Švadlenka Karel Hecke Iwahori Whittaker

Size: px
Start display at page:

Download "Švadlenka Karel Hecke Iwahori Whittaker"

Transcription

1 /2/13-17

2 Švadlenka Karel Hecke Iwahori Whittaker On the ranks of elliptic curves in towers of function fields Loop homology of some global quotient orbifolds Couette Lyapunov L K Beilinson SL n von Neumann Factorizable Markov Connes Embedding Problem Landauer

3 2.12 K-theory for C -algebras and its applications Witt exponential Hilbert SL(2) W Bridgeland Λ-adic Stark Systems Kan s horn-filling for simplices and cubes in HoTT On generic vanishing for pluricanonical bundles and its applications Depth functions of monomial ideals A Casselman-Shalika formula for the generalized Shalika model of SO 4n Fano CR Q-prime Lindelöf Horofunction boundary Ricci Myers

4 2.32 Stanley g Thom form in equivariant Čech-de Rham cohomology Representations of Compact Lie Groups and Transversally Elliptic Operators Nahm

5

6

7 3 Švadlenka Karel, u : Ω R F (u) = 1 + u(x) 2 dx Ω F F 1 thresholding method Wulff 3 [1] Frank Morgan, Geometric Measure Theory, A Biginner s Guide, Academic Press, (2013). [2],, Introduction to Interdisciplinary Mathematics: Phenomena, Modeling and Analysis, (2016). karel@math.kyoto-u.ac.jp

8 4, ( ) ( ) (sort space) (pressing) (cosmic family) cosmic = universal family universe = Lecture Notes, Group Actions, Representations, and Quotient Families takamura@math.kyoto-u.ac.jp

9 5 Hecke Iwahori Whittaker, F G G(F ) Borel B(F ) split torus T (F ) unipotent radical N(F ) B(F ) = T (F )N(F ) T (F ) τ : T (F ) C (T (o) ) ˆT (C) (Langlands ) z ˆT (C) τ = τ z G(F ) G(F ) f(g) f(bg) = (δ 1/2 τ)(b)f(g) (b B, g G) I(τ) := Ind G B(τ) = {f : G C loc.const.function f(bg) = δ 1/2 τ(b)f(g)} G (principal series representation) δ : B(F ) R >0 modular quasicharacter τ τ(tn) = τ(t)(t T (F ), n N(F )) N(F ) trivial B(F ), I(τ) Iwahori J I(τ) J Iwahori J o F p q F q cardinality K := G(o) G(F q ) B(F q ) I(τ) J W Casselman Hecke [BBL], [R] Iwahori Whittaker [BBL] B. Brubaker, D. Bump and A. Licata, Whittaker functions and Demazure operators, J. Number Theory, 146, (2015), [BN] [NN] [R] D. Bump and M. Nakasuji, Casselman s basis of Iwahori vectors and the Bruhat order, Canadian Journal of Mathematics, Vol. 63, (2011), M. Nakasuji and H. Naruse, Yang-Baxter basis of Hecke algebra and Casselman s problem (extended abstract), DMTCS proc. BC, (2016), M. Reeder, p-adic Whittaker functions and vector bundles on flag manifolds, Comp. Math. 85, (1993), nakasuji@sophia.ac.jp

10 6, , (L- ). Base change lift GL(N).,.,. hiraga@math.kyoto-u.ac.jp

11 7, [2, Main Conjecture 3.4.3] 0.1 ( ). k X k D k K A S k v S λ v h ϵ > 0 Zariski Z ϵ X C λ v (D, P ) + h(k, P ) < ϵh(a, P ) + C v S P X(k)\Z ϵ X X = P 1 2 P 1 2 X (Siegel ) X 2 ( ; Faltings X D (Schmidt ) X (Faltings ) k Zariski Bombieri Lang abc (Vojta ) Bombieri Lang [1] [3] [1] Joseph H. Silverman, Generalized greatest common divisors, divisibility sequences, and Vojta s conjecture for blowups, Monatsh. Math. 145 (2005), no. 4, [2] Paul Vojta, Diophantine approximations and value distribution theory, Lecture Notes in Mathematics, vol. 1239, Springer-Verlag, Berlin, [3] Yu Yasufuku, Integral points and relative sizes of coordinates of orbits in P N, Math. Z. 279 (2015), no. 3-4, yasufuku@math.cst.nihon-u.ac.jp

12

13

14

15 11 On the ranks of elliptic curves in towers of function fields, K 0 y 2 = x 3 + ax + b a, b K, 4a b 2 0 K E E(K) K Q E(K) E(K) E(K) Mordell-Weil E(K) Z r G G r E C(t) C Mordell-Weil Problem 0.1. E C(t) j E / C E(C(t 1 n )) n Mazur ([M]) C(t) F p (t) C(t) ([S]) [M] [S] B.Mazur,Rational points of abelian varieties with values in towers of number fields,invent.math.18(1972), P.Stiller,The picard numbers of elliptic surfaces with many symmetries,pacific J.Math.128(1987),no.1, yusuke@math.sci.hokudai.ac.jp

16 12 Loop homology of some global quotient orbifolds 1 M2, X X S 1 LX = Map(S 1, X) H (LX) 1990 Chas Sullivan Batalin-Vilkovisky Lupercio, Uribe, Xicot encatl M G [M/G] Map(S 1, M G EG) [M/G] M G M G (M, G) continuous action pair (CAP) G G M (M, G, G) continuous action pair with finite subgroup (CAPS) CAPS (M, G, G) ΩG LM LM; (a, l) a l H 0 (ΩG; k) H (LM; k) H (LM; k) (M, G, k) homologically trivial action triple (HAT) (M, G, G, k) homologically trivial action triple with fintie subgroup (HATS) 1.1. (M, G, G) CAP S k G (M, G, G, k) HAT S k H (L[M/G]; k) = H (LM; k) Z(k[G]), (1) Z(k[G]) k[g] 1.2. (M, G, G) CAP S G (M, G, G, k) k HATS 1.3. (M, G, G) CAP S H n (LM; k) = k (M, G, G, k) (G, G) HATS asao@ms.u-tokyo.ac.jp

17 13 Couette Lyapunov, Couette, [1] [2]. Lyapunov., (Minimal Flow Unit, MFU) [3], [4] Couette Lyapunov [5]., MFU, Lyapunov,.,, MFU Lyapunov., Bloch, Lyapunov MFU., Lyapunov Lyapunov. Lyapunov., MFU. [1] A. Prigent, G. Grégoire, H. Chaté & O. Dauchot. Long-wavelength modulation of turbulent shear flows, Physica D 174 (2003) [2] Y. Duguet, P. Schlatter & D. S. Henningson. Formation of turbulent patterns near the onset of transition in plane Couette flow, J. Fluid Mech. (2010 a), vol. 650, pp [3] J. Jiménez & P. Moin. The minimal flow unit in near-wall turbulence, J. Fluid Mech. (1991), vol. 225, pp [4] J. M. Hamilton, J. Kim & F. Waleffe. Regeneration mechanisms of near-wall turbulence structure, J. Fluid Mech. (1995), vol. 287, pp [5] M. Inubushi, S. Takehiro & M. Yamada. Regeneration cycle and the covariant Lyapunov vectors in a minimal wall turbulence, Phys. Rev. E., 92, (2015). toshio@kurims.kyoto-u.ac.jp

18 14 L K3, L Honda-Tate., Honda-Tate K3. Taelman semistable reduction conjecture [1]. Taelman K3 p (p 7 ), semistable reduction,., Weil,. K3, ( ) Weil. ( ), K3 X L L trc (X, T ) 1 + T Q[T ] ( )., det(1 T Frob Fq ; H 2 ét(x Fq, Q l (1))) =, L trc (X/F q, T ) := 22 i=1 γ i / µ (1 γ i T ) (1 γ i T ). (µ 1 n.), ( ) L(T ), K3 X, L trc (X, T ) unconditional. [1] Taelman, L., K3 surfaces over finite fields with given L-function, Algebra Number Theory 10 (2016), no. 5, kito@math.kyoto-u.ac.jp

19 15 Beilinson, L- Bloch Q K- L- Beilinson L- [B] Beilinson Q Bloch Beilinson 2010 L- [ ] a, b, c 3F 2 e, f z (a) n (b) n (c) n z n := (e) n (f) n n! n=0 (a) n Pochhammer 3 F 2 Rogers Zudilin 27 L- s = 2 L(E 27, 2) 3 F 2 Rogers Zudilin L(E 32, 2) L(E 64, 2) 3 F 2 Bloch [B] A.A. Beilinson, Higher regulators and values of L-functions, J. Sov. Math. 30, 1985, p [I] R. Ito, The Beilinson conjectures for CM elliptic curves via hypergeometric functions, The Ramanujan Journal, Springer. (to appear) thaya9ma@icloud.com

20 16 SL n -, P SL 2 - P SL 2 - G G- G- SL 2 - SL n - SL 2 SL n - SL 2 - [H] [L] - [FG] SL n C- SL 3 C- [FG] V. Fock and A. Goncharov, Moduli spaces of local systems and higher Teichmüller theory, Publ. Math. Inst. Hautes Études Sci. No. 103 (2006), [H] N. Hitchin, Lie groups and Teichmüller space, Topology 31 (1992), no.3, [L] F. Labourie, Anosov flows,surface groups and curves in projective space, Invent. Math. 165(2006), no.1, y-inagaki@cr.math.sci.osaka-u.ac.jp

21 17 von Neumann Factorizable Markov Connes Embedding Problem M2, (M, ϕ) (N, ψ) von Neumann. T : M N (ϕ, ψ)-markov T ( i.e. T (1 M ) = 1 N ) ( i.e. n N, T id n ) ( i.e. ψ T = ϕ) modular ( i.e. σ ψ t T = T σ ϕ t, t R). (ϕ, ψ)-markov factorizable von Neumann (L, τ) (ϕ, τ)-markov *- α (ψ, τ)-markov *- β T = β α. (M, ϕ) = (N, ψ) = (M n (C), 1 n T r) T factorizable (L, τ) M n(c) L unitary u T x = (id n τ L )(u (x 1 L )u), x M n (C) 2011 Haagerup Musat ([1]). T M n (C) N. factorizable ϕ-markov FM(M, ϕ) CB-norm. Markov factorizable Markov CB- : τ n -Markov T : M n (C) M n (C) τ k -Markov S : M k (C) M k (C) d CB (T, FM(M n (C))), d CB (S, FM(M k (C))) d CB (T S, FM(M n (C) M k (C))) d CB (T, FM(M n (C))) + d CB (S, FM(M k (C))) + d CB (T, FM(M n (C)))d CB (S, FM(M k (C))). Markov factorizable. Aut(M n (C)) (convex hull). n 2 conv(aut(m n (C))) FM(M n (C)) ( n = 2 ). n 3 FM(M n (C) \ conv(aut(m n (C))). S k : M k (C) M k (C) S k (x) = τ k (x)1 k τ k -Markov. completely deporlization channel. τ N := n i=1 α iτ ki (α i Q +, n i=1 α i = 1) von Neumann N = n i=1 M k i (C) τ n -Markov T M n (C) N k 2 T S k conv(aut(m n (C) M k (C))).. A.Connes Connes Embedding Problem(CEP).. ([2]) [1] Haagerup, Uffe; Musat, Magdalena Factorization and dilation problems for completely positive maps on von Neumann algebras. Comm. Math. Phys. 303 (2011), no. 2, [2] Haagerup, Uffe; Musat, Magdalena An asymptotic property of factorizable completely positive maps and the Connes embedding problem. Comm. Math. Phys. 338 (2015), no. 2, yuuki114@math.kyoto-u.ac.jp

22 18, Euler C Euler ω D u iv = ω dw 1 dw 2 2πi z w = ω 4π p.v. log (z w) dw (1) D p.v. Cauchy (1) D (1) (1) Gâteaux d 0.1 (). z w C 1 φ (z, z, w, w) φ z w log f Jordan C (f) F F (f) := p.v. φ (z, z, w, w) dw. C(f) F δf Gâteaux [ ] df (f; δf) = p.v. dφ (z, w; δz, δz) dw + 2i φ w Re (δw δz)( i dw). ( ) C δz := δf f 1 (z) δw := δf f 1 (w) Pierrehumbert Crowdy uda@math.kyoto-u.ac.jp C D ( )

23 19 Landauer 1, Landauer Landauer Landauer s limit S, R Hilbert S T Hilbert H S,H R H S H R Hilbert (trace 1 S T ρ S,ρ T ρ S,ρ T ρ T S(ρ S ),S(ρ S ) ρ S,ρ S Q(ρ T ),Q(ρ T ) ρ T,ρ T S = S(ρ S ) S(ρ S ), Q = Q(ρ T ) Q(ρ T ) Q T S T Landauer s limit [RW] David Reeb, Michael M. Wolf, An improved Landauer Principle with finite-size corrections, New J. Phys. 16,103011, (2014) ejima@ms.u-tokyo.ac.jp

