Microsoft PowerPoint - GPGPU実践基礎工学(web).pptx

Size: px
Start display at page:

Download "Microsoft PowerPoint - GPGPU実践基礎工学(web).pptx"

Transcription

1 GPU のプログラム構造 長岡技術科学大学電気電子情報工学専攻出川智啓

2 今回の内容 GPU プログラミング環境 (CUDA) GPU プログラムの実行の流れ CUDA によるプログラムの記述 カーネル (GPU で処理する関数 ) の構造 記述方法とその理由 GPU 固有のパラメータの確認 405

3 GPU(Graphics Processing Unit) とは 画像処理専用のハードウェア 具体的には画像処理用のチップ チップ単体では販売されていない PCI Ex カードで販売 ( チップ単体と区別せずに GPU と呼ぶことも多い ) マザーボードやノート PC に搭載 PCI Ex カードとして販売される GPU には, ビデオメモリと呼ばれる RAM が搭載 406

4 GPU のハードウェア構造 CUDA Core( 旧 Streaming Processor, SP) と呼ばれる演算器を多数搭載 Streaming Multiprocessor(SM, SMX) が複数の CUDA Core と SFU, メモリをまとめて管理 SFU(Special Function Unit) 数学関数を計算するユニット 複数の SM が集まって GPU を構成 407

5 Fermi アーキテクチャの構造 Tesla M2050 の仕様 SM 数 14 CUDA Core 数 448(=32 Core/SM 14 SM) 動作周波数 1,150 MHz 単精度演算ピーク性能 1.03 TFLOPS 408

6 GPU の模式図 GPU Chip Streaming Multiprocessor SM SM SM SM SM SM SM SM レジ ローカルメモリ SM SM SM SM L2 キャッシュ L1 キャッシュ スタ CUDA Core レジスタ CUDA Core 共有メモリ レジスタ CUDA Core レジスタ CUDA Core GPU Streaming Multiprocessor Streaming Multiprocessor CUDA Core CUDA Core ローカルメモリ コンスタントメモリ テクスチャメモリ グローバルメモリ 409

7 CUDA Compute Unified Device Architecture NVIDIA 社製 GPU 向け開発環境 (Windows,Linux,Mac OS X) 2007 年頃発表 C/C++ 言語 + 独自のGPU 向け拡張 専用コンパイラ (nvcc) とランタイムライブラリ いくつかの数値計算ライブラリ ( 線形代数計算,FFTなど) CUDA 登場以前 グラフィクスプログラミングを利用 足し算を行うために, 色を混ぜる処理を実行 汎用計算のためには多大な労力が必要 410

8 プログラマブルシェーダを用いた汎用計算 グラフィックス API(DirectX, OpenGL) による描画処理 + シェーダ言語 (HLSL, GLSL) による演算 void gpumain(){ vec4 ColorA = vec4(0.0, 0.0, 0.0, 0.0); vec4 ColorB = vec4(0.0, 0.0, 0.0, 0.0); vec2 TexA = vec2(0.0, 0.0); vec2 TexB = vec2(0.0, 0.0); TexA.x = gl_fragcoord.x; TexA.y = gl_fragcoord.y; TexB.x = gl_fragcoord.x; TexB.y = gl_fragcoord.y; } ColorA = texrect( texunit0, TexA ); ColorB = texrect( texunit1, TexB ); gl_fragcolor = F_ALPHA*ColorA + F_BETA*ColorB; シェーダ言語を用いた配列加算 (c= *a + *b) の例 void main(){ glutinit( &argc, argv ); glutinitwindowsize(64,64);glutcreatewindow("gpgpuhelloworld"); glgenframebuffersext(1, &g_fb); glbindframebufferext(gl_framebuffer_ext, g_fb); glgentextures(4, g_ntexid); // create (reference to) a new texture glbindtexture(opt1, texid); gltexparameteri(opt1, GL_TEXTURE_MIN_FILTER, GL_NEAREST); gltexparameteri(...); glteximage2d(opt1, 0, opt2, width, height, 0, GL_RGBA, GL_FLOAT, 0); ( 以下省略 ) GPU の処理 (GLSL) 各ピクセルに対して実行 CPU の処理 (OpenGL) 411

9 CUDA によるプログラミング CPU をホスト (Host),GPU をデバイス (Device) と表現 ホスト (CPU) 処理の流れや GPU を利用するための手続きを記述 プログラムの書き方は従来の C 言語と同じ 利用する GPU の決定,GPU へのデータ転送,GPU で実行する関数の呼び出し等 412

10 CUDA によるプログラミング CPU をホスト (Host),GPU をデバイス (Device) と表現 デバイス (GPU) 処理する内容を関数として記述 引数は利用可能, 返値は利用不可 ( 常にvoid) 関数はkernelと呼ばれる 関数呼び出しはlaunch, invokeなどと呼ばれる 413

11 Hello World 何を確認するか 最小構成のプログラムの作り方 ファイル命名規則 ( 拡張子は.c/.cpp) コンパイルの方法 (gcc, cl 等を使用 ) #include<stdio.h> int main(void){ printf("hello world n"); } return 0; helloworld.c 414

12 CUDA で Hello World 何を確認するか 最小構成のプログラムの作り方 ファイル命名規則 ( 拡張子は.cu) コンパイルの方法 (nvcc を使用 ) #include<stdio.h> int main(void){ #include<stdio.h> int main(void){ } printf("hello world n"); printf("hello world n"); return 0; helloworld.cu 違いは拡張子だけ? } return 0; helloworld.c 415

13 CUDA プログラムのコンパイル ソースファイルの拡張子は.cu nvcc を用いてコンパイル CPU が処理する箇所は gcc 等がコンパイル GPU で処理する箇所を nvcc がコンパイル helloworld.cu には CPU で処理する箇所しかない 416

14 CUDA で Hello World CUDA 専用の処理を追加 #include<stdio.h> global void kernel(){} int main(void){ GPU で実行される関数 ( カーネル ) global が追加されている kernel<<<1,1>>>(); printf("hello world n"); 通常の関数呼出とは異なり, <<<>>> が追加されている } return 0; hellokernel.cu 417

15 CUDA プログラムの実行 実行時の流れ (CPU 視点 ) 利用するGPUの初期化やデータの転送などを実行 GPUで実行する関数を呼び出し GPUから結果を取得 time CPU 初期化の指示必要なデータのコピーカーネルの実行指示 CPU と GPU は非同期 CPU は別の処理を実行可能 結果の取得 GPU 初期化メモリに書込カーネルを実行実行結果をコピー 418

16 Hello Thread(Fermi 世代以降 ) printf を GPU から呼び出し, 並列に実行 #include<stdio.h> hellothread.c int hello(){ printf("hello Thread n"); return 0; } int main(void){ hello(); 画面表示 関数呼び出し } return 0; 419

17 Hello Thread(Fermi 世代以降 ) GPU の各スレッドが画面表示 #include<stdio.h> global void hello(){ printf("hello Thread n"); } int main(void){ hellothread.cu 画面表示 (Fermi 世代以降で可能 ) コンパイル時にオプションが必要 arch=sm_20 以降 } hello<<<1,1>>>(); cudadevicesynchronize(); return 0; カーネル実行 ホストとデバイスの同期をとる CPUとGPUは原則同期しないので, 同期しないとカーネルを呼び出した直後にプログラムが終了 420

18 CUDA でカーネルを作成するときの制限 printf による画面出力 Fermi 世代以降の GPU で, コンパイルオプションを付与 arch={sm_20 sm_21 sm_30 sm_32 sm_35 sm_50 sm_52} エミュレーションモード GPU の動作 ( 並列実行 ) を CPU で模擬 CUDA4.0 以降では消滅 オプション付きのコンパイル nvcc arch=sm_20 hellothread.cu 421

19 GPU プログラムへの変更 変更点 関数の前に修飾子 global をつけた 422

20 変更の理由 変更点 関数の前に修飾子 global をつけた 変更によって実現されること GPU で実行する関数という目印になる 変更が必要な理由 ホスト (CPU) からGPUで実行する関数 ( カーネル ) を呼び出し CPUが処理する箇所とGPUが処理する箇所は別のコンパイラがコンパイル コンパイルの時点でどれがカーネルかを明記 423

21 GPU プログラムへの変更 変更点 関数 hello の返値を void にした 424

22 変更の理由 変更点 関数 hello の返値を void にした 変更によって実現されること GPU のハードウェア構造に適したプログラムを作成できる 変更が必要な理由 GPUはホストと別に独立したメモリを持つ GPUは描画情報を受け取り, 画面に出力 GPU CPU の頻繁なデータ転送は苦手 画面出力 描画情報 プログラマがメモリ管理を行い, 無駄なデータ転送による実行速度低下を回避 425

23 GPU プログラムへの変更 変更点 関数呼出の際に関数名と引数の間に <<<1,1>>> を付けた 426

24 変更の理由 変更点 関数呼出の際に関数名と引数の間に <<<1,1>>> を付けた 変更によって実現されること GPU のハードウェア構造に適したプログラムを作成できる 変更が必要な理由 GPU には数百から数千の CUDA コアが搭載されており, それらが協調して並列処理を実行 1 スレッドが実行する処理を書くことでカーネルの作成を簡略化 並列処理の度合いはカーネル呼出の際に指定 427

