Size: px
Start display at page:

Download ""

Transcription

1 オートマトンと言語理論 テキスト 成蹊大学理工学部情報科学科 山本真基

2

3

4 ii

5 iii DFA NFA ϵ- ϵ-nfa

6 iv

7 Σ Σ Σ x Σ x x x ϵ Σ Σ = 1.1. a, b, c,..., z, A, B, C,..., Z 1.1 ( ). 1. Σ = {0, 1} 2. Σ = {0, 1, 2,..., 9, a,b,c,...,z,a,b,c,...,z, #, $, %} 3. Σ = {0, 1, (, )} 1.2 ( ). Σ = {0, 1, (, )} Σ

8 (101)(((0 3. ((000)(111))(010)(101) 00#11 Σ # Σ 1.1. Σ = {a,b,c} Σ 1.1. Σ p p Σ #include<iostream> using namespace std; int main() { int a=1; cout << a << endl; } 1.1: Σ #include<iostream> using namespace std; int main() { int a=1; cout << a << endl; } 1.2: Σ Σ 1.2 Σ Σ Σ

9 1.1 3 L L L L 1.4 ( ). Σ = {a,b,c} L Σ L = {a, ab, abc, ababa, abbcca}. L = ( ). Σ = {0, 1} L Σ L = {x : n N[x n ]}. L 1.6 ( ). Σ L Σ L = {p : p }. L 1.2. Σ Σ Σ 1.3 Σ k x 1, x 2,..., x k Σ x 1 x 2 x k x 1 = x 2 = = x k = a Σ x 1 x 2 x k a k k = 0 a 0 ϵ 1.4 Σ Σ Σ Σ Σ Σ Σ def = {xy : x, y Σ}.

10 4 1 k N Σ k Σ 0 def = Σ Σ Σ }{{} def = {ϵ} k def = {x 1 x 2... x k : x 1, x 2,..., x k Σ} Σ Σ Σ def = k N {0} Σ k Σ x Σ x Σ L Σ L Σ 1.7. Σ = {0, 1} 1. Σ Σ = {00, 01, 10, 11} 2. Σ 3 = {000, 001, 010, 011, 100, 101, 110, 111} 1. Σ x =000 x Σ 3 Σ 2. Σ L = {000, 111} L Σ 3 Σ 1.1. Σ Σ = n Σ k = n k k = 0 Σ 0 = {ϵ} = Σ Σ Σ Σ Σ ϵ Σ

11 = {ϵ} 1.2 Σ = {0, 1, 2,..., 9,.} Σ L L def = {a Σ : a } L L L L 5. 1 L L 7. 10/3 L L Σ = Σ \ {.}, Σ = Σ \ {0} {0} Σ Σ ({0} Σ Σ ) {.} Σ Σ 1.3 Σ = {0, 1, 2,..., 9,.} Σ L L def = {a Σ : a }. L

12 6 1 Σ 0 Σ. Σ Σ. Σ... Σ 1.3: L

13 Σ L Σ k x 1, x 2,..., x k L x 1 x 2 x k x 1 = x 2 = = x k = y L x 1 x 2 x k y k k = 0 y 0 ϵ 2.2 Σ L, L 1, L 2 Σ : L 1 L 2 def = {x : x L 1 x L 2 }, : L 1 L 2 def = {xy : x L 1 y L 2 }, : L def = {x 1 x 2... x k : k N {0} x 1, x 2,..., x k L}. 2.1 ( ). Σ = {0, 1, #} Σ L 1 = {0 n #1 n : n N {0}}, L 2 = {1 n #0 n : n N {0}}, L 1 L 2 = {0 n #1 n, 1 n #0 n : n N {0}}.

14 L = L 2. ϵ L L {ϵ} L 2.2 ( ). Σ = {0, 1, #} Σ L 1 = {0, 1}, L 2 = {ϵ, #0, #1}, L 1 L 2 = {0, 1, 0#0, 0#1, 1#0, 1#1} L 2 L 1 = {0, 1, #00, #01, #10, #11} L {ϵ} = {ϵ} L = L 2. L = L = 2.3 ( ). Σ = {0, 1, #} L = {00#, 11#}, Σ L = {ϵ, 00#, 11#, 00#00#, 00#11#, 11#00#, 11#11#, 00#00#00#,... } Σ = {0, 1} L = {00, 11} L 000 L ,, L 1 L 2 L (L 1 L 2 ) (L ) (L 1 (L 2 L)) 2.3 Σ Σ L

15 , {ϵ} 2. x Σ {x} 3. L, L 1, L 2 L 1 L 2, L 1 L 2, L Σ Σ,, 2.4 L REG ( ). Σ = {0, 1, #} 1. L = {0, 1} {0} {1} 2. L = {00, 11, 0#, 1#, 01#, 10#} {0} {0} {1} {1} {0} {#} {1} {#} {0} {1} {#} {1} {0} {#}. 3. L = {w Σ : w 1 } Σ {1} Σ Σ Σ L Σ Σ L 2.5 ( ). Σ = {0, 1}

16 10 2 {0} {1} {0} {w Σ : w } {0} {1} {0} {1} {0} {w Σ : w } Σ {010} Σ {w Σ : w 010 } Σ {010} {w Σ : w 010 } {0} Σ Σ {1} {w Σ : w 0 1 } 2.2. Σ = {0, 1} {0 n : n N} {1 n : n N} {0 i 1 j : i, j N} {0 n 1 n : n N}. {0 n : n N} {1 n : n N} {0 i 1 j : i, j N} 2.5. {0 n 1 n : n N} Σ = {0, 1} 1. {0} Σ {0} {1} Σ {1}. 2. (Σ Σ). 3. {1} ({0} {1} {0} {1} ) Σ = {0, 1} 1. {w Σ : w }. 2. {w Σ : w }. 3. {w Σ : w 0 }.

17 Σ = {0, 1} L = {w Σ : w 00 }. L {1} ({01} {1} ) {ϵ, 0} R R = L R L R L ( ) w R w L w 0 R {01} {1} {011 n : n N {0}} 2.8. A A = {011 n : n N {0}} w 0 y 1, y 2,..., y k A k N {0} w w = y 1 y 2... y k w = y 1 y 2... y k w 00 A k k = 0 w = ϵ y 1 y 2... y k 1 y i A 00 y 1 y 2... y k 1 y k y i A w = y 1 y 2... y k 1 00 w ϵ 1 n N {0} y k = 011 n w = w y k 00 ( ) w L w R w 0 w y 1, y 2,..., y k k N {0} w = y 1 y 2... y k

18 w = i [k] i = 1 : y i {1} {01} {1} i [k] \ {1, k} : y i {01} {1} i = k : {01} {1} {ϵ, 0} w = w = w R = {1} ({01} {1} ) {ϵ, 0} Σ = {0, 1} L = {w Σ : w 000 } L Σ L Σ x Σ x L x L

19 Σ = {0, 1} a L = {w Σ : w 01 } b L = {w Σ : w 10 } c L = {w Σ : w 11 } d L = {w Σ : w 001 } e L = {w Σ : w 100 } 2. Σ = {0, 1} a L = {w Σ : w 0 1 } b L = {w Σ : w } c L = {w Σ : w } 3. Σ = {0, 1} a {ϵ, 1} {01} {ϵ, 0}. b {ϵ, 0} ({1} {1} {0}) {1}. c {ϵ, 0, 00} ({1} {1} {0, 00}) {1}.

20

21 DFA 3.1 DFA (Q, Σ, δ, q 0, F ) Q : Σ : δ : Q Σ Q q 0 : q 0 Q F : F Q Q, Σ, F 3.1 ( ). M 1 = (Q, Σ, δ, q 0, {q 1 }) Q = {q 0, q 1 }, Σ = {0, 1} δ : Q Σ Q 0 1 q 0 q 0 q 1 q 1 q 1 q

22 , ( ). M 2 = (Q, Σ, δ, q 0, {q 2 }) Q = {q 0, q 1, q 2 }, Σ = {0, 1, a} δ : Q Σ Q 0 1 a q 0 q 0 q 0 q 1 q 1 q 1 q 1 q 2 q 2 q 2 q 2 q 2 0, 1 0, 1 0, 1, a a 0 1 a M = (Q, Σ, δ, q 0, F ) w = w 1 w 2... w n Σ n w Σ n M w r 0, r 1,..., r n Q 1. r 0 = q 0 2. i [n][δ(r i 1, w i ) = r i ] 3. r n F M L(M) = {w Σ : M w } M L(M) L DFA L DFA = {L : DFA L }

23 3.1 DFA ( ). 3.1 M 1 1, 01, 10, 11, L(M 1 ) 0, 00, 000, L(M 1 ) M 1 L 1 = L(M 1 ) L 1 = {w {0, 1} : w 1 }. 3.4 ( ). 3.2 M 2 aaa, 01a01a, a0a1a0a1a L(M 2 ) 0a1, 1a0, a01010 L(M 2 ) M 2 L 2 = L(M 2 ) L 2 = {w {0, 1, a} : w a } Σ = {0, 1} DFA 1. M = (Q, Σ, δ, q 0, {q 1 }). Q = {q 0, q 1, q 2 } δ : Q Σ Q 0 1 q 0 q 0 q 1 q 1 q 1 q 2 q 2 q 2 q 2 2. M = (Q, Σ, δ, q 0, {q 0 }). Q = {q 0, q 1 } δ : Q Σ Q 0 1 q 0 q 0 q 1 q 1 q 1 q 0 3. M = (Q, Σ, δ, q 0, {q 0 }). Q = {q 0, q 1, q 2 } δ : Q Σ Q 0 1 q 0 q 0 q 1 q 1 q 1 q 2 q 2 q 2 q 0

24 a , a 0, a 0, 1 0, 1, a 4 0, 1, a 3.5. Σ = {0, 1, a} L = {0, 01, 01a} M = (Q, Σ, δ, q 0, F ). Q = {q 0, q 1, q 2, q 3, q 4 }, Σ = {0, 1, a}, F = {q 1, q 2, q 3 } δ : Q Σ Q 0 1 a q 0 q 1 q 4 q 4 q 1 q 4 q 2 q 4 q 2 q 4 q 4 q 3 q 3 q 4 q 4 q 4 q 4 q 4 q 4 q Σ = {0, 1} 1. L = {w Σ : w 010 }. 2. L = {w Σ : w 101 }. 3. L = {w Σ : w 010 }. 4. L = {w Σ : w 101 }. 5. L = {w Σ : w 1 0 }.