24 20, S B f : S B f K f K 2 f χ f = degf O(K f ) λ f = K 2 f /χ f f g 4(g 1) g λ f 12 4(g 1)/g 3 3 8/3 d λ d := 6(d 3) d 2 K 2 f λ dχ f [Re] 4 Durfee λ f [Re] M. Reid, Problems on pencils of small genus, Preprint (1990). m-enokizono@cr.math.sci.osaka-u.ac.jp

25 21, p F G G Langlands G(F ) G L L Langlands G H Langlands Arthur LLC [Art13] H(F ) G(F ) 0.1. G F H π H H(F ) π G(F ) (1) G = GL 2n H = SO 2n+1 π (2) G = Res E/F GL N H = U E/F (N) π E/F 2 H (3) G = GL 2n+1 H = Sp 2n π GL 2n (F ) π ω π π ω π Langlands [Art13] J. Arthur, The endoscopic classification of representations: Orthogonal and symplectic groups, American Mathematical Society Colloquium Publications, vol. 61, American Mathematical Society, Providence, RI, masaooi@ms.u-tokyo.ac.jp

26 22 K-theory for C -algebras and its applications, C - K-, [1]. K- C - 2 K 0,K 1,K 0 C -,K 1. AF- C - K 0 - [2]. C -,K-. K-, K-. [1] B. Blackadar, K-THEORY FOR OPERATOR ALGEBRAS, MSRI Publications,Volume 5, second edition (1998), [2] M. Rørdam, F. Larsen, and N. J. LAUSTSEN, An Introduction to K-Theory for C -Algebras, LMS Student Texts 49 (2000), kohta@ms.u-tokyo.ac.jp

27 23 M2, E Q E Q 1 E Q Q Galois G Q = Gal( Q/Q) E Weierstrass l G Q E l E[l] = (Z/lZ) 2 E modulo l ϕ E,l : G Q Aut(E[l]) = GL 2 (F l ) ϕ E,l ϕ E,l (G Q ) Q E[l] Q(E[l]) Q Galois ϕ E,l l E l Q(E[l])/Q Galois GL 2 (F l ) E Serre [3] Mazur [2] 11 Mazur E 2,3,5,7,11,13,17,19,37,43,67,163 ϕ E,l (G Q ) GL 2 (F l ) Cartan Duke [1] [1] [1] Duke, W., Elliptic curves with no exceptional primes (English, French summary), C. R. Acad. Sci. Paris Sér. I Math. 325 (1997), no. 8, [2] Mazur, B., Rational isogenies of prime degree (with an appendix by D. Goldfeld), Invent. Math. 44 (1978), no. 2, [3] Serre, J.-P., Propriétés galoisiennes des points d ordre fini des courbes elliptiques, Invent. Math. 15 (1972), no. 4, odawara@math.kyoto-u.ac.jp

28 24 Witt exponential 2, p. y = P (T ) y exp(p (T )) = n=0 P (T )n /n!., P (T ) = T. R, 1/n! 0, t R exp(t)., Q p, p 1/n!., Q p exp(p (T ))., Rodolphe Richard Q p exp(p (T )) Witt. A W (A) Witt. K/Q p ultrametric extention, R. Artin-Hasse exponential E p (T ) := exp(t + 1 p T p + 1 p T p2 + ), AH : W (K) 1 + T K[[T ]] a = (a 2 0, a 1, ) W (K) AH(a) = E p (a n T pn ) n=0. [R], Witt AH, Q p exponential d 0, ζ 1 p d+1., P (T ) := D i=1 a it i K[T ]. 0 i D, ζ d i := ζ pi D, d i = log p i. P (T ) := a 1 ζ d1 1 T + a 2 ζ d2 1 T a D ζ dd 1 T D, exp( P (T )) = 1 + i=1 ãit i., exp(p (T )) ρ, { } ρ = max λ R max ã i λ i 1 1 i D., ζ Lubin-Tate., exp(x+x p /p) exponential. [R] Rodolphe, Richard, Des π-exponentielles I : Vecteurs de Witt annulés par Frobénius et Algorithme de (leur) rayon de convergence, Rendiconti del Seminario Matematico della Universita di Padova, 133 (2015), kcb.c314271@gmail.com

29 25 Hilbert SL(2)- 2, G, X G-. Hilbert Hilb G h (X), G- X Z, C[Z] G- ( Hilbert h ). Alexeev Brion Hilbert, G G-Hilbert, Hilbert h : Univ G h (X) X Hilb G h (X) γ X /G γ Hilbert-Chow, [Z] Hilb G h (X) Z /G. γ ( Hilb G h (X) ), Hilbert-Chow γ X /G?., γ SL(2)-.,. Popov [P], SL(2)- (l, m) {Q (0, 1]} N (, E l,m ), Kraft Panyushev, Gaĭfullin, Batyrev, Haddad. [BH] E l,m C 5, Hilbert, E l,m., E l,m E l,m. Hilbert-Chow γ E l,m, E l,m. [BH] [P] Batyrev, Victor, Haddad, Fatima, On the geometry of SL(2)-equivariant flips, Mosc. Math. J., 8, (2008), no. 4, , 846. Popov, V. L., Quasihomogeneous affine algebraic varieties of the group SL(2), Izv. Akad. Nauk SSSR Ser. Mat, 37, (1973), ce b282e@fuji.waseda.jp

30 26 W, g C Lie, ĝ = g[t, t 1 ] CK (untwisted ) Lie. k C, ĝ V k (g) = U(ĝ) U(g[t] CK) C k. [F] generic k, M k n +,λ λ h, k ĝ 0 V k (g) ˆρ M k+h n +,0 l i=1 S i l i=1 M k+h n +, α i /(k+h ) (1). l = rank g. f g, f sl 2 -triple {e, h, f}, 1 2 h g 1 2 Z-. m + = j 1 g j Drinfeld-Sokolov W W k (g, f) := H 0 DS,f ( ˆm +, V k (g)). H 0 DS,f ( ˆm +,?) (1) 0 W k (g, f) M k+h r +,0 F (g 1 2 ) l i=1 Q i l i=1 M k+h r +, α i/(k+h ) F (g 1 2 ) (2). r + = n + g 0, F (g 1 2 ) g generic k, (2) W Q i. W W k (g, f) generic k. [G1] W paraboric. [F] E. Frenkel. Wakimoto modules, opers and the center at the critical level. Advances in Math., 195: , [G1] N. Genra. Screening operators for W-algebras. arxiv: [G2] N. Genra. Wakimoto representations for W-algebras. in preparation. gnr@kurims.kyoto-u.ac.jp

31 27 Bridgeland, , Douglus Π-, Bridgeland ([Bri07]).,,.,,.,, : X, D b (X) X. D b (X), Bridgeland. D b (X) σ, D b (X), σ-( ),, σ-., : 0.1. X, D b (X)., X, X, D b (X) ([Tod13], [Tod14]).,, X, C X ( 2)., C A 1 - Y., D b (X) σ, Y σ Y, Y Y., D b (Y) σ, Y σ-. [Bri07] T. Bridgeland. Stability conditions on triangulated categories. Ann. of Math. (2), 166(2): , [Tod13] Y. Toda. Stability conditions and extremal contractions. Math. Ann., 357(2): , [Tod14] Y. Toda. Stability conditions and birational geometry of projective surfaces. Compos. Math., 150(10): , koseki@ms.u-tokyo.ac.jp

32 28 1, Kontsevich,,., DG., 2 T 2 1 Ť 2, T 2,, a n Q (n a )L a n n, a E(L a )., n E(L a n ). E(L a n ) DG, E(L a n ) C(ψ) E(L b m ) ψ T E(L a n )., T, C(ψ) ψ 0, dimext 1 (E(L b ), E( m )) = 1., Atiyah L a n, µ Ť 2 = C/2π(Z τz) (τ H)., µ Ť 2 E(L a n ) [E(L a n ) µ], C(ψ) m + n, a + b, Atiyah µ Ť 2 [C(ψ)] = [E(L a+b ) µ ]., m+n µ Ť 2,, L a L b, L a+b. m m+n,. n, K. Kobayashi, On exact triangles consisting of stable vector bundles on tori. mathdg/ afka9031@chiba-u.jp

33 29 Λ-adic Stark Systems, Kolyvagin Selmer Euler. Kolyvagin Heegner Euler Kolyvagin cohomology, Selmer., Rubin Euler 2. p. K, R p Noether. T R R- Gal(K/K)-, K. F T Selmer ( ), χ(f) Z., T F. Mazur Rubin Kolyvagin F Kolyvagin., R χ(f) = 1 F Kolyvagin 1, F Kolyvagin F Selmer., Euler Selmer Kolyvagin. χ(f) > 1.. R, χ(f) > 0., Mazur-Rubin F Stark. Stark Rubin-Stark. Mazur Rubin F Stark 1, F Stark F Selmer., χ(f) = 1 F Stark F Kolyvagin, Stark Kolyvagin. Stark, Stark., Stark. Stark sakamoto@ms.u-tokto.ac.jp

34 30, n A B p(n A) = p(n B). s t N, x N {0} f(x) f(x + 2) = f(x)f(x + 1) f(0) = s f(1) = t s t s 1 f(x) p(n f(x) f(x) f(x + 1) ) = p(n {s, t} ). (1) 1. s t s 1 n t 2. s = t s = 1 n [R] George E.Andrews, Kimmo Eriksson,, pae sato@cc.nara-wu.ac.jp

35 31 Kan s horn-filling for simplices and cubes in HoTT, (HoTT) HoTT HoTT HoTT HoTT Awodey-Warren Voevodsky Voevodsky HoTT HoTT (Univalent foundation) HoTT (globular) (simplicial) (cubical) ( ) Licata Brunerie 2 2 HoTT HoTT- Kan fibrant horn-filling gksato@ms.u-tokyo.ac.jp

36 32, k 0 G k k U (k ) π 1 (U) U A.Grothendieck k Grothendieck U U π 1 (U) G k k 0 U (ie, k 1 ) π 1 (U) U U π 1 (U) ([1]Exposé 12) k π 1 (U) k U U π 1 (U) [1] Grothendieck, A., Revêtemental étales et groupe fondamental, SGA1, Lecture Notes in Mathematics 224, Springer-Verlag, 1971

37 33 On generic vanishing for pluricanonical bundles and its applications, Generic vanishing theory X F ( ω X ) L Pic 0 (X) H i (X, F L) F i cohomology support locus V i (F) = {α Pic 0 (X) H i (X, F α) 0} Pic 0 (X) Zariski V i (F) (i 0) Generic vanishing theory Generic vanishing theory X f : X A X Albanese 0.1 (Hacon [Hac]). i, j 0 codim V i (R j f ω X ) i 0.2 (Simpson [Sim]). i 0 V i (ω X ) m(k X + ) [Hac] C. D. Hacon, A derived category approach to generic vanishing, J. Reine Angew. Math. 575 (2004), [Sim] C. Simpson, Subspaces of moduli spaces of rank one local systems, Ann. Sci. E.N.S. (4) 26 (1993), no. 3, tshibata@math.kyoto-u.ac.jp

38 34 Depth functions of monomial ideals, (R, M) M 1 HM i (R) R M i R depth depthr = min{i; H i M(R) 0} depth function. R = K[x 1,, x n ] I I depth function f : Z 0 \ {0} Z 0 f(k) = depthr/i k depth function [1] [2] 0.1. f : Z 0 \ {0} Z 0 depth function 0.2. f : Z 0 \ {0} Z 0 f(k) f(k + 1) 1 for all k 1; a = f(1) b = lim k f(k) f 1 (a) f 1 (a 1) f 1 (b + 1) depth function [1] M. Brodmann, The asymptotic nature of the analytic spread, Math. Proc. Cambridge Philos. Soc. 86 (1979), [2] J. Herzog and T. Hibi, The depth of powers of an ideal, J. Alg. 291 (2005), t-suzuki@ist.osaka-u.ac.jp 1

39 35 A Casselman-Shalika formula for the generalized Shalika model of SO 4n M2, Whittaker Casselman-Shalika[1] Whittaker explicit formula (Casselman-Shalika formula) L- Whittaker 1 explicit fomula 1 Shalika Shalika Casselman-Shalika formula [1] W. Casselman and J. Shalika, The unramified principal series of p-adic groups I, II, Composito Math. [2] Y. Sakellaridis, A Casselman-Shalika formula for the Shalika model of GL n, Canad. J. Math 58, (2006), No. 5, p msuzuki@mah.kyoto-u.ac.jp

