Size: px
Start display at page:

Download ""

Transcription

1

2

3 R x 1, x 2, x 3, ( x n (n = 1, 2, 3, 11 ( R ( x n x R ϵ N N n x n x < ϵ ( x n x ϵ > 0, N N, n > N : x n x < ϵ ( x n x n xn x lim x n = x x n x (n n x ( x n 11 x n = 1/n ( x n 0 ϵ N 1/ϵ N N n > N 0 < x n = 1 n < 1 N ϵ n > N : x n 0 < ϵ ( x n 0 12 ( x n 1 x n = n n 1 n R ( x n ϵ > 0, N N, n > N : x n x < ϵ ϵ > 0, N N, n > N : x n x ϵ (11 ϵ N N n x n x ϵ ϵ = 1/2 n x n 0 = 1 0 = 1 > ϵ (12

4 4 ϵ 1/2 N n (11 ( x n 0 ( x n 1 n ( x n R f : R R ( x n f(x1, f(x 2, f(x 3, 13 f : R R f(x = x (13 ( x n 11 xn = 1/n f(x n = x 3 n + 1 = 1 n f(x n 1 (n f(x n 1 x n = ( 1 n /n f(x n = x 3 n + 1 = ( 1n n f(x n 1 (n 1 13 ( x n lim n x n = 0 0 (13 f 0 ( x n f(x n 1 (n 12 ( x R f R x n x (n ( x n f(x n f(x (n lim n f(x n = f(x f x f(y f(x (y x lim y x f(y = f(x

5 5, (x n x ( (f(x (f(x n lim f(x n n lim n f(x n = f (lim n x n 13 f 0 12 ϵ > 0, δ > 0, y R : x y < δ f(x f(y < ϵ R f 1 x 0 f(x = 0 x < 0 x = 0 0 x n = 1/n x n = 1/n f n, x n = 1 n > 0 n, f(x n = 1 f(x n 1 (n f f(0 = 1 f(x n f(0 (n 0 1 f n, x n = 1 n < 0 n, f(x n = 0 f(x n 0 (n 0 f(x n f(0 (n 0 2 f

6 L R L x 1, x 2, x 3, ( x n (n = 1, 2, 3, Euclidean Norm 13 ( R L x = ( x 1, x 2, x 3,, x L x x R L x = (x (x (x (x L 2 (14 L = 2, 3 14 R L ( x n x R L lim x n x = 0 x n x 0 (n n ( x n x x ( x n lim x n = x x n x (n (15 n ( x n x ( xn x x n = ( x 1 n, x 2 n, x 3 n,, x L n 14 l = 1, 2, 3,, L : x l n x l (n ( (16 15 R 2 0 = (0, 0 ( 1 x n = n, 0 x n = x n = x n = ( 0, 1 n ( 1 n, 1 n ( 1 n cos n, 1 n sin n (17 (18 (19 (110 xn 0 (n 0 R 2 0

7 7 122 L F : R L R M 1 R L R M F : R L R M F (x = F (x 1, x 2,, x L x R L F 1 (x 1, x 2,, x L F 2 (x 1, x 2,, x L F (x = F M (x 1, x 2,, x L 15 x R L F R L x n x (n ( x n F (x n F (x (n x n x 0 (n ( x n F (x n F (x 0 (n F x lim F (y = F (x F (y F (x (y x y x F 0 F (0 1 ϵ - δ 15 ϵ > 0, δ > 0, x R L : x u < δ f(x f(u < ϵ (x 1, x 2,, x L F

8 8 131 L = 2 M = 1 F (x 1, x 2 = F (x, y 16 (1 1 f : R R x R f(x + h f(x lim h 0 h f x f(x + h f(x lim = df h 0 h dx (x, y = f (x f x f x R f R f R R x f (x f f : R R f x f x x f R 15 n f : R R ( 1 x n sin (x 0 f(x = x 0 (x = 0 1 n = 0 x 0 f(x = sin (1/x f x = 0 2 n = 1 f x = 0 3 n = 2 f x = 0 17 ( F : R 2 R (x, y R 2 g(h = F (x + h, y g : R R g h = 0 g(h r(0 F (x + h, y F (x, y lim = lim h 0 h h 0 h F (x, y x F (x, y x F x (x, y R 2 F x y F (x, y + h F (x, y lim h 0 h F (x, y y F (x, y y F y (x, y R 2 F y

9 F 16 (K, L (K +dk, L+dL Q = F (K, L F (K, L K K + dk Q F K (K, LdK L L + dl Q F L (K, LdL Q dq 4 dq = F F (K, LdK + (K, LdL K L 16 1 F F 17 2 F (x, y 0 xy = 0 F (x, y = x + y xy 0 2 h (x, y (0, 0 (h, h F F (x, y (0, 0 F F (0 + h, 0 F (0, 0 (0, 0 = lim = 0 x h 0 h F F (0, 0 + h F (0, 0 (0, 0 = lim = 0 y h 0 h F df df = F F (0, 0h + (0, 0h = 0 (111 x y F (111 df = F (0 + h, 0 + h F (0, 0 = h 0 = h F (0 + h, 0 + h F (0, 0 lim = 1 h 0 h F 4 Q dq = F (K + dk, L + dl F (K, L

10 F 18 ( F : R 2 R (x, y R 2 (u, v R 2 g : R R g(ϵ = F (x + ϵu, y + ϵv g ϵ = 0 g(ϵ g(0 F (x + ϵu, y + ϵv F (x, y lim = lim ϵ 0 ϵ ϵ 0 ϵ (112 F (x, y (u, v (112 F (x, y 2 (u, v F 18 (u, v R 2 (u, v = (1, 0 (u, v = (0, 1 x y 17 F 2 (0, 0 (ϵ, ϵ F (u, v = (1, 1 F (0 + ϵ, 0 + ϵ F (0, 0 ϵ = ϵ 0 ϵ (0, 0 (u, v = (1, 1 F 1 = (110 (u, v f : R R x R f(x + h f(x lim h 0 h f x f(x + h f(x lim = df h 0 h dx (x, y = f (x f x R f

11 f x 2 c R f(x + h ( f(x + ch lim = 0 (113 h 0 h (113 c c = f (x f (113 1 ( ( F : R 2 R (x, y R 2 (c, d R 2 F (x + h, y + k ( F (x, y + ch + dk lim = 0 (114 (h,k (0,0 (h, k F (x, y F (x, y (c, d ( F F (c, d = (x, y, (x, y x y F (x, y F (x, y F F (114 lim (h n, k n = (0, 0 n {(h n, k n } 15 (17 (18 (19 (110 ( F : R 2 R F (x, y = x y 1 (x, y = (0, 0 F 2 (x, y = (0, 0 F 3 (x, y = (0, 0 F

12 (c, d (x, y (gradient vector ( F F F (x, y = (x, y, (x, y x y max F (x + h, y + k F (x, y (h,k subject to (h, k ϵ (x, y (x + h, y + k F (x, y (x, y ϵ F F 0 ϵ (h ϵ, k ϵ = F (x + h ϵ, y + k ϵ F (x + h ϵ, y + k ϵ (115 lim h ϵ = 0, lim k ϵ = 0 ϵ 0 ϵ 0 (115 ϵ ϵ 0 F 1 lim ϵ 0 ϵ (h 1 ϵ, k ϵ = F (x, y (116 F (x, y (116 (x, y F F (x, y (116 F F (x, y F (x, y lim (ϵh,ϵk (0,0 F (x + ϵh, y + ϵk ( F (x, y + F x (ϵh, ϵk F (x + ϵh, y + ϵk F (x, y lim = ϵ 0 ϵ (h, k F x F (x, yϵh + y (x, yϵk F (x, yh + y (x, yk (h, k (h, k ( 1 (h, k = F (x, y F (x, y = 1 F F (x, y, (x, y F (x, y x y (h, k = 1 = 0 (117 F (x + ϵh, y + ϵk F (x, y lim = F (x, y (118 ϵ 0 ϵ (118 (h, k (117 (h, k 1 (118 F

13 F : R L R U R L k F U k C k 11 F : R 2 R R 2 F (x, y 1 F (x, y 142 F : R 2 R (x, y x (x, y (x, y F (x, t x F x : R2 R (119 (x, y F 2 y 2 F 2 (x, y x 2 F (x, y y x F y : R2 R (120 (x, y (120 2 F (x, y x y 2 F 2 (x, y y 2 F/ y x 2 F/ x y x y y x 12 ( F : R 2 R (x, y x y F x : R2 R F y : R2 R

14 14, (a, b 12 h, k R {0} 2 F x y (a, b = 2 F (a, b y x = F (a + h, b + k F (a + h, b F (a, b + k + F (a, b ϕ (x = F (x, b + k F (x, b = ϕ (a + h ϕ (a F (a, b x ϕ (x = F F (x, b + k (x, b x x (a, a + h ϕ (x θ (0, 1 ϕ (a + h ϕ (a h = ϕ (a + θh h = F F (a + θh, b + k (a + θh, b x x h = k F/ x F F (a + θh, b + k = x x (a, b + F θh 2 x 2 (a, b + h 2 F (a, b + o (h y x F F (a + θh, b = x x (a, b + F θh 2 (a, b + o (h x2 o ( lim h 0 o (h /h = 0 h 2 = 2 F o (h (a, b + y x h lim h 0 h 2 = 2 F (a, b y x x y lim h 0 h 2 = 2 F (a, b x y 13 ( F : R 2 R (x, y x y 2 2 F x y : R2 R 2 F y x : R2 R

15 15 (x, y (a, b 2 F x y (a, b = 2 F (a, b y x 13 h = F F (a + θh, b + k (a + θh, b x x 2 F/ x y y 1 θ (0, 1 2 F/ x y (a, b hk = 2 F y x (a + θh, b + θ k lim (h,k (0,0 hk = 2 F (a, b y x x y lim (h,k (0,0 hk = 2 F (a, b x y 2 F x y (a, b = 2 F (a, b y x (a, b 2 (x, y (a, b ( 1 f : R R g : R R f g : R R F 1 2 F/ t 1, F/ t 2 f g f g df ( g(x dx = df(y dg(x dy dx

16 16 15 ( 2 F : R 2 R G : R R 2 F G : R R F G F G df ( G 1 (x, G 2 (x = F (G 1 (x, G 2 (x dg 1 (x + F (G 1 (x, G 2 (x dg 2 (x dx t 1 dx t 2 dx 16 ( 3 F : R 2 R G : R 2 R 2 F G : R 2 R F G F G F ( G 1 (x 1, x 2, G 2 (x 1, x 2 = F (G 1(x 1, x 2 G 1 (x 1, x 2, + F (G 1(x 1, x 2 G 2 (x 1, x 2 x 1 t 1 x 1 t 2 x 1 F ( G 1 (x 1, x 2, G 2 (x 1, x 2 = F (G 1(x 1, x 2 G 1 (x 1, x 2, + F (G 1(x 1, x 2 G 2 (x 1, x 2 x 2 t 1 x 2 t 2 x ( F : R 2 R c R (a, b R 2 F (a, b = c F (a, b 0 y a I R b J R x I y J : F (x, y = c y = g(x g : I J x I y J : ( F dg dx (x = x x, g(x ( x, g(x F y F (x, y = c (x, y (a, b x 18 F (K, L c K L F (K, L = Q (121 (K, L Q (K, L (121 F (K, L = Q L = g(k (122 L g (122