25 3.2 NFA NFA 3.3 NFA (Q, Σ, δ, q 0, F ) Q : Σ : δ : Q Σ 2 Q q 0 : q 0 Q F : F Q Q, Σ, F 3.2. Q = {q 0, q 1, q 2 } 2 Q = {, {q 0 }, {q 1 }, {q 2 }, {q 0, q 1 }, {q 0, q 2 }, {q 1, q 2 }, {q 0, q 1, q 2 }} Q DFA 3.6 ( ). N = (Q, Σ, δ, q 0, {q 2 }) Q = {q 0, q 1, q 2 }, Σ = {0, 1} δ : Q Σ 2 Q 0 1 q 0 {q 0 } {q 0, q 1 } q 1 {q 2 } {q 2 } q 2 0, , 1 2

26 20 3 δ(q 2, 0), δ(q 2, 1) N = (Q, Σ, δ, q 0, F ) w = w 1 w 2... w n Σ n w Σ n N w r 0, r 1,..., r n Q 1. r 0 = q 0 2. i [n][r i δ(r i 1, w i )] 3. r n F N L(N) = {w Σ : N w } N L(N) L NFA L NFA = {L : NFA L } ( ). 3.6 N N L = L(N) 10, 11, 111, L(N) 0, 1, 00, 01, 101, L(N) L = {w Σ : w 1 } Σ = {0, 1} NFA 1. N = (Q, Σ, δ, q 0, {q 2 }) Q = {q 0, q 1, q 2 }, Σ = {0, 1} δ : Q Σ 2 Q

27 3.2 NFA x 0 1 x (a) 111 (b) : 0 1 q 0 {q 1 } q 1 {q 1 } {q 1, q 2 } q 2 2. N = (Q, Σ, δ, q 0, {q 2 }) Q = {q 0, q 1, q 2 }, Σ = {0, 1} δ : Q Σ 2 Q 0 1 q 0 {q 1 } q 1 {q 1, q 2 } {q 1 } q Σ = {0, 1} 1. L = {w Σ : w 010 }. 2. L = {w Σ : w 010 }.

28 L DFA DFA DFA NFA 3.1. L NFA = L DFA 3.5 M = (Q, Σ, δ, q 0, F ) δ δ q Q s Σ δ (q, s) = { q s = ϵ δ(δ (q, t), c) s = tc (c Σ) N = (Q, Σ, δ, q 0, F ) δ δ q Q s Σ q s = ϵ δ (q, s) = δ(q, c) s = tc (c Σ) q δ (q,t) DFA M δ (q 0, 000) = q 0 δ (q 0, 010) = q 1 δ (q 1, 000) = q NFA N δ ({q 0 }, 010) = {q 0, q 2 } δ ({q 0, q 1 }, 010) = {q 0, q 2 } δ ({q 1, q 2 }, 010) =

29 3.2 NFA 23. L NFA L DFA L NFA L DFA L NFA L DFA 3.7. L NFA L DFA L NFA L DFA N = (Q, Σ, δ, q 0, F ) D = (Q D, Σ D, δ D, q D, F D ) N L(D) = L(N) N D Q D = 2 Q Σ D = Σ S Q D, a Σ δ D (S, a) = q S δ(q, a) q D = {q 0 } F D = {S Q D : S F } L(D) = L(N) x Σ δd (q D, x) = δ (q 0, x) 3.8. x x = x Σ x 1 x = ya y Σ, a Σ δd(q D, x) = δd(q D, ya) = δ D (δd(q D, y), a) ( δd ) = δ D (δ (q 0, y), a) ( ) = δ(q, a) ( δ D ) q δ (q 0,y) = δ (q 0, ya) ( δ ) = δ (q 0, x).

30 NFA N = (Q, Σ, δ, q 0, F ) DFA M = (Q D, Σ D, δ D, q D, F D ) Q D = {, {q 0 }, {q 1 }, {q 2 }, {q 0, q 1 }, {q 0, q 2 }, {q 1, q 2 }, {q 0, q 1, q 2 }} Σ D = Σ q D = {q 0 } F D = {{q 2 }, {q 0, q 2 }, {q 1, q 2 }, {q 0, q 1, q 2 }} δ D 0 1 {q 0 } {q 0 } {q 0, q 1 } {q 1 } {q 2 } {q 2 } {q 2 } {q 0, q 1 } {q 0, q 2 } {q 0, q 1, q 2 } {q 0, q 2 } {q 0 } {q 0, q 1 } {q 1, q 2 } {q 2 } {q 2 } {q 0, q 1, q 2 } {q 0, q 2 } {q 0, q 1, q 2 } NFA DFA 1. L = {w00 : w {0, 1} } 2. L = {w11 : w {0, 1} } 3.3 ϵ- ϵ-nfa 3.6 Σ ϵ ϵ = 0 Σ ϵ = Σ {ϵ} 3.7 ϵ- ϵ-nfa

31 3.3 ϵ- ϵ-nfa 25 (Q, Σ, δ, q 0, F ) Q : Σ : δ : Q Σ ϵ 2 Q q 0 : q 0 Q F : F Q Q, Σ, F ϵ- L ϵ-nfa L ϵ-nfa = {L : NFA L } 3.11 (ϵ- ). ϵ- N = (Q, Σ, δ, q 0, {q 3, q 6 }) Q = {q 0, q 1, q 2, q 3, q 4, q 5, q 6 }, Σ = {0, 1} δ : Q Σ ϵ 2 Q ϵ 0 1 q 0 {q 1, q 4 } q 1 {q 1, q 2 } {q 1 } q 2 {q 3 } q 3 q 4 {q 4 } {q 4, q 5 } q 5 {q 6 } q 6 0, 1 ε , 1 ε

32 26 3 N L = L(N) L = {w Σ : w } 3.4. δ(q 0, ϵ) = {q 1, q 4 } ϵ- ϵ L NFA NFA 3.12 (ϵ- ). Σ = {a, b, c} L = {a i b j c k Σ : i, j, k N {0}} L ϵ- N = (Q, Σ, δ, q 0, {q 0, q 1, q 2 }) Q = {q 0, q 1, q 2 } δ : Q Σ ϵ 2 Q a b c ε ε L NFA NFA 3.2. L ϵ-nfa = L NFA L REG = L DFA

33 L REG L DFA L REG L DFA 3.4 (L REG L DFA ). L Σ L L ϵ-nfa = L DFA L ϵ-nfa 2.3 ϵ-nfa 1. L = 2. L = {ϵ} 3. x Σ L = {x} NFA DFA k N {0},, k L,, k L = L 1 L 2 L 1, L 2,, k L 1, L 2 NFA N 1, N 2 L NFA N N 1, N L = L 1 L 2 L 1, L 2,, k L 1, L 2 NFA N 1, N 2 L NFA N N 1, N L = L 0 L 0,, k L 0 NFA N 0 L NFA N N NFA

34 28 3 N N 1 N 1 ε N 2 N 2 ε 3.2: L = L 1 L 2 N 1 N 2 N N ε 1 N 2 ε 3.3: L = L 1 L 2

35 N N 0 ε N 0 ε ε ε 3.4: L = L 0 L ϵ-nfa L DFA 3.5 (L REG L DFA ). M L M L. L 3.8 (Q, Σ, δ, q 0, F ) Q : Σ : δ : (Q \ {q accept }) (Q \ {q start }) R q start : q start Q q accept : q accept Q R Σ DFA M G M G 3.1. G L

36 30 3. G L 3.5 GNFA G 1. G GNFA a q Q \ {q start, q accept } b G = (Q, Σ, δ, q start, q accept ) i. Q = Q \ {q} ii. q i Q \ {q, q accept }, q j Q \ {q, q start } δ (q i, q j ) def = R 1 R R 2 R 3. R = δ(q, q) R 1 = δ(q i, q) R 2 = δ(q, q j ) R 3 = δ(q i, q j ) 2. G q start q accept 3.5: GNFA G reg L(G) = L(G reg ). G k k = 2 k 1 GNFA k GNFA G 1 GNFA G 1-(a) q L(G) = L(G ) ( ) w L(G) w G q i1, q i2,..., q in G w q i1 = q start j [n 1] w j δ(q ij, q ij+1 ) w j Σ w G q {q i1, q i2,..., q in } G w

37 q {q i1, q i2,..., q in } q = q ij w j 1 δ(q ij 1, q ij ), w j δ(q ij, q ij+1 ) 1-(b)-(ii) δ w j 1 w j δ (q ij 1, q ij+1 ) w G ( ) w L(G ) w G q i1, q i2,..., q in G w q i1 = q start j [n 1] w j δ(q ij, q ij+1 ) w j Σ w G j [n 1] L(G) = L(G ) G k 1 L(G ) = L(G reg ) L(G) = L(G ) = L(G reg ) ( ). L p p a L a a = xyz 1. i N {0}[xy i z L] 2. y > 0 3. xy p. L L M = (Q, Σ, δ, q 0, F ) p p = Q p a L *1 a = n p a L r 0, r 1,..., r n Q 1. r 0 = q 0 2. i [n][δ(r i 1, a i ) = r i ] 3. r n F 3.3. i, j [p] {0} i < j r i = r j *1

38 32 3. r 0, r 1,..., r p Q = p r i = r j i, j [p] i r i = r j j i < j a a = xyz x y z def = a 1 a i, def = a i+1 a j, def = a j+1 a p. i xy i z L z r n x a j +1 r j +1 a 1 a 2 a i -1 a i r 0 r 1 r r i-1 i a j a i +1 r i +1 r j -1 a i +2 a j -1 y r i+2 r j-2 r * 3.6: xy i z L ( ). L = {w {0, 1} : w } p p w L w w = xyz w = (01) p L w = xyz x = ϵ y = (01) 2 z = (01) p 2

39 w = 0 2p 1 2p L w = xyz x = ϵ y = 0 2 z = 0 2p 2 1 2p 3.7. L = {0 n 1 n : n N}. L p p w L w = 0 p 1 p w = xyz = 0 p 1 p xy p xy = 0 i, z = 0 j 1 p i + j = p y > 0 xyyz L L xyyz L L = {ww : w {0, 1} } 2. L = {ww R : w {0, 1} } 3. L = {w {0, 1} : w = w R }

40 DFA NFA ϵ-nfa a L = {w {0, 1} : w 111 } b L = {w {0, 1} : w i=1 w i 2 0} c L = {w {0, 1, 2} : w i=1 w i 3 0} d {0} {0, 1} {1} e {0} {0, 1} {0, 1} {1} 2. a L = {0 i 1 j : i > j}. b L = {w {0, 1} : w 0 1 }. c L = {1 n2 : n N {0}}. 3. L 1, L 2, L a L 1 L 2 b L 1 L 2 c L

41 (V, Σ, R, S) V : Σ : R : S : S V V, Σ, R x V, y (V Σ) x y 4.1 ( ). G 1 = (V, Σ, R, S) V = {S} Σ = {0, 1} R S 0S1, S ϵ S 0S1 ϵ. 4.2 ( ). G 2 = (V, Σ, R, S) V =

42 36 4 {S, A, B} Σ = {0, 1} R S 0S1 0A 1B, A 0A ϵ, B 1B ϵ. 4.2 G = (V, Σ, R, S) u, v (V Σ) u v u G v G u v x, y, z (V Σ), A V 1. u = xay, 2. v = xzy, 3. (A z) R. w Σ w Σ G w u 0, u 1,..., u n (V Σ) S = u 0 u 1 u n 1 u n = w. S G w G S w 4.3 ( ). 4.1 G 1 S G1 0S1 0S1 G1 00S11 00S11 G1 000S S G S 0S1 00S11 000S ( ). 4.2 G 2 00S11 G2 000S111 00S11 G2 000A11 00S11 G2 001B S G , S G : S 0S1 00S11 000A : S 0S1 00S11 000S B B