40 36 Fano 2, G = (V (G), E(G)) X( (G)) I V (G) G I B(G) = {I V (G) G I I } G graphical building set G N B(G) nested set 1. I, J N I J, J I, I J = 2. I, J N I J = I J / B(G) 3. V (G) N B(G) nested sets N (B(G)) V (G) = {1,..., n+1} e n+1 = e 1 e n R n I V (G) e I = i I e i N N (B(G)) R 0 N = I N R 0e I R 0 N N 1 (G) = {R 0 N N N (B(G))} R n n X( (G)) G G 1,..., G m G X( (G)) = X( (G 1 )) X( (G m )) X( (G)) G 0.1 ([S]). G 1. X( (G)) Fano G 3 2. X( (G)) Fano G G I V (G ) G I Fano 2. X( (G)) G [S] Y. Suyama, Toric Fano varieties associated to finite simple graphs, Tohoku Math. J., to appear; arxiv: d15san0w03@st.osaka-cu.ac.jp

41 37 CR Q-prime 1, CR CR C m CR Levi CR Fefferman [F74] C m CR CR CR Case-Yang [CY13] Hirachi [H14] Q-prime Q-prime CR Q-prime CR. 3 Q-prime Sasakian η-einstein CR Sasakian η-einstein CR Q-prime [CY13] [F74] Jeffrey Case and Paul Yang. A Paneitz-type operator for CR pluriharmonic functions. Bull. Inst. Math. Acad. Sin. (N.S.), 8(3): , Charles Fefferman. The Bergman kernel and biholomorphic mappings of pseudoconvex domains. Invent. Math., 26:1 65, [H14] Kengo Hirachi. Q-prime curvature on CR manifolds. Differential Geom. Appl., 33(suppl.): , ytake@ms.u-tokyo.ac.jp

42 38 Lindelöf, Minkowski. Rogers Swinnerton-Dyer [2]. K O m (a 1,..., a m ) K m (a 1,..., a m ) a a m = O. N(a i ) x. N(a i ) x m V m (x, K). V m (x, K). K = Q Lindelöf ( 1.1) K Lindelöf ε > 0 { V m (x, K) = cm O(x m 1/2+ε ) if m 3, ζ K (m) xm + O(x 3/2+ε log x) if m = 2. c K. K 2 [K : Q] Sittinger [1]. 3 [K : Q]. Lindelöf K m. [1] B. D. Sittinger. The probability that random algebraic integers are relatively r-prime. Journal of Number Theory, 130(1): , [2] K. Rogers. and H. P. F. Swinnerton-Dyer. The geometry of numbers over algebraic number fields. Trans. Amer. Math. Soc. 88, , takeda-w@math.kyoto-u.ac.jp

43 39 Horofunction boundary, Gromov [1] Horofunction boundary. X:X C(X) b X x X ϕ x C(X), ϕ x (y) = d(x, y) d(x, b) i i(x) i(x) horofunction i(x) \ i(x) horofunction boundary T R 0 γ : T X lim t γ(t) horofunction ( γ geodesic ray ) geodesic ray Busemann point Busemann point Walsh[2] Develin[3] horofunction boundary Walsh[2] [1] M.Gromov. Hyperbolic manifolds, groups and actions, Ann.Math.Studies, 97: , Princeton University Press, Princeton, [2] C.Walsh. The action of a nilpotent group on its horofunction boundary has finite orbits, Groups, Geometry, and Dynamics,5(1): , [3] M.Develin. Cayley compactifications of Abelian groups, Annals of Combinatorics,6 (3-4): , kenshi-t@math.kyoto-u.ac.jp

44 40 Ricci Myers, Riemann Riemann. S. B. Myers [2] Ricci, Riemann. Ricci Riemann. A (S. B. Myers [2]). Let (M, g) be an n-dimensional complete Riemannian manifold. If there exists some positive constant λ > 0 such that Ric g λg, then (M, g) is compact with finite fundamental group. Moreover, the diameter of (M, g) satisfies n 1 diam(m, g) π λ. A. J. Cheeger, M. Gromov, M. Taylor Riemann Ricci, Myers. B (J. Cheeger, M. Gromov and M. Taylor [1]). Let (M, g) be an n-dimensional complete Riemannian manifold. Suppose that there exist some point p M and positive constants r 0 > 0 and v > 0 such that the Ricci curvature satisfies Ric g (x) (n 1) ( v2) r 2 (x) for all x M satisfying r(x) r 0, where r(x) denotes the distance between x and p. Then (M, g) must be compact. Moreover, the diameter of (M, g) from p satisfies ( π ) diam p (M, g) r 0 exp. v Ricci, Ricci Ricci, B. [1] J. Cheeger, M. Gromov and M. Taylor, J. Differential Geom. 17 (1982), [2] S. B. Myers, Duke Math. J. 8 (1941), h-tadano@cr.math.sci.osaka-u.ac.jp

45 41, S X, Y Isom S (X, Y ) Isom π1 (S)(π 1 (X), π 1 (Y ))/ Ker(π 1 (Y ) π 1 (S)) p [2] [1] [1] S. Mochizuki, The local pro-p anabelian geometry of curves, Invent. Math. 138 (1999), pp [2] Y. Hoshi and S. Mochizuki, Topics surrounding the combinatorial anabelian geometry of hyperbolic curves I: Inertia groups and profinite Dehn twists, Galois-Teichmüller Theory and Arithmetic Geometry, Adv. Stud. Pure Math. 63, Math. Soc. Japan, 2012, pp stsuji@kurims.kyoto-u.ac.jp

46 42 Stanley g, P P. d P i f i (P) f(p) = (f 1 (P), f 0 (P),, f d 1 (P)) P f. f h h(p) = (h 0 (P), h 1 (P),, h d (P)). Stanley [1] h (g [1]) h = (h 0, h 1,, h d ) Z d+1 h d P h h j = h d j (0 j d) 2. 1 = h 0 h 1 h d/2 3. h i+1 h i (h i h i 1 ) <i> (1 i d/2 1 ) Stanley 3 P X P Poincare Hard Lefschetz Macaulay. Swartz ([2]). [1] R. P. Stanley. The number of faces of a simplicial convex polytope. Adv. in Math., 35(3): , [2] E. Swartz: g-elements of matroid complexes, Journal of Comb. Theory Ser. B, Vol. 88, (2003), pp. 369?375.. tnagaoka@math.kyoto-u.ac.jp

47 43 3, U, V D V \ D = U, (V, D) U. C 3 (V, D), V 1,,, Peternell Schneider (cf. [F])., V. (cf. [K]) V 2 3, D 1 D 2. U := V \ (D 1 D 2 ), (V, D 1 D 2, U). K V + D 1 + D 2 nef,. 0.1 (V, D 1 D 2, U)., V (V, D 1 D 2, U) 0.1., K V + D 1 + D 2 = 0., V 14., 14, Fano V, 0.1 (V, D 1 D 2, U). 14. V imprimitive, Fano W C : 1. W = P 3, C W P 4 2, C W 5 3 del Pezzo, C 3. V primitive : (i) V P 2 P 2, (1, 2). (ii) V = P 1 P 2. (iii) V 2 Veronese., D 1 D 2 U. [F] [K] Furushima, M.: The complete classification of compactifications of C 3 which are projective manifolds with the second Betti number one. Math. Ann. 297, (1993) Kishimoto, T.: Compactifications of contractible affine 3-folds into smooth Fano 3-folds with B 2 = 2. Math. Z. 251, (2005) nagaoka@am.ms.u-tokyo.ac.jp

48 44, n M = {m 1,..., m n } n W = {w 1,..., w n } (n ) m M w W m 1 Gale-Shapley[1] i, j m i w j X ij w j m i Y ij [0, 1] σ S n (m i w σ(i) ) ( ) Xiσ(i) + Y iσ(i) 1 i n 2 n Pittel[2] Random Assignment [1] D. Gale and L. S. Shapley, College admissions and the stability of marriage. American Mathematical Monthly, 69, 9-15, [2] B. Pittel, On likely solution of a stable marriage problem. The Annals of Applied Probability, 2, , paa nagare@cc.nara-wu.ac.jp

49 45, Shokurov Reid 3 X X X (X, ) 1.1 ( ). X (X, ) K X + (X, ) K X + ([BCHM]) 1.2 ( ). X (X, ) K X + K X + R- E 2011 [B] Birkar 1.3 (cf. [B]). 1.2 n 1.1 n n X = n 1.1 n [B] C. Birkar, On existence of log minimal models II, J. Reine Angew Math. 658 (2011), [BCHM] C. Birkar, P. Cascini, C. D. Hacon, J. M c Kernan, Existence of minimal models for varieties of log general type, J. Amer. Math. Soc. 23 (2010), no. 2, hkenta@math.kyoto-u.ac.jp

50 46 Thom form in equivariant Čech-de Rham cohomology (Ko FUJISAWA) 1, Atiyah-Bott-Berline-Vergne [1] Thom Mathai-Quillen [2] Thom Čech-deRham Čech-de Rham [3] Thom Chern form Mathai-Quillen [1] Berline, Nicole, Ezra Getzler, and Michele Vergne. Heat kernels and Dirac operators. Springer Science & Business Media, [2] Mathai, Varghese, and Daniel Quillen. Superconnections, Thom classes, and equivariant differential forms. Topology 25.1 (1986): [3] Suwa, T. Indices of vector fields and residues of holomorphic singular foliations. Hermann, Paris (1998). fujisawa1219@math.sci.hokudai.ac.jp

51 47, Lie g Bernstein-Gelfand-Gelfand O g O Lie (quasi-hereditary algebra) Artin Ringel[R91] Artin (tilting module) Kleshchev[K15] ( ) Hecke H n ( Hecke ) g C[z] g- BGG O BGG Õ. Artin Ringel 2 [R91] C. M. Ringel. The category of modules with good filtrations over a quasi-hereditary algebra has almost split sequences. Math. Z., 208(2): , [K15] A. Kleshchev. Affine highest weight categories and affine quasi-hereditary algebras. Proc. Lond. Math. Soc. (3), 110(4): , [F16] R. Fujita. Tilting modules of affine quasi-hereditary algebras. arxiv: rfujita@math.kyoto-u.ac.jp

52 48, ,.,..,.,.,.,.. ([1]). L.,,.. ([3]),..,., n = 1, n = 2 [2] n. ρ GL n (C). f ρ, f, GL n (C) ρ 0 ρ = ρ 0 det. det GL n (C). [1] E. Freitag. Eine Verschwindungssatz für automorphe Formen zur Siegelschen Modulgruppe. Math. Zeitschrift 165, (1979), p [2] Ameya Pitale, Abhishek Saha, and Ralf Schmidt. Lowest weight modules of Sp 4 (R) and nearly holomorphic Siegel modular forms (expanded version). arxiv: [3] G.Shimura. Arithmeticity in the theory of automorphic forms, volume 82 of Mathematical survers and Monograghs. American Mathematical Society, Providence, RI, horinaga@math.kyoto-u.ac.jp

53 49, Q X f : X X f ( ) δ f ( ) X P f f P α f (P ) ( f well-definedness cf. (1)) δ f f α f (P ) P 0.1 (Kawaguchi-Silverman). X Weil h X 1 (1) α f (P ) = lim n h X (f n (P )) 1/n (2) P {f n (P ) n 0} X Zariski α f (P ) = δ f. α f (P ) = lim sup n h X (f n (P )) 1/n δ f [2]. f : X X [3] ( f (1) [1] ) f : X X α f (P ) = δ f P P [3] () [1] Kawaguchi, S., Silverman, J. H., Dynamical canonical heights for Jordan blocks, arithmetic degrees of orbits, and nef canonical heights on abelian varieties, Trans. Amer. Math. Soc. 368 (2016), [2] Matsuzawa, Y., On upper bounds of arithmetic degrees, preprint, 2016, arxiv: v2. [3] Matsuzawa, Y., Sano, K., Shibata, T., Arithmetic degrees and dynamical degrees of endomorphisms on surfaces, preprint, 2017, arxiv: v1. myohsuke@ms.u-tokyo.ac.jp

54 50, Tate y 2 = x(x 1)(x λ) (λ 0, 1) λ = 1 or λ 1 < 1 p p Bradley [1] Tate, John, Rigid analytic spaces. Invent. Math. 12(1971), ryo-mkm@math.kyoto-u.ac.jp

55 51 Representations of Compact Lie Groups and Transversally Elliptic Operators, G Lie M G E M G C (E) E G C (E) (g ϕ)(x) := g[ϕ(g 1 x)](g G, x X, ϕ C (E)) P : C (E) C (E) 2 transversally elliptic 1) P G 2) P σ(p ) TG M\0 ( T G M := {v T M Y g v(ỹπ(v)) = 0} g G, Ỹ Y M ) M, E G Riemann G Hermite C (E), L 2 ϕ, ψ L 2 := M ϕ(x), ψ(x) Ex dm(x) G (C (E), L 2) 1) P λ P λ := {ϕ C (E) P ϕ = λϕ} G G P λ transversally elliptic operator P λ Shubin [2] Lie G Schwartz P, Sobolev transversally elliptic operator [1] J. Roe, Elliptic operators, topology and asymptotic methods, second edition, Chapman Hall/CRC Research, (1998), [2] M. A. Shubin, Spectral properties and the spectrum distribution function of a transversally elliptic operators, P lenum P ublishing Corporation, (1984), mmasahiro0408@gmail.com

