研究室ガイダンス(H28)福山研.pdf

Size: px
Start display at page:

Download "研究室ガイダンス(H28)福山研.pdf"

Transcription

1

2 He M. Roger et al., JLTP 112, 45 (1998)

3 A.F. Andreev and I.M. Lifshitz, Sov. Phys. JETP 29, 1107 (1969) Born in 2004 (hcp 4 He) E. Kim and M.H.W. Chan, Nature 427, 225 (2004); Science 305, 1941 (2004) Alexander F. Andreev Ilya M. Lifshitz torsional oscillator = Died (?) in 2012 Kim and M.H.W. Chan, PRL 109, (2012) ρ s / ρ 0.01 Moses Chan

4 total areal density: ρ (nm -2 ) S. Nakamura et al.,arxiv: v2 C2 + IC2 L2 + C2 L2 G2 + L2 14 (gas+liquid) 4 He/ 4 He/graphite IC2 (IC solid) C2 (uniform liquid) F2 (uniform fluid) 3rd layer promotion C2 phase nd layer promotion T (K) 1.6

5 S. Nakamura et al.,arxiv: v2 4 He/ 4 He/graphite Y. Shibayama et al. J. Phys. 150, (2009); to appear (2016) IC2 C2 + IC2 L2 + C2 L2 C2 F2 P.A. Crowell and J. D. Reppy, PRB 53, 2701 (1996) G2 + L2 promotion to 2nd layer (11.8 nm -2 )

6 Supersolid research after 2012 DC superflow measurement through a solid 4 He crystal Ye. Vekhov, W.J. Mullin, and R.B. Hallock, PRL 113, (2014) Ye. Vekhov and R.B. Hallock, PRB 92, (2015) 3 He plug for 1D superfluid channel? 3 He atom 1D S.F. network along screw dislocation cores M. Boninsegni et al., PRL 99, (2007). winding-circle map by PIMC calculation

7 RVB (resonating valence bond) P.W. Anderson (1973, 1987) gapful (Δ J) singlet pair

8 K. Ishida et al., PRL 79, 3451 (1997) C / R C T nm nm -2 MSE model bcc solid 3 He (24.13 cm 3 /mol) ΔS N 2 k B ln2 C T T (mk)

9 3 He/HD/HD/gr χ T -1/3! C T 2/3! χ T -1/3 C T 2/3 χ T -1/3 C T 2/3 Ref. [2] Ref. [1] This work [1] H. Ikegami et al., PRL 85, 5146 (2000) [2] R. Masutomi, et al., PRL 92, (2004)

10 S. Nakamura et al.,arxiv: v1 D. Sato et al., JLTP 158, 201 (2010); to appear IC2 ( ) F2 (fluid) Y. Onishi and K. Miyake, JPSJ 68, 3927 (1999) H. Takahashi and D.S. Hirashima, JLTP 121, 1 (2000) C2 + IC2 C2 L2 + C2? non FL QCP? s-wave? p-wave d-wave 2nd layer promotion L2 T F * G2 + L ρ (nm -2 ) (0.6 ρ 6 nm -2 )

11 ε k K K ε F Y. Niimi et al., Appl. Surf. Sci. 241, 43 (2005); PRB 73, (2006) T. Matsui et al., PRL 94, (2005)

12 T. Matsui et al., to appear (2016) 90 T = 80 K in UHV 60 Pressure Gauge to Rotary Pump sample Furnace Furnace Matching Box Copper Coil Flow Meter H 2 gas

13 0.07 nm 0.14 nm + 1 LL n = 1 n = 0 n = -1 D.A. Abanin et al., Sol. State Comm. 143, 77 (2007) (n 0 LL) ( ) (n = 0 LL) zz lower terrace zz- upper terrace T = 4.7 K B = 13 T T. Matsui et al., to appear (2016) n 0 LL l B = 7.1 nm LL0,-1 n = 0 LL (i) ZZ (EF ) (ii)

14 K. Nakayama, et. al., to appear (2016) gas inlet Δ Grafoil (A = 35 m 2 ) exfoliated graphene μ μ 1 cm lead wires suspended graphene suspended on SiO 2 F. Munoz-Rojas et al., PRL 102, (2009) graphene I + I - V + V -

15 M. Bockrath et al., Nature 397, 598 (1999) raw data CB corrected T. Fujimori et al., Nat. Commun. 4, 2162 (2013) 5 nm bulk contact 2 nm 2 nm CNT S CNT CNT S CNT 500 nm

16 K. Nakayama, et. al., to appear (2016) empty-dwcnt-ag R T α H = 0 R lnt α = 0.24 for CNT Egger et al., PRL 79, 5082 (1997) Kane et al., PRL 79, 5086 (1997) outer CNT: 1.4 nmφ metallic 99% inner CNT: 0.7 nmφ undefined

17

18 Y. Matsumoto et al., J. Low Temp. Phys. 134, 61 (2004); Physica B , 146 (2003) μ μ Temperature (mk) Magnetic field (Tesla)

19 HSW-1A HSW-2A PNS-2 HSW-1A PNS-1 PNS-2 HSW-2A HSW-2B HSW-1B PNS mm HSW-2B HSW-1B 100 mm

20

研究室ガイダンス(H29)福山研v2.pdf

研究室ガイダンス(H29)福山研v2.pdf J.M. Kosterlitz and D.J. Thouless, Phys. 5, L124 (1972); ibid. 6, 1181 (1973) David J. Thouless J. Michael Kosterlitz + ρ T s KT D.J. Bishop and J.D. Reppy, PRL 40, 1727 (1978) ( ) = 2k B m2 T KT π 2 T

More information

19 σ = P/A o σ B Maximum tensile strength σ % 0.2% proof stress σ EL Elastic limit Work hardening coefficient failure necking σ PL Proportional

19 σ = P/A o σ B Maximum tensile strength σ % 0.2% proof stress σ EL Elastic limit Work hardening coefficient failure necking σ PL Proportional 19 σ = P/A o σ B Maximum tensile strength σ 0. 0.% 0.% proof stress σ EL Elastic limit Work hardening coefficient failure necking σ PL Proportional limit ε p = 0.% ε e = σ 0. /E plastic strain ε = ε e

More information

C-2 NiS A, NSRRC B, SL C, D, E, F A, B, Yen-Fa Liao B, Ku-Ding Tsuei B, C, C, D, D, E, F, A NiS 260 K V 2 O 3 MIT [1] MIT MIT NiS MIT NiS Ni 3 S 2 Ni

C-2 NiS A, NSRRC B, SL C, D, E, F A, B, Yen-Fa Liao B, Ku-Ding Tsuei B, C, C, D, D, E, F, A NiS 260 K V 2 O 3 MIT [1] MIT MIT NiS MIT NiS Ni 3 S 2 Ni M (emu/g) C 2, 8, 9, 10 C-1 Fe 3 O 4 A, SL B, NSRRC C, D, E, F A, B, B, C, Yen-Fa Liao C, Ku-Ding Tsuei C, D, D, E, F, A Fe 3 O 4 120K MIT V 2 O 3 MIT Cu-doped Fe3O4 NCs MIT [1] Fe 3 O 4 MIT Cu V 2 O 3