25 GPU プログラムへの変更 変更点 カーネルを呼び出した後に同期を取る関数を呼んだ 428

26 変更の理由 変更点 カーネルを呼び出した後に同期を取る関数を呼んだ 変更によって実現されること GPU で実行した結果が正しく得られる 変更が必要な理由 CPU と GPU は非同期に処理を実行 関数を呼んで CPU 側に制御が戻った直後に return 0 でプログラムが終了 ( 画面表示が行われない ) 正しい結果を得るためにカーネルの終了を待つ 429

27 Hello Thread(Fermi 世代以降 ) <<<, >>> 内の数字を変えると表示される内容が変化 #include<stdio.h> hellothread.cu global void hello(){ printf("hello Thread n"); } int main(void){ } hello<<<?,?>>>(); cudathreadsynchronize(); return 0; <<<>>> 内の数字を変えると画面表示される行数が変わる <<<1,8>>>, <<<8,1>>>, <<<4,2>>> 等 430

28 <<<,>>> 内の 2 個の数字の意味は? GPUのハードウェアの構成に対応させて並列性を管理 各階層における並列実行の度合を指定 <<<,>>> 内に 2 個の数字を記述して, 各階層の並列度を指定 ハードウェア構成 並列化の階層 CUDA GPU 並列に実行する処理 Grid Streaming Multiprocessor スレッドの集まり Thread Block CUDA Core スレッド Thread 431

29 GPU の並列化の階層 グリッド-ブロック-スレッドの3 階層 グリッド (Grid) 並列に実行する処理 GPUが処理を担当する領域全体 スレッド (Thread) GPUの処理の基本単位 CPUのスレッドと同じ ブロック (Block) もしくはスレッドブロック (Thread Block)* スレッドの集まり * スレッドブロックだと長いのでブロックで統一 432

30 GPU の並列化の階層 各階層の情報を参照できる変数 x,y,z をメンバにもつ dim3 型構造体 グリッド (Grid) griddim グリッド内にあるブロックの数 ブロック (Block) blockidx blockdim ブロックに割り当てられた番号ブロック内にあるスレッドの数 スレッド (Thread) threadidx スレッドに割り当てられた番号 433

31 Hello Threads(Fermi 世代以降 ) <<<, >>> 内の数字を変えると表示される内容が変化 #include<stdio.h> global void hello(){ printf("griddim.x=%d, blockidx.x=%d, blockdim.x=%d, threadidx.x=%d n", griddim.x, blockidx.x, blockdim.x, threadidx.x); } int main(void){ } hello<<<?,?>>>(); cudadevicesynchronize(); return 0; <<<>>> 内の数字を変えると画面表示される内容が変わる <<<>>> 内の数字とどのパラメータが対応しているかを確認 hellothreads.cu 434

32 GPU の構造とカーネルの書き方 GPU はマルチスレッド ( メニースレッド ) で並列処理 数百から数千の CUDA コアが搭載されており, それらが協調して並列処理を実行 カーネルには 1 スレッドが実行する処理を書く カーネルの作成を簡略化 カーネルを呼び出す際に並列処理の度合いを指定 カーネルと引数の間に追加した <<<,>>> で並列処理の度合を指定 435

33 各階層の値の設定 設定の条件 GPU の世代によって設定できる上限値が変化 確認の方法 pgaccelinfo devicequery GPU Computing SDK に含まれているサンプル CUDA Programming Guide c programmingguide/#compute capabilities 436

34 pgaccelinfo の実行結果 Device Number: 0 Device Name: Tesla M2050 Device Revision Number: 2.0 Global Memory Size: Number of Multiprocessors: 14 Number of Cores: 448 Concurrent Copy and Execution: Yes Total Constant Memory: Total Shared Memory per Block: Registers per Block: Warp Size: 32 Maximum Threads per Block: 1024 Maximum Block Dimensions: 1024, 1024, 64 Maximum Grid Dimensions: x x Maximum Memory Pitch: B Texture Alignment: 512B Clock Rate: 1147 MHz Initialization time: microseconds Current free memory: Upload time (4MB): 2175 microseconds ( 829 ms pinned) Download time: 2062 microseconds ( 774 ms pinned) Upload bandwidth: 1928 MB/sec (5059 MB/sec pinned) Download bandwidth: 2034 MB/sec (5418 MB/sec pinned) 437

35 選択の際に重要行時のパラメータpgaccelinfo 実行結果 Revision Number: 2.0 GPU の世代 ( どのような機能を有しているか ) 実 Global Memory Size: Warp Size: 32 Maximum Threads per Block: 1024 Maximum Block Dimensions: 1024, 1024, 64 Maximum Grid Dimensions: x x 各方向の最大値 1 ブロックあたりのスレッド数は最大 1024 (1024, 1, 1), (1, 1024, 1) (32, 32, 1), (4, 4, 64) など 438

36 レポート課題 2( 提出期限は 2 学期末 ) hellothreads.cu を実行し, 下記について考察せよ <<<,>>> 内の数字はどの情報を指定しているか 変数名 (griddim.x, etc.) とそれが表す情報の両方について考察 全スレッド数を 2 16, 1 ブロックあたりのスレッド数を 2 6 として実行するには,<<<,>>> 内にどのように記述すればよいか #include<stdio.h> global void hello(){ printf("griddim.x=%d, blockidx.x=%d,blockdim.x=%d, threadidx.x=%d n", griddim.x, blockidx.x, blockdim.x, threadidx.x); } int main(void){ hello<<<?,? >>>(); cudadevicesynchronize(); } return 0; hellothreads.cu 439

37 レポートの書式 必ず表紙を付けること 授業名, 課題番号, 学籍番号, 氏名, 提出日に加えて課題に要した時間を書く 課題内容, プログラム, 実行結果, 考察で構成 プログラムを実行した tesla?? および GPU の番号も明記すること pdf 形式に変換してメールで提出 宛先 degawa at vos.nagaokaut.ac.jp メール題目 課題 2( 氏名 ) 440

GPU のアーキテクチャとプログラム構造 長岡技術科学大学電気電子情報工学専攻出川智啓

GPU のアーキテクチャとプログラム構造 長岡技術科学大学電気電子情報工学専攻出川智啓 GPU のアーキテクチャとプログラム構造 長岡技術科学大学電気電子情報工学専攻出川智啓 今回の内容 GPU のアーキテクチャ CUDA CUDA によるプログラミング 58 GPU(Graphics Processing Unit) とは 画像処理専用のハードウェア 具体的には画像処理用のチップ チップ単体では販売されていない PCI Ex カードで販売 ( チップ単体と区別せずに GPU と呼ぶことも多い

More information

GPGPUイントロダクション

GPGPUイントロダクション 大島聡史 ( 並列計算分科会主査 東京大学情報基盤センター助教 ) GPGPU イントロダクション 1 目的 昨今注目を集めている GPGPU(GPU コンピューティング ) について紹介する GPGPU とは何か? 成り立ち 特徴 用途 ( ソフトウェアや研究例の紹介 ) 使い方 ( ライブラリ 言語 ) CUDA GPGPU における課題 2 GPGPU とは何か? GPGPU General-Purpose

More information

Microsoft PowerPoint - GPGPU実践基礎工学(web).pptx

Microsoft PowerPoint - GPGPU実践基礎工学(web).pptx GPGPU の歴史と応用例 長岡技術科学大学電気電子情報工学専攻出川智啓 今回の内容 GPU の進化の歴史 GPU のアーキテクチャ GPU の産業応用例 38 GPGPU 実践基礎工学 GPU(Graphics Processing Unit) とは 画像処理専用のハードウェア 具体的には画像処理用のチップ チップ単体では販売されていない PCI Ex カードで販売 ( チップ単体と区別せずに GPU

More information

1. GPU コンピューティング GPU コンピューティング GPUによる 汎用コンピューティング GPU = Graphics Processing Unit CUDA Compute Unified Device Architecture NVIDIA の GPU コンピューティング環境 Lin

1. GPU コンピューティング GPU コンピューティング GPUによる 汎用コンピューティング GPU = Graphics Processing Unit CUDA Compute Unified Device Architecture NVIDIA の GPU コンピューティング環境 Lin Windows で始める CUDA 入門 GTC 2013 チュートリアル エヌビディアジャパン CUDA エンジニア森野慎也 1. GPU コンピューティング GPU コンピューティング GPUによる 汎用コンピューティング GPU = Graphics Processing Unit CUDA Compute Unified Device Architecture NVIDIA の GPU コンピューティング環境

More information

今回の内容 GPU の発展 GPU のアーキテクチャ CPU の発展 性能の変化 シングルコアからマルチコア GPU の応用例 6

今回の内容 GPU の発展 GPU のアーキテクチャ CPU の発展 性能の変化 シングルコアからマルチコア GPU の応用例 6 GPGPU の歴史と応用例 長岡技術科学大学電気電子情報工学専攻出川智啓 今回の内容 GPU の発展 GPU のアーキテクチャ CPU の発展 性能の変化 シングルコアからマルチコア GPU の応用例 6 GPU(Graphics Processing Unit) とは 画像処理専用のハードウェア 具体的には画像処理用のチップ チップ単体では販売されていない PCI Ex カードで販売 ( チップ単体と区別せずに