56 52 Nahm M2, (X, g X ) 4. X Hermite (V, h, A) F (A) L 2, ASD F (A) = F (A), (V, h, A) X L 2 -., (Y, g Y ) 3, Z Y Y., Y \ Z Hermite ( ˆV, ĥ, Â) Hermite End( ˆV ) ˆΦ ( ˆV, ĥ, Â, ˆΦ) Bogomolny F (Â) = Â (ˆΦ), p Z weight k Z rank( ˆV ), ˆΦ k, ( ˆV, ĥ, Â, ˆΦ) Z Dirac Y., 3 T 3 := R 3 /Λ R T 3 L 2 - (V, h, A), T 3 ˆT 3 Dirac ( ˆV, ĥ, Â, ˆΦ) Nahm., T 3 S 1 T 2, (V, h, A) ( ˆV, ĥ, Â, ˆΦ) R T 3 L 2 - (V, h, A) Nahm (Γ ±, N ± ) = (Γ i,±, N i,± ) i=1,2,3., (Γ, N) = (Γ i, N i ) i=1,2,3 Nahm, Γ = (Γ i ) Hermite, N = (N i ) Γ j Hermite, N i = sgn(ijk)[n j, N k ] (, (ijk) (123) ). 2. (Γ ± ) Sing(A) ˆT 3, (V, h, A) ˆT 3 \Sing(A) ( ˆV, ĥ, Â, ˆΦ)., ( ˆV, ĥ, Â, ˆΦ) Sing(A) Dirac. 3. T 3 S 1 = R/Z T 2 S 1 T 2. (V, h, A) rank(v ) > 1 L 2 -, ( ˆV, ĥ, Â, ˆΦ) weight k Z rank( ˆV ), (N ± ) su(2). yoshino@kurims.kyoto-u.ac.jp

1 M = (M, g) m Riemann N = (N, h) n Riemann M N C f : M N f df : T M T N M T M f N T N M f 1 T N T M f 1 T N C X, Y Γ(T M) M C T M f 1 T N M Levi-Civi

1 M = (M, g) m Riemann N = (N, h) n Riemann M N C f : M N f df : T M T N M T M f N T N M f 1 T N T M f 1 T N C X, Y Γ(T M) M C T M f 1 T N M Levi-Civi 1 Surveys in Geometry 1980 2 6, 7 Harmonic Map Plateau Eells-Sampson [5] Siu [19, 20] Kähler 6 Reports on Global Analysis [15] Sacks- Uhlenbeck [18] Siu-Yau [21] Frankel Siu Yau Frankel [13] 1 Surveys

More information

0. I II I II (1) linear type: GL( ), Sp( ), O( ), (2) loop type: loop current Kac-Moody affine, hyperbolic (3) diffeo t

0. I II I II (1) linear type: GL( ), Sp( ), O( ), (2) loop type: loop current Kac-Moody affine, hyperbolic (3) diffeo t e-mail: koyama@math.keio.ac.jp 0. I II I II (1) linear type: GL( ), Sp( ), O( ), (2) loop type: loop current Kac-Moody affine, hyperbolic (3) diffeo type: diffeo universal Teichmuller modular I. I-. Weyl

More information

Mazur [Ma1] Schlessinger [Sch] [SL] [Ma1] [Ma1] [Ma2] Galois [] 17 R m R R R M End R M) M R ut R M) M R R G R[G] R G Sets 1 Λ Noether Λ k Λ m Λ k C Λ

Mazur [Ma1] Schlessinger [Sch] [SL] [Ma1] [Ma1] [Ma2] Galois [] 17 R m R R R M End R M) M R ut R M) M R R G R[G] R G Sets 1 Λ Noether Λ k Λ m Λ k C Λ Galois ) 0 1 1 2 2 4 3 10 4 12 5 14 16 0 Galois Galois Galois TaylorWiles Fermat [W][TW] Galois Galois Galois 1 Noether 2 1 Mazur [Ma1] Schlessinger [Sch] [SL] [Ma1] [Ma1] [Ma2] Galois [] 17 R m R R R

More information

K 2 X = 4 MWG(f), X P 2 F, υ 0 : X P 2 2,, {f λ : X λ P 1 } λ Λ NS(X λ ), (υ 0 ) λ : X λ P 2 ( 1) X 6, f λ K X + F, f ( 1), n, n 1 (cf [10]) X, f : X

K 2 X = 4 MWG(f), X P 2 F, υ 0 : X P 2 2,, {f λ : X λ P 1 } λ Λ NS(X λ ), (υ 0 ) λ : X λ P 2 ( 1) X 6, f λ K X + F, f ( 1), n, n 1 (cf [10]) X, f : X 2 E 8 1, E 8, [6], II II, E 8, 2, E 8,,, 2 [14],, X/C, f : X P 1 2 3, f, (O), f X NS(X), (O) T ( 1), NS(X), T [15] : MWG(f) NS(X)/T, MWL(f) 0 (T ) NS(X), MWL(f) MWL(f) 0, : {f λ : X λ P 1 } λ Λ NS(X λ

More information

Siegel modular forms of middle parahoric subgroups and Ihara lift ( Tomoyoshi Ibukiyama Osaka University 1. Introduction [8] Ihara Sp(2, R) p

Siegel modular forms of middle parahoric subgroups and Ihara lift ( Tomoyoshi Ibukiyama Osaka University 1. Introduction [8] Ihara Sp(2, R) p Siegel modular forms of middle parahoric subgroups and Ihara lift ( Tomoyoshi Ibukiyama Osaka University 1. Introduction [8] Ihara 80 1963 Sp(2, R) p L holomorphic discrete series Eichler Brandt Eichler

More information

1

1 1 Borel1956 Groupes linéaire algébriques, Ann. of Math. 64 (1956), 20 82. Chevalley1956/58 Sur la classification des groupes de Lie algébriques, Sém. Chevalley 1956/58, E.N.S., Paris. Tits1959 Sur la classification

More information

compact compact Hermann compact Hermite ( - ) Hermann Hermann ( ) compact Hermite Lagrange compact Hermite ( ) a, Σ a {0} a 3 1

compact compact Hermann compact Hermite ( - ) Hermann Hermann ( ) compact Hermite Lagrange compact Hermite ( ) a, Σ a {0} a 3 1 014 5 4 compact compact Hermann compact Hermite ( - ) Hermann Hermann ( ) compact Hermite Lagrange compact Hermite ( ) 1 1.1. a, Σ a {0} a 3 1 (1) a = span(σ). () α, β Σ s α β := β α,β α α Σ. (3) α, β

More information

k + (1/2) S k+(1/2) (Γ 0 (N)) N p Hecke T k+(1/2) (p 2 ) S k+1/2 (Γ 0 (N)) M > 0 2k, M S 2k (Γ 0 (M)) Hecke T 2k (p) (p M) 1.1 ( ). k 2 M N M N f S k+

k + (1/2) S k+(1/2) (Γ 0 (N)) N p Hecke T k+(1/2) (p 2 ) S k+1/2 (Γ 0 (N)) M > 0 2k, M S 2k (Γ 0 (M)) Hecke T 2k (p) (p M) 1.1 ( ). k 2 M N M N f S k+ 1 SL 2 (R) γ(z) = az + b cz + d ( ) a b z h, γ = SL c d 2 (R) h 4 N Γ 0 (N) {( ) } a b Γ 0 (N) = SL c d 2 (Z) c 0 mod N θ(z) θ(z) = q n2 q = e 2π 1z, z h n Z Γ 0 (4) j(γ, z) ( ) a b θ(γ(z)) = j(γ, z)θ(z)

More information

SAMA- SUKU-RU Contents p-adic families of Eisenstein series (modular form) Hecke Eisenstein Eisenstein p T

SAMA- SUKU-RU Contents p-adic families of Eisenstein series (modular form) Hecke Eisenstein Eisenstein p T SAMA- SUKU-RU Contents 1. 1 2. 7.1. p-adic families of Eisenstein series 3 2.1. modular form Hecke 3 2.2. Eisenstein 5 2.3. Eisenstein p 7 3. 7.2. The projection to the ordinary part 9 3.1. The ordinary

More information

2.1 H f 3, SL(2, Z) Γ k (1) f H (2) γ Γ f k γ = f (3) f Γ \H cusp γ SL(2, Z) f k γ Fourier f k γ = a γ (n)e 2πinz/N n=0 (3) γ SL(2, Z) a γ (0) = 0 f c

2.1 H f 3, SL(2, Z) Γ k (1) f H (2) γ Γ f k γ = f (3) f Γ \H cusp γ SL(2, Z) f k γ Fourier f k γ = a γ (n)e 2πinz/N n=0 (3) γ SL(2, Z) a γ (0) = 0 f c GL 2 1 Lie SL(2, R) GL(2, A) Gelbart [Ge] 1 3 [Ge] Jacquet-Langlands [JL] Bump [Bu] Borel([Bo]) ([Ko]) ([Mo]) [Mo] 2 2.1 H = {z C Im(z) > 0} Γ SL(2, Z) Γ N N Γ (N) = {γ SL(2, Z) γ = 1 2 mod N} g SL(2,

More information

2016 Course Description of Undergraduate Seminars (2015 12 16 ) 2016 12 16 ( ) 13:00 15:00 12 16 ( ) 1 21 ( ) 1 13 ( ) 17:00 1 14 ( ) 12:00 1 21 ( ) 15:00 1 27 ( ) 13:00 14:00 2 1 ( ) 17:00 2 3 ( ) 12

More information

Siegel Hecke 1 Siege Hecke L L Fourier Dirichlet Hecke Euler L Euler Fourier Hecke [Fr] Andrianov [An2] Hecke Satake L van der Geer ([vg]) L [Na1] [Yo

Siegel Hecke 1 Siege Hecke L L Fourier Dirichlet Hecke Euler L Euler Fourier Hecke [Fr] Andrianov [An2] Hecke Satake L van der Geer ([vg]) L [Na1] [Yo Siegel Hecke 1 Siege Hecke L L Fourier Dirichlet Hecke Euler L Euler Fourier Hecke [Fr] Andrianov [An2] Hecke Satake L van der Geer ([vg]) L [Na1] [Yo] 2 Hecke ( ) 0 1n J n =, Γ = Γ n = Sp(n, Z) = {γ GL(2n,

More information

i Version 1.1, (2012/02/22 24),.,..,.,,. R-space,, ( R- space),, Kahler (Kähler C-space)., R-space,., R-space, Hermite,.

i Version 1.1, (2012/02/22 24),.,..,.,,. R-space,, ( R- space),, Kahler (Kähler C-space)., R-space,., R-space, Hermite,. R-space ( ) Version 1.1 (2012/02/29) i Version 1.1, (2012/02/22 24),.,..,.,,. R-space,, ( R- space),, Kahler (Kähler C-space)., R-space,., R-space, Hermite,. ii 1 Lie 1 1.1 Killing................................

