( )

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "( )"

Transcription

1 ( )

2 ( )

3 180 2

4 180 3

5

6

7

8

9 ( )

10 ( ) 9

11 P18 A A 10

12 P18 A A : = A : A 11

13 P18 A A : = A : A 12

14 P18 A F E A : = A : EF E // A, F // E AF A E = F A : = F A : E = F A : F = A : 13

15 P18 ( ) A : = A : E A F 14

16 1 ( ) 2 15

17 2005 a a, b, c(> 0) a b c, a < b + c P23 16

18 A a 17

19 A E F G H b c a 18

20 E F G H b c I a 19

21 A J E F G H b c I a 20

22 A J G b G H c I a 21

23 A E J F b F c I a 22

24 K I 23

25 ( ) 24

26 2006 1) 2) 3)

27

28 27

29 ( ) 28

30 ( ) ( ) 29

31 ( )? 30

32 ( ) ( ) ( ) ) 31

33 A A A 30 A 40 A ) P4 A 32

34 A A = A = 30 A = 40 A =? E 33

35 2 30 A A = A = 30 A = 40 A =? 40 E 34

36 3 30 A A = A = 30 A = 40 A =? 40 35

37 3 30 A A = A = 30 A = 40 A =? 40 E 36

38 3 A A = A = 30 A = 40 A =? 40 F 40 E 37

39 3 A A = A = 30 A = 40 A =? 40 F 40 E 38

40 P S R Q 39

41 P S R Q 40

42 P S R Q 41

43 P S R Q 42

44 43

45 44

46 45

47 46

48 O PQRS 47

49 P S R Q O 48

50 (1) A 49

51 (1) A 50

52 (1) E A 51

53 A A 52

54 A A 53

55 (2) 54

56 (2) 55

57 (3) 56

58 (3) 57

59 (4) 58

60 (4) 59

61 ( ) ( ) P

62 1 A A = A, =, A // = E A E P19 61

63 1 A A = A, =, A // = E A E A A P19 62

64 1 A A = A, =, A // = E A E A A P19 63

65 1 A A = A, =, A // = E A E A A P19 64

66 1 A A = A, =, A // = E A E A A E = E 65

67 2 A A E A = A, =, A // = E P19 66

68 2 A A E A = A, =, A // = E P19 67

69 2 A A E A = A, =, A // = E P19 68

70 2 A 69

71 a a A 70

72 a a A 71

73 P a a A (P) A 72

74 A P a a A (P) AP 73

75 P A 74

76 P A 75

77 A A = A, =, F A E A // = E E = E P13 76

78 F O P G E A P13 77

79 P A P = P = 15 P AP P13 A 78

80 ( ) θ 8 θ 7 θ 6 θ 5 A θ 1 θ 2 θ 4 θ 3 θ 1 + θ 2 + θ 3 + θ 8 = 180 θ 2 + θ 3 + θ 4 + θ 5 = 180 θ 6 + θ 7 = θ 2 + θ 3 P14 sin θ 1 sin θ 3 sin θ 5 sin θ 7 = sin θ 2 sin θ 4 sin θ 6 sin θ 8 79

81 ( ) θ 1 θ 8 80

82 ( ) 180 n n = 8 n = 36(n ) 81

83 ( ) n = 18(10 ) 724 A ( ) 372 ( ) 152(A 100 ) (1 ) 48 (1 ) 48 E 24 ( 12 ) A, 300 P22 82

84 300 ( ) x A θ 1 θ 2 θ 4 θ 3 83

85 ➀ ➁ ➂ ➃ ➄ ➅ ( ) P17 84

86 ( ) A x d a b c ➀ 40, 30, 80, 20 ➁ 10, 10, 40, 110 ➂ 40, 60, 30, 70 ➃ 10, 20, 40, 40 ➄ 20, 30, 70,