More information

Microsoft PowerPoint - GPU_computing_2013_01.pptx

Microsoft PowerPoint - GPU_computing_2013_01.pptx GPU コンピューティン No.1 導入 東京工業大学 学術国際情報センター 青木尊之 1 GPU とは 2 GPGPU (General-purpose computing on graphics processing units) GPU を画像処理以外の一般的計算に使う GPU の魅力 高性能 : ハイエンド GPU はピーク 4 TFLOPS 超 手軽さ : 普通の PC にも装着できる 低価格

More information

Slide 1

Slide 1 CUDA プログラミングの基本 パート II - カーネル CUDA の基本の概要 パート I CUDAのソフトウェアスタックとコンパイル GPUのメモリ管理 パート II カーネルの起動 GPUコードの具体像 注 : 取り上げているのは基本事項のみです そのほか多数の API 関数についてはプログラミングガイドを ご覧ください GPU 上でのコードの実行 カーネルは C 関数 + 多少の制約 ホストメモリはアクセスできない戻り値型は

More information

07-二村幸孝・出口大輔.indd

07-二村幸孝・出口大輔.indd GPU Graphics Processing Units HPC High Performance Computing GPU GPGPU General-Purpose computation on GPU CPU GPU GPU *1 Intel Quad-Core Xeon E5472 3.0 GHz 2 6 MB L2 cache 1600 MHz FSB 80 GFlops 1 nvidia

More information

熊本大学学術リポジトリ Kumamoto University Repositor Title GPGPU による高速演算について Author(s) 榎本, 昌一 Citation Issue date Type URL Presentation

熊本大学学術リポジトリ Kumamoto University Repositor Title GPGPU による高速演算について Author(s) 榎本, 昌一 Citation Issue date Type URL Presentation 熊本大学学術リポジトリ Kumamoto University Repositor Title GPGPU による高速演算について Author(s) 榎本, 昌一 Citation Issue date 2011-03-17 Type URL Presentation http://hdl.handle.net/2298/23539 Right GPGPU による高速演算について 榎本昌一 東京大学大学院工学系研究科システム創成学専攻

More information

CUDA を用いた画像処理 画像処理を CUDA で並列化 基本的な並列化の考え方 目標 : 妥当な Naïve コードが書ける 最適化の初歩がわかる ブロックサイズ メモリアクセスパターン

CUDA を用いた画像処理 画像処理を CUDA で並列化 基本的な並列化の考え方 目標 : 妥当な Naïve コードが書ける 最適化の初歩がわかる ブロックサイズ メモリアクセスパターン CUDA 画像処理入門 エヌビディアジャパン CUDA エンジニア森野慎也 GTC Japan 2014 CUDA を用いた画像処理 画像処理を CUDA で並列化 基本的な並列化の考え方 目標 : 妥当な Naïve コードが書ける 最適化の初歩がわかる ブロックサイズ メモリアクセスパターン RGB Y( 輝度 ) 変換 カラー画像から グレイスケールへの変換 Y = 0.299 R + 0.587

More information

Slides: TimeGraph: GPU Scheduling for Real-Time Multi-Tasking Environments

Slides: TimeGraph: GPU Scheduling for Real-Time Multi-Tasking Environments 計算機アーキテクチャ第 11 回 マルチプロセッサ 本資料は授業用です 無断で転載することを禁じます 名古屋大学 大学院情報科学研究科 准教授加藤真平 デスクトップ ジョブレベル並列性 スーパーコンピュータ 並列処理プログラム プログラムの並列化 for (i = 0; i < N; i++) { x[i] = a[i] + b[i]; } プログラムの並列化 x[0] = a[0] + b[0];

More information

Microsoft PowerPoint - GPGPU実践基礎工学(web).pptx

Microsoft PowerPoint - GPGPU実践基礎工学(web).pptx GPU のメモリ階層 長岡技術科学大学電気電子情報工学専攻出川智啓 今回の内容 GPU のメモリ階層 グローバルメモリ 共有メモリ モザイク処理への適用 コンスタントメモリ 空間フィルタへの適用 577 GPU の主要部品 基盤 GPU( チップ )+ 冷却部品 画面出力端子 電源入力端子 メモリ 特性の把握が重要 電源入力端子 画面出力端子 メモリ チップ PCI Ex 端子 http://www.geforce.com/whats

More information

GPU GPU CPU CPU CPU GPU GPU N N CPU ( ) 1 GPU CPU GPU 2D 3D CPU GPU GPU GPGPU GPGPU 2 nvidia GPU CUDA 3 GPU 3.1 GPU Core 1

GPU GPU CPU CPU CPU GPU GPU N N CPU ( ) 1 GPU CPU GPU 2D 3D CPU GPU GPU GPGPU GPGPU 2 nvidia GPU CUDA 3 GPU 3.1 GPU Core 1 GPU 4 2010 8 28 1 GPU CPU CPU CPU GPU GPU N N CPU ( ) 1 GPU CPU GPU 2D 3D CPU GPU GPU GPGPU GPGPU 2 nvidia GPU CUDA 3 GPU 3.1 GPU Core 1 Register & Shared Memory ( ) CPU CPU(Intel Core i7 965) GPU(Tesla

More information

NUMAの構成

NUMAの構成 GPU のプログラム 天野 アクセラレータとは? 特定の性質のプログラムを高速化するプロセッサ 典型的なアクセラレータ GPU(Graphic Processing Unit) Xeon Phi FPGA(Field Programmable Gate Array) 最近出て来た Deep Learning 用ニューロチップなど Domain Specific Architecture 1GPGPU:General

More information

Microsoft PowerPoint - suda.pptx

Microsoft PowerPoint - suda.pptx GPU の HWアーキテクチャと高性能化手法 須田礼仁 ( 東京大学 ) 2011/03/22 GPU 高性能プログラミング GPU のハードウェアを理解する CUDA のソフトウェアを理解する CUDA でプログラムを書くのは難しくないが, CUDA で高速なプログラムを書くのは難しい どうすれば遅くなるかを理解する! 効果が大きいものから順に説明します 1 高性能プログラミングの手順 1. 現在のコードの,

More information

TSUBAME2.0におけるGPUの 活用方法

TSUBAME2.0におけるGPUの 活用方法 GPU プログラミング 基礎編 東京工業大学学術国際情報センター 1. GPU コンピューティングと TSUBAME2.0 スーパーコンピュータ GPU コンピューティングとは グラフィックプロセッサ (GPU) は グラフィック ゲームの画像計算のために 進化を続けてきた 現在 CPU のコア数は 2~12 個に対し GPU 中には数百コア その GPU を一般アプリケーションの高速化に利用! GPGPU

More information

Slide 1

Slide 1 CUDA プログラミングの基本 パート I - ソフトウェアスタックとメモリ管理 CUDA の基本の概要 パート I CUDAのソフトウェアスタックとコンパイル GPUのメモリ管理 パートII カーネルの起動 GPUコードの具体項目 注 : 取り上げているのは基本事項のみです そのほか多数の API 関数についてはプログラミングガイドを ご覧ください CUDA インストレーション CUDA インストレーションの構成

More information

プログラミング実習I

プログラミング実習I プログラミング実習 I 05 関数 (1) 人間システム工学科井村誠孝 m.imura@kwansei.ac.jp 関数とは p.162 数学的には入力に対して出力が決まるもの C 言語では入出力が定まったひとまとまりの処理 入力や出力はあるときもないときもある main() も関数の一種 何かの仕事をこなしてくれる魔法のブラックボックス 例 : printf() 関数中で行われている処理の詳細を使う側は知らないが,

More information

Microsoft PowerPoint - GPGPU実践基礎工学(web).pptx

Microsoft PowerPoint - GPGPU実践基礎工学(web).pptx 補 足 MPIプログラムのコンパイル, 実 行 標 準 の 環 境 ではmpic++やmpiexecを 実 行 できない OSがmpic++やmpiexecの 場 所 を 把 握 していないことが 原 因 bash 3.2$ mpic++ bash: mpic++: command not found bash 3.2$ mpiexec bash: mpiexec: command not found

More information

ストリームを用いたコンカレントカーネルプログラミングと最適化 エヌビディアジャパン CUDAエンジニア森野慎也 GTC Japan 2014

ストリームを用いたコンカレントカーネルプログラミングと最適化 エヌビディアジャパン CUDAエンジニア森野慎也 GTC Japan 2014 ストリームを用いたコンカレントカーネルプログラミングと最適化 エヌビディアジャパン CUDAエンジニア森野慎也 GTC Japan 2014 コンカレントな処理の実行 システム内部の複数の処理を 平行に実行する CPU GPU メモリ転送 カーネル実行 複数のカーネル間 ストリーム GPU 上の処理キュー カーネル実行 メモリ転送の並列性 実行順序 DEFAULT STREAM Stream : GPU

More information

PGIコンパイラ導入手順

PGIコンパイラ導入手順 1 注意この資料は PGI compiler 18.10 が最新であるときに作成した資料を元にしています PGI compiler 19.4 がリリースされましたが インストール手順や利用手順は 18.10 と変わりません 資料中の 1810 を 194 に 18.10 を 19.4 に読み替えてください 2019 年 6 月版 2 大きく分けて以下の 3 つの方法が利用可能 1. 手元のウェブブラウザでダウンロードして