43 G 1, G G = (V, Σ, R, S) G L(G) def = {w Σ : S w} G L(G) Σ L Σ G = (V, Σ, R, S) L = L(G) L L CFG 4.5 ( ). 4.1 G 1 L(G 1 ) = {0 n 1 n : n N {0}}. 4.6 ( ). 4.2 G 2 L(G 2 ) = {0 i 1 j : i, j N {0}, i j} L REG L CFG. L REG L CFG L REG L CFG 5.4 L DFA L PDA?? L(G 1 ) L(G 2 ) L REG L CFG 4.7 ( ). Σ = {0, 1} L = {w Σ : w 0 1 } G = (V, Σ, R, S) V = {S, A} R S 0A A1, A 0A 1A ϵ Σ = {0, 1} 1. L 1 = {w Σ : w 010 }

44 L 2 = {w Σ : w 010 } 3. L 3 = {w Σ : w 1 } 4.8 ( ). G = (V, Σ, R, S) V = {S} Σ = {(, ), } R S SS (S) G 4.3. G 1. (( ) ) 2. ( )(( )( )) 4.9 ( ). G = (V, Σ, R, < exp >) V = {< exp >, < term >, < fact >} Σ = {+,,, /, (, )} R R < exp > < term > + < exp > < term > < exp > < term >, < term > < fact > < term > < fact > / < term > < fact >, < fact > (< exp >) a. G a 1 (2 3) < exp > < term > < exp > < fact > < term > 1 < fact > 1 (< exp >) 1 (< term > < exp >) 1 (< fact > < term >) 1 (2 < fact >) 1 (2 3) (1 (2 3)) ( 1) 2 3/5 < exp > < term > < exp > < fact > < term > < fact > < term >

45 (< exp >) < fact > 2 < term > (1 (2 3)) (< exp >) 2 < fact > / < term > (1 (2 3)) (< term >) 2 3/ < fact > (1 (2 3)) (< fact >) 2 3/5 (1 (2 3)) ( 1) 2 3/ (1 2) (2 3)/(3 1) /(1 + 1/(1 + 1/2)) 4.5. Σ = {0, 1} G i = (V i, Σ, R i, S) 1. V 1 = {S, A}, R 1 = {S A1A, A A0 ϵ}. 2. V 2 = {S}, R 2 = {S 0S0 1S1 ϵ}. 3. V 3 = {S}, R 3 = {S 0S0 1S1 0 1 ϵ} Σ = {0, 1} {ww R : w {0, 1} }, {w Σ : w = w R } {ww : w {0, 1} }. {ww R : w {0, 1} }, {w Σ : w = w R } {ww : w {0, 1} } Σ = {0, 1} 1. L 1 = {w Σ : w 1 }. 2. L 2 = {w Σ : w 00 }. 3. L 3 = {w Σ : w 1 }.

46 L 4 = {0 i 1 j : i > j}. 5. L 5 = {w {0, 1} : w 0 1 } Σ = {0, 1} L = Σ \ {0 n 1 n : n N {0}}. L G = (V, Σ, R, S) R L(G) = L S XA B A XXA ϵ X 1 0 B 0B1 Y Y 0Z0 1Z0 1Z1 Z 0Z 1Z ϵ ( ) w L(G) w L S XA w i N S XA XXXA X i A X i X w L S B w i N {0} S B 0B1 00B11 0 i B1 i 0 i Y 1 i 1. 0 i Y 1 i 0 i 0Z01 i 2. 0 i Y 1 i 0 i 1Z01 i 3. 0 i Y 1 i 0 i 1Z11 i Z w L

47 ( ) w L w L(G) w ( ) w S XA w w L w {0 n 1 n : n N {0}} w i N {0} x Σ 1. 0 i 0x01 i 2. 0 i 1x01 i 3. 0 i 1x11 i ( ) w S B G = (V, Σ, R, S) T G 1. T 2. T 3. T S 4. T v v 1,..., v k v v A v 1,..., v k A 1,..., A k A A 1... A k G = (V, Σ, R, S) w (V Σ) T w 1. T G 2. T w a (a) 1 (2 3) (b) (1 (2 3)) ( 1) 2 3/5 (b) (a) (a)

48 42 4 exp term - exp exp fact term term - exp 1 fact fact * term term ( exp ) ( ) fact fact * term term - exp ( exp ) 2 fact / term fact term term 3 fact 2 fact (a) fact (a) 1 (2 3) (b) (1 (2 3)) ( 1) 2 3/5 4.1: (1 2) (2 3)/(3 1) /(1 + 1/(1 + 1/2)) G = (V, Σ, R, S) R G A BC A a A B, C a

49 ( ). L Σ L Σ x Σ x L x L

50 G = (V, Σ, R, S) V = {S, A, B}, Σ = {0, 1}, S AB BA A 0A0 0A1 1A0 1A1 0 B 0B0 0B1 1B0 1B a L 1 = {0 i 1 j : i > 2j}. b L 2 = {0 i 1 i 2 j : i, j N {0}}. c L 3 = {0 i 1 j 2 i : i, j N {0}}.

51 45 5 * PDA (Q, Σ ϵ, Γ ϵ, δ, q 0, F ) Q : Σ ϵ : Γ ϵ : δ : Q Σ ϵ Γ ϵ 2 Q Γ ϵ q 0 : q 0 Q F : F Q Q, Σ ϵ, Γ ϵ, F Γ ϵ $ PDA NFA *1 {ww R : w {0, 1} }

52 ( ). N 1 = (Q, Σ ϵ, Γ ϵ, δ, q 0, {q 0, q 3 }) Q = {q 0, q 1, q 2, q 3 }, Σ = {0, 1}, Γ = {0, $} δ : Q Σ ϵ Γ ϵ 2 Q Γ ϵ ϕ Σ ϵ 0 1 ϵ Γ ϵ 0 $ ϵ 0 $ ϵ 0 $ ϵ q 0 (q 1, $) q 1 (q 1, 0) (q 2, ϵ) q 2 (q 2, ϵ) (q 3, ϵ) q 3 ϕ 0, ε 0 1, 0 ε ε, ε $ 1, 0 ε ε, $ ε δ δ(q i, y, a) = (q j, b) y Σ ϵ, a, b Γ ϵ y, a b 5.2 ( ). N 2 = (Q, Σ ϵ, Γ ϵ, δ, q 0, {q 3, q 4, q 5, q 6 }) Q = {q 0, q 1, q 2,..., q 6 }, Σ = {0, 1}, Γ = {0, $} δ : Q Σ ϵ Γ ϵ 2 Q Γ ϵ 5.2 N = (Q, Σ ϵ, Γ ϵ, δ, q 0, F ) w = w 1 w 2... w n Σ n w Σ n N w w = y 1 y m y i Σ ϵ r 0, r 1,..., r m Q s 0, s 1,..., s m Γ 1. r 0 = q 0, s 0 = ϵ, s 1 = $

53 , ε 0 1, 0 ε ε, 0 ε 3 ε, ε $ 1, 0 ε , ε ε 1, ε ε 1, $ $ , $ $ 0, ε ε 1, ε ε 2. i [m], a, b Γ ϵ, t Γ 3. r m F 1. (r i, b) δ(r i 1, y i, a) 2. s i 1 = at 3. s i = bt N L(N) = {w Σ : N w } N L(N) L PDA L PDA = {L : PDA L } NFA 5.3. δ δ(q i, y, a) = (q j, b) y Σ ϵ, a, b Γ ϵ a b a pop b push *2 a = ϵ : b push b = ϵ : a pop 5.3 ( ). 5.1 N 1 ϵ, 01, 0011, L(N 1 ) 0, 1, 000, 111, 0101, 1001, L(N 1 ) *2 Γ ϵ

54 48 5 N 1 L 1 = L(N 1 ) L 1 = {0 n 1 n : n N {0}}. 5.4 ( ). 5.2 N 2 0, 1, 000, 111, 00011, L(N 2 ) ϵ, 01, 0011, , 0101, 1001 L(N 2 ) N 2 L 2 = L(N 2 ) L 2 = {0 i 1 j : i, j N {0}, i j} L DFA L PDA.. L DFA L PDA DFA PDA DFA PDA L = {0 n 1 n : n N {0}} L L PDA 5.1, 5.3 L L DFA L L DFA L PDA 5.1. Σ = {0, 1} PDA 1. N 1 = (Q, Σ ϵ, Γ ϵ, δ, q 0, {q 0, q 3 }) Σ ϵ 0 1 ϵ Γ ϵ 0 1 $ ϵ 0 1 $ ϵ 0 1 $ ϵ q 0 (q 1, $) q 1 (q 1, 0) (q 1, 1) (q 2, ϵ) q 2 (q 2, ϵ) (q 2, ϵ) (q 3, ϵ) q 3 2. N 2 = (Q, Σ ϵ, Γ ϵ, δ, q 0, {q 0, q 3 }) Σ ϵ 0 1 Γ ϵ 0 1 $ ϵ 0 1 $ ϵ q 0 q 1 (q 1, 0), (q 2, ϵ) (q 1, 1), (q 2, ϵ) q 2 (q 2, ϵ) (q 2, ϵ) q 3

55 Σ ϵ ϵ Γ ϵ 0 1 $ ϵ q 0 (q 1, $) q 1 (q 2, ϵ) q 2 (q 3, ϵ) q Σ = {0, 1} 1. L 1 = {w Σ : w 1 }. 2. L 2 = {w Σ : w 1 }. 3. L 3 = {0 i 1 j : i > j}. 4. L 4 = {0 i 1 j : i < j}. 5. L 5 = {w {0, 1} : w 0 1 } PDA δ : Q Σ ϵ Γ ϵ 2 Q Γ ϵ δ(q,, ϵ) = {(q, ) : q Q } δ(q,, a) = {(q, ϵ) : q Q } PDA 5.3. PDA δ : Q Σ ϵ Γ ϵ 2 Q Γ ϵ δ : Q Σ ϵ Γ ϵ 2 Q Γ ϵ PDA

56 L CFG = L PDA. L CFG L PDA L CFG L PDA 5.5 (L CFG L PDA ). L L. L G = (V, Σ, R, S) L = L(G) G P = (Q, Σ ϵ, Γ ϵ, δ, q 0, F ) Q = {q 0, q loop, q 1 }, Γ = V Σ, F = {q 1 } 5.3 δ : Q Σ ϵ Γ ϵ 2 Q Γ ϵ δ(q 0, ϵ, ϵ) = {(q loop, S)} A B A V Γ, B Γ ϵ δ(q loop, ϵ, A) = {(q loop, B)} a δ(q loop, a, a) = {(q loop, ϵ)} δ(q loop, ϵ, $) = {(q 1, ϵ)} 5.1. L = L(P ). L L(P ) L L(P ) PDA P P L CFG PDA P L = L(P ) = {0 n 1 n : n N {0}} ε, S 0S1 ε, S ε 0, 0 ε 1, 1 ε ε, ε S ε, $ ε 0 loop 1