87 20, 60, 50, 30 P20 86

88 A 40, 30, 80, 20 x

89 A 40, 30, 80, 20 x

90 A 40, 30, 80, 20 x A

91 A 40, 30, 80, 20 x A A

92 A x , 30, 80, 20 A A A A = 50 2 =

93 10, 10, 40,

94 = 10, 10, 40, 110 A x

95 A A A x

96 A N: A N A x 95

97 N, : N N A x 96

98 N = N = 60 = NA N A x 97

99 AO A N O x 98

100 40, 60, 30, 70 99

101 N x 40, 60, 30, 70 A A A M A N N N N A x =

102 10, 20, 40,

103 = 10, 20, 40, 40 A A E x A A A A E A A A = A x =

104 20, 30, 70,

105 = 20, 30, 70, 40 A x P9 104

106 = 20, 30, 70, 40 A x E 105

107 = 20, 30, 70, 40 A x P9 106

108 = 20, 30, 70, 40 A x P9 107

109 = 20, 30, 70, 40 O A P9 x A = 1 2 O O A 108

110 = 20, 30, 70, 40 A x P9 109

111 = 20, 30, 70, 40 A x A P9 110

112 = 20, 30, 70, 40 G E A F P9 x A E EG,AE 111

113 A 4 A = 2 A α 2α A A 36 (300 ) 112

114 10, 20, 100, 20 = 10, 30, 70,

115 = 10, 30, 70, 30 A x

116 = 10, 30, 70, 30 A x E F E = 2 FE = 2 E 115

117 = 10, 30, 70, E F A x E = 2 FE = 2 E EF 116

118 = 10, 30, 70, E F A x E = 2 FE = 2 E EF E AE A x =

119 = 10, 20, 100, 20 = 10, 30, 70, 30 A x

120 = 10, 20, 100, 20 = 10, 30, 70, 30 E A x

121 = 10, 20, 100, 20 = 10, 30, 70, 30 E A x 10, 30, 70, 30 AE 120

122 20, 60, 50, 30 langley 121

123 A 20, 60, 50, E x = 60 E = 50 E

124 A 20 20, 60, 50, 30 A EF F E x F 123

125 x 20, 60, 50, 30 A

126 20, 60, 50, 30 x A

127 20, 60, 50, 30 G x F A G A F E

128 20, 60, 50, 30 A G F x F A G F A,G AFG GF A E

129 A 20 20, 60, 50, 30 E x

130 A 20 20, 60, 50, 30 E x A A

131 A 20 20, 60, 50, 30 E x A A

132 A 20 20, 60, 50, 30 E x A

133 P3 132

134 133

h16マスターセンター報告書(神奈川県支部)

h16マスターセンター報告書(神奈川県支部) ( / 36 16 /16 /16 /16 /100 [ ] % [ ] [ ] [ ] [ ][ ] 5 ➀ ➁ ➂ ➀ ➀ ➁ ➀ ➁ ➀ ➀ ➁ ➂ ➀ ➂ ➀ ➁ ➂ ➀ ➁ ➂ ➀ ➂ ➀ ➁ ➂ ➀ ➂ ➀ ➀ ➁ ➂ ➀ ➁ ➂ ➀ ➁ ➂ ➀ ➂ ➀ ➂ ➀ ➁ ➂ ➃ ➀ ➁ ➂ ➀ ➁ ➀

More information

TEL-L70/TEL-LW70

TEL-L70/TEL-LW70 TEL-L70/TEL-LW70 Ni-Cd ➀ ➁ ➂ ➃ ➀ ➁ ➂ ➃ ' d d d d d d d d d d d b 4 4 1 2 3 4 5 6 7 8 9 0 d 1 8 4 1 2 3 4 5 6 1 2 3 4 5 6 7 8 9 0 7 8 9 0 ' ' 0 0 0 0 1 8 6 ' 1 2 3 4 5 6 7

More information

1 2 3 1 2 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 % 23 24 25 26 27 28 29 30 31 32 33 34 35 4 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68

More information

OFISTAR S3100取扱説明書

OFISTAR S3100取扱説明書 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 1 7 2 4 3 0 6 4 1 2 5 3 24 1 2 3 1 2 3 25 1 2 3 6 7 8 9 26 27 1 2 3 4 5 28 29 ABC 30 31 32 : : 33 1 8 2 1 3 1 2 3 4 34 1 2 35 1 1 36 1 2 3a 3b

More information

資料32-2-2 深海掘削検討会報告書(平成24年3月 独立行政法人海洋研究開発機構 深海掘削検討会)

資料32-2-2 深海掘削検討会報告書(平成24年3月 独立行政法人海洋研究開発機構 深海掘削検討会) - i - - ii - - 1 - - 2 - - 3 - - 4 - - 5 - - 6 - - 7 - - 8 - - 9 - - 10 - - 11 - - 12 - - 13 - - 14 - - 15 - - 16 - - 17 - - 18 - - 19 - - 20 - - 21 - - 22 - - 23 - - 24 - - 25 - - 26 - ➀ ➁ ➂ ➃ ➄ - 27

More information

マリモの育て方

マリモの育て方 2 3 (2011 7 ) ( ) 1.2 4 ( 2.4.4 ) (URL: http://marimo-inner.seesaa.net/) 5 ) 6 3 1 8 1.1........................ 8 1.2.............. 10 2 12 2.1.................... 12 2.2............. 13 2.3........................

More information

... 4... 5 (FA )... 6... 6 A FA... 7... 7. FA... 8.... 9.... 10. FA... 11 B. FA... 12 C 3 ()... 13 FA... 13 FA... 14... 14 FA... 14 ()... 15... 16...

... 4... 5 (FA )... 6... 6 A FA... 7... 7. FA... 8.... 9.... 10. FA... 11 B. FA... 12 C 3 ()... 13 FA... 13 FA... 14... 14 FA... 14 ()... 15... 16... ... 4... 5 (FA )... 6... 6 A FA... 7... 7. FA... 8.... 9.... 10. FA... 11 B. FA... 12 C 3 ()... 13 FA... 13 FA... 14... 14 FA... 14 ()... 15... 16... 17 ()... 20... 20... 21... 22 D... 23 E ()... 23...

More information

1981 i ii ➀ ➁ 61

1981 i ii ➀ ➁ 61 (autism) 1943 60 1981 i ii ➀ ➁ 61 DSM- 4 3 29 99 DSM- 62 1 2 3 4 4 vi 63 64 ix x xi 204 3 65 176 90 3 79 66 DSM- 82 67 68 ➀ ➁ ➂ 69 34 5 70 JR 71 i 1944 ii iii 28 72 iv 48 v ➀ vi PHP 39 vii 176 viii ➄ 77

More information

0

0 G 1 G 2 3 2 3 4 14 f f 0 G G G G a1 GF f 1 1 1 L I H M K J f 1 5 G G G G GG Aa G f 6 G G G Aa G f 1 2 1 2 3 45 C 123 3 4 1234 5 6 7 123 e 8 9 0 1 2 3 4 1 2 3 4 14 f N f f f 1 1 2 12 3 4 5 6 f 3 G G 1 12

More information

untitled

untitled 0. =. =. (999). 3(983). (980). (985). (966). 3. := :=. A A. A A. := := 4 5 A B A B A B. A = B A B A B B A. A B A B, A B, B. AP { A, P } = { : A, P } = { A P }. A = {0, }, A, {0, }, {0}, {}, A {0}, {}.