More information

いまからはじめる組み込みGPU実装

いまからはじめる組み込みGPU実装 いまからはじめる組み込み GPU 実装 ~ コンピュータービジョン ディープラーニング編 ~ MathWorks Japan アプリケーションエンジニアリング部シニアアプリケーションエンジニア大塚慶太郎 2017 The MathWorks, Inc. 1 コンピュータービジョン ディープラーニングによる 様々な可能性 自動運転 ロボティクス 予知保全 ( 製造設備 ) セキュリティ 2 転移学習を使った画像分類

More information

( CUDA CUDA CUDA CUDA ( NVIDIA CUDA I

(    CUDA CUDA CUDA CUDA (  NVIDIA CUDA I GPGPU (II) GPGPU CUDA 1 GPGPU CUDA(CUDA Unified Device Architecture) CUDA NVIDIA GPU *1 C/C++ (nvcc) CUDA NVIDIA GPU GPU CUDA CUDA 1 CUDA CUDA 2 CUDA NVIDIA GPU PC Windows Linux MaxOSX CUDA GPU CUDA NVIDIA

More information

概要 目的 CUDA Fortran の利用に関する基本的なノウハウを提供する 本チュートリアル受講後は Web 上で公開されている資料等を参照しながら独力で CUDA Fortran が利用できることが目標 対象 CUDA Fortran の利用に興味を抱いている方 前提とする知識 Fortran

概要 目的 CUDA Fortran の利用に関する基本的なノウハウを提供する 本チュートリアル受講後は Web 上で公開されている資料等を参照しながら独力で CUDA Fortran が利用できることが目標 対象 CUDA Fortran の利用に興味を抱いている方 前提とする知識 Fortran CUDA Fortran チュートリアル 2010 年 9 月 29 日 NEC 概要 目的 CUDA Fortran の利用に関する基本的なノウハウを提供する 本チュートリアル受講後は Web 上で公開されている資料等を参照しながら独力で CUDA Fortran が利用できることが目標 対象 CUDA Fortran の利用に興味を抱いている方 前提とする知識 Fortran を用いた Linux

More information

プログラミング基礎

プログラミング基礎 C プログラミング Ⅰ 授業ガイダンス C 言語の概要プログラム作成 実行方法 授業内容について 授業目的 C 言語によるプログラミングの基礎を学ぶこと 学習内容 C 言語の基礎的な文法 入出力, 変数, 演算, 条件分岐, 繰り返し, 配列,( 関数 ) C 言語による簡単な計算処理プログラムの開発 到達目標 C 言語の基礎的な文法を理解する 簡単な計算処理プログラムを作成できるようにする 授業ガイダンス

More information

untitled

untitled GPGPU NVIDACUDA Learn More about CUDA - NVIDIA http://www.nvidia.co.jp/object/cuda_education_jp.html NVIDIA CUDA programming Guide CUDA http://www.sintef.no/upload/ikt/9011/simoslo/evita/2008/seland.pdf

More information

GPGPU

GPGPU GPGPU 2013 1008 2015 1 23 Abstract In recent years, with the advance of microscope technology, the alive cells have been able to observe. On the other hand, from the standpoint of image processing, the

More information

1. マシンビジョンにおける GPU の活用

1. マシンビジョンにおける GPU の活用 CUDA 画像処理入門 GTC 213 チュートリアル エヌビディアジャパン CUDA エンジニア森野慎也 1. マシンビジョンにおける GPU の活用 1. 医用画像処理における GPU の活用 CT や MRI から画像を受信して三次元画像の構築をするシステム 2 次元スキャンデータから 3 次元 4 次元イメージの高速生成 CUDA 化により画像処理速度を約 2 倍に高速化 1. CUDA で画像処理

More information

3次多項式パラメタ推定計算の CUDAを用いた実装 (CUDAプログラミングの練習として) Implementation of the Estimation of the parameters of 3rd-order-Polynomial with CUDA

3次多項式パラメタ推定計算の CUDAを用いた実装 (CUDAプログラミングの練習として)  Implementation of the Estimation of the parameters of 3rd-order-Polynomial with CUDA 3 次多項式パラメタ推定計算の CUDA を用いた実装 (CUDA プログラミングの練習として ) Estimating the Parameters of 3rd-order-Polynomial with CUDA ISS 09/11/12 問題の選択 目的 CUDA プログラミングを経験 ( 試行錯誤と習得 ) 実際に CPU のみの場合と比べて高速化されることを体験 問題 ( インプリメントする内容

More information

Microsoft PowerPoint - GPUシンポジウム _d公開版.ppt [互換モード]

Microsoft PowerPoint - GPUシンポジウム _d公開版.ppt [互換モード] 200/0/9 数値流体解析の並列効率とその GPU による高速化の試み 清水建設 ( 株 ) 技術研究所 PHAM VAN PHUC ( ファムバンフック ) 流体計算時間短縮と GPU の活用の試み 現 CPUとの比較によりGPU 活用の可能性 現 CPU の最大利用 ノード内の最大計算資源の利用 すべてCPUコアの利用 適切なアルゴリズムの利用 CPU コア性能の何倍? GPU の利用の試み

More information

PowerPoint Presentation

PowerPoint Presentation ヘテロジニアスな環境におけるソフトウェア開発 Agenda 今日の概要 ヘテロジニアスな環境の登場 ホモジニアスからヘテロジニアスへ ヘテロジニアスなアーキテクチャ GPU CUDA OpenACC, XeonPhi 自分のプログラムを理解するために デバッガ 共通の操作体験 TotalView 続きはブースで より速く ホモジーニアスな並列 HPC 銀河生成 金融のリスク計算 車の衝突解析 製薬

More information

本文ALL.indd

本文ALL.indd Intel Xeon プロセッサにおける Cache Coherency 時間の性能測定方法河辺峻田口成美古谷英祐 Intel Xeon プロセッサにおける Cache Coherency 時間の性能測定方法 Performance Measurement Method of Cache Coherency Effects on an Intel Xeon Processor System 河辺峻田口成美古谷英祐

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション 2018/10/05 竹島研究室創成課題 第 2 回 C 言語演習 変数と演算 東京工科大学 加納徹 前回の復習 Hello, world! と表示するプログラム 1 #include 2 3 int main(void) { 4 printf("hello, world! n"); 5 return 0; 6 } 2 プログラム実行の流れ 1. 作業ディレクトリへの移動 $ cd

More information

GPU チュートリアル :OpenACC 篇 Himeno benchmark を例題として 高エネルギー加速器研究機構 (KEK) 松古栄夫 (Hideo Matsufuru) 1 December 2018 HPC-Phys 理化学研究所 共通コードプロジェクト

GPU チュートリアル :OpenACC 篇 Himeno benchmark を例題として 高エネルギー加速器研究機構 (KEK) 松古栄夫 (Hideo Matsufuru) 1 December 2018 HPC-Phys 理化学研究所 共通コードプロジェクト GPU チュートリアル :OpenACC 篇 Himeno benchmark を例題として 高エネルギー加速器研究機構 (KEK) 松古栄夫 (Hideo Matsufuru) 1 December 2018 HPC-Phys 勉強会 @ 理化学研究所 共通コードプロジェクト Contents Hands On 環境について Introduction to GPU computing Introduction

More information

講習No.1

講習No.1 プログラムはどこに保存され, どこで実行されるのか? 復習 ハードディスク キーボード Central Processing Unit 例えば i7, ARM, Cortex-A17 ディスプレイ 例えば 4G バイト メモリ プログラムは, ワープロ文章などと同様, ハードディスクなどにファイルとして保存されている. プログラムは, メモリ上に呼び出されて ( ロード ) 実行される. プログラムの作成

More information

研究報告用MS-Wordテンプレートファイル

研究報告用MS-Wordテンプレートファイル マルチコアおよび GPGPU 環境における画像処理最適化 矢野勝久 高山征大 境隆二出宮健彦 スケーラを題材として, マルチコアおよび GPGPU 各々の HW 特性に適した画像処理の最適化を図る. マルチコア環境では, 数値演算処理の削減,SIMD 化など直列性能の最適化を行った後,OpenMP を利用して並列化を図る.GPGPU(CUDA) では, スレッド並列を優先して並列処理の設計を行いブロックサイズを決める.