57 CFG PDA 5.6 (L CFG L PDA ). P = (Q, Σ ϵ, Γ ϵ, δ, q 0, F ) L P L. 5.2 P P F = 1 P G = (V, Σ, R, S) V = {A pq : p, q Q} {S} R S A q0 q accept x Γ (s, x) δ(p, a, ϵ) (t, ϵ) δ(q, b, x) p, q, s, t Q, a, b Σ A pq aa st b A pq A pr A rq A pp ϵ 5.2. L = L(G). L L(G) L L(G) G L ( ). L p p w L w w = axyzb 1. i N {0}[ax i yz i b L] 2. xz > 0 3. xyz p

58 52 5. L G = (V, Σ, R, S) L = L(G) 4.4 G p = 2 V +1 p w L w T 5.3. T T V w T P P V A V P A. P V V + 1 A V P A P v V +1, v V,..., v 1, v 0 a, A V,..., A 1, A 0 v 0 A A i = A j = A i > j v i v j v i T T i v j T T j 5.6. T i V w = axyzb 1 v i v j v i y v i v j ayb ayb L v i v j

59 v i v j a x y z b 5.1: v i = v j y a b 5.2: v j xyz v j v i T i ax 2 yz 2 b ax 2 yz 2 b L ax i yz i b L 1 2 xz = 0 x = z = ϵ v i = v j v i v j xz > T i V +1

60 54 5 v i v i a x v j z b x y z 5.3: xyz 2 V +1 = p 5.6 ( ). L = {ww R : w {0, 1} } 4.2 p p w L w w = axyzb w = 0 p 1 p 1 p 0 p L w = axyzb a = 0 p 1 p 2 x = 1 p 2 y = ϵ z = 1 p 2 b = 1 p 2 0 p 5.8. {ww : w Σ }. L p p w L w = 0 p 1 p 0 p 1 p w = axyzb = 0 p 1 p 0 p 1 p xyz p xyz

61 xyz = 0 i i p 1 i j p 0 i 1 j i + j p 1 i 0 j i + j p axxyzzb L L 5.7. axxyzzb L 5.8. L = {0 n 1 n 2 n : n N {0}}

62 a L = Σ \ {0 n 1 n : n N {0}} b 4.8 c a L = {0 i 1 j 2 k : 0 i j k}. b L = {0 n2 : n N {0}}. 3. L 1, L 2, L a L 1 L 2 b L 1 L 2 c L

63 57 1. Σ abcabca abcdef 2. Σ Σ 3. Σ k Σ k n k 4. Σ Σ 1 ϵ Σ Σ ϵ Σ 5. a ϵ Σ 0 Σ b 0 = {ϵ}, k N[ k = ] 1. a b ϵ 2. a w L wϵ = ϵw = w b xy L x L y y 3. L = {ϵ, 00, 11, 0000, 0011, 1100, 1111, ,... } Σ = {00, 11} L = Σ 4. Σ 5. {0 n : n N} {0} {0} {1 n : n N} {1} {1} {0 i 1 j : i, j N} {0} {0} {1} {1} 6. a {w Σ : w }. b {w Σ : w }.

64 58 c {w Σ : w 0 }. 7. a {0} Σ {1} {1} Σ {0}. b Σ (Σ Σ). c {1} {0} {1} ({0} {1} {0} {1} ). 8. {1} {1 n : n N {0}} {01} {1 n : n N {0}} {011 n : n N {0}} 9. A {1} ({01, 001} {1} ) {ϵ, 0, 00} 1. a {1} {0} b {0} {1} c {0} ({10} {0} ) {ϵ, 1} d {1} ({01} {1} ) {0} e 2. a b {ϵ, 1} {01} {ϵ, 0} c {ϵ, 1, 11} ({0, 00} {1, 11}) {ϵ, 0, 00} 3. a {w Σ : w 0 1 }. b {w Σ : w 00 }. c {w Σ : w 000 }. 1. a {w Σ : w 1 } b {w Σ : w 1 } c {w Σ : w 1 } 2. a 010

65 , b c d e δ(q 0, 1) = {q 0, q 1 } 4. a {w Σ : w 0 1 } b {w Σ : w 1 0 } 5. a 010 0, 1 0, b 010

66 60 0, DFA NFA 8. N x δ (q 0, x) F D x δd (q D, x) F D F D δ (q 0, x) = δd (q D, x) N D 9. x = 0 x = ϵ δd (q D, x) = δ (q 0, x) = {q 0 } 10. a b 11. 0,

67 61 a b c b c c 13. a L = Σ b L = ϵ Σ Σ c L = {x} Σ x Σ 14. i = 0, 1, 2 N i = (Q i, Σ, δ i, p i, F i ) N = (Q, Σ, δ, q 0, F ) δ δ i a δ(q 0, ϵ) = {q 1, q 2 } b q F 1 δ(q, ϵ) = {p 2 } c δ(q 0, ϵ) = {p 0 } q F 0 δ(q, ϵ) = {p 0 } 15. M q 0 F G q start q accept δ(q start, q 0 ) = {ϵ} q F δ(q, q accept ) = {ϵ} δ(q, a) = q δ(q, q ) = {a} q, q q q accept, q q start δ(q, q ) =

68 G w G 17. xyyz = 0 k 1 p k > p 18. a 1 p 0 p 1 p 0 p L 1 p 0 p 1 p 0 p = xyz xy p xy = 1 i, z = 1 j 0 p 1 p 0 p xyyz L b 1 p 0 p 0 p 1 p L 1 p 0 p 0 p 1 p = xyz xy p xy = 1 i, z = 1 j 0 p 0 p 1 p xyyz L c 0 p 10 p L 0 p 10 p = xyz xy p xy = 0 i, z = 0 j 10 p xyyz L L 1, L 2, L M 1, M 2, M R 1, R 2 L 1, L 2 a R 1 R 2 L 1 L 2 M 1 M 2 L 1 L 2 b L 1 L 2 = L 1 L 2 R 1 R 2 L c L 1. G 1 G 2 S 0S1 00S11 001B S 0S1 00S11 000A A a V 1 = {S, A}, R 1 = {S A010A, A A0 A1 ϵ}. b V 2 = {S, A}, R 2 = {S A010, A A0 A1 ϵ}. c V 3 = {S, A}, R 3 = {S A1A, A A0 A1 ϵ}. 3. a S (S) (SS) ((S) ) (( ) ) b S SS (S)(S) ( )(SS) ( )((S)(S)) ( )(( )( )) 4. a < exp > < term > < exp >

69 63 < fact > < term > < exp > 1 < fact > < term > 1 2 < fact > b c < exp > < term > < fact > < term > (< exp >) < fact > / < term > (< term > < exp >) (< exp >)/ < fact > (< fact > < term >) (< term > < exp >)/(< exp >) (1 < fact >) (< fact > < term >)/(< term > < exp >) (1 2) (2 < fact >)/(< fact > < term >) (1 2) (2 3)/(3 < fact >) (1 2) (2 3)/(3 1) < exp > < term > + < exp > < fact > + < term > 1+ < fact > / < term > 1 + 1/ < fact > 1 + 1/(< exp >) 1 + 1/(1 + 1/(< exp >)) 1 + 1/(1 + 1/(< term > + < exp >)) 1 + 1/(1 + 1/(< fact > + < term >)) 1 + 1/(1 + 1/(1+ < fact > / < term >)) 1 + 1/(1 + 1/(1 + 1/ < fact >)) 1 + 1/(1 + 1/(1 + 1/2)) 5. a L 1 = {w Σ : w 1 } b L 2 = {ww R : w {0, 1} } c L 3 = {w {0, 1} : w = w R } 6. a V 1 = {S, A}, R 1 = {S A1A1A, A A0 ϵ}. b V 2 = {S, A}, R 2 = {S 1S 0A ϵ, A 1S ϵ}. c V 3 = {S, A}, R 3 = {S ASA 1, A 0 1}. d V 4 = {S, A}, R 4 = {S 0S1 0A, A 0A ϵ}. e V 5 = {S}, R 5 = {S 0S1S 1S0S ϵ}. ( )

70 L(G) = {xy Σ : x = y x y}. 2. a V 1 = {S, A}, R 1 = {S 00S1 0A, A 0A ϵ}. b V 2 = {S, A, B}, R 2 = {S AB, A 0A1 ϵ, B 2 ϵ}. c V 3 = {S, A}, R 3 = {S 0S2 A, A 1A ϵ}. 1. a L 1 = {ww R : w Σ }. b L 2 = {w Σ : w = w R }. 2. a b 0, ε # 0, # ε 1, ε # 1, # ε ε, ε $ 1, ε ε ε, $ ε c 0, ε 0 1, 0 ε ε, ε $ 1, 0 ε ε, 0 ε , ε ε 4 0, ε ε d

71 65 0, ε 0 1, 0 ε 1, $ $ ε, ε $ 1, 0 ε , $ $ 3 1, ε ε 4 1, ε ε e 0, ε 0 1, 0 ε 0, ε 0 2 ε, $ ε 1, $ $ ε, ε 0 0 ε, ε $ ε, ε 1 0, $ $ 1, ε 1 3 ε, $ ε 1, ε 1 0, 1 ε 0, ε 0 0, 1 ε 1, ε 1 1, 0 ε 0 ε, ε $ 1 ε, $ ε 2

72 66 3. ε, S 0S1 ε, S 0A ε, S 1B 0, 0 ε 1, 1 ε ε, ε S ε, $ ε 0 loop 1 ε, A 0A ε, B 1B ε, A ε, B ε ε 4. A BC A a 5. w p w p l 2 l p = 2 V +1 l V v i, v i+1,..., v V +1 T i 7. xyz = 0 i i p xz > 0 n > p axxyzzb = 0 n 1 p 0 p 1 p L 8. p w L w = 0 p 1 p 2 p 1. a b c 2. a p w L w = 0 p 1 p 2 p b p w L w = 0 p2 w = axyzb xyz p ax 2 yz 2 b p 2 + 2p < (p + 1) 2 3. a L 1 S 1 L 2 S 2 S S 1 S 2 b L 1 = {0 i 1 j 2 j : i, j N {0}}, L 2 = {0 j 1 j 2 i : i, j N {0}} L 1, L 2 *3 L 1 L 2 = {0 n 1 n 2 n : n N} c L 1 = {0 i 1 j 2 j : i, j N {0}}, L 2 = {0 j 1 j 2 i : i, j N {0}} *3

73 67 L 1, L 2 L = L 1 L 2 L L = L 1 L 2

74

75 Introduction to the Theory of Computation, Michael Sipser, Cengage Learning, J. R. J.

76 70, 1, 29 ϵ-, 24, 3, 1, 15, 2, 16, 20, 46, 7, 8, 9, 37, 8, 9, 26, 42, 41, 36, 1, 16, 20, 47, 45, 19, 37, 35, 1, 15, 3