More information

1 1.1,,,.. (, ),..,. (Fig. 1.1). Macro theory (e.g. Continuum mechanics) Consideration under the simple concept (e.g. ionic radius, bond valence) Stru

1 1.1,,,.. (, ),..,. (Fig. 1.1). Macro theory (e.g. Continuum mechanics) Consideration under the simple concept (e.g. ionic radius, bond valence) Stru 1. 1-1. 1-. 1-3.. MD -1. -. -3. MD 1 1 1.1,,,.. (, ),..,. (Fig. 1.1). Macro theory (e.g. Continuum mechanics) Consideration under the simple concept (e.g. ionic radius, bond valence) Structural relaxation

More information

1 9 v.0.1 c (2016/10/07) Minoru Suzuki T µ 1 (7.108) f(e ) = 1 e β(e µ) 1 E 1 f(e ) (Bose-Einstein distribution function) *1 (8.1) (9.1)

1 9 v.0.1 c (2016/10/07) Minoru Suzuki T µ 1 (7.108) f(e ) = 1 e β(e µ) 1 E 1 f(e ) (Bose-Einstein distribution function) *1 (8.1) (9.1) 1 9 v..1 c (216/1/7) Minoru Suzuki 1 1 9.1 9.1.1 T µ 1 (7.18) f(e ) = 1 e β(e µ) 1 E 1 f(e ) (Bose-Einstein distribution function) *1 (8.1) (9.1) E E µ = E f(e ) E µ (9.1) µ (9.2) µ 1 e β(e µ) 1 f(e )

More information

Outline I. Introduction: II. Pr 2 Ir 2 O 7 Like-charge attraction III.

Outline I. Introduction: II. Pr 2 Ir 2 O 7 Like-charge attraction III. Masafumi Udagawa Dept. of Physics, Gakushuin University Mar. 8, 16 @ in Gakushuin University Reference M. U., L. D. C. Jaubert, C. Castelnovo and R. Moessner, arxiv:1603.02872 Outline I. Introduction:

More information

C 3 C-1 Cu 2 (OH) 3 Cl A, B A, A, A, B, B Cu 2 (OH) 3 Cl clinoatacamite S=1/2 Heisenberg Cu 2+ T N 1 =18K T N 2 =6.5K SR T N 2 T N 1 T N 1 0T 1T 2T 3T

C 3 C-1 Cu 2 (OH) 3 Cl A, B A, A, A, B, B Cu 2 (OH) 3 Cl clinoatacamite S=1/2 Heisenberg Cu 2+ T N 1 =18K T N 2 =6.5K SR T N 2 T N 1 T N 1 0T 1T 2T 3T C 3 C-1 Cu 2 (OH) 3 Cl A, B A, A, A, B, B Cu 2 (OH) 3 Cl clinoatacamite S=1/2 Heisenberg Cu 2+ T N 1 =18K T N 2 =6.5K SR T N 2 T N 1 T N 1 0T 1T 2T 3T 4T 5T 6T C (J/K mol) 20 18 16 14 12 10 8 6 0 0 5 10

More information

46 12 3 1 ATP ( ) ATP ~P 1~P hyd Gº 1 1 1950 ~P hyd Gº Hansia et al. Biophys Chem 119: 127, 2006 ~P hyd Gº 1? ATP hyd Gº ATP ATP ATP ~P ε ~P George [BBA 223: 1, 1970] ~P 2) hyd Gº 1. ph Mg 2+ 2. 1 2 2

More information

75 unit: mm Fig. Structure of model three-phase stacked transformer cores (a) Alternate-lap joint (b) Step-lap joint 3 4)

75 unit: mm Fig. Structure of model three-phase stacked transformer cores (a) Alternate-lap joint (b) Step-lap joint 3 4) 3 * 35 (3), 7 Analysis of Local Magnetic Properties and Acoustic Noise in Three-Phase Stacked Transformer Core Model Masayoshi Ishida Kenichi Sadahiro Seiji Okabe 3.7 T 5 Hz..4 3 Synopsis: Methods of local

More information

1 URu2Si2 2 (n,l,m) + σ l: 4f (n=4,l=3) 5f (n=5,l=3) d 5 1. S 2. 1. L L=0(S), 1(P), 2(D), 3(F), 4(G), 5(H),... (2S+1) LJ 3 () d ~ > f >> > 1~10 ev 0.1~0.3 ev 1~100 K LS (Russell-Saunders) f 2 less than

More information

1.06μm帯高出力高寿命InGaAs歪量子井戸レーザ

1.06μm帯高出力高寿命InGaAs歪量子井戸レーザ rjtenmy@ipc.shizuoka.ac.jp ZnO RPE-MOCVD UV- ZnO MQW LED/PD & Energy harvesting LED ( ) PV & ZnO... 1970 1980 1990 2000 2010 SAW NTT ZnO LN, LT IC PbInAu/PbBi Nb PIN/FET LD/HBT 0.98-1.06m InGaAs QW-LD

More information

References: 3 June 21, 2002 K. Hukushima and H. Kawamura, Phys.Rev.E, 61, R1008 (2000). M. Matsumoto, K. Hukushima,

References: 3 June 21, 2002 K. Hukushima and H. Kawamura, Phys.Rev.E, 61, R1008 (2000). M. Matsumoto, K. Hukushima, References: 3 mailto:hukusima@issp.u-tokyo.ac.jp June 21, 2002 K. Hukushima and H. Kawamura, Phys.Rev.E, 61, R1008 (2000). M. Matsumoto, K. Hukushima, and H. Takayama, cond-mat/0204225. Typeset by FoilTEX

More information

修士論文

修士論文 SAW 14 2 M3622 i 1 1 1-1 1 1-2 2 1-3 2 2 3 2-1 3 2-2 5 2-3 7 2-3-1 7 2-3-2 2-3-3 SAW 12 3 13 3-1 13 3-2 14 4 SAW 19 4-1 19 4-2 21 4-2-1 21 4-2-2 22 4-3 24 4-4 35 5 SAW 36 5-1 Wedge 36 5-1-1 SAW 36 5-1-2

More information

1-x x µ (+) +z µ ( ) Co 2p 3d µ = µ (+) µ ( ) W. Grange et al., PRB 58, 6298 (1998). 1.0 0.5 0.0 2 1 XMCD 0-1 -2-3x10-3 7.1 7.2 7.7 7.8 8.3 8.4 up E down ρ + (E) ρ (E) H, M µ f + f E F f + f f + f X L

More information

untitled

untitled 2012 R. Leturcq IEMN CNRSK. Ensslin A. C. Gossard Univ. California Markus Büttiker, Peter Hänggi, Pierre Gaspard, (S) 1 2 1980 etc. Exotic materials MEMS micro electro mechanical systems etc. ~ 0.8μm Webb