More information

RX ファミリ用 C/C++ コンパイラ V.1.00 Release 02 ご使用上のお願い RX ファミリ用 C/C++ コンパイラの使用上の注意事項 4 件を連絡します #pragma option 使用時の 1 または 2 バイトの整数型の関数戻り値に関する注意事項 (RXC#012) 共用

RX ファミリ用 C/C++ コンパイラ V.1.00 Release 02 ご使用上のお願い RX ファミリ用 C/C++ コンパイラの使用上の注意事項 4 件を連絡します #pragma option 使用時の 1 または 2 バイトの整数型の関数戻り値に関する注意事項 (RXC#012) 共用 RX ファミリ用 C/C++ コンパイラ V.1.00 Release 02 ご使用上のお願い RX ファミリ用 C/C++ コンパイラの使用上の注意事項 4 件を連絡します #pragma option 使用時の 1 または 2 バイトの整数型の関数戻り値に関する注意事項 (RXC#012) 共用体型のローカル変数を文字列操作関数で操作する場合の注意事項 (RXC#013) 配列型構造体または共用体の配列型メンバから読み出した値を動的初期化に用いる場合の注意事項

More information

N08

N08 CPU のキモチ C.John 自己紹介 英語きらい 絵かけない 人の話を素直に信じない CPUにキモチなんてない お詫び 予告ではCとC# とありましたがやる気と時間の都合上 C++のみを対象とします 今日のネタ元 MSDN マガジン 2010 年 10 月号 http://msdn.microsoft.com/ja-jp/magazine/cc850829.aspx Windows と C++

More information

DO 時間積分 START 反変速度の計算 contravariant_velocity 移流項の計算 advection_adams_bashforth_2nd DO implicit loop( 陰解法 ) 速度勾配, 温度勾配の計算 gradient_cell_center_surface 速

DO 時間積分 START 反変速度の計算 contravariant_velocity 移流項の計算 advection_adams_bashforth_2nd DO implicit loop( 陰解法 ) 速度勾配, 温度勾配の計算 gradient_cell_center_surface 速 1 1, 2 1, 2 3 2, 3 4 GP LES ASUCA LES NVIDIA CUDA LES 1. Graphics Processing Unit GP General-Purpose SIMT Single Instruction Multiple Threads 1 2 3 4 1),2) LES Large Eddy Simulation 3) ASUCA 4) LES LES

More information

関数 C 言語は関数の言語 関数とは 関数の定義 : f(x) = x * x ; 使うときは : y = f(x) 戻り値 引数

関数 C 言語は関数の言語 関数とは 関数の定義 : f(x) = x * x ; 使うときは : y = f(x) 戻り値 引数 関数 C 言語は関数の言語 関数とは 関数の定義 : f(x) = x * x ; 使うときは : y = f(x) 戻り値 引数 関数の定義 戻り値の型 関数名 引数の型 引数の名前 int funcname ( int a, char b) { int c ; c = a * b ; return c ; 引数の型 引数の名前 戻り値 戻り値の型は int 変数 c の型も int return

More information

バイオプログラミング第 1 榊原康文 佐藤健吾 慶應義塾大学理工学部生命情報学科

バイオプログラミング第 1 榊原康文 佐藤健吾 慶應義塾大学理工学部生命情報学科 バイオプログラミング第 1 榊原康文 佐藤健吾 慶應義塾大学理工学部生命情報学科 ポインタ変数の扱い方 1 ポインタ変数の宣言 int *p; double *q; 2 ポインタ変数へのアドレスの代入 int *p; と宣言した時,p がポインタ変数 int x; と普通に宣言した変数に対して, p = &x; は x のアドレスのポインタ変数 p への代入 ポインタ変数の扱い方 3 間接参照 (

More information

CUDA 連携とライブラリの活用 2

CUDA 連携とライブラリの活用 2 1 09:30-10:00 受付 10:00-12:00 Reedbush-H ログイン GPU 入門 13:30-15:00 OpenACC 入門 15:15-16:45 OpenACC 最適化入門と演習 17:00-18:00 OpenACC の活用 (CUDA 連携とライブラリの活用 ) CUDA 連携とライブラリの活用 2 3 OpenACC 簡単にGPUプログラムが作成できる それなりの性能が得られる

More information

memo

memo 計数工学プログラミング演習 ( 第 3 回 ) 2017/04/25 DEPARTMENT OF MATHEMATICAL INFORMATICS 1 内容 ポインタの続き 引数の値渡しと参照渡し 構造体 2 ポインタで指されるメモリへのアクセス double **R; 型 R[i] と *(R+i) は同じ意味 意味 R double ** ポインタの配列 ( の先頭 ) へのポインタ R[i]

More information

GPGPUクラスタの性能評価

GPGPUクラスタの性能評価 2008 年度理研 HPC シンポジウム第 3 世代 PC クラスタ GPGPU クラスタの性能評価 2009 年 3 月 12 日 富士通研究所成瀬彰 発表の概要 背景 GPGPU による高速化 CUDA の概要 GPU のメモリアクセス特性調査 姫野 BMT の高速化 GPGPU クラスタによる高速化 GPU Host 間のデータ転送 GPU-to-GPU の通信性能 GPGPU クラスタ上での姫野

More information

書式に示すように表示したい文字列をダブルクォーテーション (") の間に書けば良い ダブルクォーテーションで囲まれた文字列は 文字列リテラル と呼ばれる プログラム中では以下のように用いる プログラム例 1 printf(" 情報処理基礎 "); printf("c 言語の練習 "); printf

書式に示すように表示したい文字列をダブルクォーテーション () の間に書けば良い ダブルクォーテーションで囲まれた文字列は 文字列リテラル と呼ばれる プログラム中では以下のように用いる プログラム例 1 printf( 情報処理基礎 ); printf(c 言語の練習 ); printf 情報処理基礎 C 言語についてプログラミング言語は 1950 年以前の機械語 アセンブリ言語 ( アセンブラ ) の開発を始めとして 現在までに非常に多くの言語が開発 発表された 情報処理基礎で習う C 言語は 1972 年にアメリカの AT&T ベル研究所でオペレーションシステムである UNIX を作成するために開発された C 言語は現在使われている多数のプログラミング言語に大きな影響を与えている

More information

GPU 画像 動画処理用ハードウェア 低性能なプロセッサがたくさん詰まっている ピーク性能が非常に高い GPUを数値計算に用いるのがGPGPU Graphics Processing Unit General Purpose GPU TSUBAME2.0: GPUスパコン 本演習ではNVIDIA社の

GPU 画像 動画処理用ハードウェア 低性能なプロセッサがたくさん詰まっている ピーク性能が非常に高い GPUを数値計算に用いるのがGPGPU Graphics Processing Unit General Purpose GPU TSUBAME2.0: GPUスパコン 本演習ではNVIDIA社の 演習II (連続系アルゴリズム) 第2回: GPGPU 須田研究室 M1 本谷 徹 motoya@is.s.u-tokyo.ac.jp 2012/10/19 GPU 画像 動画処理用ハードウェア 低性能なプロセッサがたくさん詰まっている ピーク性能が非常に高い GPUを数値計算に用いるのがGPGPU Graphics Processing Unit General Purpose GPU TSUBAME2.0:

More information

1 4 1.1........................................... 4 1.2.................................. 4 1.3................................... 4 2 5 2.1 GPU.....

1 4 1.1........................................... 4 1.2.................................. 4 1.3................................... 4 2 5 2.1 GPU..... CPU GPU N Q07-065 2011 2 17 1 1 4 1.1........................................... 4 1.2.................................. 4 1.3................................... 4 2 5 2.1 GPU...........................................

More information

Prog1_6th

Prog1_6th 2019 年 10 月 31 日 ( 木 ) 実施配列同種のデータ型を有する複数のデータ ( 要素 ) を番号付けして, ひとまとまりの対象として扱うものを配列と呼ぶ 要素 point[0] point[1] point[2] point[3] point[4] 配列 配列の取り扱いに関して, 次のような特徴がある 1. プログラム中で用いる配列変数 ( 配列の本体を参照する参照型の変数 ) は必ず宣言しておく

More information

Microsoft PowerPoint - prog03.ppt

Microsoft PowerPoint - prog03.ppt プログラミング言語 3 第 03 回 (2007 年 10 月 08 日 ) 1 今日の配布物 片面の用紙 1 枚 今日の課題が書かれています 本日の出欠を兼ねています 2/33 今日やること http://www.tnlab.ice.uec.ac.jp/~s-okubo/class/java06/ にアクセスすると 教材があります 2007 年 10 月 08 日分と書いてある部分が 本日の教材です

More information

Microsoft PowerPoint - 計算機言語 第7回.ppt

Microsoft PowerPoint - 計算機言語 第7回.ppt 計算機言語第 7 回 長宗高樹 目的 関数について理解する. 入力 X 関数 f 出力 Y Y=f(X) 関数の例 関数の型 #include int tasu(int a, int b); main(void) int x1, x2, y; x1 = 2; x2 = 3; y = tasu(x1,x2); 実引数 printf( %d + %d = %d, x1, x2, y);

More information

関数の動作 / printhw(); 7 printf(" n"); printhw(); printf("############ n"); 4 printhw(); 5 関数の作り方 ( 関数名 ) 戻り値 ( 後述 ) void である. 関数名 (

関数の動作 / printhw(); 7 printf( n); printhw(); printf(############ n); 4 printhw(); 5 関数の作り方 ( 関数名 ) 戻り値 ( 後述 ) void である. 関数名 ( 概要 プログラミング 関数 http://www.ns.kogakuin.ac.jp/~ct40/progc/ A- 関数の作り方を学ぶ 関数名, 引数, 戻り値 プログラミング で最も重要な事項 関数 プログラミング で最も重要な事項 制御 (for, if) プログラミング で最も重要な事項 ポインタ A- 関数名 引数 戻り値 E- E-4 関数の概要 0/ 関数とは, 複数の処理をひとまとめにしたもの.