77

78

, = = 7 6 = 42, =

, = = 7 6 = 42, = http://www.ss.u-tokai.ac.jp/~mahoro/2016autumn/alg_intro/ 1 1 2016.9.26, http://www.ss.u-tokai.ac.jp/~mahoro/2016autumn/alg_intro/ 1.1 1 214 132 = 28258 2 + 1 + 4 1 + 3 + 2 = 7 6 = 42, 4 + 2 = 6 2 + 8

More information

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y)

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 1 1977 x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) ( x 2 y + xy 2 x 2 2xy y 2) = 15 (x y) (x + y) (xy

More information

ad bc A A A = ad bc ( d ) b c a n A n A n A A det A A ( ) a b A = c d det A = ad bc σ {,,,, n} {,,, } {,,, } {,,, } ( ) σ = σ() = σ() = n sign σ sign(

ad bc A A A = ad bc ( d ) b c a n A n A n A A det A A ( ) a b A = c d det A = ad bc σ {,,,, n} {,,, } {,,, } {,,, } ( ) σ = σ() = σ() = n sign σ sign( I n n A AX = I, YA = I () n XY A () X = IX = (YA)X = Y(AX) = YI = Y X Y () XY A A AB AB BA (AB)(B A ) = A(BB )A = AA = I (BA)(A B ) = B(AA )B = BB = I (AB) = B A (BA) = A B A B A = B = 5 5 A B AB BA A

More information

all.dvi

all.dvi 38 5 Cauchy.,,,,., σ.,, 3,,. 5.1 Cauchy (a) (b) (a) (b) 5.1: 5.1. Cauchy 39 F Q Newton F F F Q F Q 5.2: n n ds df n ( 5.1). df n n df(n) df n, t n. t n = df n (5.1) ds 40 5 Cauchy t l n mds df n 5.3: t

More information

NOTE P, A,. A P ( A, P ),,.,. P A. (set) (set), (). (element), (element).,.,. ( A, B, X, Y, P ), { } (),..3 (union) A, B,A B, A B (union),. A B = {x x

NOTE P, A,. A P ( A, P ),,.,. P A. (set) (set), (). (element), (element).,.,. ( A, B, X, Y, P ), { } (),..3 (union) A, B,A B, A B (union),. A B = {x x 2. (set)............... 2.2,.... 2.3 (union)............ 2.4 (intersection)......... 2.5 (power set)......... 3.6 (cartesian product set)... 3 2, 3 2. (length)........ 3 2.2 (epsilon)............ 3 2.3

More information

2016 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 1 16 2 1 () X O 3 (O1) X O, O (O2) O O (O3) O O O X (X, O) O X X (O1), (O2), (O3) (O2) (O3) n (O2) U 1,..., U n O U k O k=1 (O3) U λ O( λ Λ) λ Λ U λ O 0 X 0 (O2) n =

More information

‚åŁÎ“·„´Šš‡ðŠp‡¢‡½‹âfi`fiI…A…‰…S…−…Y…•‡ÌMarkovŸA“½fiI›ð’Í

‚åŁÎ“·„´Šš‡ðŠp‡¢‡½‹âfi`fiI…A…‰…S…−…Y…•‡ÌMarkovŸA“½fiI›ð’Í Markov 2009 10 2 Markov 2009 10 2 1 / 25 1 (GA) 2 GA 3 4 Markov 2009 10 2 2 / 25 (GA) (GA) L ( 1) I := {0, 1} L f : I (0, ) M( 2) S := I M GA (GA) f (i) i I Markov 2009 10 2 3 / 25 (GA) ρ(i, j), i, j I

More information

untitled

untitled 1 ( 12 11 44 7 20 10 10 1 1 ( ( 2 10 46 11 10 10 5 8 3 2 6 9 47 2 3 48 4 2 2 ( 97 12 ) 97 12 -Spencer modulus moduli (modulus of elasticity) modulus (le) module modulus module 4 b θ a q φ p 1: 3 (le) module

More information

7 27 7.1........................................ 27 7.2.......................................... 28 1 ( a 3 = 3 = 3 a a > 0(a a a a < 0(a a a -1 1 6

7 27 7.1........................................ 27 7.2.......................................... 28 1 ( a 3 = 3 = 3 a a > 0(a a a a < 0(a a a -1 1 6 26 11 5 1 ( 2 2 2 3 5 3.1...................................... 5 3.2....................................... 5 3.3....................................... 6 3.4....................................... 7

More information

koji07-01.dvi

koji07-01.dvi 2007 I II III 1, 2, 3, 4, 5, 6, 7 5 10 19 (!) 1938 70 21? 1 1 2 1 2 2 1! 4, 5 1? 50 1 2 1 1 2 2 1?? 2 1 1, 2 1, 2 1, 2, 3,... 3 1, 2 1, 3? 2 1 3 1 2 1 1, 2 2, 3? 2 1 3 2 3 2 k,l m, n k,l m, n kn > ml...?

More information

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x [ ] IC. f(x) = e x () f(x) f (x) () lim f(x) lim f(x) x + x (3) lim f(x) lim f(x) x + x (4) y = f(x) ( ) ( s46). < a < () a () lim a log xdx a log xdx ( ) n (3) lim log k log n n n k=.3 z = log(x + y ),

More information

2012 A, N, Z, Q, R, C

2012 A, N, Z, Q, R, C 2012 A, N, Z, Q, R, C 1 2009 9 2 2011 2 3 2012 9 1 2 2 5 3 11 4 16 5 22 6 25 7 29 8 32 1 1 1.1 3 1 1 1 1 1 1? 3 3 3 3 3 3 3 1 1, 1 1 + 1 1 1+1 2 2 1 2+1 3 2 N 1.2 N (i) 2 a b a 1 b a < b a b b a a b (ii)

More information

all.dvi

all.dvi 5,, Euclid.,..,... Euclid,.,.,, e i (i =,, ). 6 x a x e e e x.:,,. a,,. a a = a e + a e + a e = {e, e, e } a (.) = a i e i = a i e i (.) i= {a,a,a } T ( T ),.,,,,. (.),.,...,,. a 0 0 a = a 0 + a + a 0

More information

7 3 4 5 a 6 7 8 9 a a a a a 0 3 4 5 6 7 8 9 0 3 DEF ABC 6 MNO 5 JKL 4 GHI 9 XYZ W 8 TUV 7 QRS P 0 POWER ON STD BY a 3 3 4 5 6 7 8 9 0 3 DEF ABC 6 MNO 5 JKL 4 GHI 9 XYZ W 8 TUV 7 QRS P 0 a a a a a a a

More information

F = 0 F α, β F = t 2 + at + b (t α)(t β) = t 2 (α + β)t + αβ G : α + β = a, αβ = b F = 0 F (t) = 0 t α, β G t F = 0 α, β G. α β a b α β α β a b (α β)

F = 0 F α, β F = t 2 + at + b (t α)(t β) = t 2 (α + β)t + αβ G : α + β = a, αβ = b F = 0 F (t) = 0 t α, β G t F = 0 α, β G. α β a b α β α β a b (α β) 19 7 12 1 t F := t 2 + at + b D := a 2 4b F = 0 a, b 1.1 F = 0 α, β α β a, b /stlasadisc.tex, cusp.tex, toileta.eps, toiletb.eps, fromatob.tex 1 F = 0 F α, β F = t 2 + at + b (t α)(t β) = t 2 (α + β)t

More information

9. 05 L x P(x) P(0) P(x) u(x) u(x) (0 < = x < = L) P(x) E(x) A(x) P(L) f ( d EA du ) = 0 (9.) dx dx u(0) = 0 (9.2) E(L)A(L) du (L) = f (9.3) dx (9.) P

9. 05 L x P(x) P(0) P(x) u(x) u(x) (0 < = x < = L) P(x) E(x) A(x) P(L) f ( d EA du ) = 0 (9.) dx dx u(0) = 0 (9.2) E(L)A(L) du (L) = f (9.3) dx (9.) P 9 (Finite Element Method; FEM) 9. 9. P(0) P(x) u(x) (a) P(L) f P(0) P(x) (b) 9. P(L) 9. 05 L x P(x) P(0) P(x) u(x) u(x) (0 < = x < = L) P(x) E(x) A(x) P(L) f ( d EA du ) = 0 (9.) dx dx u(0) = 0 (9.2) E(L)A(L)

More information

ii

ii ii iii 1 1 1.1..................................... 1 1.2................................... 3 1.3........................... 4 2 9 2.1.................................. 9 2.2...............................

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

I II III IV V

I II III IV V I II III IV V N/m 2 640 980 50 200 290 440 2m 50 4m 100 100 150 200 290 390 590 150 340 4m 6m 8m 100 170 250 µ = E FRVβ β N/mm 2 N/mm 2 1.1 F c t.1 3 1 1.1 1.1 2 2 2 2 F F b F s F c F t F b F s 3 3 3

More information

newmain.dvi

newmain.dvi 数論 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/008142 このサンプルページの内容は, 第 2 版 1 刷発行当時のものです. Daniel DUVERNEY: THÉORIE DES NOMBRES c Dunod, Paris, 1998, This book is published

More information

Microsoft PowerPoint - 3.ppt [互換モード]

Microsoft PowerPoint - 3.ppt [互換モード] 3. プッシュダウンオートマトンと文脈自由文法 1 3-1. プッシュダウンオートマトン オートマトンはメモリがほとんど無かった この制限を除いた機械を考える 理想的なスタックを利用できるようなオートマトンをプッシュダウンオートマトン (Push Down Automaton,PDA) という 0 1 入力テープ 1 a 1 1 0 1 スタッb 入力テープを一度走査したあと ク2 入力テプを度走査したあと

More information

44 4 I (1) ( ) (10 15 ) ( 17 ) ( 3 1 ) (2)

44 4 I (1) ( ) (10 15 ) ( 17 ) ( 3 1 ) (2) (1) I 44 II 45 III 47 IV 52 44 4 I (1) ( ) 1945 8 9 (10 15 ) ( 17 ) ( 3 1 ) (2) 45 II 1 (3) 511 ( 451 1 ) ( ) 365 1 2 512 1 2 365 1 2 363 2 ( ) 3 ( ) ( 451 2 ( 314 1 ) ( 339 1 4 ) 337 2 3 ) 363 (4) 46

More information

i ii i iii iv 1 3 3 10 14 17 17 18 22 23 28 29 31 36 37 39 40 43 48 59 70 75 75 77 90 95 102 107 109 110 118 125 128 130 132 134 48 43 43 51 52 61 61 64 62 124 70 58 3 10 17 29 78 82 85 102 95 109 iii

More information

koji07-02.dvi

koji07-02.dvi 007 I II III 1,, 3, 4, 5, 6, 7 5 4 1 ε-n 1 ε-n ε-n ε-n. {a } =1 a ε N N a a N= a a

More information

IMO 1 n, 21n n (x + 2x 1) + (x 2x 1) = A, x, (a) A = 2, (b) A = 1, (c) A = 2?, 3 a, b, c cos x a cos 2 x + b cos x + c = 0 cos 2x a