More information

- 1 -

- 1 - - 1 - - 2 - - 3 - - 4 - - 5 - - 6 - - 7 - - 8 - - 9 - - 10 - - 11 - - 12 - - 13 - - 14 - - 15 - - 16 - - 17 - - 18 - - 19 - - 20 - - 21 - - 22 - - 23 - ➀ ➀ - 24 - ➀ ➀ ➀ ➀ - 25 - ➀ ➀ ➀ - 26 - ➀ ➀ ➀ - 27

More information

1180年、源頼朝は鎌倉に入り、政治の中心をこの地に置いた

1180年、源頼朝は鎌倉に入り、政治の中心をこの地に置いた 35000261 38000474 35001585 35002646 2003 12 22 1 2 12 4 3 4 1300 4 1180 1577 13 [] 5 (32% (22%) (13%) (5%) (5%) (12%) (1%) (10%) 30 60 ()() () [] (51%) (18%) 11% (5%) (5%) (3%) (2%) (5%) 6 () [] (33%)

More information

2 (1) a = ( 2, 2), b = (1, 2), c = (4, 4) c = l a + k b l, k (2) a = (3, 5) (1) (4, 4) = l( 2, 2) + k(1, 2), (4, 4) = ( 2l + k, 2l 2k) 2l + k = 4, 2l

2 (1) a = ( 2, 2), b = (1, 2), c = (4, 4) c = l a + k b l, k (2) a = (3, 5) (1) (4, 4) = l( 2, 2) + k(1, 2), (4, 4) = ( 2l + k, 2l 2k) 2l + k = 4, 2l ABCDEF a = AB, b = a b (1) AC (3) CD (2) AD (4) CE AF B C a A D b F E (1) AC = AB + BC = AB + AO = AB + ( AB + AF) = a + ( a + b) = 2 a + b (2) AD = 2 AO = 2( AB + AF) = 2( a + b) (3) CD = AF = b (4) CE

More information

(1) 3 A B E e AE = e AB OE = OA + e AB = (1 35 e ) e OE z 1 1 e E xy e = 0 e = 5 OE = ( 2 0 0) E ( 2 0 0) (2) 3 E P Q k EQ = k EP E y 0

(1) 3 A B E e AE = e AB OE = OA + e AB = (1 35 e ) e OE z 1 1 e E xy e = 0 e = 5 OE = ( 2 0 0) E ( 2 0 0) (2) 3 E P Q k EQ = k EP E y 0 (1) 3 A B E e AE = e AB OE = OA + e AB = (1 35 e 0 1 15 ) e OE z 1 1 e E xy 5 1 1 5 e = 0 e = 5 OE = ( 2 0 0) E ( 2 0 0) (2) 3 E P Q k EQ = k EP E y 0 Q y P y k 2 M N M( 1 0 0) N(1 0 0) 4 P Q M N C EP

More information

Y Y Y w Y

Y Y Y w Y 8 Y No.466 AUG. 200214 Y Y Y w Y e NEWS NEWS r Y t Y y u 1 i 1 o !0 f f c 1 b b 1 b f a !1 A 1 A 1 ba d g gc a b b A A A 1 1 Y Y Y Y 1 b d e c g af e e ae fe c 1 !2 Y 1 GA A 1 G 1 u u u u u u u u u u u

More information

18725 136 2008 3 4 6 8 10 16 18 24 40 41 6 42 43 54 59 75 76 77 CSR 30 34 38 200620072008 3 4.27,235 26.9635 1.68.8 ROE2.69.2 1234.0 1 2006 2007 2008 2008/2007 2008 670,957 694,594 723,485 +4.2% $7,220,409

More information

L LM L B 12 c c L G L G L G L G L G L G bcb c L K J a B C 19 0de G c A f b b 123 G G 1 f 5 G G G G Gf d 09 d B 3 G f 3 G G G 1 2 1 2 G G G 1 G 1 G 2 3 1 2 G G G 1 G B B 1 2 3 4 5 6 7 8 9 G 2 2 B 12 f 4

More information

4 5 6 7 8 9 10 11 12 13 14 15 16 I II I I I I I I I 17 18 19 20 21 22 23 http://www.surugabank.co.jp/dream/ http://www.surugabank.co.jp/directone/ http://www.surugabank.co.jp/ebusinessdirect/ http://www.surugabank.co.jp/so-net/

More information

i I Excel iii Excel Excel Excel

i I Excel iii Excel Excel Excel Excel i I Excel iii 1 1 2 Excel 2 2.1..................................... 2 2.2 Excel................................................ 2 2.3 Excel................................................ 4 2.4..............................................