More information

JKR Point loading of an elastic half-space 2 3 Pressure applied to a circular region Boussinesq, n =

JKR Point loading of an elastic half-space 2 3 Pressure applied to a circular region Boussinesq, n = JKR 17 9 15 1 Point loading of an elastic half-space Pressure applied to a circular region 4.1 Boussinesq, n = 1.............................. 4. Hertz, n = 1.................................. 6 4 Hertz

More information

1 2 2 (Dielecrics) Maxwell ( ) D H

1 2 2 (Dielecrics) Maxwell ( ) D H 2003.02.13 1 2 2 (Dielecrics) 4 2.1... 4 2.2... 5 2.3... 6 2.4... 6 3 Maxwell ( ) 9 3.1... 9 3.2 D H... 11 3.3... 13 4 14 4.1... 14 4.2... 14 4.3... 17 4.4... 19 5 22 6 THz 24 6.1... 24 6.2... 25 7 26

More information

MUFFIN3

MUFFIN3 MUFFIN - MUltiFarious FIeld simulator for Non-equilibrium system - ( ) MUFFIN WG3 - - JCII, - ( ) - ( ) - ( ) - (JSR) - - MUFFIN sec -3 msec -6 sec GOURMET SUSHI MUFFIN -9 nsec PASTA -1 psec -15 fsec COGNAC

More information

nsg02-13/ky045059301600033210

nsg02-13/ky045059301600033210 φ φ φ φ κ κ α α μ μ α α μ χ et al Neurosci. Res. Trpv J Physiol μ μ α α α β in vivo β β β β β β β β in vitro β γ μ δ μδ δ δ α θ α θ α In Biomechanics at Micro- and Nanoscale Levels, Volume I W W v W

More information

Yuzo Nakamura, Kagoshima Univ., Dept Mech Engr. perfect crystal imperfect crystal point defect vacancy self-interstitial atom substitutional impurity

Yuzo Nakamura, Kagoshima Univ., Dept Mech Engr. perfect crystal imperfect crystal point defect vacancy self-interstitial atom substitutional impurity perfect crystal imperfect crystal point defect vacancy self-interstitial atom substitutional impurity atom interstitial impurity atom line defect dislocation planar defect surface grain boundary interface

More information

note4.dvi

note4.dvi 10 016 6 0 4 (quantum wire) 4.1 4.1.1.6.1, 4.1(a) V Q N dep ( ) 4.1(b) w σ E z (d) E z (d) = σ [ ( ) ( )] x w/ x+w/ π+arctan arctan πǫǫ 0 d d (4.1) à ƒq [ƒg w ó R w d V( x) QŽŸŒ³ džq x (a) (b) 4.1 (a)

More information

Microsoft Word - 学士論文(表紙).doc

Microsoft Word - 学士論文(表紙).doc GHz 18 2 1 1 3 1.1....................................... 3 1.2....................................... 3 1.3................................... 3 2 (LDV) 5 2.1................................ 5 2.2.......................

More information

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [ 3 3. 3.. H H = H + V (t), V (t) = gµ B α B e e iωt i t Ψ(t) = [H + V (t)]ψ(t) Φ(t) Ψ(t) = e iht Φ(t) H e iht Φ(t) + ie iht t Φ(t) = [H + V (t)]e iht Φ(t) Φ(t) i t Φ(t) = V H(t)Φ(t), V H (t) = e iht V (t)e

More information

/ Christopher Essex Radiation and the Violation of Bilinearity in the Thermodynamics of Irreversible Processes, Planet.Space Sci.32 (1984) 1035 Radiat

/ Christopher Essex Radiation and the Violation of Bilinearity in the Thermodynamics of Irreversible Processes, Planet.Space Sci.32 (1984) 1035 Radiat / Christopher Essex Radiation and the Violation of Bilinearity in the Thermodynamics of Irreversible Processes, Planet.Space Sci.32 (1984) 1035 Radiation and the Continuing Failure of the Bilinear Formalism,

More information

CM1-GTX

CM1-GTX CM1-GTX000-2002 R R i R ii 1-1 1-2 1-3 Process Variables Process Variables Pressure Output Analog Output Sensor Temp. Lower Range Value (0%) Upper Range Value (100%) Pressure Pressure Chart Pressure

More information

講義ノート 物性研究 電子版 Vol.3 No.1, (2013 年 T c µ T c Kammerlingh Onnes 77K ρ 5.8µΩcm 4.2K ρ 10 4 µωcm σ 77K ρ 4.2K σ σ = ne 2 τ/m τ 77K

講義ノート 物性研究 電子版 Vol.3 No.1, (2013 年 T c µ T c Kammerlingh Onnes 77K ρ 5.8µΩcm 4.2K ρ 10 4 µωcm σ 77K ρ 4.2K σ σ = ne 2 τ/m τ 77K 2 2 T c µ T c 1 1.1 1911 Kammerlingh Onnes 77K ρ 5.8µΩcm 4.2K ρ 1 4 µωcm σ 77K ρ 4.2K σ σ = ne 2 τ/m τ 77K τ 4.2K σ 58 213 email:takada@issp.u-tokyo.ac.jp 1933 Meissner Ochsenfeld λ = 1 5 cm B = χ B =

More information

( ) URL: December 2, 2003

( ) URL:   December 2, 2003 ( ) URL: http://dbs.c.u-tokyo.ac.jp/~fukushima mailto:hukusima@phys.c.u-tokyo.ac.jp December 2, 2003 Today s Contents Summary 2003/12/02 1 Cannella Mydosh(1972) Edwards Anderson(1975): Model Hamiltonian:

More information

スライド 1

スライド 1 Matsuura Laboratory SiC SiC 13 2004 10 21 22 H-SiC ( C-SiC HOY Matsuura Laboratory n E C E D ( E F E T Matsuura Laboratory Matsuura Laboratory DLTS Osaka Electro-Communication University Unoped n 3C-SiC

More information

2

2 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 2 3 01 02 03 4 04 05 06 5 07 08 09 6 10 11 12 7 13 14 15 8 16 17 18 9 19 20 21 10 22 23 24 11 FIELD MAP 12 13 http://www.pref.ishikawa.jp/shinrin/zei/index.html

More information

d (i) (ii) 1 Georges[2] Maier [3] [1] ω = 0 1

d (i) (ii) 1 Georges[2] Maier [3] [1] ω = 0 1 16 5 19 10 d (i) (ii) 1 Georges[2] Maier [3] 2 10 1 [1] ω = 0 1 [4, 5] Dynamical Mean-Field Theory (DMFT) [2] DMFT I CPA [10] CPA CPA Σ(z) z CPA Σ(z) Σ(z) Σ(z) z - CPA Σ(z) DMFT Σ(z) CPA [6] 3 1960 [7]