IMO 1 n, 21n n (x + 2x 1) + (x 2x 1) = A, x, (a) A = 2, (b) A = 1, (c) A = 2?, 3 a, b, c cos x a cos 2 x + b cos x + c = 0 cos 2x a 1 40 (1959 1999 ) (IMO) 41 (2000 ) WEB 1 1959 1 IMO 1 n, 21n + 4 13n + 3 2 (x + 2x 1) + (x 2x 1) = A, x, (a) A = 2, (b) A = 1, (c) A = 2?, 3 a, b, c cos x a cos 2 x + b cos x + c = 0 cos 2x a = 4, b =

More information

行列代数2010A

行列代数2010A (,) A (,) B C = AB a 11 a 1 a 1 b 11 b 1 b 1 c 11 c 1 c a A = 1 a a, B = b 1 b b, C = AB = c 1 c c a 1 a a b 1 b b c 1 c c i j ij a i1 a i a i b 1j b j b j c ij = a ik b kj b 1j b j AB = a i1 a i a ik

More information

04年度LS民法Ⅰ教材改訂版.PDF

04年度LS民法Ⅰ教材改訂版.PDF ?? A AB A B C AB A B A B A B A A B A 98 A B A B A B A B B A A B AB AB A B A BB A B A B A B A B A B A AB A B B A B AB A A C AB A C A A B A B B A B A B B A B A B B A B A B A B A B A B A B A B

More information

オートマトン 形式言語及び演習 4. 正規言語の性質 酒井正彦 正規言語の性質 反復補題正規言語が満たす性質 ある与えられた言語が正規言語でないことを証明するために その言語が正規言語であると

オートマトン 形式言語及び演習 4. 正規言語の性質 酒井正彦   正規言語の性質 反復補題正規言語が満たす性質 ある与えられた言語が正規言語でないことを証明するために その言語が正規言語であると オートマトン 形式言語及び演習 4. 正規言語の性質 酒井正彦 www.trs.css.i.nagoya-u.ac.jp/~sakai/lecture/automata/ 正規言語の性質 正規言語が満たす性質 ある与えられた言語が正規言語でないことを証明するために その言語が正規言語であると仮定してを使い 矛盾を導く 閉包性正規言語を演算により組み合わせて得られる言語が正規言語となる演算について調べる

More information

2 2 MATHEMATICS.PDF 200-2-0 3 2 (p n ), ( ) 7 3 4 6 5 20 6 GL 2 (Z) SL 2 (Z) 27 7 29 8 SL 2 (Z) 35 9 2 40 0 2 46 48 2 2 5 3 2 2 58 4 2 6 5 2 65 6 2 67 7 2 69 2 , a 0 + a + a 2 +... b b 2 b 3 () + b n a

More information

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =,

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =, [ ] IC. r, θ r, θ π, y y = 3 3 = r cos θ r sin θ D D = {, y ; y }, y D r, θ ep y yddy D D 9 s96. d y dt + 3dy + y = cos t dt t = y = e π + e π +. t = π y =.9 s6.3 d y d + dy d + y = y =, dy d = 3 a, b

More information

SO(2)

SO(2) TOP URL http://amonphys.web.fc2.com/ 1 12 3 12.1.................................. 3 12.2.......................... 4 12.3............................. 5 12.4 SO(2).................................. 6

More information

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq 49 2 I II 2.1 3 e e = 1.602 10 19 A s (2.1 50 2 I SI MKSA 2.1.1 r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = 3 10 8 m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq F = k r

More information

1 0/1, a/b/c/ {0, 1} S = {s 1, s 2,..., s q } S x = X 1 X 2 X 3 X n S (n = 1, 2, 3,...) n n s i P (X n = s i ) X m (m < n) P (X n = s i X n 1 = s j )

1 0/1, a/b/c/ {0, 1} S = {s 1, s 2,..., s q } S x = X 1 X 2 X 3 X n S (n = 1, 2, 3,...) n n s i P (X n = s i ) X m (m < n) P (X n = s i X n 1 = s j ) (Communication and Network) 1 1 0/1, a/b/c/ {0, 1} S = {s 1, s 2,..., s q } S x = X 1 X 2 X 3 X n S (n = 1, 2, 3,...) n n s i P (X n = s i ) X m (m < n) P (X n = s i X n 1 = s j ) p i = P (X n = s i )

More information

(1) (2) (1) (2) 2 3 {a n } a 2 + a 4 + a a n S n S n = n = S n

(1) (2) (1) (2) 2 3 {a n } a 2 + a 4 + a a n S n S n = n = S n . 99 () 0 0 0 () 0 00 0 350 300 () 5 0 () 3 {a n } a + a 4 + a 6 + + a 40 30 53 47 77 95 30 83 4 n S n S n = n = S n 303 9 k d 9 45 k =, d = 99 a d n a n d n a n = a + (n )d a n a n S n S n = n(a + a n

More information

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,.

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,. 24(2012) (1 C106) 4 11 (2 C206) 4 12 http://www.math.is.tohoku.ac.jp/~obata,.,,,.. 1. 2. 3. 4. 5. 6. 7.,,. 1., 2007 (). 2. P. G. Hoel, 1995. 3... 1... 2.,,. ii 3.,. 4. F. (),.. 5... 6.. 7.,,. 8.,. 1. (75%)

More information

( 9 1 ) 1 2 1.1................................... 2 1.2................................................. 3 1.3............................................... 4 1.4...........................................

More information

linearal1.dvi

linearal1.dvi 19 4 30 I 1 1 11 1 12 2 13 3 131 3 132 4 133 5 134 6 14 7 2 9 21 9 211 9 212 10 213 13 214 14 22 15 221 15 222 16 223 17 224 20 3 21 31 21 32 21 33 22 34 23 341 23 342 24 343 27 344 29 35 31 351 31 352

More information

入試の軌跡

入試の軌跡 4 y O x 4 Typed by L A TEX ε ) ) ) 6 4 ) 4 75 ) http://kumamoto.s.xrea.com/plan/.. PDF) Ctrl +L) Ctrl +) Ctrl + Ctrl + ) ) Alt + ) Alt + ) ESC. http://kumamoto.s.xrea.com/nyusi/kumadai kiseki ri i.pdf

More information

2005

2005 20 30 8 3 190 60 A,B 67,2000 98 20 23,600 100 60 10 20 1 3 2 1 2 1 12 1 1 ( ) 340 20 20 30 50 50 ( ) 6 80 5 65 17 21 5 5 12 35 1 5 20 3 3,456,871 2,539,950 916,921 18 10 29 5 3 JC-V 2 ( ) 1 17 3 1 6

More information

meiji_resume_1.PDF

meiji_resume_1.PDF β β β (q 1,q,..., q n ; p 1, p,..., p n ) H(q 1,q,..., q n ; p 1, p,..., p n ) Hψ = εψ ε k = k +1/ ε k = k(k 1) (x, y, z; p x, p y, p z ) (r; p r ), (θ; p θ ), (ϕ; p ϕ ) ε k = 1/ k p i dq i E total = E

More information

25 7 18 1 1 1.1 v.s............................. 1 1.1.1.................................. 1 1.1.2................................. 1 1.1.3.................................. 3 1.2................... 3

More information

T T T T A 0 1 A 1 A P (A 1 ) = C 1 6 C 8C 3 = 15 8, P (A ) = C 6 C 1 8C 3 = 3 8 T 5 B P (A 1 B) = =

T T T T A 0 1 A 1 A P (A 1 ) = C 1 6 C 8C 3 = 15 8, P (A ) = C 6 C 1 8C 3 = 3 8 T 5 B P (A 1 B) = = 4 1.. 3. 4. 1. 1 3 4 5 6 1 3 4 5 6. 1 1 1 A B P (A B) = P (A) + P (B) P (C) = P (A) P (B) 3. 1 1 P (A) = 1 P (A) A A 4. A B P A (B) = n(a B) n(a) = P (A B) P (A) 50 015 016 018 1 4 5 8 8 3 T 1 3 1 T T

More information

x V x x V x, x V x = x + = x +(x+x )=(x +x)+x = +x = x x = x x = x =x =(+)x =x +x = x +x x = x ( )x = x =x =(+( ))x =x +( )x = x +( )x ( )x = x x x R

x V x x V x, x V x = x + = x +(x+x )=(x +x)+x = +x = x x = x x = x =x =(+)x =x +x = x +x x = x ( )x = x =x =(+( ))x =x +( )x = x +( )x ( )x = x x x R V (I) () (4) (II) () (4) V K vector space V vector K scalor K C K R (I) x, y V x + y V () (x + y)+z = x +(y + z) (2) x + y = y + x (3) V x V x + = x (4) x V x + x = x V x x (II) x V, α K αx V () (α + β)x

More information

untitled

untitled 0. =. =. (999). 3(983). (980). (985). (966). 3. := :=. A A. A A. := := 4 5 A B A B A B. A = B A B A B B A. A B A B, A B, B. AP { A, P } = { : A, P } = { A P }. A = {0, }, A, {0, }, {0}, {}, A {0}, {}.

More information

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4 35-8585 7 8 1 I I 1 1.1 6kg 1m P σ σ P 1 l l λ λ l 1.m 1 6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m

More information

r 1 m A r/m i) t ii) m i) t B(t; m) ( B(t; m) = A 1 + r ) mt m ii) B(t; m) ( B(t; m) = A 1 + r ) mt m { ( = A 1 + r ) m } rt r m n = m r m n B

r 1 m A r/m i) t ii) m i) t B(t; m) ( B(t; m) = A 1 + r ) mt m ii) B(t; m) ( B(t; m) = A 1 + r ) mt m { ( = A 1 + r ) m } rt r m n = m r m n B 1 1.1 1 r 1 m A r/m i) t ii) m i) t Bt; m) Bt; m) = A 1 + r ) mt m ii) Bt; m) Bt; m) = A 1 + r ) mt m { = A 1 + r ) m } rt r m n = m r m n Bt; m) Aert e lim 1 + 1 n 1.1) n!1 n) e a 1, a 2, a 3,... {a n

More information

A 2 3. m S m = {x R m+1 x = 1} U + k = {x S m x k > 0}, U k = {x S m x k < 0}, ϕ ± k (x) = (x 0,..., ˆx k,... x m ) 1. {(U ± k, ϕ± k ) 0 k m} S m 1.2.