More information

無印良品のスキンケア

無印良品のスキンケア 2 3 4 5 P.22 P.10 P.18 P.14 P.24 Na 6 7 P.10 P.22 P.14 P.18 P.24 8 9 1701172 1,400 1701189 1,000 1081267 1,600 1701257 2,600 1125923 450 1081250 1,800 1125916 650 1081144 1,800 1081229 1,500 Na 1701240

More information

b n c n d n d n = f() d (n =, ±, ±, ) () πi ( a) n+ () () = a R a f() = a k Γ ( < k < R) Γ f() Γ ζ R ζ k a Γ f() = f(ζ) πi ζ dζ f(ζ) dζ (3) πi Γ ζ (3)

b n c n d n d n = f() d (n =, ±, ±, ) () πi ( a) n+ () () = a R a f() = a k Γ ( < k < R) Γ f() Γ ζ R ζ k a Γ f() = f(ζ) πi ζ dζ f(ζ) dζ (3) πi Γ ζ (3) [ ] KENZOU 6 3 4 Origin 6//5) 3 a a f() = b n ( a) n c n + ( a) n n= n= = b + b ( a) + b ( a) + + c a + c ( a) + b n = f() πi ( a) n+ d, c n = f() d πi ( a) n+ () b n c n d n d n = f() d (n =, ±, ±, )

More information

【資料1】平成28年度予算案における子ども・子育て支援新制度の状況について

【資料1】平成28年度予算案における子ども・子育て支援新制度の状況について : : 1 2 3 28 28 29 29 28 A 28 B C 29 4 5 ( ) 5 6 ) 26 H26H30 7 27 8 8 27 1/2 2/3 9 27 10 ➁ 11 11 ➁ ➁ 12 12 13 13 14 14 15 16 17 ~ ~ 18 19 20 77,100360 3 2 3 3 360 360 3 308,000 77,100 1 7,5502 0 0 21 22

More information

ap0 ap1 ap2 ap3 ap4 ap5 ap6 ap7 ap8 ap9 aq0 aq1 aq2 aq3 aq4 aq5 aq6 aq7 aq8 aq9 aw0 aw1 aw2 aw3 aw4 aw5 aw6 aw7 aw8 aw9 ae0 ae1 ae2 ae3 ae4 ae5 ae6 ae7 ae8 ae9 ar0 ar1 ar2 ar3 ar4 ar5 ar6 ar7 ar8 ar9 at0

More information

‚å™J‚å−w“LŁñfi~P01†`08

‚å™J‚å−w“LŁñfi~P01†`08 156 2003 2 3 4 5 6 7 8 9 c f c a g 10 d c d 11 e a d 12 a g e 13 d fg f 14 g e 15 16 17 18 19 20 21 db de de fg fg g gf b eb g a a e e cf b db 22 d b e ag dc dc ed gf cb f f e b d ef 23 f fb ed e g gf

More information

lim lim lim lim 0 0 d lim 5. d 0 d d d d d d 0 0 lim lim 0 d

lim lim lim lim 0 0 d lim 5. d 0 d d d d d d 0 0 lim lim 0 d lim 5. 0 A B 5-5- A B lim 0 A B A 5. 5- 0 5-5- 0 0 lim lim 0 0 0 lim lim 0 0 d lim 5. d 0 d d d d d d 0 0 lim lim 0 d 0 0 5- 5-3 0 5-3 5-3b 5-3c lim lim d 0 0 5-3b 5-3c lim lim lim d 0 0 0 3 3 3 3 3 3

More information

1 1 u m (t) u m () exp [ (cπm + (πm κ)t (5). u m (), U(x, ) f(x) m,, (4) U(x, t) Re u k () u m () [ u k () exp(πkx), u k () exp(πkx). f(x) exp[ πmxdx

1 1 u m (t) u m () exp [ (cπm + (πm κ)t (5). u m (), U(x, ) f(x) m,, (4) U(x, t) Re u k () u m () [ u k () exp(πkx), u k () exp(πkx). f(x) exp[ πmxdx 1 1 1 1 1. U(x, t) U(x, t) + c t x c, κ. (1). κ U(x, t) x. (1) 1, f(x).. U(x, t) U(x, t) + c κ U(x, t), t x x : U(, t) U(1, t) ( x 1), () : U(x, ) f(x). (3) U(x, t). [ U(x, t) Re u k (t) exp(πkx). (4)

More information

E115_FAX_J.book

E115_FAX_J.book 1 CHAPTER 1-1 1-2 1-3 1 2 3 45 6 7 8 90 A BC D EF ABC DEF 1 2 3 C 1 2 GHI JKL MNO 4 5 6 01 02 03 04 05 06 07 3 4 F1 F2 PQRS TUV WXYZ 7 8 9 08 09 10 11 12 13 14 0 ID 15 16 17 18 19 20 21 43~63 22~42 V U

More information

untitled

untitled Siegling total belting solutions 3 4 5 Siegling total belting solutions 6 7 8 ➄ ➅ ➀ ➁ ➂ ➃ ➆ 9 1 SD 1/10 mm 5=0.5mm E 8 / 2 U 0 / U2 MT - HC (BK) A E P 1 2 3 4 M N(NOVO) 0 A C E F G N(NOVO) P S SB30 U

More information

function2.pdf

function2.pdf 2... 1 2009, http://c-faculty.chuo-u.ac.jp/ nishioka/ 2 11 38 : 5) i) [], : 84 85 86 87 88 89 1000 ) 13 22 33 56 92 147 140 120 100 80 60 40 20 1 2 3 4 5 7.1 7 7.1 1. *1 e = 2.7182 ) fx) e x, x R : 7.1)