More information

untitled

untitled (a) (b) (c) (d) (e) (f) (g) (f) (a), (b) 1 He Gleiter 1) 5-25 nm 1/2 Hall-Petch 10 nm Hall-Petch 2) 3) 4) 2 mm 5000% 5) 1(e) 20 µm Pd, Zr 1(f) Fe 6) 10 nm 2 8) Al-- 1,500 MPa 9) 2 Fe 73.5 Si 13.5 B 9 Nb

More information

Frontier Simulation Software for Industrial Science

Frontier Simulation Software for Industrial Science PACS-CS FIRST 2005 2005 2 16 17 2 28 2 17 2 28 3 IT IT H14~H16 CHASE CHASE-3PT Protein Protein-DF ABINIT-MP 17 2 28 4 CMOS Si-CMOS CMOS-LSI CMOS ATP 10nm 17 2 28 5 17 2 28 6 CMOS CMOS-LSI LSI 90nm CMOS

More information

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0 1 1 1.1 1.) T D = T = D = kn 1. 1.4) F W = F = W/ = kn/ = 15 kn 1. 1.9) R = W 1 + W = 6 + 5 = 11 N. 1.9) W b W 1 a = a = W /W 1 )b = 5/6) = 5 cm 1.4 AB AC P 1, P x, y x, y y x 1.4.) P sin 6 + P 1 sin 45

More information

C 3 C-1 Ru 2 x Fe x CrSi A A, A, A, A, A Ru 2 x Fe x CrSi 1) 0.3 x 1.8 2) Ru 2 x Fe x CrSi/Pb BTK P Z 3 x = 1.7 Pb BTK P = ) S.Mizutani, S.Ishid

C 3 C-1 Ru 2 x Fe x CrSi A A, A, A, A, A Ru 2 x Fe x CrSi 1) 0.3 x 1.8 2) Ru 2 x Fe x CrSi/Pb BTK P Z 3 x = 1.7 Pb BTK P = ) S.Mizutani, S.Ishid C 3 C-1 Ru 2 x Fe x CrSi A A, A, A, A, A Ru 2 x Fe x CrSi 1).3 x 1.8 2) Ru 2 x Fe x CrSi/Pb BTK P Z 3 x = 1.7 Pb BTK P =.52 1) S.Mizutani, S.Ishida, S.Fujii and S.Asano, Mater. Tran. 47(26)25. 2) M.Hiroi,

More information

X X 1. 1 X 2 X 195 3, 4 Ungár modified Williamson-Hall/Warren-Averbach 5-7 modified modified Rietveld Convolutional Multiple Whole Profile CMWP 8 CMWP

X X 1. 1 X 2 X 195 3, 4 Ungár modified Williamson-Hall/Warren-Averbach 5-7 modified modified Rietveld Convolutional Multiple Whole Profile CMWP 8 CMWP X X a a b b c Characterization of dislocation evolution during work hardening of stainless steels by using XRD line-profile analysis Tomoaki KATO a, Shigeo SATO a, Yoichi SAITO b, Hidekazu TODOROKI b and

More information

E-2 A, B, C A, A, B, A, C m-cresol (NEAT) Rh S m-cresol m-cresol m-cresol x x x ,Rh N N N N H H n Polyaniline emeraldine base E-3 II

E-2 A, B, C A, A, B, A, C m-cresol (NEAT) Rh S m-cresol m-cresol m-cresol x x x ,Rh N N N N H H n Polyaniline emeraldine base E-3 II E 7, 8, 9 E-1 A, B B A, A, A,, [Novoselov, et al., Science 306, 666, (2004)].,,,.,,,.,. (t a, t b, t c ), [PRB.74, 033413, (2006)],.,, t b /t a t c /t a 0.5., [Ni, etal., ACS, Nano2, 2301, (2008)],, [Zhou

More information

(extended state) L (2 L 1, O(1), d O(V), V = L d V V e 2 /h 1980 Klitzing

(extended state) L (2 L 1, O(1), d O(V), V = L d V V e 2 /h 1980 Klitzing 1 2 2.1 [1] [2] 2.1 STM [3, 4, 5, 6] 2.1: 2 ( 3 [1] ) [7, 8] [9]( 2.2) 2 2 2.1.1 (extended state) L (2 L 1, O(1), d O(V), V = L d V V 2.1.2 1985 2 e 2 /h 1980 Klitzing 2.1. 3 [7, 8] 2.2 [10] [8] 2.2: (a)

More information

Mott散乱によるParity対称性の破れを検証

Mott散乱によるParity対称性の破れを検証 Mott Parity P2 Mott target Mott Parity Parity Γ = 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 t P P ),,, ( 3 2 1 0 1 γ γ γ γ γ γ ν ν µ µ = = Γ 1 : : : Γ P P P P x x P ν ν µ µ vector axial vector ν ν µ µ γ γ Γ ν γ

More information

SPring8菅野印刷.PDF

SPring8菅野印刷.PDF 20021219Spring-8 Ah/kg Ah/dm 3 Li -3.01 540 3860 2090 Na -2.71 970 1160 1140 Al -1.66 2690 2980 8100 Zn -0.76 7140 820 5800 Fe -0.44 7850 960 7500 Cd -0.40 8650 480 4100 Pb -0.13 11340 260 2900 H 2 0

More information

untitled

untitled /Si FET /Si FET Improvement of tunnel FET performance using narrow bandgap semiconductor silicide Improvement /Si hetero-structure of tunnel FET performance source electrode using narrow bandgap semiconductor

More information

I II

I II I II I I 8 I I 5 I 5 9 I 6 6 I 7 7 I 8 87 I 9 96 I 7 I 8 I 9 I 7 I 95 I 5 I 6 II 7 6 II 8 II 9 59 II 67 II 76 II II 9 II 8 II 5 8 II 6 58 II 7 6 II 8 8 I.., < b, b, c, k, m. k + m + c + c b + k + m log

More information

δf = δn I [ ( FI (N I ) N I ) T,V δn I [ ( FI N I ( ) F N T,V ( ) FII (N N I ) + N I ) ( ) FII T,V N II T,V T,V ] ] = 0 = 0 (8.2) = µ (8.3) G

δf = δn I [ ( FI (N I ) N I ) T,V δn I [ ( FI N I ( ) F N T,V ( ) FII (N N I ) + N I ) ( ) FII T,V N II T,V T,V ] ] = 0 = 0 (8.2) = µ (8.3) G 8 ( ) 8. 1 ( ) F F = F I (N I, T, V I ) + F II (N II, T, V II ) (8.1) F δf = δn I [ ( FI (N I ) N I 8. 1 111 ) T,V δn I [ ( FI N I ( ) F N T,V ( ) FII (N N I ) + N I ) ( ) FII T,V N II T,V T,V ] ] = 0

More information

[ ] (Ising model) 2 i S i S i = 1 (up spin : ) = 1 (down spin : ) (4.38) s z = ±1 4 H 0 = J zn/2 i,j S i S j (4.39) i, j z 5 2 z = 4 z = 6 3