17 17 g g ( F dg dk (K = K K, g(k ( K, g(k F L (K, L 17 1 F Q = F (K, L = K 2 + K 5 + L 7 + L 9 K L Q 1 F (1, g(k F (K, g(k = F (1, 1 g (1 3 1 h(l F (h(l, L = 38 h ( ( F : R L ++ R x R L ++, t > 0 : F (tx = t m F (x F m 5 19 U(x, y = x 1/2 y 1/2 t > 0 U(tx, ty = t 1/2 x 1/2 t 1/2 y 1/2 = tx 1/2 y 1/2 = tu(x, y U V V (x, y = log U(x, y = 1 2 log x log y V U V (tx, ty = 1 2 log tx + 1 log ty 2 = 1 2 log t log x log t log y = log t + V (x, y m t m V (x, y x = y = 1 V 1 5 x t x R++ n t > 0 F (tx = tm F (x F m

18 18 18 α β x y 2 F 1 F (x, y = x α y β 2 F (x, y = x α + y β 3 G(x, y F (x, y = (G(x, y α 18 ( F : R++ n R m x R n ++ : x F (x = mf (x x = x 1 x 2 Rn ++ : x 1 F x 1 (x + x 2 F x 2 (x + + x n F x n (x = mf (x 1, x 2,, x n x n 6 18 F m t > 0 t t = 1 F (tx = t m F (x x 1 F x 1 (tx + x 2 F x 2 (tx + + x n F x n (tx = mt m 1 F (x x 1 F x 1 (x + x 2 F x 2 (x + + x n F x n (x = mf (x 1, x 2,, x n 111 Q = F (K, L F 1 K F (K, L + L F (K, L = Q (123 K L (K, L (K, L (Q (123 p 6 K F K (K, L + L F L (K, L = Q K p F K (K, L + L p F L (K, L = pq (124 F m x R n ++ : x F (x = mf (x

19 19 1 p F K (K, L p F L (K, L ( f : R R f(x x x + h f f(x + h 19 (( f : R R x f k + 1 θ [0, 1] f(x + h = f(x + f (xh + 1 2! f k! f (k (xh k + R k+1 (h; x (125 R k (h; x = 1 (k + 1! f (k+1 (x + θhh k+1 f x k f (k (x f k x R k+1 (h; x lim h 0 h k = 0 h x + h x f(x + h f(x + f (xh + f f (k (xh k f(x + h x f h f(x + h 1 k = 1 f(x + h f(x + f (xh 2 k = 2 f(x + h f(x + f (xh f 2 k = 0 f (x + h = f (x + f (x + θh h f (x + h f (x h = f (x + θh

20 n F : R n R F (x x x + h F F (x + h x F k + 1 F (x + h = F (x + n i=1 F (x x i h i + 1 2! + 1 k! n n n i=1 j=1 n i 1 =1 i 2 =1 2 F (x x i x j h i h j + n i k =1 k F (x x i1 x i2 x ik h i1 h i2 h ik + R k+1 (h; x 1 θ [0, 1] R k (h; x = 1 (k + 1! n n i 1 =1 i 2 =1 n i k+1 =1 R k+1 (h; x lim h 0 h k = 0 k+1 F (x + θh x i1 x i2 x ik+1 h i1 h i2 h ik+1 F (x + h 1 F (x + h F (x + F (x h 2 F (x + h F (x + F (x h h 2 F (xh n n F 2 2 F (x, y x 2, 2 F (x, y x y, 2 F (x, y y x, 2 F (x, y y 2 (x, y R 2 c h 1/3 k 1/3 F (x, y 1 F (x+h, y +k c

21 m n A R m n a 11 a 12 a 1n a 21 A = a m1 a mn a 1j a 2j A = (a 1 a 2 a n, a j = Rm, j = 1, 2, 3,, n a m1 A n x = x 1 x 2 Rn, x n a 11 x 1 + a 12 x 2 + a 13 x a 1n x n a 21 x 1 + a 22 x 2 + a 23 x a 2n x n Ax = = x 1a 1 + x 2 a x n a n R m a m1 x 1 + a m2 x 2 + a m3 x a mn x n R n x R m Ax x Ax 21 ( F : R n R m x R n, y R n : F (x + y = F (x + F (y x R n, t R : F (tx = tf (x F 21 A R m n F : R n R m F (x = Ax F

22 22 F : R n R m x R n, F (x = Ax A R m n 21 j 1 0 R n e j (j = 1, 2, 3,, n F x R n x = x 1 x 2 x n = x x x 0 n = x 1 e 1 + x 2 e x n e n 0 e 1, e 2, e 3,, e n e 1, e 2, e 3,, e n F F F (e j = F (x = F (x 1 e 1 + x 2 e x n e n a 1j a 2j a m1 = x 1 F (e 1 + x 2 F (e x n F (e n 0 = a j j = 1, 2, 3,, n, A = (a 1 a 2 a n 1 F (x = x 1 a 1 + x 2 a x n a n = (a 1 a 2 a n x 1 x 2 = Ax x n F A R m n F (x = Ax 21 A F F (x = Bx B R m n A A = B 21 21

23 a 11 x 1 + a 12 x 2 + a 13 x a 1n x n = b 1 a 21 x 1 + a 22 x 2 + a 23 x a 2n x n = b 2 a m1 x 1 + a m2 x 2 + a m3 x a mn x n = b m a 11 a 12 a 1n a 21 A = a m1 a mn Ax = b x = x 1 x 2 b 1 b 2 Rn, b = Rm x n b m, x 1 a 1 + x 2 a x n a n = b b A Ax = b x 2 b A (1 n m a 1, a 2,, a n x = x 1 x 2 x n Rn : x 1 a 1 + x 2 a x n a n = 0 x = 0 a 1, a 2,, a n 1, 1,, x = x 1 x 2 x n Rn \ {0} : x 1 a 1 + x 2 a x n a n = 0 a 1, a 2,, a n 1

24 24 a 1, a 2,, a n x R n, k, x k 0 : x 1 a 1 + x 2 a x k a k + x n a n = 0 a k = x 1 x k a 1 x 2 x k a 2 x k 1 x k a k 1 x k+1 x k a k+1 x n x k a n 21 1 a 1, a 2,, a n 1 j : a j 0 j, k : j k a j a k 1 j : a j = 0 j, k, j k : a j = a k a 1, a 2,, a n a 1, a 2,, a n 1 a i1, a i2,, a ik (k n a 1, a 2,, a n 1 k a 1, a 2,, a n, a n+1,, a n+k 1 22 n α F : R n ++ R F (x = (min{x 1, x 2,, x n } α 1 F 2 x R++ n x x 3 x R n ++ x 1 = x 2 = = x n 23 n m n > m n x 1,, x n m 1 a 11 x a 1n x n = 0, a m1 x a mn x n = 0 x j 0 j (x 1,, x n m

25 25 23 a 1, a 2,, a n R m 1 n m 23 n > m a 1,, a n 1,, α 1 = = α n = 0, α 1 a α n a n = 0 a 11 α a 1n α n = 0, a m1 α a mn α n = 0, a 1,, a n n, a 1,, a n 1, n m ( R m V v V, w V : v V, t R : v + w V tv V V R m : R 2 R 3 24 n m a 1, a 2,, a n 1 a1, a 2,, a n R m a 1, a 2,, a n R m 24 ( R m V, V n a 1, a 2,, a n 1 a 1, a 2,, a n V a 1, a 2,, a n = V 2 a 1, a 2,, a n 1 a 1, a 2,, a n V 1 21 V = R 2 V ( ( 1 0 a 1 =, a 2 = 0 1

26 26 a 1, a 2 1 ( x = x 1 x 2 V : x = x 1 a 1 + x 2 a 2 a 1, a 2 = V a1, a 2 V ( ( 1 1 a 1 =, a 2 = 0 1 a 1, a 2 V a 1, a 2 1 ( x = x 1 x 2 a 1, a 2 = V V : x = (x 1 x 2 a 1 + x 2 a 2 25 a 1,, a k b 1,, b l V k = l 25 k > l a 1,, a k b 1,, b l V, a 1,, a k b 1,, b l, a 1 = β1b βl 1b l, a k = β1 k b βl kb l a 1,, a k 1, ( α 1 a α k a k = 0 (, α 1 = = α k = 0 ( (, b 1,, b l 1, β 1α β1 k α k = 0, βl 1α βl kα k = 0 ( k > l, (, a 1,, a k 1, k l, k l, k = l 25 ( V V dimv 26 F : R n R m A = (a 1 a 2 a n R m n F (x = Ax 1 F a 1, a 2,, a n = R n 2 F a 1, a 2,, a n 1 3 F a 1, a 2,, a n R n

27 27 26 ( m n A = (a 1 a 2 a n, a j = a 1j a 2j Rm, j = 1, 2, 3,, n A R m A ColA 27 ( m n a 1 a 2 A = a m a m1 ColA = a 1, a 2,, a n, ai = (a i1 a i2 a in R n, i = 1, 2, 3,, m A A RowA RowA = a 1, a 2,, a m 28 ( m n 1 Ax = 0 x R n A KerA KerA R n KerA = { x R n Ax = 0 } 27 m n A R m n dim (ColA + dim (KerA = n 27 v 1, v 2,, v l KerA dim (KerA = l, KerA R n v 1, v 2,, v l = R n l = n x R n Ax = 0 A = 0 dim (ColA = 0 dim (ColA + dim (KerA = 0 + n = n v 1, v 2,, v l R n v 1, v 2,, v l v l+1, v 1,, v l, v l+1 1

28 28 n l, (n l v l+1,, v n R n v1, v 2,, v l, v l+1, v l+2,, v n = R n Av l+1,, Av n ColA y ColA y A a 1, a 2,, a n x R n : y = Ax v 1, v 2,, v l, v l+1, v l+2,, v n R n x z 1 z n z 2 z = Rn : x = z 1 v 1 + z 2 v z l v l + z l+1 v l z n v n y = A (z 1 v 1 + z 2 v z l v l + z l+1 v l z n v n = z 1 Av 1 + z 2 Av z l Av l + z l+1 Av l z n Av n v 1, v 2,, v l KerA Av 1 = Av 2 = = Av l = 0 y = z l+1 Av l z n Av n y (n l Av l+1, Av l+2,, Av n y ColA y Av l+1, Av l+2,, Av n ColA Av l+1, Av l+2,, Av n y Av l+1, Av l+2,, Av n z = c l+1 c l+2 c n Rn l : y = c l+1 Av l+1 + c l+2 Av l c n Av n y = A(c l+1 v l+1 + c l+2 v l c n v n y Av l+1, Av l+2,, Av n y ColA, Avl+1, Av l+2,, Av n ColA Avl+1, Av l+2,, Av n = ColA