More information

A (1) = 4 A( 1, 4) 1 A 4 () = tan A(0, 0) π A π

A (1) = 4 A( 1, 4) 1 A 4 () = tan A(0, 0) π A π 4 4.1 4.1.1 A = f() = f() = a f (a) = f() (a, f(a)) = f() (a, f(a)) f(a) = f 0 (a)( a) 4.1 (4, ) = f() = f () = 1 = f (4) = 1 4 4 (4, ) = 1 ( 4) 4 = 1 4 + 1 17 18 4 4.1 A (1) = 4 A( 1, 4) 1 A 4 () = tan

More information

6 2 2 x y x y t P P = P t P = I P P P ( ) ( ) ,, ( ) ( ) cos θ sin θ cos θ sin θ, sin θ cos θ sin θ cos θ y x θ x θ P

6 2 2 x y x y t P P = P t P = I P P P ( ) ( ) ,, ( ) ( ) cos θ sin θ cos θ sin θ, sin θ cos θ sin θ cos θ y x θ x θ P 6 x x 6.1 t P P = P t P = I P P P 1 0 1 0,, 0 1 0 1 cos θ sin θ cos θ sin θ, sin θ cos θ sin θ cos θ x θ x θ P x P x, P ) = t P x)p ) = t x t P P ) = t x = x, ) 6.1) x = Figure 6.1 Px = x, P=, θ = θ P

More information

<95F18D908F91967B95B62E696E6464>

<95F18D908F91967B95B62E696E6464> 1.. (1-1)? 1. 2.,,.. (1-2)? 1. 2. 3. 4. 5. 6. 7. (1-3)?. (() ().) 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. (: ) (1-4). 1. 2. 3. 4. 5. 6. 7. ( ) (1-5)?. 1. 2. 3. (1-6)?. 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. - 0

More information

BD = a, EA = b, BH = a, BF = b 3 EF B, EOA, BOD EF B EOA BF : AO = BE : AE, b : = BE : b, AF = BF = b BE = bb. () EF = b AF = b b. (2) EF B BOD EF : B

BD = a, EA = b, BH = a, BF = b 3 EF B, EOA, BOD EF B EOA BF : AO = BE : AE, b : = BE : b, AF = BF = b BE = bb. () EF = b AF = b b. (2) EF B BOD EF : B 2000 8 3.4 p q θ = 80 B E a H F b θ/2 O θ/2 D A B E BD = a, EA = b, BH = a, BF = b 3 EF B, EOA, BOD EF B EOA BF : AO = BE : AE, b : = BE : b, AF = BF = b BE = bb. () EF = b AF = b b. (2) EF B BOD EF :

More information

学習の手順

学習の手順 NAVI 2 MAP 3 ABCD EFGH D F ABCD EFGH CD EH A ABC A BC AD ABC DBA BC//DE x 4 a //b // c x BC//DE EC AD//EF//BC x y AD DB AE EC DE//BC 5 D E AB AC BC 12cm DE 10 AP=PB=BR AQ=CQ BS CS 11 ABCD 1 C AB M BD P

More information

子ども・子育て支援新制度について

子ども・子育て支援新制度について 28 29 Ⅺ Ⅻ . 2 3 248 4 5 24 6 7 ( ) ( 教育 保育施設 8 従前どおり 9 20 19. 10 11 12 50 13 14 15 . 16 17 ( 18 () 19 A B ( ( C D ( 20 21 258 6 251218 2672 22 . 23 682 2,785 474 60 4,001 28 24 25 26 27 + + + 28 / / /

More information

CharacterSets.book Japanese

CharacterSets.book Japanese FRAMEMAKER 9 ADOBE i................................................. 2 1 2 1 2 3 4 ú þ ý! " # $ % & ( ) * +, -. / 0 1 2 3 4 5 5 6 7 8 9 : ; < = >? @ A B C D E F G H I J K L M N O P Q R S T U 6 V W X

More information

子ども・子育て支援新制度について 平成28年4月

子ども・子育て支援新制度について 平成28年4月 28 . 2 3 24 248 4 5 6 24 7 教 育 保 育 施 設 ( ) ( 8 従 前 ど お り 9 20 19. 10 11 12 50 2812 22 13 14 15 . 16 17 ( 18 () 19 A B ( ( C D ( 20 21 2586 2512 18 2672 22 . 23 1,931 524 328 53 2,836 27 24 25 26 27 + +

More information

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0 1 1 1.1 1.) T D = T = D = kn 1. 1.4) F W = F = W/ = kn/ = 15 kn 1. 1.9) R = W 1 + W = 6 + 5 = 11 N. 1.9) W b W 1 a = a = W /W 1 )b = 5/6) = 5 cm 1.4 AB AC P 1, P x, y x, y y x 1.4.) P sin 6 + P 1 sin 45

More information

さくらの個別指導 ( さくら教育研究所 ) A 2 P Q 3 R S T R S T P Q ( ) ( ) m n m n m n n n

さくらの個別指導 ( さくら教育研究所 ) A 2 P Q 3 R S T R S T P Q ( ) ( ) m n m n m n n n 1 1.1 1.1.1 A 2 P Q 3 R S T R S T P 80 50 60 Q 90 40 70 80 50 60 90 40 70 8 5 6 1 1 2 9 4 7 2 1 2 3 1 2 m n m n m n n n n 1.1 8 5 6 9 4 7 2 6 0 8 2 3 2 2 2 1 2 1 1.1 2 4 7 1 1 3 7 5 2 3 5 0 3 4 1 6 9 1