[ ] (Ising model) 2 i S i S i = 1 (up spin : ) = 1 (down spin : ) (4.38) s z = ±1 4 H 0 = J zn/2 i,j S i S j (4.39) i, j z 5 2 z = 4 z = 6 3 4.2 4.2.1 [ ] (Ising model) 2 i S i S i = 1 (up spin : ) = 1 (down spin : ) (4.38) s z = ±1 4 H 0 = J zn/2 S i S j (4.39) i, j z 5 2 z = 4 z = 6 3 z = 6 z = 8 zn/2 1 2 N i z nearest neighbors of i j=1

More information

5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1

5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1 4 1 1.1 ( ) 5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1 da n i n da n i n + 3 A ni n n=1 3 n=1

More information

弾性論(Chen)

弾性論(Chen) Phase-field by T.Koyama Phase-field da da a( ) a + { } a d + d δ (-) δ (-) eigen a a a ε ε δ δ (-) da ε (-4) a d ε ε + δε ( ) (-5) δε d (-6) V u ul δεl + l (-7) eigen el ε ε ε (-8) σ el C ε el C { ε ε

More information

ʪ¼Á¤Î¥È¥Ý¥í¥¸¥«¥ë¸½¾Ý (2016ǯ¥Î¡¼¥Ù¥ë¾Þ¤Ë´ØÏ¢¤·¤Æ)

ʪ¼Á¤Î¥È¥Ý¥í¥¸¥«¥ë¸½¾Ý  (2016ǯ¥Î¡¼¥Ù¥ë¾Þ¤Ë´ØÏ¢¤·¤Æ) (2016 ) Dept. of Phys., Kyushu Univ. 2017 8 10 1 / 59 2016 Figure: D.J.Thouless F D.M.Haldane J.M.Kosterlitz TOPOLOGICAL PHASE TRANSITIONS AND TOPOLOGICAL PHASES OF MATTER 2 / 59 ( ) ( ) (Dirac, t Hooft-Polyakov)

More information

18 2 20 W/C W/C W/C 4-4-1 0.05 1.0 1000 1. 1 1.1 1 1.2 3 2. 4 2.1 4 (1) 4 (2) 4 2.2 5 (1) 5 (2) 5 2.3 7 3. 8 3.1 8 3.2 ( ) 11 3.3 11 (1) 12 (2) 12 4. 14 4.1 14 4.2 14 (1) 15 (2) 16 (3) 17 4.3 17 5. 19

More information

スケーリング理論とはなにか? - --尺度を変えて見えること--

スケーリング理論とはなにか?  - --尺度を変えて見えること-- ? URL: http://maildbs.c.u-tokyo.ac.jp/ fukushima mailto:hukusima@phys.c.u-tokyo.ac.jp DEX-SMI @ 2006 12 17 ( ) What is scaling theory? DEX-SMI 1 / 40 Outline Outline 1 2 3 4 ( ) What is scaling theory?

More information

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) =

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) = 1 9 8 1 1 1 ; 1 11 16 C. H. Scholz, The Mechanics of Earthquakes and Faulting 1. 1.1 1.1.1 : - σ = σ t sin πr a λ dσ dr a = E a = π λ σ πr a t cos λ 1 r a/λ 1 cos 1 E: σ t = Eλ πa a λ E/π γ : λ/ 3 γ =

More information

3 57 210 57 JR 57325 132 28 IC JCT 28 4.1.1 4.1.1 4.1.2 4.1.2 4.1.1 11 35) 4.1.3 4.1.4 4.1.5 77 4.1.1 4.1.2 4.1.3 4.1.2 11 4.1.4 4.1.5 78 298 299 298 325 298 57 299 471 650 299 298 325 400m 640m 4.1.3

More information

0.45m1.00m 1.00m 1.00m 0.33m 0.33m 0.33m 0.45m 1.00m 2

0.45m1.00m 1.00m 1.00m 0.33m 0.33m 0.33m 0.45m 1.00m 2 24 11 10 24 12 10 30 1 0.45m1.00m 1.00m 1.00m 0.33m 0.33m 0.33m 0.45m 1.00m 2 23% 29% 71% 67% 6% 4% n=1525 n=1137 6% +6% -4% -2% 21% 30% 5% 35% 6% 6% 11% 40% 37% 36 172 166 371 213 226 177 54 382 704 216

More information

10 117 5 1 121841 4 15 12 7 27 12 6 31856 8 21 1983-2 - 321899 12 21656 2 45 9 2 131816 4 91812 11 20 1887 461971 11 3 2 161703 11 13 98 3 16201700-3 - 2 35 6 7 8 9 12 13 12 481973 12 2 571982 161703 11

More information

( ) 1 1.1? ( ) ( ) ( ) 1.1(a) T m ( ) 1.1(a) T g ( ) T g T g 500 74% ( ) T K ( 1.1(b) 15 T g T g 10 13 T g T g T g [ ] A ( ) exp (1.1) T T 0 Vogel-Fulcher T 0 T 0 T K T K Ortho-Terphenil (OTP) SiO 2 (1.1)

More information

薄膜結晶成長の基礎3.dvi

薄膜結晶成長の基礎3.dvi 3 464-8602 1 [1] 2 3 (epitaxy) (homoepitaxy) (heteroepitaxy) 1 Makio Uwaha. E-mail:uwaha@nagoya-u.jp; http://slab.phys.nagoya-u.ac.jp/uwaha/ 2 3.1 [2] (strain) r u(r) ɛ αγ (r) = 1 ( uα + u ) γ (3.1) 2

More information

2016 ǯ¥Î¡¼¥Ù¥ëʪÍý³Ø¾Þ²òÀ⥻¥ß¥Ê¡¼ Kosterlitz-Thouless ž°Ü¤È Haldane ͽÁÛ

2016 ǯ¥Î¡¼¥Ù¥ëʪÍý³Ø¾Þ²òÀ⥻¥ß¥Ê¡¼  Kosterlitz-Thouless ž°Ü¤È Haldane ͽÁÛ 2016 Kosterlitz-Thouless Haldane Dept. of Phys., Kyushu Univ. 2016 11 29 2016 Figure: D.J.Thouless F D.M.Haldane J.M.Kosterlitz TOPOLOGICAL PHASE TRANSITIONS AND TOPOLOGICAL PHASES OF MATTER ( ) ( ) (Dirac,

More information

強相関電子系ペロブスカイト遷移金属酸化物による光エレクトロニクス 平成 12 年 11 月 ~ 平成 18 年 3 月 研究代表者 : 花村榮一 ( 千歳科学技術大学光科学部 教授 )

強相関電子系ペロブスカイト遷移金属酸化物による光エレクトロニクス 平成 12 年 11 月 ~ 平成 18 年 3 月 研究代表者 : 花村榮一 ( 千歳科学技術大学光科学部 教授 ) 強相関電子系ペロブスカイト遷移金属酸化物による光エレクトロニクス 平成 12 年 11 月 ~ 平成 18 年 3 月 研究代表者 : 花村榮一 ( 千歳科学技術大学光科学部 教授 ) χ αβγω χ αβγωβγ αχ χ -1 - ω ω Γ ω ω ω ω ω ω ω ω ω ω ω ω ω ω ω ω ω ω ω ω ω ω ω -2 - -3 - BO 2 (Rutile) TiO 2