A 2 3. m S m = {x R m+1 x = 1} U + k = {x S m x k > 0}, U k = {x S m x k < 0}, ϕ ± k (x) = (x 0,..., ˆx k,... x m ) 1. {(U ± k, ϕ± k ) 0 k m} S m 1.2. A A 1 A 5 A 6 1 2 3 4 5 6 7 1 1.1 1.1 (). Hausdorff M R m M M {U α } U α R m E α ϕ α : U α E α U α U β = ϕ α (ϕ β ϕβ (U α U β )) 1 : ϕ β (U α U β ) ϕ α (U α U β ) C M a m dim M a U α ϕ α {x i, 1 i m} {U,

More information

( ) ( ) lex LL(1) LL(1)

( ) ( ) lex LL(1) LL(1) () () lex LL(1) LL(1) http://www.cs.info.mie-u.ac.jp/~toshi/lectures/compiler/ 29 5 14 1 1 () / (front end) (back end) (phase) (pass) 1 2 1 () () var left, right; fun int main() { left = 0; right = 10;

More information

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0 1 1 1.1 1.) T D = T = D = kn 1. 1.4) F W = F = W/ = kn/ = 15 kn 1. 1.9) R = W 1 + W = 6 + 5 = 11 N. 1.9) W b W 1 a = a = W /W 1 )b = 5/6) = 5 cm 1.4 AB AC P 1, P x, y x, y y x 1.4.) P sin 6 + P 1 sin 45

More information

zz + 3i(z z) + 5 = 0 + i z + i = z 2i z z z y zz + 3i (z z) + 5 = 0 (z 3i) (z + 3i) = 9 5 = 4 z 3i = 2 (3i) zz i (z z) + 1 = a 2 {

zz + 3i(z z) + 5 = 0 + i z + i = z 2i z z z y zz + 3i (z z) + 5 = 0 (z 3i) (z + 3i) = 9 5 = 4 z 3i = 2 (3i) zz i (z z) + 1 = a 2 { 04 zz + iz z) + 5 = 0 + i z + i = z i z z z 970 0 y zz + i z z) + 5 = 0 z i) z + i) = 9 5 = 4 z i = i) zz i z z) + = a {zz + i z z) + 4} a ) zz + a + ) z z) + 4a = 0 4a a = 5 a = x i) i) : c Darumafactory

More information

17 ( :52) α ω 53 (2015 ) 2 α ω 55 (2017 ) 2 1) ) ) 2 2 4) (α β) A ) 6) A (5) 1)

17 ( :52) α ω 53 (2015 ) 2 α ω 55 (2017 ) 2 1) ) ) 2 2 4) (α β) A ) 6) A (5) 1) 3 3 1 α ω 53 (2015 ) 2 α ω 55 (2017 ) 2 1) 2000 2) 5 2 3 4 2 3 5 3) 2 2 4) (α β) 2 3 4 5 20 A 12 20 5 5 5) 6) 5 20 12 5 A (5) 1) Évariste Galois(1811-1832) 2) Joseph-Louis Lagrange(1736-1813) 18 3),Niels

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

x = a 1 f (a r, a + r) f(a) r a f f(a) 2 2. (a, b) 2 f (a, b) r f(a, b) r (a, b) f f(a, b)

x = a 1 f (a r, a + r) f(a) r a f f(a) 2 2. (a, b) 2 f (a, b) r f(a, b) r (a, b) f f(a, b) 2011 I 2 II III 17, 18, 19 7 7 1 2 2 2 1 2 1 1 1.1.............................. 2 1.2 : 1.................... 4 1.2.1 2............................... 5 1.3 : 2.................... 5 1.3.1 2.....................................

More information

n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz

n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz 1 2 (a 1, a 2, a n ) (b 1, b 2, b n ) A (1.1) A = a 1 b 1 + a 2 b 2 + + a n b n (1.1) n A = a i b i (1.2) i=1 n i 1 n i=1 a i b i n i=1 A = a i b i (1.3) (1.3) (1.3) (1.1) (ummation convention) a 11 x

More information

2 7 V 7 {fx fx 3 } 8 P 3 {fx fx 3 } 9 V 9 {fx fx f x 2fx } V {fx fx f x 2fx + } V {{a n } {a n } a n+2 a n+ + a n n } 2 V 2 {{a n } {a n } a n+2 a n+

2 7 V 7 {fx fx 3 } 8 P 3 {fx fx 3 } 9 V 9 {fx fx f x 2fx } V {fx fx f x 2fx + } V {{a n } {a n } a n+2 a n+ + a n n } 2 V 2 {{a n } {a n } a n+2 a n+ R 3 R n C n V??,?? k, l K x, y, z K n, i x + y + z x + y + z iv x V, x + x o x V v kx + y kx + ky vi k + lx kx + lx vii klx klx viii x x ii x + y y + x, V iii o K n, x K n, x + o x iv x K n, x + x o x

More information

II 2014 2 (1) log(1 + r/100) n = log 2 n log(1 + r/100) = log 2 n = log 2 log(1 + r/100) (2) y = f(x) = log(1 + x) x = 0 1 f (x) = 1/(1 + x) f (0) = 1

II 2014 2 (1) log(1 + r/100) n = log 2 n log(1 + r/100) = log 2 n = log 2 log(1 + r/100) (2) y = f(x) = log(1 + x) x = 0 1 f (x) = 1/(1 + x) f (0) = 1 II 2014 1 1 I 1.1 72 r 2 72 8 72/8 = 9 9 2 a 0 1 a 1 a 1 = a 0 (1+r/100) 2 a 2 a 2 = a 1 (1 + r/100) = a 0 (1 + r/100) 2 n a n = a 0 (1 + r/100) n a n a 0 2 n a 0 (1 + r/100) n = 2a 0 (1 + r/100) n = 2

More information

I

I I io@hiroshima-u.ac.jp 27 6 A A. /a δx = lim a + a exp π x2 a 2 = lim a + a = lim a + a exp a 2 π 2 x 2 + a 2 2 x a x = lim a + a Sic a x = lim a + a Rect a Gaussia Loretzia Bilateral expoetial Normalized

More information

,2,4

,2,4 2005 12 2006 1,2,4 iii 1 Hilbert 14 1 1.............................................. 1 2............................................... 2 3............................................... 3 4.............................................

More information

140 120 100 80 60 40 20 0 115 107 102 99 95 97 95 97 98 100 64 72 37 60 50 53 50 36 32 18 H18 H19 H20 H21 H22 H23 H24 H25 H26 H27 1 100 () 80 60 40 20 0 1 19 16 10 11 6 8 9 5 10 35 76 83 73 68 46 44 H11

More information

応力とひずみ.ppt

応力とひずみ.ppt in yukawa@numse.nagoya-u.ac.jp 2 3 4 5 x 2 6 Continuum) 7 8 9 F F 10 F L L F L 1 L F L F L F 11 F L F F L F L L L 1 L 2 12 F L F! A A! S! = F S 13 F L L F F n = F " cos# F t = F " sin# S $ = S cos# S S

More information

熊本県数学問題正解

熊本県数学問題正解 00 y O x Typed by L A TEX ε ( ) (00 ) 5 4 4 ( ) http://www.ocn.ne.jp/ oboetene/plan/. ( ) (009 ) ( ).. http://www.ocn.ne.jp/ oboetene/plan/eng.html 8 i i..................................... ( )0... (

More information

( )/2 hara/lectures/lectures-j.html 2, {H} {T } S = {H, T } {(H, H), (H, T )} {(H, T ), (T, T )} {(H, H), (T, T )} {1

( )/2   hara/lectures/lectures-j.html 2, {H} {T } S = {H, T } {(H, H), (H, T )} {(H, T ), (T, T )} {(H, H), (T, T )} {1 ( )/2 http://www2.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html 1 2011 ( )/2 2 2011 4 1 2 1.1 1 2 1 2 3 4 5 1.1.1 sample space S S = {H, T } H T T H S = {(H, H), (H, T ), (T, H), (T, T )} (T, H) S

More information

?

? 240-8501 79-2 Email: nakamoto@ynu.ac.jp 1 3 1.1...................................... 3 1.2?................................. 6 1.3..................................... 8 1.4.......................................

More information

1 Abstract 2 3 n a ax 2 + bx + c = 0 (a 0) (1) ( x + b ) 2 = b2 4ac 2a 4a 2 D = b 2 4ac > 0 (1) 2 D = 0 D < 0 x + b 2a = ± b2 4ac 2a b ± b 2

1 Abstract 2 3 n a ax 2 + bx + c = 0 (a 0) (1) ( x + b ) 2 = b2 4ac 2a 4a 2 D = b 2 4ac > 0 (1) 2 D = 0 D < 0 x + b 2a = ± b2 4ac 2a b ± b 2 1 Abstract n 1 1.1 a ax + bx + c = 0 (a 0) (1) ( x + b ) = b 4ac a 4a D = b 4ac > 0 (1) D = 0 D < 0 x + b a = ± b 4ac a b ± b 4ac a b a b ± 4ac b i a D (1) ax + bx + c D 0 () () (015 8 1 ) 1. D = b 4ac

More information

³ÎΨÏÀ

³ÎΨÏÀ 2017 12 12 Makoto Nakashima 2017 12 12 1 / 22 2.1. C, D π- C, D. A 1, A 2 C A 1 A 2 C A 3, A 4 D A 1 A 2 D Makoto Nakashima 2017 12 12 2 / 22 . (,, L p - ). Makoto Nakashima 2017 12 12 3 / 22 . (,, L p

More information

1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C

1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C 0 9 (1990 1999 ) 10 (2000 ) 1900 1994 1995 1999 2 SAT ACT 1 1990 IMO 1990/1/15 1:00-4:00 1 N 1990 9 N N 1, N 1 N 2, N 2 N 3 N 3 2 x 2 + 25x + 52 = 3 x 2 + 25x + 80 3 2, 3 0 4 A, B, C 3,, A B, C 2,,,, 7,

More information

II Time-stamp: <05/09/30 17:14:06 waki> ii

II Time-stamp: <05/09/30 17:14:06 waki> ii II waki@cc.hirosaki-u.ac.jp 18 1 30 II Time-stamp: ii 1 1 1.1.................................................. 1 1.2................................................... 3 1.3..................................................

More information

i

i 14 i ii iii iv v vi 14 13 86 13 12 28 14 16 14 15 31 (1) 13 12 28 20 (2) (3) 2 (4) (5) 14 14 50 48 3 11 11 22 14 15 10 14 20 21 20 (1) 14 (2) 14 4 (3) (4) (5) 12 12 (6) 14 15 5 6 7 8 9 10 7

More information

( 23 )

( 23 ) ( 23 ) 2 9 11 16 21........................................... 21........................................... 24........................................... 28...........................................