29 29 z l+1 Av l+1 + z l+2 Av l z n Av n = 0 A (z l+1 v l+1 + z l+2 v l z n v n = 0 z l+1 v l+1 + z l+2 v l z n v n KerA z 1 z l z 2 z = Rl : z l+1 v l+1 + z l+2 v l z n v n = z 1 v 1 + z 2 v z l v l z 1 v 1 + z 2 v z l v l z l+1 v l+1 z l+2 v l+2 z n v n = 0 v 1, v 2,, v l, v l+1, v l+2,, v n R n 1 z 1 = z 2 = = z l = z l+1 = z l+2 = = z n = 0 z l+1 Av l+1 + z l+2 Av l z n Av n = 0 z l+1 = z l+2 = = z n = 0 Av l+1, Av l+2,, Av n 1 (n l Av l+1, Av l+2,, Av n ColA dim (ColA = n l dim (KerA = l dim (ColA + dim (KerA = n l + l = n 29 ( R n V V n V = { x R n x z = 0, z V } V R n 28 R n V dimv + dimv = n

30 30 28, V v 1,, v r, i j, e i e i = 1, e i e j = 0 (i j e 1,, e r ( 7 R n x, r x 1 = (x e i e i i=1, x 1 V x 2 = x x 1, x 2 e 1,, e r, x 2 V, R n V V, V V = {0}, R n V V, dimr n = dimv + dimv 29 m n A R m n dim (ColA = dim (RowA dim (ColA = dim (ColA, dim (RowA = dim (RowA 29 x Ax = 0 x KerA a 1 x = a 2 x = = a m x = 0 z RowA : z x = 0 x (RowA KerA = (RowA dim (KerA = dim ( (RowA dim (KerA = n dim (ColA dim ( (RowA = n dim (RowA dim (ColA = dim (RowA 27, m n A R m n dim (KerA = n dim (RowA (21 1 Ax = 0 dim (KerA n dim (RowA 8 (21 ( = ( ( 210 (rank A A dim (ColA = dim (RowA = ranka 7,,,,, p121 8, a m = c 1 a c m 1 a m 1 a 1 x = = a m 1 x = 0, a m x = 0

31 31 215, 211 ( A A 212 ( A R n n B R n n AB = I BA = I B A 210 A R n n 1 A, A A B n AB = I BA = I, B A, AB = I BA = I A BA = [ ] 2 3 B B 2 AB = B B 25 a 2 3 A [ a ] 1 BA = B B 2 AB = [ ] 3 2 B B

32 A R n n F : R n R n 3 1 F 2 F 3 F : F, a 1,, a n = R n, dimr n = dim(cola = n, dim(kera = 0, 0 = α 1 a α n a n, α 1 = = α n = 0, a 1,, a n 1, F 2 1: dimr n = n, F, a 1,, a n n 1, R n x a 1,, a n, a 1,, a n = R n, F, a 1,, a n R n, F : R n R n F 1 : R n R n F F ( A R n n A, F : R n R n F (x = Ax, F F A R n n F : R n R n A 214 A R n n F : R n R n F (x = Ax F, F 1 : R n R n, 213, F 1 F 1 n B F 1 (x = Bx F F 1 F F 1 : R n R n (F F 1 (x = F (Bx = ABx (22 F F 1 F F 1 : R n R n (F F 1 (x = x (23 (22 (23 AB I A B n 211 BA I B A B = A 1

33 33 22 m n m n A R n n det : R n n R deta deta A (2 2 ( a 11 a 12 A = R 2 2 a 21 a 22 det : R 2 2 R deta = a 11 a 22 a 12 a 21 A 214 deta A A ( 2 ( ( 1 0 e 1 =, e 2 = 0 1 A A e 1 Ae 1, e 2 Ae 2 Ae 1 Ae 2 e 1, e 2 A Ae 1, Ae 2 Ae 1 Ae 2 ( Ae 1 = a 11 a 21, Ae 2 = A a 1 a 2 a 1 a 2 e 1 e 2 ( a 21 a 22

34 34 e 1 e 2 e 1 e a 1 a 2 a 1 a 2 e 1 e 2 a 1 a ( 1 ( ( ( a 11 a 12 + a 12 a 11 a 12 a 11 a 12 det = det + det a 21 a 22 + a 22 a 21 a 22 a 21 a 22 2 t R ( ( a 11 ta 12 a 11 a 12 det = tdet a 21 ta 22 a 21 a 22 ( ( ta 11 a 12 a 11 a 12 det = tdet ta 21 a 22 a ( ( ( a 11 a 12 a 12 a 11 det = det a 21 a 22 a 22 a det : R 2 2 R

35 F : R 2 2 R n F : R n n R, 217 n ,, 217 ( n 1, 2,, n M = { 1, 2, 3,, n } π : M M π M 218 ( 2 k = 1, 2, 3,, n i k = j σ(k = j k = i k k i, j σ : M M

36 π π = τ 1 τ 2 τ r π = π 1 π 2 π s 2 r s r s ( sgn(π 1 π sgn(π = 1 π 220 M = { 1, 2, 3,, n } Π n a 11 a 12 a 1n a 21 A = R n n a n1 a nn (sgnπa π(11 a π(22 a π(nn = deta π Π (,, deti=1, 221 n A A deta = deta 221 deta = π Π(sgnπa π(11 a π(22 a π(nn π Π, π π 1 Π, deta = π Π(sgnπ 1 a π 1 (11a π 1 (22 a π 1 (nn π 1 (1, π 1 (2,, π 1 (n, π 1 (i = k i = π(k, deta = π Π(sgnπa 1π(1 a 2π(2 a nπ(n, deta

37 ( n a 11 a 12 a 1n a 21 A = R n n a n1 a nn i j n 1 a 11 a 1 j 1 a 1 j+1 a 1n A ij = a i 1 1 a i 1 j 1 a i 1 j+1 a i 1 n a i+1 1 a i+1 j 1 a i+1 j+1 a R (n 1 (n 1 i+1 n a n1 a n j 1 a n j+1 a nn A ij det (A ij A n n A n a ij ( 1 i+j deta ij = deta j=1 n a ij ( 1 i+j deta ij = deta i=1 i j 223 ( A n, b R n, Ax = b x x j = det(a 1,, a j 1, b, a j+1, a n deta ( ( ( ( A =, B =, C =, D = deta = detb = detc = detd = 16

38 ( ( 1 0 e 1 =, e 2 = 0 1 A e 1 Ae 1, e 2 Ae 2 Ae 1 Ae 2 A e 1, e 2 A Ae 1, Ae 2 A B C A B C e 1 e 2 A 4 4 B 4 4 C 8 2 ( ( 4 0 Ae 1 = = 4e 1, Ae 2 = = 4e ( ( 4 0 Be 1 = = 4e 1, Be 2 = = 4e ( ( 8 0 Ce 1 = = 8e 1, Ce 2 = = 2e D D e 1 e 2 ( ( 1 1 b 1 =, b 2 = 1 1 D Db 1 Db 2 ( ( 8 2 Db 1 = = 8b 1, Db 2 = = 2b e 1 e 2 C 8 2 D b 1 b D

39 ( n A Ax = λx, x R n \ {0}, λ R λ A x λ 22 A 4 e 1 e 2 B 4 e 1 e 2 C 8 2 e 1 e 2 D 8 2 b 1 b ( 0 1 A = 1 0 Ax = λx, x R 2 \ {0}, λ R (24 λ x (24 λ x (A λi x = 0 (25 x x = 0 (A λ (A λ 1 (25 (A λi 1 (A λi x = 0 x = 0 (25 (25 (A λ (A λ det (A λi = 0 A λ 1 det (A λi = 1 λ = λ2 + 1 = 0 (26 (26 λ A ( 1 1 A = 0 1 Ax = λx, x R 2 \ {0}, λ R (27

40 40 x 23 λ det (A λi = 0 1 λ λ = (λ 12 = 0 λ = 1 (27 ( ( 0 1 x 1 Ax = x (A I x = = x 2 ( x = t 1 0, t R \ {0} (28 A n A Ax = λx (A λi det (A λi = 0 (29 λ (29 (29 λ det (A λi = 0 λ det (A λi = 0 λ n A n n n λ Ax = λx Ax = λx (A λi x = 0 x λ

41 ( n A n P Λ A = P ΛP 1 A, P, P 1 AP, AP = P Λ λ 1 0 P = (v 1 v n Λ = 0 λ n Av i = λ i v i i = 1, n 224 ( n A R n,, A 224 i = 1, 2,, n : Av i = λ i v i (210 v 1, v 2,, v n R n c 1 c 2 x R n, c = Rn : x = c 1 v 1 + c 2 v c n v n (211 c n P P = (v 1 v 2 v n P n (211 x = P c c = P 1 x (212 A (211 (210 Ax = c 1 Av 1 + c 2 Av c n Av n = c 1 λ 1 v 1 + c 2 λ 2 v c n λ n v n λ λ 2 Λ = λ n

42 42 c 1 λ 1 λ c 2 λ 2 Ax = P = P 0 λ 2 c Ax = P Λc (213 0 c n λ n 0 0 λ n (212 (213 c Ax = P ΛP 1 x A = P ΛP P 1 AP,, P R n 225 : A n v 1,, v n P P = (v 1,, v n, P R n e 1,, e n v 1,, v n, P R n : P i A λ i v i (i = 1,, n P 1 AP i b i,, P 1 AP b i = P 1 Av i = P 1 λ i v i = λ i e i 25 ( 5 3 D = P = 3 5 ( A R n A 226 n A l (l n l v 1, v 2,, v l 1, n 226 λ 1,, λ l A, v 1,, v l v 1,, v l 1, v 1,, v k 1 1, v 1,, v k 1, v k 1 k, v k = α 1 v α k 1 v k 1 (

43 43 A (,, ( λ k, Av k = α 1 Av α k 1 Av k 1 λ k v k = α 1 λ 1 v α k 1 λ k 1 v k 1 λ k v k = α 1 λ k v α k 1 λ k v k 1 ( ( (, α 1 (λ 1 λ k v α k 1 (λ k 1 λ k v k 1 = 0 v 1,, v k 1 1, α 1 (λ 1 λ k = = α k 1 (λ k 1 λ k = 0 λ 1 λ k = = λ k 1 λ k 0, v k = 0, v k A, A l 1 1 n R n 226 n A n R n A n 1 n n 1, I 242 n = 2 26 ( 1 2 A λ R A λ A λi = 0 ( x = x 1 x 2 : Ax = λx (214 R 2 λ R 2 22 A A λi 0 dim {Ker (A λi} = 1 1 R 2 24

44 44 v ( v / Ker (A λi v 1 = (A λiv (215 v 2 = v (216 v 1 v 2 27 (1 (A λi 2 (2 v 1, v 2 R 2 27 (A λiv 1 = (A λi 2 v = 0 v 1 λ Av 1 = λv 1 (217 (215 (216 (217 Av 1 = λv 1 Av 2 = v 1 + λv 2 ( λ 1 A(v 1 v 2 = (v 1 v 2 0 λ P = (v 1 v 2 R 2 2 (218 P P (218 ( P 1 λ 1 AP = 0 λ 27 ( 0 0 det (A λi = 0 λ 1 = µ + iν (219 λ 2 = µ iν i (i 2 = 1, µ ν ν 0 Ax = λ 1 x x C 2 x = u + iw (220