More information

C C UNIX C ( ) 4 1 HTML 1

C C UNIX C ( ) 4 1 HTML 1 C 2007 4 18 C UNIX 1 2 1 1.1 C ( ) 4 1 HTML 1 はじめ mkdir work 作業用ディレクトリーの作成 emacs hoge.c& エディターによりソースプログラム作成 gcc -o fuga hoge.c コンパイルにより機械語に変換 コンパイルエラー./fuga 実行 実行時エラー 完成 1: work hooge.c fuga 1 4 4 1 1.

More information

GPU CUDA CUDA 2010/06/28 1

GPU CUDA CUDA 2010/06/28 1 GPU CUDA CUDA 2010/06/28 1 GPU NVIDIA Mark Harris, Optimizing Parallel Reduction in CUDA http://developer.download.nvidia.com/ compute/cuda/1_1/website/data- Parallel_Algorithms.html#reduction CUDA SDK

More information

DVIOUT

DVIOUT 2009 年度情報科学 & 情報科学演習レポート 9 学生用 学籍番号 : 氏名 : 下記の注意事項を守り 次ページ以降の問いに答え レポートを完成させなさい 提出期限 : 2009 年 6 月 30 日 ( 火 ) 13:00 まで提出場所 : 理学部棟正面玄関内に設置のレポートボックス 注意事項 : (1) このページを印刷し 必要事項を記入の上 ( 学籍番号欄と氏名欄は 2 箇所あるので忘れずに記入すること

More information

Microsoft Word - no02.doc

Microsoft Word - no02.doc 使い方 1ソースプログラムの入力今回の講義では C++ 言語用の統合環境ソフトといわれるプログラムを利用します デスクトップにある CPad for C++ のアイコン ( 右参照 ) をダブルクリ ックしましょう ( 同じアイコンで Java_pad とかい エディタ部 てあるものもありますので気をつけてください ) これで 起 動します 統合環境を立ち上げると エディタ部とメッセージ部をもった画面が出てきます

More information

memo

memo 数理情報工学演習第一 C プログラミング演習 ( 第 5 回 ) 2015/05/11 DEPARTMENT OF MATHEMATICAL INFORMATICS 1 今日の内容 : プロトタイプ宣言 ヘッダーファイル, プログラムの分割 課題 : 疎行列 2 プロトタイプ宣言 3 C 言語では, 関数や変数は使用する前 ( ソースの上のほう ) に定義されている必要がある. double sub(int

More information

TSUBAME2.0 における GPU の 活用方法 東京工業大学学術国際情報センター丸山直也第 10 回 GPU コンピューティング講習会 2011 年 9 月 28 日

TSUBAME2.0 における GPU の 活用方法 東京工業大学学術国際情報センター丸山直也第 10 回 GPU コンピューティング講習会 2011 年 9 月 28 日 TSUBAME2.0 における GPU の 活用方法 東京工業大学学術国際情報センター丸山直也第 10 回 GPU コンピューティング講習会 2011 年 9 月 28 日 目次 1. TSUBAMEのGPU 環境 2. プログラム作成 3. プログラム実行 4. 性能解析 デバッグ サンプルコードは /work0/gsic/seminars/gpu- 2011-09- 28 からコピー可能です 1.

More information

Microsoft PowerPoint - kougi7.ppt

Microsoft PowerPoint - kougi7.ppt C プログラミング演習 第 7 回メモリ内でのデータの配置 例題 1. 棒グラフを描く 整数の配列から, その棒グラフを表示する ループの入れ子で, 棒グラフの表示を行う ( 参考 : 第 6 回授業の例題 3) 棒グラフの1 本の棒を画面に表示する機能を持った関数を補助関数として作る #include "stdafx.h" #include void draw_bar( int

More information

Images per Second Images per Second VOLTA: ディープラーニングにおける大きな飛躍 ResNet-50 トレーニング 2.4x faster ResNet-50 推論 TensorRT - 7ms レイテンシ 3.7x faster P100 V100 P10

Images per Second Images per Second VOLTA: ディープラーニングにおける大きな飛躍 ResNet-50 トレーニング 2.4x faster ResNet-50 推論 TensorRT - 7ms レイテンシ 3.7x faster P100 V100 P10 NVIDIA TESLA V100 CUDA 9 のご紹介 森野慎也, シニアソリューションアーキテクト (GPU-Computing) NVIDIA Images per Second Images per Second VOLTA: ディープラーニングにおける大きな飛躍 ResNet-50 トレーニング 2.4x faster ResNet-50 推論 TensorRT - 7ms レイテンシ

More information

スライド 1

スライド 1 GPU クラスタによる格子 QCD 計算 広大理尾崎裕介 石川健一 1.1 Introduction Graphic Processing Units 1 チップに数百個の演算器 多数の演算器による並列計算 ~TFLOPS ( 単精度 ) CPU 数十 GFLOPS バンド幅 ~100GB/s コストパフォーマンス ~$400 GPU の開発環境 NVIDIA CUDA http://www.nvidia.co.jp/object/cuda_home_new_jp.html

More information

スライド 1

スライド 1 知能制御システム学 画像処理の高速化 OpenCV による基礎的な例 東北大学大学院情報科学研究科鏡慎吾 swk(at)ic.is.tohoku.ac.jp 2007.07.03 リアルタイム処理と高速化 リアルタイム = 高速 ではない 目標となる時間制約が定められているのがリアルタイム処理である.34 ms かかった処理が 33 ms に縮んだだけでも, それによって与えられた時間制約が満たされるのであれば,

More information

Microsoft PowerPoint - C++_第1回.pptx

Microsoft PowerPoint - C++_第1回.pptx OpenFoam のための C/C++ 第 1 回メモリ管理 田中昭雄 1 目的 この勉強会の資料があれば OpenFoam カスタマイズ時に C/C++ で迷わない 2 予定 第 1 回メモリ管理 第 2 回 OpenFOAM で勉強するクラス 第 3 回 OpenFOAM で勉強するテンプレート 第 4 回 OpenFOAM カスタマイズ 第 5 回未定 第 6 回未定 3 今回のテーマ C++

More information

memo

memo 計数工学プログラミング演習 ( 第 1 回 ) 2016/04/05 DEPARTMENT OF MATHEMATICAL INFORMATICS 1 担当メンバー : 担当 : 担当教員 : 定兼 ( 数理 2 研 ) 補佐 : 松島 ( 数理 6 研 ) 学生アシスタント : 鈴木, 石山, 中村 担当へのコンタクト e メールアドレス ( 演習についての一般的な相談 ): miprogramming2016+general@gmail.com

More information

情報処理学会研究報告 IPSJ SIG Technical Report Vol.2016-CSEC-75 No /12/1 ハッシュ関数 Keccak の GPU 実装 グェンダットトゥオン 1 1 岩井啓輔 1 黒川恭一 概要 : 次世代ハッシュ関数 SHA-3 の候補であった Ke

情報処理学会研究報告 IPSJ SIG Technical Report Vol.2016-CSEC-75 No /12/1 ハッシュ関数 Keccak の GPU 実装 グェンダットトゥオン 1 1 岩井啓輔 1 黒川恭一 概要 : 次世代ハッシュ関数 SHA-3 の候補であった Ke ハッシュ関数 Keccak の GPU 実装 グェンダットトゥオン 1 1 岩井啓輔 1 黒川恭一 概要 : 次世代ハッシュ関数 SHA-3 の候補であった Keccak は 2012 年 10 月 2 日のコンペティションの勝者として選定され,2015 年 8 月 5 日に正式版が FIPS PUB 202 として公表された.Keccak は, スポンジ構造に基づくハッシュ関数であり,MD5 や

More information

Microsoft Word - paper.docx

Microsoft Word - paper.docx による高速画像処理 名古屋大学大学院情報科学研究科出口大輔, 井手一郎, 村瀬洋 概要 : 本発表では, 近年注目を集めている GP(General Purpose computing on s) の技術に着目し,GP を利用するための開発環境の使い方やプログラミングのノウハウを分かりやすく解説する. GP は を汎用計算に利用しようという試みであり, 現在では物理シミュレーション, 数値計算, 信号解析,

More information

VXPRO R1400® ご提案資料

VXPRO R1400® ご提案資料 Intel Core i7 プロセッサ 920 Preliminary Performance Report ノード性能評価 ノード性能の評価 NAS Parallel Benchmark Class B OpenMP 版での性能評価 実行スレッド数を 4 で固定 ( デュアルソケットでは各プロセッサに 2 スレッド ) 全て 2.66GHz のコアとなるため コアあたりのピーク性能は同じ 評価システム

More information

Microsoft PowerPoint ppt

Microsoft PowerPoint ppt 基礎演習 3 C 言語の基礎 (5) 第 05 回 (20 年 07 月 07 日 ) メモリとポインタの概念 ビットとバイト 計算機内部では データは2 進数で保存している 計算機は メモリにデータを蓄えている bit 1bit 0 もしくは 1 のどちらかを保存 byte 1byte 1bitが8つ集まっている byte が メモリの基本単位として使用される メモリとアドレス メモリは 1byte