More information

平成 30 年度 ( 第 40 回 ) 数学入門公開講座テキスト ( 京都大学数理解析研究所, 平成 30 ~8 年月 72 月日開催 30 日 [6] 1 4 A 1 A 2 A 3 l P 3 P 2 P 1 B 1 B 2 B 3 m 1 l 3 A 1, A 2, A 3 m 3 B 1,

平成 30 年度 ( 第 40 回 ) 数学入門公開講座テキスト ( 京都大学数理解析研究所, 平成 30 ~8 年月 72 月日開催 30 日 [6] 1 4 A 1 A 2 A 3 l P 3 P 2 P 1 B 1 B 2 B 3 m 1 l 3 A 1, A 2, A 3 m 3 B 1, [6] 1 4 A 1 A 2 A 3 l P 3 P 2 P 1 B 1 B 2 B 3 m 1 l 3 A 1, A 2, A 3 m 3 B 1, B 2, B 3 A i 1 B i+1 A i+1 B i 1 P i i = 1, 2, 3 3 3 P 1, P 2, P 3 1 *1 19 3 27 B 2 P m l (*) l P P l m m 1 P l m + m *1 A N

More information

, CH n. CH n, CP n,,,., CH n,,. RH n ( Cartan )., CH n., RH n CH n,,., RH n, CH n., RH n ( ), CH n ( 1.1 (v), (vi) )., RH n,, CH n,., CH n,. 1.2, CH n

, CH n. CH n, CP n,,,., CH n,,. RH n ( Cartan )., CH n., RH n CH n,,., RH n, CH n., RH n ( ), CH n ( 1.1 (v), (vi) )., RH n,, CH n,., CH n,. 1.2, CH n ( ), Jürgen Berndt,.,. 1, CH n.,,. 1.1 ([6]). CH n (n 2), : (i) CH k (k = 0,..., n 1) tube. (ii) RH n tube. (iii). (iv) ruled minimal, equidistant. (v) normally homogeneous submanifold F k tube. (vi) normally

More information

( ) 1., ([SU] ): F K k., Z p -, (cf. [Iw2], [Iw3], [Iw6]). K F F/K Z p - k /k., Weil., K., K F F p- ( 4.1).,, Z p -,., Weil..,,. Weil., F, F projectiv

( ) 1., ([SU] ): F K k., Z p -, (cf. [Iw2], [Iw3], [Iw6]). K F F/K Z p - k /k., Weil., K., K F F p- ( 4.1).,, Z p -,., Weil..,,. Weil., F, F projectiv ( ) 1 ([SU] ): F K k Z p - (cf [Iw2] [Iw3] [Iw6]) K F F/K Z p - k /k Weil K K F F p- ( 41) Z p - Weil Weil F F projective smooth C C Jac(C)/F ( ) : 2 3 4 5 Tate Weil 6 7 Z p - 2 [Iw1] 2 21 K k k 1 k K

More information

R R P N (C) 7 C Riemann R K ( ) C R C K 8 (R ) R C K 9 Riemann /C /C Riemann 10 C k 11 k C/k 12 Riemann k Riemann C/k k(c)/k R k F q Riemann 15

R R P N (C) 7 C Riemann R K ( ) C R C K 8 (R ) R C K 9 Riemann /C /C Riemann 10 C k 11 k C/k 12 Riemann k Riemann C/k k(c)/k R k F q Riemann 15 (Gen KUROKI) 1 1 : Riemann Spec Z 2? 3 : 4 2 Riemann Riemann Riemann 1 C 5 Riemann Riemann R compact R K C ( C(x) ) K C(R) Riemann R 6 (E-mail address: kuroki@math.tohoku.ac.jp) 1 1 ( 5 ) 2 ( Q ) Spec

More information

k k Q (R )Z k X 1. X Q Cl (X) 2. nef cone Nef (X) nef semi-ample ( ) 3. 2 f i : X X i X i 1 2 movable cone Mov (X) fi (Nef (X i)) 3 movable

k k Q (R )Z k X 1. X Q Cl (X) 2. nef cone Nef (X) nef semi-ample ( ) 3. 2 f i : X X i X i 1 2 movable cone Mov (X) fi (Nef (X i)) 3 movable 1 (Mori dream space) 2000 [HK] toric toric ( 2.1) toric n n + 1 affine 1 torus ( GIT ) [Co] toric affine ( )torus GIT affine torus ( 2.2) affine Cox ( 3) Cox 2 okawa@ms.u-tokyo.ac.jp Supported by the Grant-in-Aid

More information

1.2 (Kleppe, cf. [6]). C S 3 P 3 3 S 3. χ(p 3, I C (3)) 1 C, C P 3 ( ) 3 S 3( S 3 S 3 ). V 3 del Pezzo (cf. 2.1), S V, del Pezzo 1.1, V 3 del Pe

1.2 (Kleppe, cf. [6]). C S 3 P 3 3 S 3. χ(p 3, I C (3)) 1 C, C P 3 ( ) 3 S 3( S 3 S 3 ). V 3 del Pezzo (cf. 2.1), S V, del Pezzo 1.1, V 3 del Pe 3 del Pezzo (Hirokazu Nasu) 1 [10]. 3 V C C, V Hilbert scheme Hilb V [C]. C V C S V S. C S S V, C V. Hilbert schemes Hilb V Hilb S [S] [C] ( χ(s, N S/V ) χ(c, N C/S )), Hilb V [C] (generically non-reduced)

More information

[AI] G. Anderson, Y. Ihara, Pro-l branched cov erings of P1 and higher circular l-units, Part 1 Ann. of Math. 128 (1988), 271-293 ; Part 2, Intern. J. Math. 1 (1990), 119-148. [B] G. V. Belyi, On Galois

More information

2 (March 13, 2010) N Λ a = i,j=1 x i ( d (a) i,j x j ), Λ h = N i,j=1 x i ( d (h) i,j x j ) B a B h B a = N i,j=1 ν i d (a) i,j, B h = x j N i,j=1 ν i

2 (March 13, 2010) N Λ a = i,j=1 x i ( d (a) i,j x j ), Λ h = N i,j=1 x i ( d (h) i,j x j ) B a B h B a = N i,j=1 ν i d (a) i,j, B h = x j N i,j=1 ν i 1. A. M. Turing [18] 60 Turing A. Gierer H. Meinhardt [1] : (GM) ) a t = D a a xx µa + ρ (c a2 h + ρ 0 (0 < x < l, t > 0) h t = D h h xx νh + c ρ a 2 (0 < x < l, t > 0) a x = h x = 0 (x = 0, l) a = a(x,

More information

ADM-Hamiltonian Cheeger-Gromov 3. Penrose

ADM-Hamiltonian Cheeger-Gromov 3. Penrose ADM-Hamiltonian 1. 2. Cheeger-Gromov 3. Penrose 0. ADM-Hamiltonian (M 4, h) Einstein-Hilbert M 4 R h hdx L h = R h h δl h = 0 (Ric h ) αβ 1 2 R hg αβ = 0 (Σ 3, g ij ) (M 4, h ij ) g ij, k ij Σ π ij = g(k

More information

[Oc, Proposition 2.1, Theorem 2.4] K X (a) l (b) l (a) (b) X [M3] Huber adic 1 Huber ([Hu1], [Hu2], [Hu3]) adic 1.1 adic A I I A {I n } 0 adic 2

[Oc, Proposition 2.1, Theorem 2.4] K X (a) l (b) l (a) (b) X [M3] Huber adic 1 Huber ([Hu1], [Hu2], [Hu3]) adic 1.1 adic A I I A {I n } 0 adic 2 On the action of the Weil group on the l-adic cohomology of rigid spaces over local fields (Yoichi Mieda) Graduate School of Mathematical Sciences, The University of Tokyo 0 l Galois K F F q l q K, F K,

More information

kb-HP.dvi

kb-HP.dvi Recent developments in the log minimal model program II II Birkar-Cascini-Hacon-McKernan 1 2 2 3 3 5 4 8 4.1.................. 9 4.2.......................... 10 5 11 464-8602, e-mail: fujino@math.nagoya-u.ac.jp

More information

日本数学会・2011年度年会(早稲田大学)・総合講演

日本数学会・2011年度年会(早稲田大学)・総合講演 日本数学会 2011 年度年会 ( 早稲田大学 ) 総合講演 2011 年度日本数学会春季賞受賞記念講演 MSJMEETING-2011-0 ( ) 1. p>0 p C ( ) p p 0 smooth l (l p ) p p André, Christol, Mebkhout, Kedlaya K 0 O K K k O K k p>0 K K : K R 0 p = p 1 Γ := K k

More information

1 1, 2016 D B. 1.1,.,,. (1). (2). (3) Milnor., (1) (2)., (3). 1.2,.,, ( )..,.,,. 1.3, webpage,.,,.

1 1, 2016 D B. 1.1,.,,. (1). (2). (3) Milnor., (1) (2)., (3). 1.2,.,, ( )..,.,,. 1.3, webpage,.,,. 1 1, 2016 D B. 1.1,.,,. (1). (2). (3) Milnor., (1) (2)., (3). 1.2,.,, ( )..,.,,. 1.3, 2015. webpage,.,,. 2 1 (1),, ( ). (2),,. (3),.,, : Hashinaga, T., Tamaru, H.: Three-dimensional solvsolitons and the

More information

Milnor 1 ( ), IX,. [KN].,. 2 : (1),. (2). 1 ; 1950, Milnor[M1, M2]. Milnor,,. ([Hil, HM, IO, St] ).,.,,, ( 2 5 )., Milnor ( 4.1)..,,., [CEGS],. Ω m, P

Milnor 1 ( ), IX,. [KN].,. 2 : (1),. (2). 1 ; 1950, Milnor[M1, M2]. Milnor,,. ([Hil, HM, IO, St] ).,.,,, ( 2 5 )., Milnor ( 4.1)..,,., [CEGS],. Ω m, P Milnor 1 ( ), IX,. [KN].,. 2 : (1),. (2). 1 ; 1950, Milnor[M1, M2]. Milnor,,. ([Hil, HM, IO, St] ).,.,,, ( 2 5 )., Milnor ( 4.1)..,,., [CEGS],. Ω m, PC ( 4 5 )., 5, Milnor Milnor., ( 6 )., (I) Z modulo

More information

0. Intro ( K CohFT etc CohFT 5.IKKT 6.

0. Intro ( K CohFT etc CohFT 5.IKKT 6. E-mail: sako@math.keio.ac.jp 0. Intro ( K 1. 2. CohFT etc 3. 4. CohFT 5.IKKT 6. 1 µ, ν : d (x 0,x 1,,x d 1 ) t = x 0 ( t τ ) x i i, j, :, α, β, SO(D) ( x µ g µν x µ µ g µν x ν (1) g µν g µν vector x µ,y

More information

wiles05.dvi

wiles05.dvi Andrew Wiles 1953, 20 Fermat.. Fermat 10,. 1 Wiles. 19 20., Fermat 1. (Fermat). p 3 x p + y p =1 xy 0 x, y 2., n- t n =1 ζ n Q Q(ζ n ). Q F,., F = Q( 5) 6=2 3 = (1 + 5)(1 5) 2. Kummer Q(ζ p ), p Fermat

More information

Macdonald, ,,, Macdonald. Macdonald,,,,,.,, Gauss,,.,, Lauricella A, B, C, D, Gelfand, A,., Heckman Opdam.,,,.,,., intersection,. Macdona

Macdonald, ,,, Macdonald. Macdonald,,,,,.,, Gauss,,.,, Lauricella A, B, C, D, Gelfand, A,., Heckman Opdam.,,,.,,., intersection,. Macdona Macdonald, 2015.9.1 9.2.,,, Macdonald. Macdonald,,,,,.,, Gauss,,.,, Lauricella A, B, C, D, Gelfand, A,., Heckman Opdam.,,,.,,., intersection,. Macdonald,, q., Heckman Opdam q,, Macdonald., 1 ,,. Macdonald,

More information

Gelfand 3 L 2 () ix M : ϕ(x) ixϕ(x) M : σ(m) = i (λ M) λ (L 2 () ) ( 0 ) L 2 () ϕ, ψ L 2 () ((λ M) ϕ, ψ) ((λ M) ϕ, ψ) = λ ix ϕ(x)ψ(x)dx. λ /(λ ix) ϕ,

Gelfand 3 L 2 () ix M : ϕ(x) ixϕ(x) M : σ(m) = i (λ M) λ (L 2 () ) ( 0 ) L 2 () ϕ, ψ L 2 () ((λ M) ϕ, ψ) ((λ M) ϕ, ψ) = λ ix ϕ(x)ψ(x)dx. λ /(λ ix) ϕ, A spectral theory of linear operators on Gelfand triplets MI (Institute of Mathematics for Industry, Kyushu University) (Hayato CHIBA) chiba@imi.kyushu-u.ac.jp Dec 2, 20 du dt = Tu. (.) u X T X X T 0 X

More information

main.dvi

main.dvi SGC - 70 2, 3 23 ɛ-δ 2.12.8 3 2.92.13 4 2 3 1 2.1 2.102.12 [8][14] [1],[2] [4][7] 2 [4] 1 2009 8 1 1 1.1... 1 1.2... 4 1.3 1... 8 1.4 2... 9 1.5... 12 1.6 1... 16 1.7... 18 1.8... 21 1.9... 23 2 27 2.1

More information

25 7 18 1 1 1.1 v.s............................. 1 1.1.1.................................. 1 1.1.2................................. 1 1.1.3.................................. 3 1.2................... 3

More information

Chern-Simons Jones 3 Chern-Simons 1 - Chern-Simons - Jones J(K; q) [1] Jones q 1 J (K + ; q) qj (K ; q) = (q 1/2 q

Chern-Simons   Jones 3 Chern-Simons 1 - Chern-Simons - Jones J(K; q) [1] Jones q 1 J (K + ; q) qj (K ; q) = (q 1/2 q Chern-Simons E-mail: fuji@th.phys.nagoya-u.ac.jp Jones 3 Chern-Simons - Chern-Simons - Jones J(K; q) []Jones q J (K + ; q) qj (K ; q) = (q /2 q /2 )J (K 0 ; q), () J( ; q) =. (2) K Figure : K +, K, K 0

More information

2 Riemann Im(s) > 0 ζ(s) s R(s) = 2 Riemann [Riemann]) ζ(s) ζ(2) = π2 6 *3 Kummer s = 2n, n N ζ( 2) = 2 2, ζ( 4) =.3 2 3, ζ( 6) = ζ( 8)