More information

知能科学:ニューラルネットワーク

知能科学:ニューラルネットワーク 2 3 4 (Neural Network) (Deep Learning) (Deep Learning) ( x x = ax + b x x x ? x x x w σ b = σ(wx + b) x w b w b .2.8.6 σ(x) = + e x.4.2 -.2 - -5 5 x w x2 w2 σ x3 w3 b = σ(w x + w 2 x 2 + w 3 x 3 + b) x,

More information

知能科学:ニューラルネットワーク

知能科学:ニューラルネットワーク 2 3 4 (Neural Network) (Deep Learning) (Deep Learning) ( x x = ax + b x x x ? x x x w σ b = σ(wx + b) x w b w b .2.8.6 σ(x) = + e x.4.2 -.2 - -5 5 x w x2 w2 σ x3 w3 b = σ(w x + w 2 x 2 + w 3 x 3 + b) x,

More information

L LM L B 1 f 4 9 c c L G L G L G L G L G L G gde c DE L K J a B 19 0de G c A f g D E B 123 G G 1 1 f 5 G G Gf d 09 d B 3 G f 3 G G G 1 2 1 2 G G G G 1 G 1 G 2 3 1 2 G G G G 1 G B B 1 2 3 4 5 6 7 8 9 0

More information

三菱低圧気中遮断器AE形 World Super AE

三菱低圧気中遮断器AE形  World Super AE 6AF~60AF A - 6 7-8 9 - - 7 7-8 9-0 - - - 6 7-8 9 - - - 7 8 9-0 - - - 6 7 - - 6 7-8 9 60 6-6 6-68 69-7 6 00 600 000 0 00 000 00 60 AE6-SW AE00-SW AE-SW AE600-SW AE000-SWA AE000-SW AE0-SW AE00-SW AE000-SWA

More information

1 3 1.1.......................... 3 1............................... 3 1.3....................... 5 1.4.......................... 6 1.5........................ 7 8.1......................... 8..............................

More information

p _

p _ Index ap. ap. ap. ap. ap. ap. ap. ap. ap. ap. ap. ap. ap. ap. ap. ap. ap. ap. ap. ap. ap. ap. ap. ap. ap. ap. ap. ap. ap. ap. ap. ap. ap. ap. ap. ap. ap. ap. ap. ap. ap. ap. ap. ap. ap. ap. ap. ap. ap.

More information

子ども・子育て支援新制度について

子ども・子育て支援新制度について 30 Ⅺ Ⅻ 1 . 2 24 3 248 4 5 24 6 7 () ( 教育 保育施設 8 従前どおり 9 20 19. 10 ... 11 12 50 13 14 15 . 16 17 ( 18 () 19 A B ( C D ( ( 20 21 2586 2512 18 2672 22 . 23 3,618 807 592 64 5,08129 24 5,081 3,618 H28 (4,001)

More information

G G 4 G G 1 c1 f 1 2 G G 3 4 123 1 G f123 4

G G 4 G G 1 c1 f 1 2 G G 3 4 123 1 G f123 4 8 1 15 2 G 3 f f A G f A 11 G G 2 G 1 2 f 2 A G C G G 4 G G 1 c1 f 1 2 G G 3 4 123 1 G f123 4 A G G 3 L f 1 G 2 1 3 4 2 G G G G f 1 12 g 2 G G f G g 3 G f 1 2 12 G G 1 1 G G 2 G 1 7 1 2 G 1 G 1 8 1 Gf

More information

70 : 20 : A B (20 ) (30 ) 50 1

70 : 20 : A B (20 ) (30 ) 50 1 70 : 0 : A B (0 ) (30 ) 50 1 1 4 1.1................................................ 5 1. A............................................... 6 1.3 B............................................... 7 8.1 A...............................................

More information

(1) PQ (2) () 2 PR = PR P : P = R : R (2) () = P = P R M = XM : = M : M (1) (2) = N = N X M 161 (1) (2) F F = F F F EF = F E

(1) PQ (2) () 2 PR = PR P : P = R : R (2) () = P = P R M = XM : = M : M (1) (2) = N = N X M 161 (1) (2) F F = F F F EF = F E 5 1 1 1.1 2 159 O O PQ RS OR P = PQ P O M MQ O (1) M P (2) P : P R : R () PR P 160 > M : = M : M X (1) N = N M // N X M (2) M 161 (1) E = 8 = 4 = = E = (2) : = 2 : = E = E F 5 F EF F E 5 1 159 (1) PQ (2)

More information

chap1.dvi

chap1.dvi 1 1 007 1 e iθ = cos θ + isin θ 1) θ = π e iπ + 1 = 0 1 ) 3 11 f 0 r 1 1 ) k f k = 1 + r) k f 0 f k k = 01) f k+1 = 1 + r)f k ) f k+1 f k = rf k 3) 1 ) ) ) 1+r/)f 0 1 1 + r/) f 0 = 1 + r + r /4)f 0 1 f

More information

I ( ) ( ) (1) C z = a ρ. f(z) dz = C = = (z a) n dz C n= p 2π (ρe iθ ) n ρie iθ dθ 0 n= p { 2πiA 1 n = 1 0 n 1 (2) C f(z) n.. n f(z)dz = 2πi Re