More information

Microsoft PowerPoint - OpenMP入門.pptx

Microsoft PowerPoint - OpenMP入門.pptx OpenMP 入門 須田礼仁 2009/10/30 初版 OpenMP 共有メモリ並列処理の標準化 API http://openmp.org/ 最新版は 30 3.0 バージョンによる違いはあまり大きくない サポートしているバージョンはともかく csp で動きます gcc も対応しています やっぱり SPMD Single Program Multiple Data プログラム #pragma omp

More information

NUMAの構成

NUMAの構成 共有メモリを使ったデータ交換と同期 慶應義塾大学理工学部 天野英晴 hunga@am.ics.keio.ac.jp 同期の必要性 あるプロセッサが共有メモリに書いても 別のプロセッサにはそのことが分からない 同時に同じ共有変数に書き込みすると 結果がどうなるか分からない そもそも共有メモリって結構危険な代物 多くのプロセッサが並列に動くには何かの制御機構が要る 不可分命令 同期用メモリ バリア同期機構

More information

04-process_thread_2.ppt

04-process_thread_2.ppt オペレーティングシステム ~ 保護とシステムコール ~ 山田浩史 hiroshiy @ cc.tuat.ac.jp 2015/05/08 復習 : OS の目的 ( 今回の話題 ) 裸のコンピュータを抽象化 (abstraction) し より使いやすく安全なコンピュータとして見せること OS はハードウェアを制御し アプリケーションの効率的な動作や容易な開発を支援する OS がないと 1 つしかプログラムが動作しない

More information

COMET II のプログラミング ここでは機械語レベルプログラミングを学びます 1

COMET II のプログラミング ここでは機械語レベルプログラミングを学びます 1 COMET II のプログラミング ここでは機械語レベルプログラミングを学びます 1 ここでは機械命令レベルプログラミングを学びます 機械命令の形式は学びましたね機械命令を並べたプログラムを作ります 2 その前に プログラミング言語について 4 プログラミング言語について 高級言語 (Java とか C とか ) と機械命令レベルの言語 ( アセンブリ言語 ) があります 5 プログラミング言語について

More information

SuperH RISC engineファミリ用 C/C++コンパイラパッケージ V.7~V.9 ご使用上のお願い

SuperH RISC engineファミリ用 C/C++コンパイラパッケージ V.7~V.9 ご使用上のお願い ツールニュース RENESAS TOOL NEWS 2014 年 02 月 01 日 : 140201/tn1 SuperH RISC engine ファミリ用 C/C++ コンパイラパッケージ V.7~V.9 ご使用上のお願い SuperH RISC engine ファミリ用 C/C++ コンパイラパッケージ V.7~V.9の使用上の注意事項 4 件を連絡します 同一ループ内の異なる配列要素に 同一の添え字を使用した場合の注意事項

More information

Slide 1

Slide 1 OpenFoam のための C/C++ 第 3 回 OpenFoam で勉強るテンプレート 田中昭雄 1 目的 この勉強会の資料があれば OpenFoam カスタマイズ時に C/C++ で迷わない 2 予定 第 1 回メモリ管理 第 2 回 CFDの例で勉強するクラス 第 3 回 OpenFOAMで勉強するテンプレート 第 4 回 OpenFOAMカスタマイズ 第 5 回未定 第 6 回未定 3 今回のテーマ

More information

Microsoft PowerPoint - 09.pptx

Microsoft PowerPoint - 09.pptx 情報処理 Ⅱ 第 9 回 2014 年 12 月 22 日 ( 月 ) 関数とは なぜ関数 関数の分類 自作関数 : 自分で定義する. ユーザ関数 ユーザ定義関数 などともいう. 本日のテーマ ライブラリ関数 : 出来合いのもの.printf など. なぜ関数を定義するのか? 処理を共通化 ( 一般化 ) する プログラムの見通しをよくする 機能分割 ( モジュール化, 再利用 ) 責任 ( あるいは不具合の発生源

More information

GPUコンピューティング講習会パート1

GPUコンピューティング講習会パート1 GPU コンピューティング (CUDA) 講習会 GPU と GPU を用いた計算の概要 丸山直也 スケジュール 13:20-13:50 GPU を用いた計算の概要 担当丸山 13:50-14:30 GPU コンピューティングによる HPC アプリケーションの高速化の事例紹介 担当青木 14:30-14:40 休憩 14:40-17:00 CUDA プログラミングの基礎 担当丸山 TSUBAME の

More information

memo

memo 計数工学プログラミング演習 ( 第 3 回 ) 2016/04/26 DEPARTMENT OF MATHEMATICAL INFORMATICS 1 内容 ポインタ malloc 構造体 2 ポインタ あるメモリ領域 ( アドレス ) を代入できる変数 型は一致している必要がある 定義時には値は不定 ( 何も指していない ) 実際にはどこかのメモリを指しているので, #include

More information

GPUを用いたN体計算

GPUを用いたN体計算 単精度 190Tflops GPU クラスタ ( 長崎大 ) の紹介 長崎大学工学部超高速メニーコアコンピューティングセンターテニュアトラック助教濱田剛 1 概要 GPU (Graphics Processing Unit) について簡単に説明します. GPU クラスタが得意とする応用問題を議論し 長崎大学での GPU クラスタによる 取組方針 N 体計算の高速化に関する研究内容 を紹介します. まとめ

More information

プログラミング基礎I(再)

プログラミング基礎I(再) 山元進 クラスとは クラスの宣言 オブジェクトの作成 クラスのメンバー フィールド 変数 配列 メソッド メソッドとは メソッドの引数 戻り値 変数の型を拡張したもの 例えば車のデータベース 車のメーカー 車種 登録番号などのデータ データベースの操作 ( 新規データのボタンなど ) プログラムで使う部品の仕様書 そのクラスのオブジェクトを作ると初めて部品になる 継承 などの仕組みにより カスタマイズが安全

More information

システムソリューションのご紹介

システムソリューションのご紹介 HP 2 C 製品 :VXPRO/VXSMP サーバ 製品アップデート 製品アップデート VXPRO と VXSMP での製品オプションの追加 8 ポート InfiniBand スイッチ Netlist HyperCloud メモリ VXPRO R2284 GPU サーバ 製品アップデート 8 ポート InfiniBand スイッチ IS5022 8 ポート 40G InfiniBand スイッチ

More information

Microsoft PowerPoint - 12.ppt [互換モード]

Microsoft PowerPoint - 12.ppt [互換モード] 第 12 回構造体 1 今回の目標 構造体を理解する 構造体の定義の仕方を理解する 構造体型を理解する 構造体型の変数 引数 戻り値を理解する 複素数同士を足し算する関数を作成し その関数を利用するプログラムを作成する 2 複素数の足し算 複素数は実部と虚部の2つの実数で 表現される 表現される z = a+ bi 2 つの複素数 z 1 = a 1+ bi 1 と z2 = a2 + b2i の和

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション 講座準備 講座資料は次の URL から DL 可能 https://goo.gl/jnrfth 1 ポインタ講座 2017/01/06,09 fumi 2 はじめに ポインタはC 言語において理解が難しいとされる そのポインタを理解することを目的とする 講座は1 日で行うので 詳しいことは調べること 3 はじめに みなさん復習はしましたか? 4 & 演算子 & 演算子を使うと 変数のアドレスが得られる

More information

main.dvi

main.dvi PC 1 1 [1][2] [3][4] ( ) GPU(Graphics Processing Unit) GPU PC GPU PC ( 2 GPU ) GPU Harris Corner Detector[5] CPU ( ) ( ) CPU GPU 2 3 GPU 4 5 6 7 1 toyohiro@isc.kyutech.ac.jp 45 2 ( ) CPU ( ) ( ) () 2.1

More information

スライド 1

スライド 1 RX62N 周辺機能紹介データフラッシュ データ格納用フラッシュメモリ ルネサスエレクトロニクス株式会社ルネサス半導体トレーニングセンター 2013/08/02 Rev. 1.00 00000-A コンテンツ データフラッシュの概要 プログラムサンプル 消去方法 書き込み方法 読み出し方法 FCUのリセット プログラムサンプルのカスタマイズ 2 データフラッシュの概要 3 データフラッシュとは フラッシュメモリ

More information

1 GPU GPGPU GPU CPU 2 GPU 2007 NVIDIA GPGPU CUDA[3] GPGPU CUDA GPGPU CUDA GPGPU GPU GPU GPU Graphics Processing Unit LSI LSI CPU ( ) DRAM GPU LSI GPU

1 GPU GPGPU GPU CPU 2 GPU 2007 NVIDIA GPGPU CUDA[3] GPGPU CUDA GPGPU CUDA GPGPU GPU GPU GPU Graphics Processing Unit LSI LSI CPU ( ) DRAM GPU LSI GPU GPGPU (I) GPU GPGPU 1 GPU(Graphics Processing Unit) GPU GPGPU(General-Purpose computing on GPUs) GPU GPGPU GPU ( PC ) PC PC GPU PC PC GPU GPU 2008 TSUBAME NVIDIA GPU(Tesla S1070) TOP500 29 [1] 2009 AMD