2 Riemann Im(s) > 0 ζ(s) s R(s) = 2 Riemann [Riemann]) ζ(s) ζ(2) = π2 6 *3 Kummer s = 2n, n N ζ( 2) = 2 2, ζ( 4) =.3 2 3, ζ( 6) = ζ( 8) (Florian Sprung) p 2 p * 9 3 p ζ Mazur Wiles 4 5 6 2 3 5 2006 http://www.icm2006.org/video/ eighth session [ ] Coates [Coates] 2 735 Euler n n 2 = p p 2 p 2 = π2 6 859 Riemann ζ(s) = n n s = p p s s ζ(s)

More information

D-brane K 1, 2 ( ) 1 K D-brane K K D-brane Witten [1] D-brane K K K K D-brane D-brane K RR BPS D-brane

D-brane K 1, 2   ( ) 1 K D-brane K K D-brane Witten [1] D-brane K K K K D-brane D-brane K RR BPS D-brane D-brane K 1, 2 E-mail: sugimoto@yukawa.kyoto-u.ac.jp (2004 12 16 ) 1 K D-brane K K D-brane Witten [1] D-brane K K K K D-brane D-brane K RR BPS D-brane D-brane RR D-brane K D-brane K D-brane K K [2, 3]

More information

A11 (1993,1994) 29 A12 (1994) 29 A13 Trefethen and Bau Numerical Linear Algebra (1997) 29 A14 (1999) 30 A15 (2003) 30 A16 (2004) 30 A17 (2007) 30 A18

A11 (1993,1994) 29 A12 (1994) 29 A13 Trefethen and Bau Numerical Linear Algebra (1997) 29 A14 (1999) 30 A15 (2003) 30 A16 (2004) 30 A17 (2007) 30 A18 2013 8 29y, 2016 10 29 1 2 2 Jordan 3 21 3 3 Jordan (1) 3 31 Jordan 4 32 Jordan 4 33 Jordan 6 34 Jordan 8 35 9 4 Jordan (2) 10 41 x 11 42 x 12 43 16 44 19 441 19 442 20 443 25 45 25 5 Jordan 26 A 26 A1

More information

3 de Sitter CMC 1 (Shoichi Fujimori) Department of Mathematics, Kobe University 3 de Sitter S (CMC 1), 1 ( [AA]). 3 H 3 CMC 1 Bryant ([B, UY1]).

3 de Sitter CMC 1 (Shoichi Fujimori) Department of Mathematics, Kobe University 3 de Sitter S (CMC 1), 1 ( [AA]). 3 H 3 CMC 1 Bryant ([B, UY1]). 3 de Sitter CMC 1 (Shoichi Fujimori) Department of Mathematics, Kobe University 3 de Sitter S 3 1 1 (CMC 1), 1 ( [AA]) 3 H 3 CMC 1 Bryant ([B, UY1]) H 3 CMC 1, Bryant ([CHR, RUY1, RUY2, UY1, UY2, UY3,

More information

1 4 1 ( ) ( ) ( ) ( ) () 1 4 2

1 4 1 ( ) ( ) ( ) ( ) () 1 4 2 7 1995, 2017 7 21 1 2 2 3 3 4 4 6 (1).................................... 6 (2)..................................... 6 (3) t................. 9 5 11 (1)......................................... 11 (2)

More information

1 Abstract 2 3 n a ax 2 + bx + c = 0 (a 0) (1) ( x + b ) 2 = b2 4ac 2a 4a 2 D = b 2 4ac > 0 (1) 2 D = 0 D < 0 x + b 2a = ± b2 4ac 2a b ± b 2

1 Abstract 2 3 n a ax 2 + bx + c = 0 (a 0) (1) ( x + b ) 2 = b2 4ac 2a 4a 2 D = b 2 4ac > 0 (1) 2 D = 0 D < 0 x + b 2a = ± b2 4ac 2a b ± b 2 1 Abstract n 1 1.1 a ax + bx + c = 0 (a 0) (1) ( x + b ) = b 4ac a 4a D = b 4ac > 0 (1) D = 0 D < 0 x + b a = ± b 4ac a b ± b 4ac a b a b ± 4ac b i a D (1) ax + bx + c D 0 () () (015 8 1 ) 1. D = b 4ac

More information

xia2.dvi

xia2.dvi Journal of Differential Equations 96 (992), 70-84 Melnikov method and transversal homoclinic points in the restricted three-body problem Zhihong Xia Department of Mathematics, Harvard University Cambridge,

More information

第5章 偏微分方程式の境界値問題

第5章 偏微分方程式の境界値問題 October 5, 2018 1 / 113 4 ( ) 2 / 113 Poisson 5.1 Poisson ( A.7.1) Poisson Poisson 1 (A.6 ) Γ p p N u D Γ D b 5.1.1: = Γ D Γ N 3 / 113 Poisson 5.1.1 d {2, 3} Lipschitz (A.5 ) Γ D Γ N = \ Γ D Γ p Γ N Γ

More information

1980年代半ば,米国中西部のモデル 理論,そして未来-モデル理論賛歌

1980年代半ば,米国中西部のモデル 理論,そして未来-モデル理論賛歌 2016 9 27 RIMS 1 2 3 1983 9-1989 6 University of Illinois at Chicago (UIC) John T Baldwin 1983 9-1989 6 University of Illinois at Chicago (UIC) John T Baldwin Y N Moschovakis, Descriptive Set Theory North

More information

untitled

untitled Lie L ( Introduction L Rankin-Selberg, Hecke L (,,, Rankin, Selberg L (GL( GL( L, L. Rankin-Selberg, Fourier, (=Fourier (= Basic identity.,,.,, L.,,,,., ( Lie G (=G, G.., 5, Sp(, R,. L., GL(n, R Whittaker

More information

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

I A A441 : April 15, 2013 Version : 1.1 I   Kawahira, Tomoki TA (Shigehiro, Yoshida ) I013 00-1 : April 15, 013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida) http://www.math.nagoya-u.ac.jp/~kawahira/courses/13s-tenbou.html pdf * 4 15 4 5 13 e πi = 1 5 0 5 7 3 4 6 3 6 10 6 17

More information

平成 15 年度 ( 第 25 回 ) 数学入門公開講座テキスト ( 京都大学数理解析研究所, 平成 ~8 15 月年 78 日開催月 4 日 ) X 2 = 1 ( ) f 1 (X 1,..., X n ) = 0,..., f r (X 1,..., X n ) = 0 X = (

平成 15 年度 ( 第 25 回 ) 数学入門公開講座テキスト ( 京都大学数理解析研究所, 平成 ~8 15 月年 78 日開催月 4 日 ) X 2 = 1 ( ) f 1 (X 1,..., X n ) = 0,..., f r (X 1,..., X n ) = 0 X = ( 1 1.1 X 2 = 1 ( ) f 1 (X 1,..., X n ) = 0,..., f r (X 1,..., X n ) = 0 X = (X 1,..., X n ) ( ) X 1,..., X n f 1,..., f r A T X + XA XBR 1 B T X + C T QC = O X 1.2 X 1,..., X n X i X j X j X i = 0, P i

More information

非可換Lubin-Tate理論の一般化に向けて

非可換Lubin-Tate理論の一般化に向けて Lubin-Tate 2012 9 18 ( ) Lubin-Tate 2012 9 18 1 / 27 ( ) Lubin-Tate 2012 9 18 2 / 27 Lubin-Tate p 1 1 ( ) Lubin-Tate 2012 9 18 2 / 27 Lubin-Tate p 1 1 Lubin-Tate GL n n 1 Lubin-Tate ( ) Lubin-Tate 2012

More information

E1 (4/12)., ( )., 3,4 ( ). ( ) Allen Hatcher, Vector bundle and K-theory ( HP ) 1

E1 (4/12)., ( )., 3,4 ( ). ( ) Allen Hatcher, Vector bundle and K-theory ( HP ) 1 E1 (4/12)., ( )., 3,4 ( ). ( ) Allen Hatcher, Vector bundle and K-theory ( HP ) 1 (4/12) 1 1.. 2. F R C H P n F E n := {((x 0,..., x n ), [v 0 : : v n ]) F n+1 P n F n x i v i = 0 }. i=0 E n P n F P n

More information

' , 24 :,,,,, ( ) Cech Index theorem 22 5 Stability 44 6 compact 49 7 Donaldson 58 8 Symplectic structure 63 9 Wall crossing 66 1

' , 24 :,,,,, ( ) Cech Index theorem 22 5 Stability 44 6 compact 49 7 Donaldson 58 8 Symplectic structure 63 9 Wall crossing 66 1 1998 1998 7 20 26, 44. 400,,., (KEK), ( ) ( )..,.,,,. 1998 1 '98 7 23, 24 :,,,,, ( ) 1 3 2 Cech 6 3 13 4 Index theorem 22 5 Stability 44 6 compact 49 7 Donaldson 58 8 Symplectic structure 63 9 Wall crossing

More information

²ÄÀÑʬΥ»¶ÈóÀþ·¿¥·¥å¥ì¡¼¥Ç¥£¥ó¥¬¡¼ÊýÄø¼°¤ÎÁ²¶á²òÀÏ Asymptotic analysis for the integrable discrete nonlinear Schrödinger equation

²ÄÀÑʬΥ»¶ÈóÀþ·¿¥·¥å¥ì¡¼¥Ç¥£¥ó¥¬¡¼ÊýÄø¼°¤ÎÁ²¶á²òÀÏ  Asymptotic analysis for the integrable discrete nonlinear Schrödinger equation Asymptotic analysis for the integrable discrete nonlinear Schrödinger equation ( ) ( ) 2016 12 17 1. Schrödinger focusing NLS iu t + u xx +2 u 2 u = 0 u(x, t) =2ηe 2iξx 4i(ξ2 η 2 )t+i(ψ 0 +π/2) sech(2ηx

More information

163 KdV KP Lax pair L, B L L L 1/2 W 1 LW = ( / x W t 1, t 2, t 3, ψ t n ψ/ t n = B nψ (KdV B n = L n/2 KP B n = L n KdV KP Lax W Lax τ KP L ψ τ τ Cha

163 KdV KP Lax pair L, B L L L 1/2 W 1 LW = ( / x W t 1, t 2, t 3, ψ t n ψ/ t n = B nψ (KdV B n = L n/2 KP B n = L n KdV KP Lax W Lax τ KP L ψ τ τ Cha 63 KdV KP Lax pair L, B L L L / W LW / x W t, t, t 3, ψ t n / B nψ KdV B n L n/ KP B n L n KdV KP Lax W Lax τ KP L ψ τ τ Chapter 7 An Introduction to the Sato Theory Masayui OIKAWA, Faculty of Engneering,

More information

2010 ( )

2010 ( ) 2010 (2010 1 8 2010 1 13 ( 1 29 ( 17:00 2 3 ( e-mail (1 3 (2 (3 (1 (4 2010 1 2 3 4 5 6 7 8 9 10 11 Hesselholt, Lars 12 13 i 1 ( 2 3 Cohen-Macaulay Auslander-Reiten [1] [2] 5 [1], :,, 2002 [2] I Assem,

More information

等質空間の幾何学入門

等質空間の幾何学入門 2006/12/04 08 tamaru@math.sci.hiroshima-u.ac.jp i, 2006/12/04 08. 2006, 4.,,.,,.,.,.,,.,,,.,.,,.,,,.,. ii 1 1 1.1 :................................... 1 1.2........................................ 2 1.3......................................