45 45 Ax = λ 2 x x C 2 x = u iw u w R 2 w 0 (219 (220 Ax = λ 1 x A(u + iw = (µ + iν(u + iw Au + iaw = µu νw + i(µw + νu Au = µu νw (221 Aw = µw + νu (222 λ 2 = µ iν, x = u iw Ax = λ 2 x, P = (u w R 2 2 P (221 (222 ( P 1 µ ν AP = ν µ (223 (223 ν < 0 λ 1 λ 2 ρ = µ 2 + ν 2 ( 2 ( 2 µ ν + = 1 ρ ρ θ (0, π (224 (225 (223 ( ( µ ν ρ cos θ ρ sin θ = ν µ ρ sin θ ρ cos θ ( cos θ sin θ = ρ sin θ cos θ µ = ρ cos θ (224 ν = ρ sin θ (225 θ ρ m n A F (x = Ax F (y, x = y Ax

46 m n A R m n F : R m R n R F (y, x = y Ax, y R m, x R n F ( 1 F : R m R n R A R m n F (y, x = y Ax, y R m, x R n m = n y = x (2 n x R n n n Q(x = a ij x i x j (226 j=1 i=1 Q : R n R Q : R n R 227 n a 11 a 12 a 1n a 21 A = R n n a n1 a nn (226 n n a ij x i x j = x Ax j=1 i=1 224 ( A, A = A, A Q A, ( Q(x = x Ax = x x 2 2, ( 1 1, Q 1 1 Q(x = x Ax = x x 1 x 2 x 1 x 2 + x 2 2 = x x 2 2 x Ax = x ( 1 2 A A x Q(x = x Ax A A

47 (n n A x R n \ {0} : x Ax > 0, A postive definite x R n : x Ax 0, A (positive semidefinite x R n \ {0} : x Ax < 0 A (negative definite x R n : x Ax 0 A (negative semidefinite 28 I 225 A = I x = x 1 x 2 x n Rn \ {0} : x Ax = x Ix = x x x 2 n > 0 A = I R n n x = x 1 x 2 x n Rn \ {0} : x Ax = x Ix = x 2 1 x 2 2 x 2 n < ( λ λ 2 A = R n n λ n 1 A 2 i : λ i > 0 i : λ i 0 2, A i λ i < 0 (λ i 0

48 ( R n v 1, v 2,, v n 0 (i j v i v j = 1 (i = j (227 v 1, v 2,, v n R n 227 ( v 1, v 2,, v n P, P = (v 1 v 2 v n R n n P P = P P = I P = P 1, P, P, P = P ( n A 1 A 2 A P 2 :,, A : A,, n A P, α 1 0 P 1 AP = 0 α n, α 1,, α n A n = 1,, n α 1 A, v 1 v 1 W 1 W 1, W 1 A- e 1, e 2,, e n e 1 = v 1, e 2,, e n = W1 A A ( A α 1 0 = 0 A 1, {e i } {e i } P 1, P 1 A, A 1,, A 1, n 1 P P 1 A 1P

49 49,, ( 1 0 P = P 1 0 P ( 1 ( ( P α AP = 0 P 0 A 1 0 P ( α 1 0 = 0 P 1 A 1P 2 1: n A, P 1 AP n P A 29 A n v A x R n v x = 0 v (Ax = A P Λ, Λ = P 1 AP 230 P x R n : (P 1 x Λ(P 1 x = x Ax (P 1 x Λ(P 1 x = x (P 1 Λ(P 1 x = x P ΛP 1 x = x Ax P (P 1 = P, 230, P = (v 1,, v n, z R n,, λ 1 0 Λ =, 0 λ n x = z 1 v z n v n x Ax = λ 1 z λ n z 2 230, ( ( 228

50 ( n A ( A (, n A ( A ( 228 ( A n i 1, i 2,, i m 1 i 1 < i 2 < < i m n m B b 11 b 12 b 1m a i1i 1 a i1i 2 a i1i m b 21 a i2i B M = = 1 b m1 b mm a im i 1 a im i m B M detb M A m principal minor i 1 = 1, i 2 = 2,, i m = m A m leading principal minor m,, A n 2 n 1 n A = A ( ( ( ( ( ( det 2 4 5, det, det, det, det 1, det 4, det det 2 4 5, ( 1 2 ( det, det n A k detb k A k detbk 1 A 2 A m ( m (

51 51 3 A 4 A m (, m ( : : 1, 2 A : 3, 4 : A = ( , detb 1 = 0, detb 2 = 0 A (, ( 1 x = 1, x Ax = 1 < 0 : :, ( 1 1 A = 5 1 Q(x = x Ax = x 2 1 4x 1 x 2 + x 2 2, ( 1 2 B = 2 1 Q(x = x Ax = x 2 1 4x 1 x 2 + x 2 2, A det(1 > 0, deta > 0, B det(1 > 0, detb = 1 4 = 3 < 0

52 ( R n C x C, ϵ > 0, y R n : x y < ϵ y C C 32 ( R n C C C c = { x R n x / C } C 31 ( C x C x (x n N n > N : x n C 32 ( C x R n x (x n n : x n C x C , 33 ( C x, y C, t [0, 1] : tx + (1 ty C C, x, y C, [x, y] C ( C C F : C R x, y C, t [0, 1] : F (tx + (1 ty tf (x + (1 tf (y F

53 53 35 ( C C F : C R, F, x, y C, t [0, 1] : F (tx + (1 ty tf (x + (1 tf (y F C C F : C R F x C, h R n : F (x + h F (x + F (x h ( ( : 33 F : R L R, F x R L y R L F (y F (x + F (x(y x 33 (31 F (x + h { F (x + F (x h } 0 F (x + h = F (x + F (x h + h 2 F (xh + R 2 (h; x lim h 0 R 2 (h; x h 2 = 0 (31 h 2 F (xh + R 2 (h; x 0 (32 2 ( ( 1 1 h h 2 F (x h h + R 2(h; x h 2 0, h = tv, v = 1, t 0, v 2 F (xv 0 h 0 h 2 F (xh R 2 (h; x (32 2 v 2 F (xv 0 34 C C 2 F : C R 1 F 2 x C F 2 F (x

54 54 34 F : R L R, F 2 x R L 2 F (x C C F : C R F x C, h R n : F (x + h F (x + F (x h 36 C C 2 F : C R 1 F 2 x C F 2 F (x ( C C F : C R x, y C, t [0, 1] : F ( tx + (1 ty max {F (x, F (y} F (quasi-convex function 35 F, 37 ( C C F : C R, F, x, y C, t [0, 1] : F ( tx + (1 ty min {F (x, F (y} F (quasi-concave function 37 C C F : C R 1 F 2 z R : { x C F (x z } 38 C C F : C R 1 F 2 z R : { x C F (x z }

55 55 39 C C F : C R R G : R R G F : C R 36 F (x 1, x 2 = x α 1 1 xα 2 2, α 1, α 2 > 0 α 1 + α 2 1 C 310 C C F : C R F y R n : F (x y = 0 y 2 F (xy 0 (33 F (x F (x 310 (33 2 F (x F (x C C F : C R 1 F 2 y R n : F (x y = 0 y 2 F (xy 0, C C 1 F : C R F x y : F (y F (x F (x (y x, x y: (i F (x (y x > 0 F (y > F (x (Ie, F (y F (x F (x (y x 0 (ii F (x (y x 0 F (y F (x (Ie, F (y < F (x F (x (y x < 0 (i, (ii 38 ( C C F : C R x, y C : F (x (y x 0 F (y F (x F (pseudo-convex function 37 (i 9 F 2 F (x R n

56 (i (ii, F F 2 x F (x 0, (i (ii, (i (ii, F (x 0 C = R, F (x = x 3 31 (i : x C, y C, F (x (y x > 0, ε > 0 z = (1 εx + εy = x + ε(y x F (z > F (x (34 F (z (y z > 0 (35, (35 (ii, F (y F (z, (34 F (y > F (x (i (ii : x C, y C, F (x (y x 0, ε > 0 z = y + ε F (x, C z C, F (x 0 F (x (z x > 0, (i F (z > F (x ε 0, z y F (y F (x, (ii F : C R (i F F F (ii x C : F (x 0, F F ( J N A R J N n b R N 1 z R+ J : b = z A 2 x R N : Ax R+ J b x < 0 2

57 57 1 A z = b z z z 1 z 2 z = RJ + A = a 2 RJ N, a 1 a j = (a j1 a j2 a jn, j = 1, 2,, J z J a J z A b = z A b = z A = z 1 a 1 + z 2 a z J a J (z j 0, j = 1, 2,, J 1 b A (cone b 2 Ax R J + 2 Ax R J + a j x 0, j = 1, 2,, J a 1 x 0, a 2 x 0,, a J x 0 b x < 0 x R N A 90 b 90 x b 39 ( a R N b R N a b 0 x R N a = { x R N a x = 0 } x = v + λb v a λ R v x a b 38 x a b v v = x a x a b b 312 z R J + x RN 1 z b = z A x b x = z Ax (36

58 58 z 2 z Ax = z 1 a 1 x + z 2 a 2 x + + z J a J x 0 b x < 0 ( J J = 1 J 2 J A = a 1 a 2 a J 1 a J R J N, A = a 1 a 2 a J 1 R(J 1 N A A A 1 A 1 z R J 1 + b = z A (37 A x R J 1 + b x < 0 x R N a J x 0 x Ax R J + b x < 0 2 a J x < 0 a 1, a 2,, a J 1 b x a J â 1, â 2,, â J 1 b   = â 1 â 2 â J 1 R(J 1 N b  b = w  (38 w R+ J 1 w RJ 1 + w = w 1 w 2 w J 1 RJ 1 + b = w  = J 1 w j â j j=1

59 59 â j a j x a J 38 â j = a j x a j x a J a J, j = 1, 2,, J 1 b = = = J 1 w j â j j=1 J 1 ( w j a j x a j x a J a J j=1 J 1 w j a j j=1 ( J 1 j=1 w j x a j x a J a J (39 b b x a J (39 b = b x b x a J a J ( J 1 b x J 1 b x a j = w j a j + x w j a j=1 J x a J a j=1 J ( = w A x J 1 b x a j + x w j a J x a J (310 a J a J x < 0 w j 0, j = 1, 2, J 1 j=1 A x R J 1 + b x < 0 (310 x J 1 b x a j x w j a J x 0 a J j=1 w J = x J 1 b x a j x w j a J x a J j=1 z = w 1 w 2 w J 1 w J z z b = w A + w J a J = z A

60 60 A 1 b  b = w  w R+ J 1  1  2  x R+ J 1 (311 x R N x a J x x b x < 0 (312 Ax R J + b x < 0 A 2 â j, j = 1, 2, J 1 b λ R : â j = a j + λa J (313 â j x = 0 (314 λ R : b = b + λa J (315 b x = 0 (316 x λ R : x = x + λx (317 (313 (318 a J x = 0 (318 a j x = â j x (319 (314 (317 (311 â j x = â j x 0 (320 (319 (320 (318 (321 a j x 0 j = 1, 2, J 1 (321 Ax R+ J (315 (318 b x = b x (322 (316 (317 (312 b x = b x < 0 (323 (322 (323 b x < 0

61 =, b a j, j = 1, 2,, J b 313 ( R N C R N C b R N \ C c C : x c d > x b x R N d R (d = A R J N 1 z R+ J \ {0} : z A = 0 2 x R N : Ax R J R J e à e = RJ 1 à = (A, e R J (N+1 z à = (0, 0,, 0, 1 }{{} N z R J + 1 x R N+1 à x R J + (324 (0, 0,, 0, 1 x < 0 (325 x = ( x x N+1 R n