I ( ) ( ) (1) C z = a ρ. f(z) dz = C = = (z a) n dz C n= p 2π (ρe iθ ) n ρie iθ dθ 0 n= p { 2πiA 1 n = 1 0 n 1 (2) C f(z) n.. n f(z)dz = 2πi Re I ( ). ( ) () a ρ. f() d ( a) n d n p π (ρe iθ ) n ρie iθ dθ n p { πia n n () f() n.. n f()d πi es f( k ) k n n. f()d n k k f()d. n f()d πi esf( k ). k I ( ). ( ) () f() p g() f() g()( ) p. f(). f() A

More information

さくらの個別指導 ( さくら教育研究所 ) A a 1 a 2 a 3 a n {a n } a 1 a n n n 1 n n 0 a n = 1 n 1 n n O n {a n } n a n α {a n } α {a

さくらの個別指導 ( さくら教育研究所 ) A a 1 a 2 a 3 a n {a n } a 1 a n n n 1 n n 0 a n = 1 n 1 n n O n {a n } n a n α {a n } α {a ... A a a a 3 a n {a n } a a n n 3 n n n 0 a n = n n n O 3 4 5 6 n {a n } n a n α {a n } α {a n } α α {a n } a n n a n α a n = α n n 0 n = 0 3 4. ()..0.00 + (0.) n () 0. 0.0 0.00 ( 0.) n 0 0 c c c c c

More information

1 st 2 nd Dec

1 st 2 nd Dec 1 st 2 nd Dec.2007 21 2003 2 1 st 2 nd Dec.2007 5 DC DC 3 1 st 2 nd Dec.2007 1 2 3 1 2 3 4 5 1 2 3 1 2 3 4 1 st 2 nd Dec.2007 25 17 http://www.ipss.go.jp/ 5 1 st 2 nd Dec.2007 1 1 2 1:() 6 1 st 2 nd Dec.2007

More information

熊本県数学問題正解

熊本県数学問題正解 00 y O x Typed by L A TEX ε ( ) (00 ) 5 4 4 ( ) http://www.ocn.ne.jp/ oboetene/plan/. ( ) (009 ) ( ).. http://www.ocn.ne.jp/ oboetene/plan/eng.html 8 i i..................................... ( )0... (

More information

Microsoft Word - ニュース更新システム(サイト用).docx

Microsoft Word - ニュース更新システム(サイト用).docx 1. ニュース更新システム 1.1. 記事情報管理 1.1.1. ニュース更新システムへのログイン ニュース更新システム用の ログイン ID とパスワードで ログインしてください 1 1.1.2. 新しい記事 1.1.2.1. 追加 新しく記事を追加します 記事情報管理画面 ここをクリック ( 次ページへ ) 2 1.1.2.2. 作成 記事内容を作成します 記事情報編集画面 ➀ ➁ ➂ ➃ 必須

More information

0.6 A = ( 0 ),. () A. () x n+ = x n+ + x n (n ) {x n }, x, x., (x, x ) = (0, ) e, (x, x ) = (, 0) e, {x n }, T, e, e T A. (3) A n {x n }, (x, x ) = (,

0.6 A = ( 0 ),. () A. () x n+ = x n+ + x n (n ) {x n }, x, x., (x, x ) = (0, ) e, (x, x ) = (, 0) e, {x n }, T, e, e T A. (3) A n {x n }, (x, x ) = (, [ ], IC 0. A, B, C (, 0, 0), (0,, 0), (,, ) () CA CB ACBD D () ACB θ cos θ (3) ABC (4) ABC ( 9) ( s090304) 0. 3, O(0, 0, 0), A(,, 3), B( 3,, ),. () AOB () AOB ( 8) ( s8066) 0.3 O xyz, P x Q, OP = P Q =

More information

21 1 1 1 2 2 5 7 9 11 13 13 14 18 18 20 28 28 29 31 31 34 35 35 36 37 37 38 39 40 56 66 74 89 99 - ------ ------ -------------- ---------------- 1 10 2-2 8 5 26 ( ) 15 3 4 19 62 2,000 26 26 5 3 30 1 13

More information

23 3 (10) - 1 - - 2 - - 3 - - 4 - - 5 - - 6 - 11 12 13 14-7 - - 8 - 1 1 3 3-9 - - 10 - - 11 - - 12 - - 13 - N 3 N 3 N 3-14 - - 15 - ( ) - 16 - 2 3 11 KYTBM - 17 - - 18 - - 19 - - 20 - - 21 - - 22 - ➀

More information

現代社会文化研究

現代社会文化研究 No.37 2006 12 少年非行, 在日本呈上升趋势, 日趋严峻, 且向一般化 低龄化 现代型 非社会的非行转变 少年非行的预防和更生已经成为一个不可忽视的社会问题 为了正确分析少年非行, 找出其原因及预防和更生对策, 首先必须明确少年非行的概念以确定研究对象以及研究范围 关于少年非行的概念, 从不同的根据, 不同的角度出发, 内容会有所不同 本文从法理上对少年非行和非行少年及相关概念进行了界定,

More information

1122 1015 1 Voices 11 11 1 1 1 1 1 1 7 3 4 3 4 3 4 1 1 1 1 1 e 1 f dd 1 d 1 1 1 1 de 1 f 1 d b b bb ef f bb 1 1 882-1111 882-1160 1 1 a 6 1 1 1 f 1 1 c 1 f 1 1 f 1 cf 1 bf 1 1 1 1 a 1 g 1 g 1 af g 1 11

More information

Taro13-①表紙関係.jtd

Taro13-①表紙関係.jtd 39 03 04 05 -- -2- ?? A A D = A B C A2 HI H = DG BC B = A G = EF C E = A I = H F = AE -39- 2 3 0.8 n n n n n 0.8 n n 0.8 n 70 30 00 70 30 70 30 00 250 250 200 bn 400

More information

( )

( ) 18 10 01 ( ) 1 2018 4 1.1 2018............................... 4 1.2 2018......................... 5 2 2017 7 2.1 2017............................... 7 2.2 2017......................... 8 3 2016 9 3.1 2016...............................