More information

Donaldson Seiberg-Witten [GNY] f U U C 1 f(z)dz = Res f(a) 2πi C a U U α = f(z)dz dα = 0 U f U U P 1 α 0 a P 1 Res a α = 0. P 1 Donaldson Seib

Donaldson Seiberg-Witten [GNY] f U U C 1 f(z)dz = Res f(a) 2πi C a U U α = f(z)dz dα = 0 U f U U P 1 α 0 a P 1 Res a α = 0. P 1 Donaldson Seib ( ) Donaldson Seiberg-Witten Witten Göttsche [GNY] L. Göttsche, H. Nakajima and K. Yoshioka, Donaldson = Seiberg-Witten from Mochizuki s formula and instanton counting, Publ. of RIMS, to appear Donaldson

More information

Gauss Fuchs rigid rigid rigid Nicholas Katz Rigid local systems [6] Fuchs Katz Crawley- Boevey[1] [7] Katz rigid rigid Katz middle convolu

Gauss Fuchs rigid rigid rigid Nicholas Katz Rigid local systems [6] Fuchs Katz Crawley- Boevey[1] [7] Katz rigid rigid Katz middle convolu rigidity 2014.9.1-2014.9.2 Fuchs 1 Introduction y + p(x)y + q(x)y = 0, y 2 p(x), q(x) p(x) q(x) Fuchs 19 Fuchs 83 Gauss Fuchs rigid rigid rigid 7 1970 1996 Nicholas Katz Rigid local systems [6] Fuchs Katz

More information

1. R n Ω ε G ε 0 Ω ε B n 2 Ωε = with Bu = 0 on Ω ε i=1 x 2 i ε +0 B Bu = u (Dirichlet, D Ω ε ), Bu = u ν (Neumann, N Ω ε ), Ω ε G ( ) / 25

1. R n Ω ε G ε 0 Ω ε B n 2 Ωε = with Bu = 0 on Ω ε i=1 x 2 i ε +0 B Bu = u (Dirichlet, D Ω ε ), Bu = u ν (Neumann, N Ω ε ), Ω ε G ( ) / 25 .. IV 2012 10 4 ( ) 2012 10 4 1 / 25 1. R n Ω ε G ε 0 Ω ε B n 2 Ωε = with Bu = 0 on Ω ε i=1 x 2 i ε +0 B Bu = u (Dirichlet, D Ω ε ), Bu = u ν (Neumann, N Ω ε ), Ω ε G ( ) 2012 10 4 2 / 25 1. Ω ε B ε t

More information

Centralizers of Cantor minimal systems

Centralizers of Cantor minimal systems Centralizers of Cantor minimal systems 1 X X X φ (X, φ) (X, φ) φ φ 2 X X X Homeo(X) Homeo(X) φ Homeo(X) x X Orb φ (x) = { φ n (x) ; n Z } x φ x Orb φ (x) X Orb φ (x) x n N 1 φ n (x) = x 1. (X, φ) (i) (X,

More information

1 Fourier Fourier Fourier Fourier Fourier Fourier Fourier Fourier Fourier analog digital Fourier Fourier Fourier Fourier Fourier Fourier Green Fourier

1 Fourier Fourier Fourier Fourier Fourier Fourier Fourier Fourier Fourier analog digital Fourier Fourier Fourier Fourier Fourier Fourier Green Fourier Fourier Fourier Fourier etc * 1 Fourier Fourier Fourier (DFT Fourier (FFT Heat Equation, Fourier Series, Fourier Transform, Discrete Fourier Transform, etc Yoshifumi TAKEDA 1 Abstract Suppose that u is

More information

D 24 D D D

D 24 D D D 5 Paper I.R. 2001 5 Paper HP Paper 5 3 5.1................................................... 3 5.2.................................................... 4 5.3.......................................... 6

More information

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10% 1 2006.4.17. A 3-312 tel: 092-726-4774, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office hours: B A I ɛ-δ ɛ-δ 1. 2. A 1. 1. 2. 3. 4. 5. 2. ɛ-δ 1. ɛ-n

More information

X G P G (X) G BG [X, BG] S 2 2 2 S 2 2 S 2 = { (x 1, x 2, x 3 ) R 3 x 2 1 + x 2 2 + x 2 3 = 1 } R 3 S 2 S 2 v x S 2 x x v(x) T x S 2 T x S 2 S 2 x T x S 2 = { ξ R 3 x ξ } R 3 T x S 2 S 2 x x T x S 2

More information

II (Percolation) ( 3-4 ) 1. [ ],,,,,,,. 2. [ ],.. 3. [ ],. 4. [ ] [ ] G. Grimmett Percolation Springer-Verlag New-York [ ] 3

II (Percolation) ( 3-4 ) 1. [ ],,,,,,,. 2. [ ],.. 3. [ ],. 4. [ ] [ ] G. Grimmett Percolation Springer-Verlag New-York [ ] 3 II (Percolation) 12 9 27 ( 3-4 ) 1 [ ] 2 [ ] 3 [ ] 4 [ ] 1992 5 [ ] G Grimmett Percolation Springer-Verlag New-York 1989 6 [ ] 3 1 3 p H 2 3 2 FKG BK Russo 2 p H = p T (=: p c ) 3 2 Kesten p c =1/2 ( )

More information

sakigake1.dvi

sakigake1.dvi (Zin ARAI) arai@cris.hokudai.ac.jp http://www.cris.hokudai.ac.jp/arai/ 1 dynamical systems ( mechanics ) dynamical systems 3 G X Ψ:G X X, (g, x) Ψ(g, x) =:Ψ g (x) Ψ id (x) =x, Ψ gh (x) =Ψ h (Ψ g (x)) (

More information

Twist knot orbifold Chern-Simons

Twist knot orbifold Chern-Simons Twist knot orbifold Chern-Simons 1 3 M π F : F (M) M ω = {ω ij }, Ω = {Ω ij }, cs := 1 4π 2 (ω 12 ω 13 ω 23 + ω 12 Ω 12 + ω 13 Ω 13 + ω 23 Ω 23 ) M Chern-Simons., S. Chern J. Simons, F (M) Pontrjagin 2.,

More information

( ) (, ) ( )

( ) (, ) ( ) ( ) (, ) ( ) 1 2 2 2 2.1......................... 2 2.2.............................. 3 2.3............................... 4 2.4.............................. 5 2.5.............................. 6 2.6..........................

More information

QCD 1 QCD GeV 2014 QCD 2015 QCD SU(3) QCD A µ g µν QCD 1

QCD 1 QCD GeV 2014 QCD 2015 QCD SU(3) QCD A µ g µν QCD 1 QCD 1 QCD GeV 2014 QCD 2015 QCD SU(3) QCD A µ g µν QCD 1 (vierbein) QCD QCD 1 1: QCD QCD Γ ρ µν A µ R σ µνρ F µν g µν A µ Lagrangian gr TrFµν F µν No. Yes. Yes. No. No! Yes! [1] Nash & Sen [2] Riemann

More information

Morse ( ) 2014

Morse ( ) 2014 Morse ( ) 2014 1 1 Morse 1 1.1 Morse................................ 1 1.2 Morse.............................. 7 2 12 2.1....................... 12 2.2.................. 13 2.3 Smale..............................

More information

Basic Math. 1 0 [ N Z Q Q c R C] 1, 2, 3,... natural numbers, N Def.(Definition) N (1) 1 N, (2) n N = n +1 N, (3) N (1), (2), n N n N (element). n/ N.

Basic Math. 1 0 [ N Z Q Q c R C] 1, 2, 3,... natural numbers, N Def.(Definition) N (1) 1 N, (2) n N = n +1 N, (3) N (1), (2), n N n N (element). n/ N. Basic Mathematics 16 4 16 3-4 (10:40-12:10) 0 1 1 2 2 2 3 (mapping) 5 4 ε-δ (ε-δ Logic) 6 5 (Potency) 9 6 (Equivalence Relation and Order) 13 7 Zorn (Axiom of Choice, Zorn s Lemma) 14 8 (Set and Topology)

More information

1.., M, M.,... : M. M?, RP 2 6, 2 S 1 S 1 7 ( 1 ).,, RP 2, S 1 S 1 6, 7., : RP 2 6 S 1 S 1 7,., 19., 4

1.., M, M.,... : M. M?, RP 2 6, 2 S 1 S 1 7 ( 1 ).,, RP 2, S 1 S 1 6, 7., : RP 2 6 S 1 S 1 7,., 19., 4 1.., M, M.,... : M. M?, RP 6, S 1 S 1 7 ( 1 ).,, RP, S 1 S 1 6, 7.,. 1 1 3 1 3 5 6 3 5 7 6 5 1 1 3 1 1: RP 6 S 1 S 1 7,., 19., RP 3 S 1 S 1 S 1., i., 10. h. h.,., h, h.,,,.. . (, )., i f i ( ). f 0 ( ),

More information

Design of highly accurate formulas for numerical integration in weighted Hardy spaces with the aid of potential theory 1 Ken ichiro Tanaka 1 Ω R m F I = F (t) dt (1.1) Ω m m 1 m = 1 1 Newton-Cotes Gauss

More information

IA 2013 : :10722 : 2 : :2 :761 :1 (23-27) : : ( / ) (1 /, ) / e.g. (Taylar ) e x = 1 + x + x xn n! +... sin x = x x3 6 + x5 x2n+1 + (

IA 2013 : :10722 : 2 : :2 :761 :1 (23-27) : : ( / ) (1 /, ) / e.g. (Taylar ) e x = 1 + x + x xn n! +... sin x = x x3 6 + x5 x2n+1 + ( IA 2013 : :10722 : 2 : :2 :761 :1 23-27) : : 1 1.1 / ) 1 /, ) / e.g. Taylar ) e x = 1 + x + x2 2 +... + xn n! +... sin x = x x3 6 + x5 x2n+1 + 1)n 5! 2n + 1)! 2 2.1 = 1 e.g. 0 = 0.00..., π = 3.14..., 1

More information

A bound of the number of reduced Arakelov divisors of a number field (joint work with Ryusuke Yoshimitsu) Takao Watanabe Department of Mathematics Osa

A bound of the number of reduced Arakelov divisors of a number field (joint work with Ryusuke Yoshimitsu) Takao Watanabe Department of Mathematics Osa A bound of the number of reduced Arakelov divisors of a number field (joint work with Ryusuke Yoshimitsu) Takao Watanabe Department of Mathematics Osaka University , Schoof Algorithmic Number Theory, MSRI

More information

Îã³°·¿¤Î¥·¥å¡¼¥Ù¥ë¥È¥«¥êto=1=¡á=1=¥ë¥�¥å¥é¥¹

Îã³°·¿¤Î¥·¥å¡¼¥Ù¥ë¥È¥«¥êto=1=¡á=1=¥ë¥�¥å¥é¥¹ (kaji@math.sci.fukuoka-u.ac.jp) 2009 8 10 R 3 R 3 ( wikipedia ) (Schubert, 19 ) (= )(Ehresmann, 20 ) (Chevalley, 20 ) G/P: ( : ) W : ( : ) X w : W X w W G: B G: Borel P B: G/P: 1 C n ( ) Fl n := {0 V

More information

Z[i] Z[i] π 4,1 (x) π 4,3 (x) 1 x (x ) 2 log x π m,a (x) 1 x ϕ(m) log x 1.1 ( ). π(x) x (a, m) = 1 π m,a (x) x modm a 1 π m,a (x) 1 ϕ(m) π(x)

Z[i] Z[i] π 4,1 (x) π 4,3 (x) 1 x (x ) 2 log x π m,a (x) 1 x ϕ(m) log x 1.1 ( ). π(x) x (a, m) = 1 π m,a (x) x modm a 1 π m,a (x) 1 ϕ(m) π(x) 3 3 22 Z[i] Z[i] π 4, (x) π 4,3 (x) x (x ) 2 log x π m,a (x) x ϕ(m) log x. ( ). π(x) x (a, m) = π m,a (x) x modm a π m,a (x) ϕ(m) π(x) ϕ(m) x log x ϕ(m) m f(x) g(x) (x α) lim f(x)/g(x) = x α mod m (a,

More information

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence Hanbury-Brown Twiss (ver. 2.) 25 4 4 1 2 2 2 2.1 van Cittert - Zernike..................................... 2 2.2 mutual coherence................................. 4 3 Hanbury-Brown Twiss ( ) 5 3.1............................................

More information

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 24 I 1.1.. ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 1 (t), x 2 (t),, x n (t)) ( ) ( ), γ : (i) x 1 (t),

More information

2018 : msjmeeting-2018mar-02i003 : Demazure ( ) 1. Macdonald Weyl Demazure. g, h Cartan., Q := i I Zα i h root lattice, Q + := i I Z 0α

2018 : msjmeeting-2018mar-02i003 : Demazure ( ) 1. Macdonald Weyl Demazure. g, h Cartan., Q := i I Zα i h root lattice, Q + := i I Z 0α 2018 : 2018 21 msjmeeting-2018mar-02i003 : Demazure ( ) 1. Macdonald 1.1. Weyl Demazure. g, h Cartan, Q := i I Zα i h root lattice, Q + := i I Z 0α i Q, P := i I Zϖ i h g weight lattice ;, ϖ i h, i I,

More information

1 = = = (set) (element) a A a A a A a A a A {2, 5, (0, 1)}, [ 1, 1] = {x; 1 x 1}. (proposition) A = {x; P (x)} P (x) x x a A a A Remark. (i) {2, 0, 0,

1 = = = (set) (element) a A a A a A a A a A {2, 5, (0, 1)}, [ 1, 1] = {x; 1 x 1}. (proposition) A = {x; P (x)} P (x) x x a A a A Remark. (i) {2, 0, 0, 2005 4 1 1 2 2 6 3 8 4 11 5 14 6 18 7 20 8 22 9 24 10 26 11 27 http://matcmadison.edu/alehnen/weblogic/logset.htm 1 1 = = = (set) (element) a A a A a A a A a A {2, 5, (0, 1)}, [ 1, 1] = {x; 1 x 1}. (proposition)

More information

sequentially Cohen Macaulay Herzog Cohen Macaulay 5 unmixed semi-unmixed 2 Semi-unmixed Semi-unmixed G V V (G) V G V G e (G) G F(G) (G) F(G) G dim G G

sequentially Cohen Macaulay Herzog Cohen Macaulay 5 unmixed semi-unmixed 2 Semi-unmixed Semi-unmixed G V V (G) V G V G e (G) G F(G) (G) F(G) G dim G G Semi-unmixed 1 K S K n K[X 1,..., X n ] G G G 2 G V (G) E(G) S G V (G) = {1,..., n} I(G) G S square-free I(G) = (X i X j {i, j} E(G)) I(G) G (edge ideal) 1990 Villarreal [11] S/I(G) Cohen Macaulay G 2005