More information

untitled

untitled 2013 74 Tokyo Institute of Technology AlGaN/GaN C Annealing me Dependent Contact Resistance of C Electrodes on AlGaN/GaN, Tokyo Tech.FRC, Tokyo Tech. IGSSE, Toshiba, Y. Matsukawa, M. Okamoto, K. Kakushima,

More information

磁気測定によるオーステンパ ダクタイル鋳鉄の残留オーステナイト定量

磁気測定によるオーステンパ ダクタイル鋳鉄の残留オーステナイト定量 33 Non-destructive Measurement of Retained Austenite Content in Austempered Ductile Iron Yoshio Kato, Sen-ichi Yamada, Takayuki Kato, Takeshi Uno Austempered Ductile Iron (ADI) 100kg/mm 2 10 ADI 10 X ADI

More information

表紙

表紙 Akira Fujishima 2005.Vo.3 1 Kiyoshi kanamura kanamura-kiyoshi@c.metro-u.ac.jp 2 2005.Vol.3 Rechargeable Lithium Ion-Battery Active Material Liquid Electrolyte σ = 10-2 10-3 S cm -1 3D Interface of Solid

More information

hν 688 358 979 309 308.123 Hz α α α α α α No.37 に示す Ti Sa レーザーで実現 術移転も成功し 図 9 に示すよ うに 2 時間は連続測定が可能な システムを実現した Advanced S o l i d S t a t e L a s e r s 2016, JTu2A.26 1-3. 今後は光周波 数比計測装置としてさらに改良 を加えていくとともに

More information

1

1 1 1.. ( ) ( ) ( ) (A) E icb φ Et = + cdiva ct (H3) (B) ( ) ct ct ' ctct ' + ' = ' ct ' + ct ' i( ') (H3,H18) 3 (i) cosh Ψ = cosh ΘcoshΩ sinhψ sinhθ sinhω cosh Ψ cosh Θ cosh Ω = sinhψ sinhθ sinhω tanhψ

More information

2章.doc

2章.doc C 2 H 4 N 2 O 2 LPG LIF 13 2.1 2.1.1 2.1 2.2 115mm70mm 727cm 3 Hand Pump Injector Driver Computer Constant Volume Chamber Injector Piezo-electronic transducer Fan Spark Plug Temperature Indicator C 2 H

More information

C el = 3 2 Nk B (2.14) c el = 3k B C el = 3 2 Nk B

C el = 3 2 Nk B (2.14) c el = 3k B C el = 3 2 Nk B I ino@hiroshima-u.ac.jp 217 11 14 4 4.1 2 2.4 C el = 3 2 Nk B (2.14) c el = 3k B 2 3 3.15 C el = 3 2 Nk B 3.15 39 2 1925 (Wolfgang Pauli) (Pauli exclusion principle) T E = p2 2m p T N 4 Pauli Sommerfeld

More information

0.1 I I : 0.2 I

0.1 I I : 0.2 I 1, 14 12 4 1 : 1 436 (445-6585), E-mail : sxiida@sci.toyama-u.ac.jp 0.1 I I 1. 2. 3. + 10 11 4. 12 1: 0.2 I + 0.3 2 1 109 1 14 3,4 0.6 ( 10 10, 2 11 10, 12/6( ) 3 12 4, 4 14 4 ) 0.6.1 I 1. 2. 3. 0.4 (1)

More information

「東京都子供・子育て支援総合計画」中間見直し版(案)第2章 子供と家庭をめぐる状況

「東京都子供・子育て支援総合計画」中間見直し版(案)第2章 子供と家庭をめぐる状況 1 (1) (2) (3) (4) (5) (6) (7) (8) 2 (1) (2) (3) (4) (5) (6) (7) 10,000 100% 8,000 78.7% 78.1% 79.3% 78.3% 74.1% 75.4% 73.2% 80% 6,000 46.6% 47.5% 50.9% 51.5% 49.9% 51.8% 52.2% 60% 4,000 2,000 3,713

More information

,,., (,, SiO 2, Si-N, ),,,,,.,.,,, (Schottky). [ ].,..,.,., 1 m µm 10., 10 5, [ ] (6N-103)..,.,. [ ] 1. (,, ) :,.,,.., (HF),.

,,., (,, SiO 2, Si-N, ),,,,,.,.,,, (Schottky). [ ].,..,.,., 1 m µm 10., 10 5, [ ] (6N-103)..,.,. [ ] 1. (,, ) :,.,,.., (HF),. 17 2 2.1,,., (,, SiO 2, Si-N, ),,,,,.,.,,, (Schottky). [ ].,..,.,., 1 m 3 0.1 µm 10., 10 5, 10 7. [ ] (6N-103)..,.,. [ ] 1. (,, ) :,.,,.., (HF),. 18 2,,.,,. 2.,,,.,,. 2.1. 19 2.1.1 1. 1, (Schottky),,,.

More information

表1.eps

表1.eps Vol.1 C ontents 1 2 cell-free EMBO J Proc. Natl. Acad. Sci. USA NatureEMBO J 3 RNA NatureEMBO J Nature EMBO J 4 5 HCV HCV HCV HCV RNA HCV in situ 6 7 8 Nat Struct Mol Biol J Biol Chem Nat Commun J Virol

More information

PowerPoint Presentation

PowerPoint Presentation / 2008/04/04 Ferran Salleras 1 2 40Gb/s 40Gb/s PC QD PC: QD: e.g. PCQD PC/QD 3 CP-ON SP T CP-OFF PC/QD-SMZ T ~ps, 40Gb/s ~100fJ T CP-ON CP-OFF 500µm500µm Photonic Crystal SMZ K. Tajima, JJAP, 1993. Control

More information

PDF

PDF 1 1 1 1-1 1 1-9 1-3 1-1 13-17 -3 6-4 6 3 3-1 35 3-37 3-3 38 4 4-1 39 4- Fe C TEM 41 4-3 C TEM 44 4-4 Fe TEM 46 4-5 5 4-6 5 5 51 6 5 1 1-1 1991 1,1 multiwall nanotube 1993 singlewall nanotube ( 1,) sp 7.4eV

More information

1 2 LDA Local Density Approximation 2 LDA 1 LDA LDA N N N H = N [ 2 j + V ion (r j ) ] + 1 e 2 2 r j r k j j k (3) V ion V ion (r) = I Z I e 2 r

1 2 LDA Local Density Approximation 2 LDA 1 LDA LDA N N N H = N [ 2 j + V ion (r j ) ] + 1 e 2 2 r j r k j j k (3) V ion V ion (r) = I Z I e 2 r 11 March 2005 1 [ { } ] 3 1/3 2 + V ion (r) + V H (r) 3α 4π ρ σ(r) ϕ iσ (r) = ε iσ ϕ iσ (r) (1) KS Kohn-Sham [ 2 + V ion (r) + V H (r) + V σ xc(r) ] ϕ iσ (r) = ε iσ ϕ iσ (r) (2) 1 2 1 2 2 1 1 2 LDA Local