62 62 x R N Ã x = (A, e ( x x N+1 = Ax + x N+1 e (326 (325 x N+1 = (0, 0,, 0, 1 x < 0 (326 Ã x < Ax (324 Ax R++ J A z = 0 z z, A, 1 2 a 1 x > 0, a 2 x > 0,, a J x > 0 x R N A 90 x R N,, A,, 33 L M N R L X N f n : X R (n = 1, 2,, N M g m : X R (m = 1, 2,, M (X, f 1, f 2,, f N, g 1, g 2,, g M, max (f 1(x, f 2 (x,, f N (x x X subject to g 1 (x 0, g 2 (x 0, g M (x 0 (327 x X m : g m (x 0, n : f n (x f n (x, n : f n (x > f n (x

63 63 x X x X f n g m ( x X (327 N + M (µ 1, µ 2,, µ N, λ 1, λ 2,, λ M R N+M + 1 µ 1,, µ N, λ 1,, λ M 1 ; 2 m : g m (x > 0 λ m = 0; 3 N M µ n f n (x + λ m g m (x = 0 n=1 m= ( M (g m (x = 0 (g m (x > 0 K ( M n : f n (x v > 0 m K : g m (x v > 0 v R L f 1 (x f N (x g 1 (x v R++ N+K g K (x v R L 314 f 1 (x (µ 1,, µ N, λ 1,, λ K f N (x g 1 (x = 0 N µ n f n (x + n=1 g K (x K λ m g m (x = 0 m=1 (µ 1, µ 2,, µ N, λ 1, λ 2,, λ K R N+K + \ {0}

64 64 M K λ m = 0, m > K N + M (µ 1,, µ N, λ 1, λ K, λ K+1,, λ M R N+K + N + M µ λ 0 (µ 1,, µ N, λ 1,, λ M 315 t > 0 (tµ 1,, tµ N, tλ 1,, tλ M (µ 1,, µ N, λ 1,, λ M 0 1 µ 1 = 1 µ 1 0 µ 1 = x L µ N λ K 0 L + N + K 1 L N µ n f n (x + n=1 K λ m g m (x = 0 m=1 g 1 (x = 0, g 2 (x = 0, g K (x = 0 K L + K N ( (327 X f n g m x X (µ 1,, µ N, λ 1,, λ M R N+M + 1 m : g m (x 0; 2 (µ 1,, µ N, λ 1,, λ M R N ++; 3 m : g m (x > 0 λ m = 0; 4 N M µ n f n (x + λ m g m (x = 0 n=1 m=1 x ( ( M (g m (x = 0 (g m (x > 0 10??

65 65 K ( M x n : f n (x v 0 n : f n (x v > 0 m K : g m (x v 0 v R L N µ n f n (x v + n=1 ( N µ n f n (x + n=1 M λ m g m (x v > 0 m=1 M λ m g m (x v m=1 4 x 311 x u : R 2 + R u(x 1, x 2 = (x (x p 1, p 2 w max x R 2 + (x (x subject to w p 1 x 1 p 2 x 2 0 (328 R 2 + X = { x R 2 x 1 > 1, x 2 > 1 } x 1 0 x 2 0 max x X (x (x subject to w p 1 x 1 p 2 x 2 0, x 1 0, x 2 0 (329 (329 (328 31

66 u : R 2 + R u(x 1, x 2 = x 1 + x 2 p 1, p 2 w max x R 2 + u(x 1, x 2 = x 1 + x 2 subject to w p 1 x 1 p 2 x 2 0 (330 R 2 + u (x 1, x 2 x 1 (x 1 0 u (x 1, x 2 x 2 (x 2 0 x = (x 1, x 1 x 1 > 0 x 1 > 0 x R 2 ++ R 2 ++ max x R 2 ++ u(x 1, x 2 = x 1 + x 2 subject to w p 1 x 1 p 2 x 2 0 (331 (330 ( w(> 0 u : R+ 2 R u(x 1, x 2 = x e x 2 max x R 2 + u(x subject to w x 1 x 2 0 ( x R+ 2 (332 x { x R 2 x 1 > 0, x 2 0 } u X = { x R 2 x 1 > 0 }

67 67 e x 2 x 2 R X g 1 : X R g 1 (x = w x 1 x 2 max x X u(x subject to g 1 (x 0 (333 X (333 ( max x X u(x subject to g 1 (x 0, g 2 (x 0 (334 (332 g 2 : X R (334 ( K L M X R L P R K f : X P R g m : X P R (m = 1, 2,, M X P 2 p P max x X subject to g 1 (x, p 0, f(x, p (335 g 2 (x, p 0, g M (x, p 0 (335 p P p P ( (Policy Function p P (335 P a : P X a(p Policy Function 311 (Value Function Policy Function b : P R b(p = f(a(p, p b(p Value Function

68 p P (1, λ 1,, λ K R 1+K ++ x X (335 = (L+M (L+M M 2 xf(x, p + λ m 2 xg m (x, p x g 1 (x, p x g M (x, p m=1 x g 1 (x, p 0 0 x g M (x, p 0 0 p Q P Policy Function a(p Value Function b(p Q ( p P (1, λ 1,, λ K R 1+K ++ x X (335 Policy Function a(p Value Function b(p M b(p = p f(x, p + λ m p g m (x, p m=1 318 p P : g m (a(p, p = 0, m = 1, 2,, M p p = p x g(x, p a(p + p g m (x, p = 0, m = 1, 2,, M (336 (336 λ m m M λ m x g(x, p a(p + m=1 M λ m p g m (x, p = 0 (337 (1, λ 1,, λ K R 1+K ++ x X (338 (337 x f(x, p + m=1 M λ m x g m (x, p = 0 (338 m=1 x f(x, p a(p + Value Function M λ m p g m (x, p = 0 (339 m=1 p P : b(p = f (a(p, p p p = p b(p = x f(x, p a(x + p f(x, p (340 (340 (339

20 6 4 1 4 1.1 1.................................... 4 1.1.1.................................... 4 1.1.2 1................................ 5 1.2................................... 7 1.2.1....................................

More information

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K II. () 7 F 7 = { 0,, 2, 3, 4, 5, 6 }., F 7 a, b F 7, a b, F 7,. (a) a, b,,. (b) 7., 4 5 = 20 = 2 7 + 6, 4 5 = 6 F 7., F 7,., 0 a F 7, ab = F 7 b F 7. (2) 7, 6 F 6 = { 0,, 2, 3, 4, 5 },,., F 6., 0 0 a F

More information

2 (2016 3Q N) c = o (11) Ax = b A x = c A n I n n n 2n (A I n ) (I n X) A A X A n A A A (1) (2) c 0 c (3) c A A i j n 1 ( 1) i+j A (i, j) A (i, j) ã i

2 (2016 3Q N) c = o (11) Ax = b A x = c A n I n n n 2n (A I n ) (I n X) A A X A n A A A (1) (2) c 0 c (3) c A A i j n 1 ( 1) i+j A (i, j) A (i, j) ã i [ ] (2016 3Q N) a 11 a 1n m n A A = a m1 a mn A a 1 A A = a n (1) A (a i a j, i j ) (2) A (a i ca i, c 0, i ) (3) A (a i a i + ca j, j i, i ) A 1 A 11 0 A 12 0 0 A 1k 0 1 A 22 0 0 A 2k 0 1 0 A 3k 1 A rk

More information

数学Ⅱ演習(足助・09夏)

数学Ⅱ演習(足助・09夏) II I 9/4/4 9/4/2 z C z z z z, z 2 z, w C zw z w 3 z, w C z + w z + w 4 t R t C t t t t t z z z 2 z C re z z + z z z, im z 2 2 3 z C e z + z + 2 z2 + 3! z3 + z!, I 4 x R e x cos x + sin x 2 z, w C e z+w

More information

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F F 1 F 2 F, (3) F λ F λ F λ F. 3., A λ λ A λ. B λ λ

More information

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi) 0. A A = 4 IC () det A () A () x + y + z = x y z X Y Z = A x y z ( 5) ( s5590) 0. a + b + c b c () a a + b + c c a b a + b + c 0 a b c () a 0 c b b c 0 a c b a 0 0. A A = 7 5 4 5 0 ( 5) ( s5590) () A ()

More information

ver Web

ver Web ver201723 Web 1 4 11 4 12 5 13 7 2 9 21 9 22 10 23 10 24 11 3 13 31 n 13 32 15 33 21 34 25 35 (1) 27 4 30 41 30 42 32 43 36 44 (2) 38 45 45 46 45 5 46 51 46 52 48 53 49 54 51 55 54 56 58 57 (3) 61 2 3

More information

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g(

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g( 06 5.. ( y = x x y 5 y 5 = (x y = x + ( y = x + y = x y.. ( Y = C + I = 50 + 0.5Y + 50 r r = 00 0.5Y ( L = M Y r = 00 r = 0.5Y 50 (3 00 0.5Y = 0.5Y 50 Y = 50, r = 5 .3. (x, x = (, u = = 4 (, x x = 4 x,

More information

6 2 2 x y x y t P P = P t P = I P P P ( ) ( ) ,, ( ) ( ) cos θ sin θ cos θ sin θ, sin θ cos θ sin θ cos θ y x θ x θ P

6 2 2 x y x y t P P = P t P = I P P P ( ) ( ) ,, ( ) ( ) cos θ sin θ cos θ sin θ, sin θ cos θ sin θ cos θ y x θ x θ P 6 x x 6.1 t P P = P t P = I P P P 1 0 1 0,, 0 1 0 1 cos θ sin θ cos θ sin θ, sin θ cos θ sin θ cos θ x θ x θ P x P x, P ) = t P x)p ) = t x t P P ) = t x = x, ) 6.1) x = Figure 6.1 Px = x, P=, θ = θ P

More information

2011de.dvi

2011de.dvi 211 ( 4 2 1. 3 1.1............................... 3 1.2 1- -......................... 13 1.3 2-1 -................... 19 1.4 3- -......................... 29 2. 37 2.1................................ 37

More information

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C 8 ( ) 8 5 4 I II III A B C( ),,, 5 I II A B ( ),, I II A B (8 ) 6 8 I II III A B C(8 ) n ( + x) n () n C + n C + + n C n = 7 n () 7 9 C : y = x x A(, 6) () A C () C P AP Q () () () 4 A(,, ) B(,, ) C(,,

More information

A

A A 2563 15 4 21 1 3 1.1................................................ 3 1.2............................................. 3 2 3 2.1......................................... 3 2.2............................................

