,j1 (q,p) C D C (Q,P) D C Phase Space (1)(2) C p i dq

C (q, p) (1)(2) C (Q, P ) ( Qi (q, p) P i (q, p) dq j + Q ) i(q, p) dp j P i dq i (5) q j p j C i,j1 (q,p) C D C (Q,P) D C Phase Space (1)(2) C p i dq 7 2003 6 26 ( ) 5 5.1 F K 0 (q 1,,q N,p 1,,p N ) (Q 1,,Q N,P 1,,P N ) Q i Q i (q, p). (1) P i P i (q, p), (2) (p i dq i P i dq i )df. (3) [ ] Q αq + βp, P γq + δp α, β, γ, δ [ ] PdQ pdq (γq + δp)(αdq +

More information

Microsoft Word - 教材ガイド一覧ビデオ.doc

Microsoft Word - 教材ガイド一覧ビデオ.doc V V V V V V V V V V V V 1 V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V IT Web CG V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V NO V V V V V

More information

23_33.indd

23_33.indd 23 2TB 1TB 6TB 3TB 2TB 3TB 3TB 2TB 2TB 1TB 1TB 500GB 4TB 1TB 1TB 500GB 2TB 2TB 1TB 1TB RT RT RT RT RT RT RT MAC 10. 10. 10.6 10.5 MAC 10. 10. 10.6 10.5 MAC 10. 10.6 10.5 MAC 10. 10. 10.6 10.5 MAC 10. 10.6

More information

24 201170068 1 4 2 6 2.1....................... 6 2.1.1................... 6 2.1.2................... 7 2.1.3................... 8 2.2..................... 8 2.3................. 9 2.3.1........... 12

More information

(1) θ a = 5(cm) θ c = 4(cm) b = 3(cm) (2) ABC A A BC AD 10cm BC B D C 99 (1) A B 10m O AOB 37 sin 37 = cos 37 = tan 37

(1) θ a = 5(cm) θ c = 4(cm) b = 3(cm) (2) ABC A A BC AD 10cm BC B D C 99 (1) A B 10m O AOB 37 sin 37 = cos 37 = tan 37 4. 98 () θ a = 5(cm) θ c = 4(cm) b = (cm) () D 0cm 0 60 D 99 () 0m O O 7 sin 7 = 0.60 cos 7 = 0.799 tan 7 = 0.754 () xkm km R km 00 () θ cos θ = sin θ = () θ sin θ = 4 tan θ = () 0 < x < 90 tan x = 4 sin

More information

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 2 ), ϕ(t) = B 1 cos(ω 1 t + α 1 ) + B 2 cos(ω 2 t

More information

1. 4cm 16 cm 4cm 20cm 18 cm L λ(x)=ax [kg/m] A x 4cm A 4cm 12 cm h h Y 0 a G 0.38h a b x r(x) x y = 1 h 0.38h G b h X x r(x) 1 S(x) = πr(x) 2 a,b, h,π

1. 4cm 16 cm 4cm 20cm 18 cm L λ(x)=ax [kg/m] A x 4cm A 4cm 12 cm h h Y 0 a G 0.38h a b x r(x) x y = 1 h 0.38h G b h X x r(x) 1 S(x) = πr(x) 2 a,b, h,π . 4cm 6 cm 4cm cm 8 cm λ()=a [kg/m] A 4cm A 4cm cm h h Y a G.38h a b () y = h.38h G b h X () S() = π() a,b, h,π V = ρ M = ρv G = M h S() 3 d a,b, h 4 G = 5 h a b a b = 6 ω() s v m θ() m v () θ() ω() dθ()

More information

25 7 18 1 1 1.1 v.s............................. 1 1.1.1.................................. 1 1.1.2................................. 1 1.1.3.................................. 3 1.2................... 3