More information

経済分析 第82号

経済分析 第82号 6 K Y T YF KT effeive lor servie M H M H effeive mnhour Prouive mnhour mnhour M H M F M F if K M F ii M F M F F F M F F K M F i CoDougls Y Y Ae K K A Y K γ i ii Y * < lnk Y Y Y ˆ ˆ pive M H Brehling M

More information

4.6: 3 sin 5 sin θ θ t θ 2t θ 4t : sin ωt ω sin θ θ ωt sin ωt 1 ω ω [rad/sec] 1 [sec] ω[rad] [rad/sec] 5.3 ω [rad/sec] 5.7: 2t 4t sin 2t sin 4t

4.6: 3 sin 5 sin θ θ t θ 2t θ 4t : sin ωt ω sin θ θ ωt sin ωt 1 ω ω [rad/sec] 1 [sec] ω[rad] [rad/sec] 5.3 ω [rad/sec] 5.7: 2t 4t sin 2t sin 4t 1 1.1 sin 2π [rad] 3 ft 3 sin 2t π 4 3.1 2 1.1: sin θ 2.2 sin θ ft t t [sec] t sin 2t π 4 [rad] sin 3.1 3 sin θ θ t θ 2t π 4 3.2 3.1 3.4 3.4: 2.2: sin θ θ θ [rad] 2.3 0 [rad] 4 sin θ sin 2t π 4 sin 1 1

More information

A(6, 13) B(1, 1) 65 y C 2 A(2, 1) B( 3, 2) C 66 x + 2y 1 = 0 2 A(1, 1) B(3, 0) P 67 3 A(3, 3) B(1, 2) C(4, 0) (1) ABC G (2) 3 A B C P 6

A(6, 13) B(1, 1) 65 y C 2 A(2, 1) B( 3, 2) C 66 x + 2y 1 = 0 2 A(1, 1) B(3, 0) P 67 3 A(3, 3) B(1, 2) C(4, 0) (1) ABC G (2) 3 A B C P 6 1 1 1.1 64 A6, 1) B1, 1) 65 C A, 1) B, ) C 66 + 1 = 0 A1, 1) B, 0) P 67 A, ) B1, ) C4, 0) 1) ABC G ) A B C P 64 A 1, 1) B, ) AB AB = 1) + 1) A 1, 1) 1 B, ) 1 65 66 65 C0, k) 66 1 p, p) 1 1 A B AB A 67

More information

The Physics of Atmospheres CAPTER :

The Physics of Atmospheres CAPTER : The Physics of Atmospheres CAPTER 4 1 4 2 41 : 2 42 14 43 17 44 25 45 27 46 3 47 31 48 32 49 34 41 35 411 36 maintex 23/11/28 The Physics of Atmospheres CAPTER 4 2 4 41 : 2 1 σ 2 (21) (22) k I = I exp(

More information

δ ij δ ij ˆx ˆx ŷ ŷ ẑ ẑ 0, ˆx ŷ ŷ ˆx ẑ, ŷ ẑ ẑ ŷ ẑ, ẑ ˆx ˆx ẑ ŷ, a b a x ˆx + a y ŷ + a z ẑ b x ˆx + b

δ ij δ ij ˆx ˆx ŷ ŷ ẑ ẑ 0, ˆx ŷ ŷ ˆx ẑ, ŷ ẑ ẑ ŷ ẑ, ẑ ˆx ˆx ẑ ŷ, a b a x ˆx + a y ŷ + a z ẑ b x ˆx + b 23 2 2.1 n n r x, y, z ˆx ŷ ẑ 1 a a x ˆx + a y ŷ + a z ẑ 2.1.1 3 a iˆx i. 2.1.2 i1 i j k e x e y e z 3 a b a i b i i 1, 2, 3 x y z ˆx i ˆx j δ ij, 2.1.3 n a b a i b i a i b i a x b x + a y b y + a z b

More information

1/1 lim f(x, y) (x,y) (a,b) ( ) ( ) lim limf(x, y) lim lim f(x, y) x a y b y b x a ( ) ( ) xy x lim lim lim lim x y x y x + y y x x + y x x lim x x 1

1/1 lim f(x, y) (x,y) (a,b) ( ) ( ) lim limf(x, y) lim lim f(x, y) x a y b y b x a ( ) ( ) xy x lim lim lim lim x y x y x + y y x x + y x x lim x x 1 1/5 ( ) Taylor ( 7.1) (x, y) f(x, y) f(x, y) x + y, xy, e x y,... 1 R {(x, y) x, y R} f(x, y) x y,xy e y log x,... R {(x, y, z) (x, y),z f(x, y)} R 3 z 1 (x + y ) z ax + by + c x 1 z ax + by + c y x +

More information

(Basics of Proability Theory). (Probability Spacees ad Radom Variables,, (Ω, F, P ),, X,. (Ω, F, P ) (probability space) Ω ( ω Ω ) F ( 2 Ω ) Ω σ (σ-fi

(Basics of Proability Theory). (Probability Spacees ad Radom Variables,, (Ω, F, P ),, X,. (Ω, F, P ) (probability space) Ω ( ω Ω ) F ( 2 Ω ) Ω σ (σ-fi II (Basics of Probability Theory ad Radom Walks) (Preface),.,,,.,,,...,,.,.,,.,,. (Basics of Proability Theory). (Probability Spacees ad Radom Variables...............2, (Expectatios, Meas).............................

More information

直交座標系の回転

直交座標系の回転 b T.Koama x l x, Lx i ij j j xi i i i, x L T L L, L ± x L T xax axx, ( a a ) i, j ij i j ij ji λ λ + λ + + λ i i i x L T T T x ( L) L T xax T ( T L T ) A( L) T ( LAL T ) T ( L AL) λ ii L AL Λ λi i axx

More information

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) =

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) = 1 1 1.1 I R 1.1.1 c : I R 2 (i) c C (ii) t I c (t) (0, 0) c (t) c(i) c c(t) 1.1.2 (1) (2) (3) (1) r > 0 c : R R 2 : t (r cos t, r sin t) (2) C f : I R c : I R 2 : t (t, f(t)) (3) y = x c : R R 2 : t (t,

More information

68 A mm 1/10 A. (a) (b) A.: (a) A.3 A.4 1 1

68 A mm 1/10 A. (a) (b) A.: (a) A.3 A.4 1 1 67 A Section A.1 0 1 0 1 Balmer 7 9 1 0.1 0.01 1 9 3 10:09 6 A.1: A.1 1 10 9 68 A 10 9 10 9 1 10 9 10 1 mm 1/10 A. (a) (b) A.: (a) A.3 A.4 1 1 A.1. 69 5 1 10 15 3 40 0 0 ¾ ¾ É f Á ½ j 30 A.3: A.4: 1/10

More information

第1部 一般的コメント

第1部 一般的コメント (( 2000 11 24 2003 12 31 3122 94 2332 508 26 a () () i ii iii iv (i) (ii) (i) (ii) (iii) (iv) (a) (b)(c)(d) a) / (i) (ii) (iii) (iv) 1996 7 1996 12

More information

21 2 26 i 1 1 1.1............................ 1 1.2............................ 3 2 9 2.1................... 9 2.2.......... 9 2.3................... 11 2.4....................... 12 3 15 3.1..........

More information

A A = a 41 a 42 a 43 a 44 A (7) 1 (3) A = M 12 = = a 41 (8) a 41 a 43 a 44 (3) n n A, B a i AB = A B ii aa

A A = a 41 a 42 a 43 a 44 A (7) 1 (3) A = M 12 = = a 41 (8) a 41 a 43 a 44 (3) n n A, B a i AB = A B ii aa 1 2 21 2 2 [ ] a 11 a 12 A = a 21 a 22 (1) A = a 11 a 22 a 12 a 21 (2) 3 3 n n A A = n ( 1) i+j a ij M ij i =1 n (3) j=1 M ij A i j (n 1) (n 1) 2-1 3 3 A A = a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33

More information

9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) Ĥ0 ψ n (r) ω n Schrödinger Ĥ 0 ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ0 + Ĥint (

9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) Ĥ0 ψ n (r) ω n Schrödinger Ĥ 0 ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ0 + Ĥint ( 9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) 2. 2.1 Ĥ ψ n (r) ω n Schrödinger Ĥ ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ + Ĥint (t)] ψ (r, t), (2) Ĥ int (t) = eˆxe cos ωt ˆdE cos ωt, (3)

More information

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2 filename=mathformula58.tex ax + bx + c =, x = b ± b 4ac, (.) a x + x = b a, x x = c a, (.) ax + b x + c =, x = b ± b ac. a (.3). sin(a ± B) = sin A cos B ± cos A sin B, (.) cos(a ± B) = cos A cos B sin

More information

i I II I II II IC IIC I II ii 5 8 5 3 7 8 iii I 3........................... 5......................... 7........................... 4........................ 8.3......................... 33.4...................

More information

5 n P j j (P i,, P k, j 1) 1 n n ) φ(n) = n (1 1Pj [ ] φ φ P j j P j j = = = = = n = φ(p j j ) (P j j P j 1 j ) P j j ( 1 1 P j ) P j j ) (1 1Pj (1 1P

5 n P j j (P i,, P k, j 1) 1 n n ) φ(n) = n (1 1Pj [ ] φ φ P j j P j j = = = = = n = φ(p j j ) (P j j P j 1 j ) P j j ( 1 1 P j ) P j j ) (1 1Pj (1 1P p P 1 n n n 1 φ(n) φ φ(1) = 1 1 n φ(n), n φ(n) = φ()φ(n) [ ] n 1 n 1 1 n 1 φ(n) φ() φ(n) 1 3 4 5 6 7 8 9 1 3 4 5 6 7 8 9 1 4 5 7 8 1 4 5 7 8 10 11 1 13 14 15 16 17 18 19 0 1 3 4 5 6 7 19 0 1 3 4 5 6 7

More information

20 9 19 1 3 11 1 3 111 3 112 1 4 12 6 121 6 122 7 13 7 131 8 132 10 133 10 134 12 14 13 141 13 142 13 143 15 144 16 145 17 15 19 151 1 19 152 20 2 21 21 21 211 21 212 1 23 213 1 23 214 25 215 31 22 33

More information

福岡大学人文論叢47-3

福岡大学人文論叢47-3 679 pp. 1 680 2 681 pp. 3 682 4 683 5 684 pp. 6 685 7 686 8 687 9 688 pp. b 10 689 11 690 12 691 13 692 pp. 14 693 15 694 a b 16 695 a b 17 696 a 18 697 B 19 698 A B B B A B B A A 20 699 pp. 21 700 pp.

More information

73

73 73 74 ( u w + bw) d = Ɣ t tw dɣ u = N u + N u + N 3 u 3 + N 4 u 4 + [K ] {u = {F 75 u δu L σ (L) σ dx σ + dσ x δu b δu + d(δu) ALW W = L b δu dv + Aσ (L)δu(L) δu = (= ) W = A L b δu dx + Aσ (L)δu(L) Aσ

More information

B ver B

B ver B B ver. 2017.02.24 B Contents 1 11 1.1....................... 11 1.1.1............. 11 1.1.2.......................... 12 1.2............................. 14 1.2.1................ 14 1.2.2.......................

More information

K E N Z OU

K E N Z OU K E N Z OU 11 1 1 1.1..................................... 1.1.1............................ 1.1..................................................................................... 4 1.........................................

More information

第1章 国民年金における無年金

第1章 国民年金における無年金 1 2 3 4 ILO ILO 5 i ii 6 7 8 9 10 ( ) 3 2 ( ) 3 2 2 2 11 20 60 12 1 2 3 4 5 6 7 8 9 10 11 12 13 13 14 15 16 17 14 15 8 16 2003 1 17 18 iii 19 iv 20 21 22 23 24 25 ,,, 26 27 28 29 30 (1) (2) (3) 31 1 20

More information

情報数理学

情報数理学 2007 年度 情報数理学 履修にあたって 2007 年度大学院奇数セメスター ( 前期 ) 開講 教室 : K336 大学院棟 D46( 次回から ) 時限 : 火曜日 3 時限 (2:50-4:20) 担当 草苅良至 2 講義予定 計算機のいろいろな理論モデル 言語理論 計算の限界 問題の難しさ 現実問題と計算 計算量理論 アルゴリズム論 3 参考書 M. Sipser 著 計算理論の基礎 共立出版

More information