More information

N 体問題 長岡技術科学大学電気電子情報工学専攻出川智啓

N 体問題 長岡技術科学大学電気電子情報工学専攻出川智啓 N 体問題 長岡技術科学大学電気電子情報工学専攻出川智啓 今回の内容 天体の運動方程式 天体運動の GPU 実装 最適化による性能変化 #pragma unroll 855 計算の種類 画像処理, 差分法 空間に固定された観測点を配置 観測点 ( 固定 ) 観測点上で物理量がどのように変化するかを追跡 Euler 型 多粒子の運動 観測点を配置せず, 観測点が粒子と共に移動 Lagrange 型 観測点

More information

JavaプログラミングⅠ

JavaプログラミングⅠ Java プログラミング Ⅱ 4 回目クラスの機能 (2) コンストラクタ クラス変数 クラスメソッド課題 確認 問題次の各文は正しいか誤っているか答えなさい (1) コンストラクタはメソッドと同様に戻り値をもつ (2) コンストラクタはオブジェクトが生成されると最初に実行される (3) コンストラクタはメソッドと同様にオーバーロードができる (4) コンストラクタは常に public メンバとしなければならない

More information

#include<math.h> 数学関係の関数群で sin() cos() tan() などの三角関数や累乗の pow() 平方根を求める sqrt() 対数 log() などがあります #include<string.h> 文字列を扱う関数群 コイツもまた後日に 4. 自作関数 実は 関数は自分

#include<math.h> 数学関係の関数群で sin() cos() tan() などの三角関数や累乗の pow() 平方根を求める sqrt() 対数 log() などがあります #include<string.h> 文字列を扱う関数群 コイツもまた後日に 4. 自作関数 実は 関数は自分 第 3 回 C 言語講座 1. 関数とは数学において関数とは f(x) = x 2 + x + 3 のようになっていて 例えば x に 2 を代入したら9になりますよね プログラミングにおいても似たようなものです ある値を与えてやると なんらかの結果を返してくる そんな命令群を C 言語では関数というわけです ( 何の値も与えず かつ 答えが返ってこない関数もありますが ) 因みに printf()

More information

PowerPoint プレゼンテーション - 物理学情報処理演習

PowerPoint プレゼンテーション  -  物理学情報処理演習 物理学情報処理演習 9. C 言語 5 2015 年 6 月 19 日 本日の推奨作業 directory lesson09 9.1 乱数 9.2 ポインタ 参考文献 やさしい C++ 第 4 版高橋麻奈 ( 著 ) ソフトバンククリエイティブ プログラミング言語 C++ 第 4 版ビャーネ ストラウストラップ, Bjarne Stroustrup, 柴田望洋 Numerical Recipes:

More information

2006年10月5日(木)実施

2006年10月5日(木)実施 2010 年 7 月 2 日 ( 金 ) 実施 ファイル処理ファイルとはファイル (file) は日常用語では紙などを綴じたものを表すが, コンピュータ用語ではデータの集合体を指す言葉である ファイルは例えば, 文書ファイルやプログラムファイルのように, 用途によって分類されることもあれば, また, テキストファイルやバイナリファイルのように, ファイルの作り方によって分類されることもある なお,

More information

! 行行 CPUDSP PPESPECell/B.E. CPUGPU 行行 SIMD [SSE, AltiVec] 用 HPC CPUDSP PPESPE (Cell/B.E.) SPE CPUGPU GPU CPU DSP DSP PPE SPE SPE CPU DSP SPE 2

! 行行 CPUDSP PPESPECell/B.E. CPUGPU 行行 SIMD [SSE, AltiVec] 用 HPC CPUDSP PPESPE (Cell/B.E.) SPE CPUGPU GPU CPU DSP DSP PPE SPE SPE CPU DSP SPE 2 ! OpenCL [Open Computing Language] 言 [OpenCL C 言 ] CPU, GPU, Cell/B.E.,DSP 言 行行 [OpenCL Runtime] OpenCL C 言 API Khronos OpenCL Working Group AMD Broadcom Blizzard Apple ARM Codeplay Electronic Arts Freescale

More information

IPSJ SIG Technical Report Vol.2013-HPC-138 No /2/21 GPU CRS 1,a) 2,b) SpMV GPU CRS SpMV GPU NVIDIA Kepler CUDA5.0 Fermi GPU Kepler Kepler Tesla

IPSJ SIG Technical Report Vol.2013-HPC-138 No /2/21 GPU CRS 1,a) 2,b) SpMV GPU CRS SpMV GPU NVIDIA Kepler CUDA5.0 Fermi GPU Kepler Kepler Tesla GPU CRS 1,a),b) SpMV GPU CRS SpMV GPU NVIDIA Kepler CUDA5.0 Fermi GPU Kepler Kepler Tesla K0 CUDA5.0 cusparse CRS SpMV 00 1.86 177 1. SpMV SpMV CRS Compressed Row Storage *1 SpMV GPU GPU NVIDIA Kepler

More information

Microsoft PowerPoint - 10.ppt [互換モード]

Microsoft PowerPoint - 10.ppt [互換モード] 第 10 回関数と再帰 1 今回の目標 再帰的な考え方に慣れる C 言語における再帰関数を理解する 階乗を求める再帰的な関数を作成し その関数を利用するプログラムを作成する 2 階乗 n! の 2 つの数学的表現 (1) 繰り返しによる表現 n! = 1 2 i n n = ii i= 1 ( n 1 のとき ) ( なお 0!=1) (2) 漸化式による表現 n! = 1 n = 0のとき n (

More information

情報処理Ⅰ演習

情報処理Ⅰ演習 C プログラミング Ⅱ の基礎 アドレス 変数のために用意されたメモリ領域の位置 アドレス 0x1000 0x1001 0x100 0x1003 0x1004 0x100 0x1006 0x1007 0x1008 0x1009 0x100A 0x100B メモリ 整数型の変数を宣言 int ; アドレス 0x1000 0x1001 0x100 0x1003 0x1004 0x100 0x1006 0x1007

More information

Microsoft PowerPoint - 13.ppt [互換モード]

Microsoft PowerPoint - 13.ppt [互換モード] 第 13 回構造体 1 今回の目標 構造体を理解する 構造体の定義の仕方を理解する 構造体型を理解する 構造体型の変数 引数 戻り値を理解する 複素数同士を足し算する関数を作成し その関数を利用するプログラムを作成する 2 複素数の足し算 複素数は実部と虚部の2つの実数で 表現される z = a+ bi z = a + bi z = a + b i 2 つの複素数 1 1 1 と 2 2 2 の和

More information

WebGL OpenGL GLSL Kageyama (Kobe Univ.) Visualization / 57

WebGL OpenGL GLSL Kageyama (Kobe Univ.) Visualization / 57 WebGL 2014.04.15 X021 2014 3 1F Kageyama (Kobe Univ.) Visualization 2014.04.15 1 / 57 WebGL OpenGL GLSL Kageyama (Kobe Univ.) Visualization 2014.04.15 2 / 57 WebGL Kageyama (Kobe Univ.) Visualization 2014.04.15

More information

23 Fig. 2: hwmodulev2 3. Reconfigurable HPC 3.1 hw/sw hw/sw hw/sw FPGA PC FPGA PC FPGA HPC FPGA FPGA hw/sw hw/sw hw- Module FPGA hwmodule hw/sw FPGA h

23 Fig. 2: hwmodulev2 3. Reconfigurable HPC 3.1 hw/sw hw/sw hw/sw FPGA PC FPGA PC FPGA HPC FPGA FPGA hw/sw hw/sw hw- Module FPGA hwmodule hw/sw FPGA h 23 FPGA CUDA Performance Comparison of FPGA Array with CUDA on Poisson Equation (lijiang@sekine-lab.ei.tuat.ac.jp), (kazuki@sekine-lab.ei.tuat.ac.jp), (takahashi@sekine-lab.ei.tuat.ac.jp), (tamukoh@cc.tuat.ac.jp),

More information

01-introduction.ppt

01-introduction.ppt オペレーティングシステム ~ イントロダクション ~ 山田浩史 hiroshiy @ cc.tuat.ac.jp 2015/04/10 オペレーティングシステム 担当 : 山田浩史 ( やまだひろし ) mail: hiroshiy @ cc.tuat.ac.jp 質問等ありましたら気軽にメールをしてください 専門分野 オペレーティングシステムや仮想マシンモニタといった システムソフトウェア と呼ばれる分野

More information

OpenGL GLSL References Kageyama (Kobe Univ.) Visualization / 58

OpenGL GLSL References Kageyama (Kobe Univ.) Visualization / 58 WebGL *1 2013.04.23 *1 X021 2013 LR301 Kageyama (Kobe Univ.) Visualization 2013.04.23 1 / 58 OpenGL GLSL References Kageyama (Kobe Univ.) Visualization 2013.04.23 2 / 58 Kageyama (Kobe Univ.) Visualization

More information

Prog1_12th

Prog1_12th 2013 年 7 月 4 日 ( 木 ) 実施 ファイル処理ファイルとはファイル (file) は日常用語では紙などを綴じたものを表すが, コンピュータ用語ではデータの集合体を指す言葉である ファイルは例えば, 文書ファイルやプログラムファイルのように, 用途によって分類されることもあれば, また, テキストファイルやバイナリファイルのように, ファイルの作り方によって分類されることもある なお,

More information