More information

untitled

untitled 8- My + Cy + Ky = f () t 8. C f () t ( t) = Ψq( t) () t = Ψq () t () t = Ψq () t = ( q q ) ; = [ ] y y y q Ψ φ φ φ = ( ϕ, ϕ, ϕ,3 ) 8. ψ Ψ MΨq + Ψ CΨq + Ψ KΨq = Ψ f ( t) Ψ MΨ = I; Ψ CΨ = C; Ψ KΨ = Λ; q

More information

.. p.2/5

.. p.2/5 IV. p./5 .. p.2/5 .. 8 >< >: d dt y = a, y + a,2 y 2 + + a,n y n + f (t) d dt y 2 = a 2, y + a 2,2 y 2 + + a 2,n y n + f 2 (t). d dt y n = a n, y + a n,2 y 2 + + a n,n y n + f n (t) (a i,j ) p.2/5 .. 8

More information

d ϕ i) t d )t0 d ϕi) ϕ i) t x j t d ) ϕ t0 t α dx j d ) ϕ i) t dx t0 j x j d ϕ i) ) t x j dx t0 j f i x j ξ j dx i + ξ i x j dx j f i ξ i x j dx j d )

d ϕ i) t d )t0 d ϕi) ϕ i) t x j t d ) ϕ t0 t α dx j d ) ϕ i) t dx t0 j x j d ϕ i) ) t x j dx t0 j f i x j ξ j dx i + ξ i x j dx j f i ξ i x j dx j d ) 23 M R M ϕ : R M M ϕt, x) ϕ t x) ϕ s ϕ t ϕ s+t, ϕ 0 id M M ϕ t M ξ ξ ϕ t d ϕ tx) ξϕ t x)) U, x 1,...,x n )) ϕ t x) ϕ 1) t x),...,ϕ n) t x)), ξx) ξ i x) d ϕi) t x) ξ i ϕ t x)) M f ϕ t f)x) f ϕ t )x) fϕ

More information

Dynkin Serre Weyl

Dynkin Serre Weyl Dynkin Naoya Enomoto 2003.3. paper Dynkin Introduction Dynkin Lie Lie paper 1 0 Introduction 3 I ( ) Lie Dynkin 4 1 ( ) Lie 4 1.1 Lie ( )................................ 4 1.2 Killing form...........................................

More information

数学概論I

数学概論I {a n } M >0 s.t. a n 5 M for n =1, 2,... lim n a n = α ε =1 N s.t. a n α < 1 for n > N. n > N a n 5 a n α + α < 1+ α. M := max{ a 1,..., a N, 1+ α } a n 5 M ( n) 1 α α 1+ α t a 1 a N+1 a N+2 a 2 1 a n

More information

1 1.1,,,.. (, ),..,. (Fig. 1.1). Macro theory (e.g. Continuum mechanics) Consideration under the simple concept (e.g. ionic radius, bond valence) Stru

1 1.1,,,.. (, ),..,. (Fig. 1.1). Macro theory (e.g. Continuum mechanics) Consideration under the simple concept (e.g. ionic radius, bond valence) Stru 1. 1-1. 1-. 1-3.. MD -1. -. -3. MD 1 1 1.1,,,.. (, ),..,. (Fig. 1.1). Macro theory (e.g. Continuum mechanics) Consideration under the simple concept (e.g. ionic radius, bond valence) Structural relaxation

More information

VI VI.21 W 1,..., W r V W 1,..., W r W W r = {v v r v i W i (1 i r)} V = W W r V W 1,..., W r V W 1,..., W r V = W 1 W

VI VI.21 W 1,..., W r V W 1,..., W r W W r = {v v r v i W i (1 i r)} V = W W r V W 1,..., W r V W 1,..., W r V = W 1 W 3 30 5 VI VI. W,..., W r V W,..., W r W + + W r = {v + + v r v W ( r)} V = W + + W r V W,..., W r V W,..., W r V = W W r () V = W W r () W (W + + W + W + + W r ) = {0} () dm V = dm W + + dm W r VI. f n