More information

磁性物理学 - 遷移金属化合物磁性のスピンゆらぎ理論

磁性物理学 - 遷移金属化合物磁性のスピンゆらぎ理論 email: takahash@sci.u-hyogo.ac.jp May 14, 2009 Outline 1. 2. 3. 4. 5. 6. 2 / 262 Today s Lecture: Mode-mode Coupling Theory 100 / 262 Part I Effects of Non-linear Mode-Mode Coupling Effects of Non-linear

More information

untitled

untitled /, S=1/2 S=0 S=1/2 - S// m H m H = S G e + + G Z (t) 1 0 t G Z (t) 1 0 t G Z (t) 1 0 t SR G Z (t) = 1/3 + (2/3)(1-2 t 2 )exp(- 2 t 2 /2) G Z (t) 1-1/3 1/3 0 3/ 3/ t G Z (t)

More information

untitled

untitled 1 Physical Chemistry I (Basic Chemical Thermodynamics) [I] [II] [III] [IV] Introduction Energy(The First Law of Thermodynamics) Work Heat Capacity C p and C v Adiabatic Change Exact(=Perfect) Differential

More information

a L = Ψ éiγ c pa qaa mc ù êë ( - )- úû Ψ 1 Ψ 4 γ a a 0, 1,, 3 {γ a, γ b } η ab æi O ö æo ö β, σ = ço I α = è - ø çèσ O ø γ 0 x iβ γ i x iβα i

a L = Ψ éiγ c pa qaa mc ù êë ( - )- úû Ψ 1 Ψ 4 γ a a 0, 1,, 3 {γ a, γ b } η ab æi O ö æo ö β, σ = ço I α = è - ø çèσ O ø γ 0 x iβ γ i x iβα i 解説 4 matsuo.mamoru jaea.go.jp 4 eizi imr.tohoku.ac.jp 4 maekawa.sadamichi jaea.go.jp i ii iii i Gd Tb Dy g khz Pt ii iii Keywords vierbein 3 dreibein 4 vielbein torsion JST-ERATO 1 017 1. 1..1 a L = Ψ

More information

006 11 8 0 3 1 5 1.1..................... 5 1......................... 6 1.3.................... 6 1.4.................. 8 1.5................... 8 1.6................... 10 1.6.1......................

More information

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2 1 6 6.1 (??) (P = ρ rad /3) ρ rad T 4 d(ρv ) + PdV = 0 (6.1) dρ rad ρ rad + 4 da a = 0 (6.2) dt T + da a = 0 T 1 a (6.3) ( ) n ρ m = n (m + 12 ) m v2 = n (m + 32 ) T, P = nt (6.4) (6.1) d [(nm + 32 ] )a

More information

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j 6 6.. [, b] [, d] ij P ij ξ ij, η ij f Sf,, {P ij } Sf,, {P ij } k m i j m fξ ij, η ij i i j j i j i m i j k i i j j m i i j j k i i j j kb d {P ij } lim Sf,, {P ij} kb d f, k [, b] [, d] f, d kb d 6..

More information

2007 5 iii 1 1 1.1.................... 1 2 5 2.1 (shear stress) (shear strain)...... 5 2.1.1...................... 6 2.1.2.................... 6 2.2....................... 7 2.2.1........................

More information

,,,,., = (),, (1) (4) :,,,, (1),. (2),, =. (3),,. (4),,,,.. (1) (3), (4).,,., () : = , ( ) : = F 1 + F 2 + F 3 + ( ) : = i Fj j=1 2

,,,,., = (),, (1) (4) :,,,, (1),. (2),, =. (3),,. (4),,,,.. (1) (3), (4).,,., () : = , ( ) : = F 1 + F 2 + F 3 + ( ) : = i Fj j=1 2 6 2 6.1 2 2, 2 5.2 R 2, 2 (R 2, B, µ)., R 2,,., 1, 2, 3,., 1, 2, 3,,. () : = 1 + 2 + 3 + (6.1.1).,,, 1 ,,,,., = (),, (1) (4) :,,,, (1),. (2),, =. (3),,. (4),,,,.. (1) (3), (4).,,., () : = 1 + 2 + 3 +,

More information

,.,, L p L p loc,, 3., L p L p loc, Lp L p loc.,.,,.,.,.,, L p, 1 p, L p,. d 1, R d d. E R d. (E, M E, µ)., L p = L p (E). 1 p, E f(x), f(x) p d

,.,, L p L p loc,, 3., L p L p loc, Lp L p loc.,.,,.,.,.,, L p, 1 p, L p,. d 1, R d d. E R d. (E, M E, µ)., L p = L p (E). 1 p, E f(x), f(x) p d 1 L p L p loc, L p L p loc, Lp L p loc,., 1 p.,. L p L p., L 1, L 1., L p, L p. L 1., L 1 L 1. L p L p loc L p., L 2 L 2 loc,.,. L p L p loc L p., L p L p loc., L p L p loc 1 ,.,, L p L p loc,, 3., L p

More information

DlC

DlC 1080309 20 2 19 1 3 1.1 3 1.2 DLC 3 1.3 4 2 CVD 5 2.1 5 2.2 5 2.3 7 2.4 9 2.5 CVD 10 2.6 DLC 10 3 DLC 11 3.1 CVD 11 3.2 DLC 13 3.3 14 3.4 15 4 DLC 20 4.1 20 4.2 21 5 25 5.1 25 5.2 25 5.3 26 5.4 28-1 -

More information

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k 63 3 Section 3.1 g 3.1 3.1: : 64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () 3 9.8 m/s 2 3.2 3.2: : a) b) 5 15 4 1 1. 1 3 14. 1 3 kg/m 3 2 3.3 1 3 5.8 1 3 kg/m 3 3 2.65 1 3 kg/m 3 4 6 m 3.1. 65 5

More information

From Evans Application Notes

From Evans Application Notes 3 From Evans Application Notes http://www.eaglabs.com From Evans Application Notes http://www.eaglabs.com XPS AES ISS SSIMS ATR-IR 1-10keV µ 1 V() r = kx 2 = 2π µν x mm 1 2 µ= m + m 1 2 1 k ν = OSC 2

More information

SAXS Table 1 DSC POM SAXSSAXS PF BL-10C BL-15A Fig. 2 LC12 DSC SAXS 138 C T iso T iso SAXS q=1.4 nm -1 q=(4π/λ)sin(θ/2), λ:, θ: Fig. 3 LC12 T iso Figu

SAXS Table 1 DSC POM SAXSSAXS PF BL-10C BL-15A Fig. 2 LC12 DSC SAXS 138 C T iso T iso SAXS q=1.4 nm -1 q=(4π/λ)sin(θ/2), λ:, θ: Fig. 3 LC12 T iso Figu 1 1 1 1,2 1,2 1 2 Correlation between Microphase Separation and Liquid Crystallization in Structure Formation of Liquid Crystalline Block Copolymers Shin-ichi TANIGUCHI 1, Hiroki TAKESHITA 1, Masamitsu

More information

(2/24) AV OA 288 / ferrite_mn-zn_material_characteristics_ja.fm

(2/24) AV OA 288 / ferrite_mn-zn_material_characteristics_ja.fm January 28 Mn-Zn (2/24) AV OA 288 / ferrite_mn-zn_material_characteristics_ja.fm (3/24) Contents... 4 PC47... PC9... 6 PC9... 7 HS72... 8 HS... 9 HS2...... HA... 2 HB2... 3 HC2... 4 HC3... HP... 6 DNW4...