More information

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi) 0. A A = 4 IC () det A () A () x + y + z = x y z X Y Z = A x y z ( 5) ( s5590) 0. a + b + c b c () a a + b + c c a b a + b + c 0 a b c () a 0 c b b c 0 a c b a 0 0. A A = 7 5 4 5 0 ( 5) ( s5590) () A ()

More information

1 26 ( ) ( ) 1 4 I II III A B C (120 ) ( ) 1, 5 7 I II III A B C (120 ) 1 (1) 0 x π 0 y π 3 sin x sin y = 3, 3 cos x + cos y = 1 (2) a b c a +

1 26 ( ) ( ) 1 4 I II III A B C (120 ) ( ) 1, 5 7 I II III A B C (120 ) 1 (1) 0 x π 0 y π 3 sin x sin y = 3, 3 cos x + cos y = 1 (2) a b c a + 6 ( ) 6 5 ( ) 4 I II III A B C ( ) ( ), 5 7 I II III A B C ( ) () x π y π sin x sin y =, cos x + cos y = () b c + b + c = + b + = b c c () 4 5 6 n ( ) ( ) ( ) n ( ) n m n + m = 555 n OAB P k m n k PO +

More information

I y = f(x) a I a x I x = a + x 1 f(x) f(a) x a = f(a + x) f(a) x (11.1) x a x 0 f(x) f(a) f(a + x) f(a) lim = lim x a x a x 0 x (11.2) f(x) x

I y = f(x) a I a x I x = a + x 1 f(x) f(a) x a = f(a + x) f(a) x (11.1) x a x 0 f(x) f(a) f(a + x) f(a) lim = lim x a x a x 0 x (11.2) f(x) x 11 11.1 I y = a I a x I x = a + 1 f(a) x a = f(a +) f(a) (11.1) x a 0 f(a) f(a +) f(a) = x a x a 0 (11.) x = a a f (a) d df f(a) (a) I dx dx I I I f (x) d df dx dx (x) [a, b] x a ( 0) x a (a, b) () [a,

More information

untitled

untitled 1 7 12 2 7 19 3 7 26 9 25 5 10 9 6 10 16 24 1 24 7 12 3 5,000 3,000 12 揃 1 辿 辿 辿 2 20 80 22 汲 480 3 0 櫛 5 廻 4 40 15 4 4 300 13 櫛 櫛 5 30 餌 12 15 12 揃 1 380 1,000 10,000 1,800 6 1,000 1 11,800 1,800 儲

More information

A a b c d a b a b c d e a b c g h f i d e f g h i M a b c a b c d M a M b c d a b a b a M b a b a b c a b a M a a M a c d b a b c d a b a b a M c d a b e c M f a b c d e f E F d e a f a M bm c d a M b

More information

1 911 9001030 9:00 A B C D E F G H I J K L M 1A0900 1B0900 1C0900 1D0900 1E0900 1F0900 1G0900 1H0900 1I0900 1J0900 1K0900 1L0900 1M0900 9:15 1A0915 1B0915 1C0915 1D0915 1E0915 1F0915 1G0915 1H0915 1I0915

More information

graph4.eps

graph4.eps 9 : . 6. S =3ˆ+4ŷ +5ẑ â = ˆ+ ŷ + ẑ () S â () â ˆb.,b,c,d O A, B, C, D b =(d c) (3) â, ˆb AD BC P AD BC 3.,b,c b θ c = +b ccosθ 3. 4. O A, B, C, D O A, B, C, D A,B,C,D () AB BC A B = B C () AB A B (3),b,c,d

More information

[ ] 0.1 lim x 0 e 3x 1 x IC ( 11) ( s114901) 0.2 (1) y = e 2x (x 2 + 1) (2) y = x/(x 2 + 1) 0.3 dx (1) 1 4x 2 (2) e x sin 2xdx (3) sin 2 xdx ( 11) ( s

[ ] 0.1 lim x 0 e 3x 1 x IC ( 11) ( s114901) 0.2 (1) y = e 2x (x 2 + 1) (2) y = x/(x 2 + 1) 0.3 dx (1) 1 4x 2 (2) e x sin 2xdx (3) sin 2 xdx ( 11) ( s [ ]. lim e 3 IC ) s49). y = e + ) ) y = / + ).3 d 4 ) e sin d 3) sin d ) s49) s493).4 z = y z z y s494).5 + y = 4 =.6 s495) dy = 3e ) d dy d = y s496).7 lim ) lim e s49).8 y = e sin ) y = sin e 3) y =

More information

limit&derivative

limit&derivative - - 7 )................................................................................ 5.................................. 7.. e ).......................... 9 )..........................................

More information

G A A G A G 4 1 1 2 3 4 5 6 7 110119118 b A G C G 4 1 7 * G A C b a HIKJ K J L f B c K c d e G 7 1 G 1 aa L M G L H G G 4 aa c c A a CB B A G f c C A G f G 9 8 1 2 c c G A A A f 1 13

More information