More information

ad bc A A A = ad bc ( d ) b c a n A n A n A A det A A ( ) a b A = c d det A = ad bc σ {,,,, n} {,,, } {,,, } {,,, } ( ) σ = σ() = σ() = n sign σ sign(

ad bc A A A = ad bc ( d ) b c a n A n A n A A det A A ( ) a b A = c d det A = ad bc σ {,,,, n} {,,, } {,,, } {,,, } ( ) σ = σ() = σ() = n sign σ sign( I n n A AX = I, YA = I () n XY A () X = IX = (YA)X = Y(AX) = YI = Y X Y () XY A A AB AB BA (AB)(B A ) = A(BB )A = AA = I (BA)(A B ) = B(AA )B = BB = I (AB) = B A (BA) = A B A B A = B = 5 5 A B AB BA A

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

2 7 V 7 {fx fx 3 } 8 P 3 {fx fx 3 } 9 V 9 {fx fx f x 2fx } V {fx fx f x 2fx + } V {{a n } {a n } a n+2 a n+ + a n n } 2 V 2 {{a n } {a n } a n+2 a n+

2 7 V 7 {fx fx 3 } 8 P 3 {fx fx 3 } 9 V 9 {fx fx f x 2fx } V {fx fx f x 2fx + } V {{a n } {a n } a n+2 a n+ + a n n } 2 V 2 {{a n } {a n } a n+2 a n+ R 3 R n C n V??,?? k, l K x, y, z K n, i x + y + z x + y + z iv x V, x + x o x V v kx + y kx + ky vi k + lx kx + lx vii klx klx viii x x ii x + y y + x, V iii o K n, x K n, x + o x iv x K n, x + x o x

More information

newmain.dvi

newmain.dvi 数論 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/008142 このサンプルページの内容は, 第 2 版 1 刷発行当時のものです. Daniel DUVERNEY: THÉORIE DES NOMBRES c Dunod, Paris, 1998, This book is published

More information

i I II I II II IC IIC I II ii 5 8 5 3 7 8 iii I 3........................... 5......................... 7........................... 4........................ 8.3......................... 33.4...................

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5. A 1. Boltzmann Planck u(ν, T )dν = 8πh ν 3 c 3 kt 1 dν h 6.63 10 34 J s Planck k 1.38 10 23 J K 1 Boltzmann u(ν, T ) T ν e hν c = 3 10 8 m s 1 2. Planck λ = c/ν Rayleigh-Jeans u(ν, T )dν = 8πν2 kt dν c

More information

linearal1.dvi

linearal1.dvi 19 4 30 I 1 1 11 1 12 2 13 3 131 3 132 4 133 5 134 6 14 7 2 9 21 9 211 9 212 10 213 13 214 14 22 15 221 15 222 16 223 17 224 20 3 21 31 21 32 21 33 22 34 23 341 23 342 24 343 27 344 29 35 31 351 31 352

More information

meiji_resume_1.PDF

meiji_resume_1.PDF β β β (q 1,q,..., q n ; p 1, p,..., p n ) H(q 1,q,..., q n ; p 1, p,..., p n ) Hψ = εψ ε k = k +1/ ε k = k(k 1) (x, y, z; p x, p y, p z ) (r; p r ), (θ; p θ ), (ϕ; p ϕ ) ε k = 1/ k p i dq i E total = E

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

20 4 20 i 1 1 1.1............................ 1 1.2............................ 4 2 11 2.1................... 11 2.2......................... 11 2.3....................... 19 3 25 3.1.............................

More information

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) =

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) = 1 1 1.1 I R 1.1.1 c : I R 2 (i) c C (ii) t I c (t) (0, 0) c (t) c(i) c c(t) 1.1.2 (1) (2) (3) (1) r > 0 c : R R 2 : t (r cos t, r sin t) (2) C f : I R c : I R 2 : t (t, f(t)) (3) y = x c : R R 2 : t (t,

More information

X G P G (X) G BG [X, BG] S 2 2 2 S 2 2 S 2 = { (x 1, x 2, x 3 ) R 3 x 2 1 + x 2 2 + x 2 3 = 1 } R 3 S 2 S 2 v x S 2 x x v(x) T x S 2 T x S 2 S 2 x T x S 2 = { ξ R 3 x ξ } R 3 T x S 2 S 2 x x T x S 2

More information

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y [ ] 7 0.1 2 2 + y = t sin t IC ( 9) ( s090101) 0.2 y = d2 y 2, y = x 3 y + y 2 = 0 (2) y + 2y 3y = e 2x 0.3 1 ( y ) = f x C u = y x ( 15) ( s150102) [ ] y/x du x = Cexp f(u) u (2) x y = xey/x ( 16) ( s160101)

More information

D 24 D D D

D 24 D D D 5 Paper I.R. 2001 5 Paper HP Paper 5 3 5.1................................................... 3 5.2.................................................... 4 5.3.......................................... 6

More information

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) (

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) ( 6 20 ( ) sin, cos, tan sin, cos, tan, arcsin, arccos, arctan. π 2 sin π 2, 0 cos π, π 2 < tan < π 2 () ( 2 2 lim 2 ( 2 ) ) 2 = 3 sin (2) lim 5 0 = 2 2 0 0 2 2 3 3 4 5 5 2 5 6 3 5 7 4 5 8 4 9 3 4 a 3 b

More information

1. 1 A : l l : (1) l m (m 3) (2) m (3) n (n 3) (4) A α, β γ α β + γ = 2 m l lm n nα nα = lm. α = lm n. m lm 2β 2β = lm β = lm 2. γ l 2. 3

1. 1 A : l l : (1) l m (m 3) (2) m (3) n (n 3) (4) A α, β γ α β + γ = 2 m l lm n nα nα = lm. α = lm n. m lm 2β 2β = lm β = lm 2. γ l 2. 3 1. 1 A : l l : (1) l m (m 3) (2) m (3) n (n 3) (4) A 2 1 2 1 2 3 α, β γ α β + γ = 2 m l lm n nα nα = lm. α = lm n. m lm 2β 2β = lm β = lm 2. γ l 2. 3 4 P, Q R n = {(x 1, x 2,, x n ) ; x 1, x 2,, x n R}

More information

December 28, 2018

December 28, 2018 e-mail : kigami@i.kyoto-u.ac.jp December 28, 28 Contents 2............................. 3.2......................... 7.3..................... 9.4................ 4.5............. 2.6.... 22 2 36 2..........................

More information

all.dvi

all.dvi 5,, Euclid.,..,... Euclid,.,.,, e i (i =,, ). 6 x a x e e e x.:,,. a,,. a a = a e + a e + a e = {e, e, e } a (.) = a i e i = a i e i (.) i= {a,a,a } T ( T ),.,,,,. (.),.,...,,. a 0 0 a = a 0 + a + a 0

More information

x V x x V x, x V x = x + = x +(x+x )=(x +x)+x = +x = x x = x x = x =x =(+)x =x +x = x +x x = x ( )x = x =x =(+( ))x =x +( )x = x +( )x ( )x = x x x R

x V x x V x, x V x = x + = x +(x+x )=(x +x)+x = +x = x x = x x = x =x =(+)x =x +x = x +x x = x ( )x = x =x =(+( ))x =x +( )x = x +( )x ( )x = x x x R V (I) () (4) (II) () (4) V K vector space V vector K scalor K C K R (I) x, y V x + y V () (x + y)+z = x +(y + z) (2) x + y = y + x (3) V x V x + = x (4) x V x + x = x V x x (II) x V, α K αx V () (α + β)x

More information

Untitled

Untitled II 14 14-7-8 8/4 II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ 6/ ] Navier Stokes 3 [ ] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I 1 balance law t (ρv i )+ j

More information

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =,

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =, [ ] IC. r, θ r, θ π, y y = 3 3 = r cos θ r sin θ D D = {, y ; y }, y D r, θ ep y yddy D D 9 s96. d y dt + 3dy + y = cos t dt t = y = e π + e π +. t = π y =.9 s6.3 d y d + dy d + y = y =, dy d = 3 a, b

More information

2S III IV K A4 12:00-13:30 Cafe David 1 2 TA 1 appointment Cafe David K2-2S04-00 : C

2S III IV K A4 12:00-13:30 Cafe David 1 2 TA 1  appointment Cafe David K2-2S04-00 : C 2S III IV K200 : April 16, 2004 Version : 1.1 TA M2 TA 1 10 2 n 1 ɛ-δ 5 15 20 20 45 K2-2S04-00 : C 2S III IV K200 60 60 74 75 89 90 1 email 3 4 30 A4 12:00-13:30 Cafe David 1 2 TA 1 email appointment Cafe

More information

[ ] 0.1 lim x 0 e 3x 1 x IC ( 11) ( s114901) 0.2 (1) y = e 2x (x 2 + 1) (2) y = x/(x 2 + 1) 0.3 dx (1) 1 4x 2 (2) e x sin 2xdx (3) sin 2 xdx ( 11) ( s

[ ] 0.1 lim x 0 e 3x 1 x IC ( 11) ( s114901) 0.2 (1) y = e 2x (x 2 + 1) (2) y = x/(x 2 + 1) 0.3 dx (1) 1 4x 2 (2) e x sin 2xdx (3) sin 2 xdx ( 11) ( s [ ]. lim e 3 IC ) s49). y = e + ) ) y = / + ).3 d 4 ) e sin d 3) sin d ) s49) s493).4 z = y z z y s494).5 + y = 4 =.6 s495) dy = 3e ) d dy d = y s496).7 lim ) lim e s49).8 y = e sin ) y = sin e 3) y =

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

ii p ϕ x, t = C ϕ xe i ħ E t +C ϕ xe i ħ E t ψ x,t ψ x,t p79 やは時間変化しないことに注意 振動 粒子はだいたい このあたりにいる 粒子はだいたい このあたりにいる p35 D.3 Aψ Cϕdx = aψ ψ C Aϕ dx

ii p ϕ x, t = C ϕ xe i ħ E t +C ϕ xe i ħ E t ψ x,t ψ x,t p79 やは時間変化しないことに注意 振動 粒子はだいたい このあたりにいる 粒子はだいたい このあたりにいる p35 D.3 Aψ Cϕdx = aψ ψ C Aϕ dx i B5 7.8. p89 4. ψ x, tψx, t = ψ R x, t iψ I x, t ψ R x, t + iψ I x, t = ψ R x, t + ψ I x, t p 5.8 π π π F e ix + F e ix + F 3 e 3ix F e ix + F e ix + F 3 e 3ix dx πψ x πψx p39 7. AX = X A [ a b c d x

More information

(2018 2Q C) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = ( ) a c b d (a c, b d) P = (a, b) O P ( ) a p = b P = (a, b) p = ( ) a b R 2 {( ) } R 2 x = x, y

(2018 2Q C) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = ( ) a c b d (a c, b d) P = (a, b) O P ( ) a p = b P = (a, b) p = ( ) a b R 2 {( ) } R 2 x = x, y (2018 2Q C) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = a c b d (a c, b d) P = (a, b) O P a p = b P = (a, b) p = a b R 2 { } R 2 x = x, y R y 2 a p =, c q = b d p + a + c q = b + d q p P q a p = c R c b

More information

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ = 1 1.1 ( ). z = + bi,, b R 0, b 0 2 + b 2 0 z = + bi = ( ) 2 + b 2 2 + b + b 2 2 + b i 2 r = 2 + b 2 θ cos θ = 2 + b 2, sin θ = b 2 + b 2 2π z = r(cos θ + i sin θ) 1.2 (, ). 1. < 2. > 3. ±,, 1.3 ( ). A

More information

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1)

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1) 1. 1.1...,. 1.1.1 V, V x, y, x y x + y x + y V,, V x α, αx αx V,, (i) (viii) : x, y, z V, α, β C, (i) x + y = y + x. (ii) (x + y) + z = x + (y + z). 1 (iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y