More information

1 発病のとき

1 発病のとき A A 1944 19 60 A 1 A 20 40 2 A 4 A A 23 6 A A 13 10 100 2 2 360 A 19 2 5 A A A A A TS TS A A A 194823 6 A A 23 A 361 A 3 2 4 2 16 9 A 7 18 A A 16 4 16 3 362 A A 6 A 6 4 A A 363 A 1 A A 1 A A 364 A 1 A

More information

( ) ( )

( ) ( ) 20 21 2 8 1 2 2 3 21 3 22 3 23 4 24 5 25 5 26 6 27 8 28 ( ) 9 3 10 31 10 32 ( ) 12 4 13 41 0 13 42 14 43 0 15 44 17 5 18 6 18 1 1 2 2 1 2 1 0 2 0 3 0 4 0 2 2 21 t (x(t) y(t)) 2 x(t) y(t) γ(t) (x(t) y(t))

More information

[1.1] r 1 =10e j(ωt+π/4), r 2 =5e j(ωt+π/3), r 3 =3e j(ωt+π/6) ~r = ~r 1 + ~r 2 + ~r 3 = re j(ωt+φ) =(10e π 4 j +5e π 3 j +3e π 6 j )e jωt

[1.1] r 1 =10e j(ωt+π/4), r 2 =5e j(ωt+π/3), r 3 =3e j(ωt+π/6) ~r = ~r 1 + ~r 2 + ~r 3 = re j(ωt+φ) =(10e π 4 j +5e π 3 j +3e π 6 j )e jωt 3.4.7 [.] =e j(t+/4), =5e j(t+/3), 3 =3e j(t+/6) ~ = ~ + ~ + ~ 3 = e j(t+φ) =(e 4 j +5e 3 j +3e 6 j )e jt = e jφ e jt cos φ =cos 4 +5cos 3 +3cos 6 =.69 sin φ =sin 4 +5sin 3 +3sin 6 =.9 =.69 +.9 =7.74 [.]

More information

1 n A a 11 a 1n A =.. a m1 a mn Ax = λx (1) x n λ (eigenvalue problem) x = 0 ( x 0 ) λ A ( ) λ Ax = λx x Ax = λx y T A = λy T x Ax = λx cx ( 1) 1.1 Th

1 n A a 11 a 1n A =.. a m1 a mn Ax = λx (1) x n λ (eigenvalue problem) x = 0 ( x 0 ) λ A ( ) λ Ax = λx x Ax = λx y T A = λy T x Ax = λx cx ( 1) 1.1 Th 1 n A a 11 a 1n A = a m1 a mn Ax = λx (1) x n λ (eigenvalue problem) x = ( x ) λ A ( ) λ Ax = λx x Ax = λx y T A = λy T x Ax = λx cx ( 1) 11 Th9-1 Ax = λx λe n A = λ a 11 a 12 a 1n a 21 λ a 22 a n1 a n2

More information

numb.dvi

numb.dvi 11 Poisson kanenko@mbkniftycom alexeikanenko@docomonejp http://wwwkanenkocom/ , u = f, ( u = u+f u t, u = f t ) 1 D R 2 L 2 (D) := {f(x,y) f(x,y) 2 dxdy < )} D D f,g L 2 (D) (f,g) := f(x,y)g(x,y)dxdy (L

More information

P072-076.indd

P072-076.indd 3 STEP0 STEP1 STEP2 STEP3 STEP4 072 3STEP4 STEP3 STEP2 STEP1 STEP0 073 3 STEP0 STEP1 STEP2 STEP3 STEP4 074 3STEP4 STEP3 STEP2 STEP1 STEP0 075 3 STEP0 STEP1 STEP2 STEP3 STEP4 076 3STEP4 STEP3 STEP2 STEP1

More information

STEP1 STEP3 STEP2 STEP4 STEP6 STEP5 STEP7 10,000,000 2,060 38 0 0 0 1978 4 1 2015 9 30 15,000,000 2,060 38 0 0 0 197941 2016930 10,000,000 2,060 38 0 0 0 197941 2016930 3 000 000 0 0 0 600 15

More information