More information

T g T 0 T 0 fragile * ) 1 9) η T g T g /T *1. τ τ η = Gτ. G τ

T g T 0 T 0 fragile * ) 1 9) η T g T g /T *1. τ τ η = Gτ. G τ 615-851 ryoichi@chemekyoto-uacjp 66-852 onuki@scphyskyoto-uacjp 1 T g T T fragile *2 1 11) 1 9) η T g T g /T *1 τ 198 τ η = Gτ G τ T c η τ 12) strong fragile T c strong η η exp(e/k B T ) 1 2/3 E SiO 2

More information

untitled

untitled BELLE TOP 12 1 3 2 BELLE 4 2.1 BELLE........................... 4 2.1.1......................... 4 2.1.2 B B........................ 7 2.1.3 B CP............... 8 2.2 BELLE...................... 9 2.3

More information

d > 2 α B(y) y (5.1) s 2 = c z = x d 1+α dx ln u 1 ] 2u ψ(u) c z y 1 d 2 + α c z y t y y t- s 2 2 s 2 > d > 2 T c y T c y = T t c = T c /T 1 (3.

d > 2 α B(y) y (5.1) s 2 = c z = x d 1+α dx ln u 1 ] 2u ψ(u) c z y 1 d 2 + α c z y t y y t- s 2 2 s 2 > d > 2 T c y T c y = T t c = T c /T 1 (3. 5 S 2 tot = S 2 T (y, t) + S 2 (y) = const. Z 2 (4.22) σ 2 /4 y = y z y t = T/T 1 2 (3.9) (3.15) s 2 = A(y, t) B(y) (5.1) A(y, t) = x d 1+α dx ln u 1 ] 2u ψ(u), u = x(y + x 2 )/t s 2 T A 3T d S 2 tot S

More information

II (No.2) 2 4,.. (1) (cm) (2) (cm) , (

II (No.2) 2 4,.. (1) (cm) (2) (cm) , ( II (No.1) 1 x 1, x 2,..., x µ = 1 V = 1 k=1 x k (x k µ) 2 k=1 σ = V. V = σ 2 = 1 x 2 k µ 2 k=1 1 µ, V σ. (1) 4, 7, 3, 1, 9, 6 (2) 14, 17, 13, 11, 19, 16 (3) 12, 21, 9, 3, 27, 18 (4) 27.2, 29.3, 29.1, 26.0,

More information

スライド タイトルなし

スライド タイトルなし 006 8 (g cm -3 ) 1 ~10-8 cm ~10-1 cm 10 14 (n) 10 15 ~10-13 cm (p) (q) RGB uds... (contd.) 0 ~ fm np nn,pp (contd.) 1 GeV 100 GeV 1 TeV RI FAIR GSI RHIC BNL LHC CERN (contd.) T < 9 ~ 10 K (contd.) (k B

More information

Undulator.dvi

Undulator.dvi X X 1 1 2 Free Electron Laser: FEL 2.1 2 2 3 SACLA 4 SACLA [1]-[6] [7] 1: S N λ [9] XFEL OHO 13 X [8] 2 2.1 2(a) (c) z y y (a) S N 90 λ u 4 [10, 11] Halbach (b) 2: (a) (b) (c) (c) 1 2 [11] B y = n=1 B

More information

meiji_resume_1.PDF

meiji_resume_1.PDF β β β (q 1,q,..., q n ; p 1, p,..., p n ) H(q 1,q,..., q n ; p 1, p,..., p n ) Hψ = εψ ε k = k +1/ ε k = k(k 1) (x, y, z; p x, p y, p z ) (r; p r ), (θ; p θ ), (ϕ; p ϕ ) ε k = 1/ k p i dq i E total = E

More information

NETES No.CG V

NETES No.CG V 1 2006 6 NETES No.CG-050001-V 2007 5 2 1 2 1 19 5 1 2 19 8 2 i 1 1 1.1 1 1.2 2 1.3 2 2 3 2.1 3 2.2 8 3 9 3.1 9 3.2 10 3.3 13 3.3.1 13 3.3.2 14 3.3.3 14 3.3.4 16 3.3.5 17 3.3.6 18 3.3.7 21 3.3.8 22 3.4

More information

No pp The Relationship between Southeast Asian Summer Monsoon and Upper Atmospheric Field over Eurasia Takeshi MORI and Shuji YAMAKAWA

No pp The Relationship between Southeast Asian Summer Monsoon and Upper Atmospheric Field over Eurasia Takeshi MORI and Shuji YAMAKAWA No.42 2007 pp.159 166 The Relationship between Southeast Asian Summer Monsoon and Upper Atmospheric Field over Eurasia Takeshi MORI and Shuji YAMAKAWA Received September 30, 2006 Using Southeast Asian

More information

力学的性質

力学的性質 Materials Science And Engineering, An Introduction: by William D. Callister, Jr., John Wiley & Sons, Inc. Mechanical Metallurgy, G.E.Dieter, McGraw Hill, 1987 Fundamentals of Metal Forming, Robert H. Wagoner,

More information

42 3 u = (37) MeV/c 2 (3.4) [1] u amu m p m n [1] m H [2] m p = (4) MeV/c 2 = (13) u m n = (4) MeV/c 2 =

42 3 u = (37) MeV/c 2 (3.4) [1] u amu m p m n [1] m H [2] m p = (4) MeV/c 2 = (13) u m n = (4) MeV/c 2 = 3 3.1 3.1.1 kg m s J = kg m 2 s 2 MeV MeV [1] 1MeV=1 6 ev = 1.62 176 462 (63) 1 13 J (3.1) [1] 1MeV/c 2 =1.782 661 731 (7) 1 3 kg (3.2) c =1 MeV (atomic mass unit) 12 C u = 1 12 M(12 C) (3.3) 41 42 3 u

More information

eto-vol1.dvi

eto-vol1.dvi ( 1) 1 ( [1] ) [] ( ) (AC) [3] [4, 5, 6] 3 (i) AC (ii) (iii) 3 AC [3, 7] [4, 5, 6] 1.1 ( e; e>0) Ze r v [ 1(a)] v [ 1(a )] B = μ 0 4π Zer v r 3 = μ 0 4π 1 Ze l m r 3, μ 0 l = mr v ( l s ) s μ s = μ B s

More information