More information

n ( (

n ( ( 1 2 27 6 1 1 m-mat@mathscihiroshima-uacjp 2 http://wwwmathscihiroshima-uacjp/~m-mat/teach/teachhtml 2 1 3 11 3 111 3 112 4 113 n 4 114 5 115 5 12 7 121 7 122 9 123 11 124 11 125 12 126 2 2 13 127 15 128

More information

(2016 2Q H) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = ( ) a c b d (a c, b d) P = (a, b) O P ( ) a p = b P = (a, b) p = ( ) a b R 2 {( ) } R 2 x = x, y

(2016 2Q H) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = ( ) a c b d (a c, b d) P = (a, b) O P ( ) a p = b P = (a, b) p = ( ) a b R 2 {( ) } R 2 x = x, y (2016 2Q H) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = a c b d (a c, b d) P = (a, b) O P a p = b P = (a, b) p = a b R 2 { } R 2 x = x, y R y 2 a p =, c q = b d p + a + c q = b + d q p P q a p = c R c b

More information

r 1 m A r/m i) t ii) m i) t B(t; m) ( B(t; m) = A 1 + r ) mt m ii) B(t; m) ( B(t; m) = A 1 + r ) mt m { ( = A 1 + r ) m } rt r m n = m r m n B

r 1 m A r/m i) t ii) m i) t B(t; m) ( B(t; m) = A 1 + r ) mt m ii) B(t; m) ( B(t; m) = A 1 + r ) mt m { ( = A 1 + r ) m } rt r m n = m r m n B 1 1.1 1 r 1 m A r/m i) t ii) m i) t Bt; m) Bt; m) = A 1 + r ) mt m ii) Bt; m) Bt; m) = A 1 + r ) mt m { = A 1 + r ) m } rt r m n = m r m n Bt; m) Aert e lim 1 + 1 n 1.1) n!1 n) e a 1, a 2, a 3,... {a n

More information

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x [ ] IC. f(x) = e x () f(x) f (x) () lim f(x) lim f(x) x + x (3) lim f(x) lim f(x) x + x (4) y = f(x) ( ) ( s46). < a < () a () lim a log xdx a log xdx ( ) n (3) lim log k log n n n k=.3 z = log(x + y ),

More information

() Remrk I = [0, ] [x i, x i ]. (x : ) f(x) = 0 (x : ) ξ i, (f) = f(ξ i )(x i x i ) = (x i x i ) = ξ i, (f) = f(ξ i )(x i x i ) = 0 (f) 0.

() Remrk I = [0, ] [x i, x i ]. (x : ) f(x) = 0 (x : ) ξ i, (f) = f(ξ i )(x i x i ) = (x i x i ) = ξ i, (f) = f(ξ i )(x i x i ) = 0 (f) 0. () 6 f(x) [, b] 6. Riemnn [, b] f(x) S f(x) [, b] (Riemnn) = x 0 < x < x < < x n = b. I = [, b] = {x,, x n } mx(x i x i ) =. i [x i, x i ] ξ i n (f) = f(ξ i )(x i x i ) i=. (ξ i ) (f) 0( ), ξ i, S, ε >

More information

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2) 3 215 4 27 1 1 u u(x, t) u tt a 2 u xx, a > (1) D : {(x, t) : x, t } u (, t), u (, t), t (2) u(x, ) f(x), u(x, ) t 2, x (3) u(x, t) X(x)T (t) u (1) 1 T (t) a 2 T (t) X (x) X(x) α (2) T (t) αa 2 T (t) (4)

More information

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a =

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a = [ ] 9 IC. dx = 3x 4y dt dy dt = x y u xt = expλt u yt λ u u t = u u u + u = xt yt 6 3. u = x, y, z = x + y + z u u 9 s9 grad u ux, y, z = c c : grad u = u x i + u y j + u k i, j, k z x, y, z grad u v =

More information

1W II K =25 A (1) office(a439) (2) A4 etc. 12:00-13:30 Cafe David 1 2 TA appointment Cafe D

1W II K =25 A (1) office(a439) (2) A4 etc. 12:00-13:30 Cafe David 1 2 TA  appointment Cafe D 1W II K200 : October 6, 2004 Version : 1.2, kawahira@math.nagoa-u.ac.jp, http://www.math.nagoa-u.ac.jp/~kawahira/courses.htm TA M1, m0418c@math.nagoa-u.ac.jp TA Talor Jacobian 4 45 25 30 20 K2-1W04-00

More information

1 n A a 11 a 1n A =.. a m1 a mn Ax = λx (1) x n λ (eigenvalue problem) x = 0 ( x 0 ) λ A ( ) λ Ax = λx x Ax = λx y T A = λy T x Ax = λx cx ( 1) 1.1 Th

1 n A a 11 a 1n A =.. a m1 a mn Ax = λx (1) x n λ (eigenvalue problem) x = 0 ( x 0 ) λ A ( ) λ Ax = λx x Ax = λx y T A = λy T x Ax = λx cx ( 1) 1.1 Th 1 n A a 11 a 1n A = a m1 a mn Ax = λx (1) x n λ (eigenvalue problem) x = ( x ) λ A ( ) λ Ax = λx x Ax = λx y T A = λy T x Ax = λx cx ( 1) 11 Th9-1 Ax = λx λe n A = λ a 11 a 12 a 1n a 21 λ a 22 a n1 a n2

More information

i 18 2H 2 + O 2 2H 2 + ( ) 3K

i 18 2H 2 + O 2 2H 2 + ( ) 3K i 18 2H 2 + O 2 2H 2 + ( ) 3K ii 1 1 1.1.................................. 1 1.2........................................ 3 1.3......................................... 3 1.4....................................

More information

d ϕ i) t d )t0 d ϕi) ϕ i) t x j t d ) ϕ t0 t α dx j d ) ϕ i) t dx t0 j x j d ϕ i) ) t x j dx t0 j f i x j ξ j dx i + ξ i x j dx j f i ξ i x j dx j d )

d ϕ i) t d )t0 d ϕi) ϕ i) t x j t d ) ϕ t0 t α dx j d ) ϕ i) t dx t0 j x j d ϕ i) ) t x j dx t0 j f i x j ξ j dx i + ξ i x j dx j f i ξ i x j dx j d ) 23 M R M ϕ : R M M ϕt, x) ϕ t x) ϕ s ϕ t ϕ s+t, ϕ 0 id M M ϕ t M ξ ξ ϕ t d ϕ tx) ξϕ t x)) U, x 1,...,x n )) ϕ t x) ϕ 1) t x),...,ϕ n) t x)), ξx) ξ i x) d ϕi) t x) ξ i ϕ t x)) M f ϕ t f)x) f ϕ t )x) fϕ

More information

f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f

f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f 22 A 3,4 No.3 () (2) (3) (4), (5) (6) (7) (8) () n x = (x,, x n ), = (,, n ), x = ( (x i i ) 2 ) /2 f(x) R n f(x) = f() + i α i (x ) i + o( x ) α,, α n g(x) = o( x )) lim x g(x) x = y = f() + i α i(x )

More information

IA hara@math.kyushu-u.ac.jp Last updated: January,......................................................................................................................................................................................

More information

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4 1. k λ ν ω T v p v g k = π λ ω = πν = π T v p = λν = ω k v g = dω dk 1) ) 3) 4). p = hk = h λ 5) E = hν = hω 6) h = h π 7) h =6.6618 1 34 J sec) hc=197.3 MeV fm = 197.3 kev pm= 197.3 ev nm = 1.97 1 3 ev

More information

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2 II No.1 [n/] [1]H n x) H n x) = 1) r n! r!n r)! x)n r r= []H n x) n,, H n x) = 1) n H n x) [3] H n x) = 1) n dn x e dx n e x [4] H n+1 x) = xh n x) nh n 1 x) ) d dx x H n x) = H n+1 x) d dx H nx) = nh

More information

v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i

v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i 1. 1 1.1 1.1.1 1.1.1.1 v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) R ij R ik = δ jk (4) δ ij Kronecker δ ij = { 1 (i = j) 0 (i j) (5) 1 1.1. v1.1 2011/04/10 1. 1 2 v i = R ij v j (6) [

More information

n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................

More information

入試の軌跡

入試の軌跡 4 y O x 4 Typed by L A TEX ε ) ) ) 6 4 ) 4 75 ) http://kumamoto.s.xrea.com/plan/.. PDF) Ctrl +L) Ctrl +) Ctrl + Ctrl + ) ) Alt + ) Alt + ) ESC. http://kumamoto.s.xrea.com/nyusi/kumadai kiseki ri i.pdf

More information

A A = a 41 a 42 a 43 a 44 A (7) 1 (3) A = M 12 = = a 41 (8) a 41 a 43 a 44 (3) n n A, B a i AB = A B ii aa

A A = a 41 a 42 a 43 a 44 A (7) 1 (3) A = M 12 = = a 41 (8) a 41 a 43 a 44 (3) n n A, B a i AB = A B ii aa 1 2 21 2 2 [ ] a 11 a 12 A = a 21 a 22 (1) A = a 11 a 22 a 12 a 21 (2) 3 3 n n A A = n ( 1) i+j a ij M ij i =1 n (3) j=1 M ij A i j (n 1) (n 1) 2-1 3 3 A A = a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33

More information

2016 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 1 16 2 1 () X O 3 (O1) X O, O (O2) O O (O3) O O O X (X, O) O X X (O1), (O2), (O3) (O2) (O3) n (O2) U 1,..., U n O U k O k=1 (O3) U λ O( λ Λ) λ Λ U λ O 0 X 0 (O2) n =

More information

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t 6 6.1 6.1 (1 Z ( X = e Z, Y = Im Z ( Z = X + iy, i = 1 (2 Z E[ e Z ] < E[ Im Z ] < Z E[Z] = E[e Z] + ie[im Z] 6.2 Z E[Z] E[ Z ] : E[ Z ] < e Z Z, Im Z Z E[Z] α = E[Z], Z = Z Z 1 {Z } E[Z] = α = α [ α ]

More information

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a =

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a = II 6 ishimori@phys.titech.ac.jp 6.. 5.4.. f Rx = f Lx = fx fx + lim = lim x x + x x f c = f x + x < c < x x x + lim x x fx fx x x = lim x x f c = f x x < c < x cosmx cosxdx = {cosm x + cosm + x} dx = [

More information

I , : ~/math/functional-analysis/functional-analysis-1.tex

I , : ~/math/functional-analysis/functional-analysis-1.tex I 1 2004 8 16, 2017 4 30 1 : ~/math/functional-analysis/functional-analysis-1.tex 1 3 1.1................................... 3 1.2................................... 3 1.3.....................................