More information

I. (CREMONA ) : Cremona [C],., modular form f E f. 1., modular X H 1 (X, Q). modular symbol M-symbol, ( ) modular symbol., notation. H = { z = x

I. (CREMONA ) : Cremona [C],., modular form f E f. 1., modular X H 1 (X, Q). modular symbol M-symbol, ( ) modular symbol., notation. H = { z = x I. (CREMONA ) : Cremona [C],., modular form f E f. 1., modular X H 1 (X, Q). modular symbol M-symbol, ( ). 1.1. modular symbol., notation. H = z = x iy C y > 0, cusp H = H Q., Γ = PSL 2 (Z), G Γ [Γ : G]

More information

2018/10/04 IV/ IV 2/12. A, f, g A. (1) D(0 A ) =, D(1 A ) = Spec(A), D(f) D(g) = D(fg). (2) {f l A l Λ} A I D(I) = l Λ D(f l ). (3) I, J A D(I) D(J) =

2018/10/04 IV/ IV 2/12. A, f, g A. (1) D(0 A ) =, D(1 A ) = Spec(A), D(f) D(g) = D(fg). (2) {f l A l Λ} A I D(I) = l Λ D(f l ). (3) I, J A D(I) D(J) = 2018/10/04 IV/ IV 1/12 2018 IV/ IV 10 04 * 1 : ( A 441 ) yanagida[at]math.nagoya-u.ac.jp https://www.math.nagoya-u.ac.jp/~yanagida 1 I: (ring)., A 0 A, 1 A. (ring homomorphism).. 1.1 A (ideal) I, ( ) I

More information

Hilbert, von Neuman [1, p.86] kt 2 1 [1, 2] 2 2

Hilbert, von Neuman [1, p.86] kt 2 1 [1, 2] 2 2 hara@math.kyushu-u.ac.jp 1 1 1.1............................................... 2 1.2............................................. 3 2 3 3 5 3.1............................................. 6 3.2...................................

More information

A 1 Bridgeland A [15] f : X Y = Spec C[x, y, z]/(xy + z n+1 ) A n, Z = f 1 (0) D = D Z (X) X Z C Rf E = 0 E D [15] 1.1 ([15]). D Stab D Stab C Stab C

A 1 Bridgeland A [15] f : X Y = Spec C[x, y, z]/(xy + z n+1 ) A n, Z = f 1 (0) D = D Z (X) X Z C Rf E = 0 E D [15] 1.1 ([15]). D Stab D Stab C Stab C A 1 Bridgeland A [15] f : X Y = Spec C[x, y, z]/(xy + z n+1 ) A n, Z = f 1 (0)D = D Z (X) X Z C Rf E = 0 E D [15] 1.1 ([15]). D Stab D Stab C Stab C Thomas [22] Bridgeland K3 2 Harder- Narasimhan 2.1 2.1.

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

eng10june10.dvi

eng10june10.dvi The Gauss-Bonnet type formulas for surfaces with singular points Masaaki Umehara Osaka University 1 2 1. Gaussian curvature K Figure 1. (Surfaces of K0 L p (r) =the length of the geod. circle of

More information

. Mac Lane [ML98]. 1 2 (strict monoidal category) S 1 R 3 A S 1 [0, 1] C 2 C End C (1) C 4 1 U q (sl 2 ) Drinfeld double. 6 2

. Mac Lane [ML98]. 1 2 (strict monoidal category) S 1 R 3 A S 1 [0, 1] C 2 C End C (1) C 4 1 U q (sl 2 ) Drinfeld double. 6 2 2014 6 30. 2014 3 1 6 (Hopf algebra) (group) Andruskiewitsch-Santos [AFS09] 1980 Drinfeld (quantum group) Lie Lie (ribbon Hopf algebra) (ribbon category) Turaev [Tur94] Kassel [Kas95] (PD) x12005i@math.nagoya-u.ac.jp

More information

Feynman Encounter with Mathematics 52, [1] N. Kumano-go, Feynman path integrals as analysis on path space by time slicing approximation. Bull

Feynman Encounter with Mathematics 52, [1] N. Kumano-go, Feynman path integrals as analysis on path space by time slicing approximation. Bull Feynman Encounter with Mathematics 52, 200 9 [] N. Kumano-go, Feynman path integrals as analysis on path space by time slicing approximation. Bull. Sci. Math. vol. 28 (2004) 97 25. [2] D. Fujiwara and

More information

( ) (, ) arxiv: hgm OpenXM search. d n A = (a ij ). A i a i Z d, Z d. i a ij > 0. β N 0 A = N 0 a N 0 a n Z A (β; p) = Au=β,u N n 0 A

( ) (, ) arxiv: hgm OpenXM search. d n A = (a ij ). A i a i Z d, Z d. i a ij > 0. β N 0 A = N 0 a N 0 a n Z A (β; p) = Au=β,u N n 0 A ( ) (, ) arxiv: 1510.02269 hgm OpenXM search. d n A = (a ij ). A i a i Z d, Z d. i a ij > 0. β N 0 A = N 0 a 1 + + N 0 a n Z A (β; p) = Au=β,u N n 0 A-. u! = n i=1 u i!, p u = n i=1 pu i i. Z = Z A Au

More information

Euler, Yang-Mills Clebsch variable Helicity ( Tosiaki Kori ) School of Sciences and Technology, Waseda Uiversity (i) Yang-Mills 3 A T (T A) Poisson Ha

Euler, Yang-Mills Clebsch variable Helicity ( Tosiaki Kori ) School of Sciences and Technology, Waseda Uiversity (i) Yang-Mills 3 A T (T A) Poisson Ha Euler, Yang-ills Clebsch variable Helicity Tosiaki Kori ) School of Sciences and Technology, Waseda Uiversity i) Yang-ills 3 A T T A) Poisson Hamilton ii) Clebsch parametrization iii) Y- Y-iv) Euler,v)

More information

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT I (008 4 0 de Broglie (de Broglie p λ k h Planck ( 6.63 0 34 Js p = h λ = k ( h π : Dirac k B Boltzmann (.38 0 3 J/K T U = 3 k BT ( = λ m k B T h m = 0.067m 0 m 0 = 9. 0 3 kg GaAs( a T = 300 K 3 fg 07345

More information

1 [1, 2, 3, 4, 5, 8, 9, 10, 12, 15] The Boston Public Schools system, BPS (Deferred Acceptance system, DA) (Top Trading Cycles system, TTC) cf. [13] [

1 [1, 2, 3, 4, 5, 8, 9, 10, 12, 15] The Boston Public Schools system, BPS (Deferred Acceptance system, DA) (Top Trading Cycles system, TTC) cf. [13] [ Vol.2, No.x, April 2015, pp.xx-xx ISSN xxxx-xxxx 2015 4 30 2015 5 25 253-8550 1100 Tel 0467-53-2111( ) Fax 0467-54-3734 http://www.bunkyo.ac.jp/faculty/business/ 1 [1, 2, 3, 4, 5, 8, 9, 10, 12, 15] The

More information

Perturbation method for determining the group of invariance of hierarchical models

Perturbation method for determining the group of invariance of hierarchical models Perturbation method for determining the group of invariance of hierarchical models 1 2 1 1 2 2009/11/27 ( ) 2009/11/27 1 / 31 2 3 p 11 p 12 p 13 p 21 p 22 p 23 (p ij 0, i;j p ij = 1). p ij = a i b j log

More information

1 α X (path) α I = [0, 1] X α(0) = α(1) = p α p (base point) loop α(1) = β(0) X α, β α β : I X (α β)(s) = ( )α β { α(2s) (0 s 1 2 ) β(2s 1) ( 1 2 s 1)

1 α X (path) α I = [0, 1] X α(0) = α(1) = p α p (base point) loop α(1) = β(0) X α, β α β : I X (α β)(s) = ( )α β { α(2s) (0 s 1 2 ) β(2s 1) ( 1 2 s 1) 1 α X (path) α I = [0, 1] X α(0) = α(1) = p α p (base point) loop α(1) = β(0) X α, β α β : I X (α β)(s) = ( )α β { α(2s) (0 s 1 2 ) β(2s 1) ( 1 2 s 1) X α α 1 : I X α 1 (s) = α(1 s) ( )α 1 1.1 X p X Ω(p)

More information

20 9 19 1 3 11 1 3 111 3 112 1 4 12 6 121 6 122 7 13 7 131 8 132 10 133 10 134 12 14 13 141 13 142 13 143 15 144 16 145 17 15 19 151 1 19 152 20 2 21 21 21 211 21 212 1 23 213 1 23 214 25 215 31 22 33

More information

X x X X Y X Y R n n n R n R n 0 n 1 B n := {x R n : x < 1} B n := {x R n : x 1} 0 n := (0,..., 0) R n R n 2 S 1 S 1 3 B 2 S 1 (manifold) 2 ( ) n 1 n p

X x X X Y X Y R n n n R n R n 0 n 1 B n := {x R n : x < 1} B n := {x R n : x 1} 0 n := (0,..., 0) R n R n 2 S 1 S 1 3 B 2 S 1 (manifold) 2 ( ) n 1 n p ( ) 1904 H. Poincaré 2002 03 G. Perelman Perelman 1. Topology Differential Geometry H. Poincaré 1904 [Po] 21 G. Perelman 1 ( ) 3 3 S 3 n n R n := {(x 1,..., x n ) : x 1,..., x n R} R N n R n x = (x 1,...,

More information

untitled

untitled 3 3. (stochastic differential equations) { dx(t) =f(t, X)dt + G(t, X)dW (t), t [,T], (3.) X( )=X X(t) : [,T] R d (d ) f(t, X) : [,T] R d R d (drift term) G(t, X) : [,T] R d R d m (diffusion term) W (t)

More information

Q p G Qp Q G Q p Ramanujan 12 q- (q) : (q) = q n=1 (1 qn ) 24 S 12 (SL 2 (Z))., p (ordinary) (, q- p a p ( ) p ). p = 11 a p ( ) p. p 11 p a p

Q p G Qp Q G Q p Ramanujan 12 q- (q) : (q) = q n=1 (1 qn ) 24 S 12 (SL 2 (Z))., p (ordinary) (, q- p a p ( ) p ). p = 11 a p ( ) p. p 11 p a p .,.,.,..,, 1.. Contents 1. 1 1.1. 2 1.2. 3 1.3. 4 1.4. Eisenstein 5 1.5. 7 2. 9 2.1. e p 9 2.2. p 11 2.3. 15 2.4. 16 2.5. 18 3. 19 3.1. ( ) 19 3.2. 22 4. 23 1. p., Q Q p Q Q p Q C.,. 1. 1 Q p G Qp Q G

More information

newmain.dvi

newmain.dvi 数論 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/008142 このサンプルページの内容は, 第 2 版 1 刷発行当時のものです. Daniel DUVERNEY: THÉORIE DES NOMBRES c Dunod, Paris, 1998, This book is published

More information

B [ 0.1 ] x > 0 x 6= 1 f(x) µ 1 1 xn 1 + sin sin x 1 x 1 f(x) := lim. n x n (1) lim inf f(x) (2) lim sup f(x) x 1 0 x 1 0 (

B [ 0.1 ] x > 0 x 6= 1 f(x) µ 1 1 xn 1 + sin sin x 1 x 1 f(x) := lim. n x n (1) lim inf f(x) (2) lim sup f(x) x 1 0 x 1 0 ( . 28 4 14 [.1 ] x > x 6= 1 f(x) µ 1 1 xn 1 + sin + 2 + sin x 1 x 1 f(x) := lim. 1 + x n (1) lim inf f(x) (2) lim sup f(x) x 1 x 1 (3) lim inf x 1+ f(x) (4) lim sup f(x) x 1+ [.2 ] [, 1] Ω æ x (1) (2) nx(1

More information

第 61 回トポロジーシンポジウム講演集 2014 年 7 月於東北大学 ( ) 1 ( ) [6],[7] J.W. Alexander 3 1 : t 2 t +1=0 4 1 : t 2 3t +1=0 8 2 : 1 3t +3t 2 3t 3 +3t 4 3t 5 + t

第 61 回トポロジーシンポジウム講演集 2014 年 7 月於東北大学 ( ) 1 ( ) [6],[7] J.W. Alexander 3 1 : t 2 t +1=0 4 1 : t 2 3t +1=0 8 2 : 1 3t +3t 2 3t 3 +3t 4 3t 5 + t ( ) 1 ( ) [6],[7] 1. 1928 J.W. Alexander 3 1 : t 2 t +1=0 4 1 : t 2 3t +1=0 8 2 : 1 3t +3t 2 3t 3 +3t 4 3t 5 + t 6 7 7 : 1 5t +9t 2 5t 3 + t 4 ( :25400086) 2010 Mathematics Subject Classification: 57M25,

More information