More information

29

29 9 .,,, 3 () C k k C k C + C + C + + C 8 + C 9 + C k C + C + C + C 3 + C 4 + C 5 + + 45 + + + 5 + + 9 + 4 + 4 + 5 4 C k k k ( + ) 4 C k k ( k) 3 n( ) n n n ( ) n ( ) n 3 ( ) 3 3 3 n 4 ( ) 4 4 4 ( ) n n

More information

量子力学 問題

量子力学 問題 3 : 203 : 0. H = 0 0 2 6 0 () = 6, 2 = 2, 3 = 3 3 H 6 2 3 ϵ,2,3 (2) ψ = (, 2, 3 ) ψ Hψ H (3) P i = i i P P 2 = P 2 P 3 = P 3 P = O, P 2 i = P i (4) P + P 2 + P 3 = E 3 (5) i ϵ ip i H 0 0 (6) R = 0 0 [H,

More information

January 27, 2015

January 27, 2015 e-mail : kigami@i.kyoto-u.ac.jp January 27, 205 Contents 2........................ 2.2....................... 3.3....................... 6.4......................... 2 6 2........................... 6

More information

1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C

1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C 0 9 (1990 1999 ) 10 (2000 ) 1900 1994 1995 1999 2 SAT ACT 1 1990 IMO 1990/1/15 1:00-4:00 1 N 1990 9 N N 1, N 1 N 2, N 2 N 3 N 3 2 x 2 + 25x + 52 = 3 x 2 + 25x + 80 3 2, 3 0 4 A, B, C 3,, A B, C 2,,,, 7,

More information

1 R n (x (k) = (x (k) 1,, x(k) n )) k 1 lim k,l x(k) x (l) = 0 (x (k) ) 1.1. (i) R n U U, r > 0, r () U (ii) R n F F F (iii) R n S S S = { R n ; r > 0

1 R n (x (k) = (x (k) 1,, x(k) n )) k 1 lim k,l x(k) x (l) = 0 (x (k) ) 1.1. (i) R n U U, r > 0, r () U (ii) R n F F F (iii) R n S S S = { R n ; r > 0 III 2018 11 7 1 2 2 3 3 6 4 8 5 10 ϵ-δ http://www.mth.ngoy-u.c.jp/ ymgmi/teching/set2018.pdf http://www.mth.ngoy-u.c.jp/ ymgmi/teching/rel2018.pdf n x = (x 1,, x n ) n R n x 0 = (0,, 0) x = (x 1 ) 2 +

More information

i

i i 3 4 4 7 5 6 3 ( ).. () 3 () (3) (4) /. 3. 4/3 7. /e 8. a > a, a = /, > a >. () a >, a =, > a > () a > b, a = b, a < b. c c n a n + b n + c n 3c n..... () /3 () + (3) / (4) /4 (5) m > n, a b >, m > n,

More information

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

I A A441 : April 15, 2013 Version : 1.1 I   Kawahira, Tomoki TA (Shigehiro, Yoshida ) I013 00-1 : April 15, 013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida) http://www.math.nagoya-u.ac.jp/~kawahira/courses/13s-tenbou.html pdf * 4 15 4 5 13 e πi = 1 5 0 5 7 3 4 6 3 6 10 6 17

More information

, x R, f (x),, df dx : R R,, f : R R, f(x) ( ).,, f (a) d f dx (a), f (a) d3 f dx 3 (a),, f (n) (a) dn f dx n (a), f d f dx, f d3 f dx 3,, f (n) dn f

, x R, f (x),, df dx : R R,, f : R R, f(x) ( ).,, f (a) d f dx (a), f (a) d3 f dx 3 (a),, f (n) (a) dn f dx n (a), f d f dx, f d3 f dx 3,, f (n) dn f ,,,,.,,,. R f : R R R a R, f(a + ) f(a) lim 0 (), df dx (a) f (a), f(x) x a, f (a), f(x) x a ( ). y f(a + ) y f(x) f(a+) f(a) f(a + ) f(a) f(a) x a 0 a a + x 0 a a + x y y f(x) 0 : 0, f(a+) f(a)., f(x)

More information

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2 filename=mathformula58.tex ax + bx + c =, x = b ± b 4ac, (.) a x + x = b a, x x = c a, (.) ax + b x + c =, x = b ± b ac. a (.3). sin(a ± B) = sin A cos B ± cos A sin B, (.) cos(a ± B) = cos A cos B sin

More information

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10% 1 2006.4.17. A 3-312 tel: 092-726-4774, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office hours: B A I ɛ-δ ɛ-δ 1. 2. A 1. 1. 2. 3. 4. 5. 2. ɛ-δ 1. ɛ-n

More information

1 4 1 ( ) ( ) ( ) ( ) () 1 4 2

1 4 1 ( ) ( ) ( ) ( ) () 1 4 2 7 1995, 2017 7 21 1 2 2 3 3 4 4 6 (1).................................... 6 (2)..................................... 6 (3) t................. 9 5 11 (1)......................................... 11 (2)

More information

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63> 電気電子数学入門 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/073471 このサンプルページの内容は, 初版 1 刷発行当時のものです. i 14 (tool) [ ] IT ( ) PC (EXCEL) HP() 1 1 4 15 3 010 9 ii 1... 1 1.1 1 1.

More information

2 2 MATHEMATICS.PDF 200-2-0 3 2 (p n ), ( ) 7 3 4 6 5 20 6 GL 2 (Z) SL 2 (Z) 27 7 29 8 SL 2 (Z) 35 9 2 40 0 2 46 48 2 2 5 3 2 2 58 4 2 6 5 2 65 6 2 67 7 2 69 2 , a 0 + a + a 2 +... b b 2 b 3 () + b n a

More information

dynamics-solution2.dvi

dynamics-solution2.dvi 1 1. (1) a + b = i +3i + k () a b =5i 5j +3k (3) a b =1 (4) a b = 7i j +1k. a = 14 l =/ 14, m=1/ 14, n=3/ 14 3. 4. 5. df (t) d [a(t)e(t)] =ti +9t j +4k, = d a(t) d[a(t)e(t)] e(t)+ da(t) d f (t) =i +18tj

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 3.............................. 3.............................. 4.3 4................... 5.4........................ 6.5........................ 8.6...........................7

More information

I, II 1, 2 ɛ-δ 100 A = A 4 : 6 = max{ A, } A A 10

I, II 1, 2 ɛ-δ 100 A = A 4 : 6 = max{ A, } A A 10 1 2007.4.13. A 3-312 tel: 092-726-4774, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office hours: B A I ɛ-δ ɛ-δ 1. 2. A 0. 1. 1. 2. 3. 2. ɛ-δ 1. ɛ-n

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 1 19 3 19.1................... 3 19.............................. 4 19.3............................... 6 19.4.............................. 8 19.5.............................

More information

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n (

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n ( 3 n nc k+ k + 3 () n C r n C n r nc r C r + C r ( r n ) () n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (4) n C n n C + n C + n C + + n C n (5) k k n C k n C k (6) n C + nc

More information

x = a 1 f (a r, a + r) f(a) r a f f(a) 2 2. (a, b) 2 f (a, b) r f(a, b) r (a, b) f f(a, b)

x = a 1 f (a r, a + r) f(a) r a f f(a) 2 2. (a, b) 2 f (a, b) r f(a, b) r (a, b) f f(a, b) 2011 I 2 II III 17, 18, 19 7 7 1 2 2 2 1 2 1 1 1.1.............................. 2 1.2 : 1.................... 4 1.2.1 2............................... 5 1.3 : 2.................... 5 1.3.1 2.....................................

More information

( )/2 hara/lectures/lectures-j.html 2, {H} {T } S = {H, T } {(H, H), (H, T )} {(H, T ), (T, T )} {(H, H), (T, T )} {1

( )/2   hara/lectures/lectures-j.html 2, {H} {T } S = {H, T } {(H, H), (H, T )} {(H, T ), (T, T )} {(H, H), (T, T )} {1 ( )/2 http://www2.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html 1 2011 ( )/2 2 2011 4 1 2 1.1 1 2 1 2 3 4 5 1.1.1 sample space S S = {H, T } H T T H S = {(H, H), (H, T ), (T, H), (T, T )} (T, H) S

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

DVIOUT

DVIOUT A. A. A-- [ ] f(x) x = f 00 (x) f 0 () =0 f 00 () > 0= f(x) x = f 00 () < 0= f(x) x = A--2 [ ] f(x) D f 00 (x) > 0= y = f(x) f 00 (x) < 0= y = f(x) P (, f()) f 00 () =0 A--3 [ ] y = f(x) [, b] x = f (y)

More information

4 4 4 a b c d a b A c d A a da ad bce O E O n A n O ad bc a d n A n O 5 {a n } S n a k n a n + k S n a a n+ S n n S n n log x x {xy } x, y x + y 7 fx

4 4 4 a b c d a b A c d A a da ad bce O E O n A n O ad bc a d n A n O 5 {a n } S n a k n a n + k S n a a n+ S n n S n n log x x {xy } x, y x + y 7 fx 4 4 5 4 I II III A B C, 5 7 I II A B,, 8, 9 I II A B O A,, Bb, b, Cc, c, c b c b b c c c OA BC P BC OP BC P AP BC n f n x xn e x! e n! n f n x f n x f n x f k x k 4 e > f n x dx k k! fx sin x cos x tan

More information

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google I4 - : April, 4 Version :. Kwhir, Tomoki TA (Kondo, Hirotk) Google http://www.mth.ngoy-u.c.jp/~kwhir/courses/4s-biseki.html pdf 4 4 4 4 8 e 5 5 9 etc. 5 6 6 6 9 n etc. 6 6 6 3 6 3 7 7 etc 7 4 7 7 8 5 59

More information

II K116 : January 14, ,. A = (a ij ) ij m n. ( ). B m n, C n l. A = max{ a ij }. ij A + B A + B, AC n A C (1) 1. m n (A k ) k=1,... m n A, A k k

II K116 : January 14, ,. A = (a ij ) ij m n. ( ). B m n, C n l. A = max{ a ij }. ij A + B A + B, AC n A C (1) 1. m n (A k ) k=1,... m n A, A k k : January 14, 28..,. A = (a ij ) ij m n. ( ). B m n, C n l. A = max{ a ij }. ij A + B A + B, AC n A C (1) 1. m n (A k ) k=1,... m n A, A k k, A. lim k A k = A. A k = (a (k) ij ) ij, A k = (a ij ) ij, i,

More information

1 I

1 I 1 I 3 1 1.1 R x, y R x + y R x y R x, y, z, a, b R (1.1) (x + y) + z = x + (y + z) (1.2) x + y = y + x (1.3) 0 R : 0 + x = x x R (1.4) x R, 1 ( x) R : x + ( x) = 0 (1.5) (x y) z = x (y z) (1.6) x y =

More information

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c) yoshioka/education-09.html pdf 1

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c)   yoshioka/education-09.html pdf 1 2009 1 ( ) ( 40 )+( 60 ) 1 1. 2. Schrödinger 3. (a) (b) (c) http://goofy.phys.nara-wu.ac.jp/ yoshioka/education-09.html pdf 1 1. ( photon) ν λ = c ν (c = 3.0 108 /m : ) ɛ = hν (1) p = hν/c = h/λ (2) h

More information

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0 1 1 1.1 1.) T D = T = D = kn 1. 1.4) F W = F = W/ = kn/ = 15 kn 1. 1.9) R = W 1 + W = 6 + 5 = 11 N. 1.9) W b W 1 a = a = W /W 1 )b = 5/6) = 5 cm 1.4 AB AC P 1, P x, y x, y y x 1.4.) P sin 6 + P 1 sin 45

More information

( )

( ) 7..-8..8.......................................................................... 4.................................... 3...................................... 3..3.................................. 4.3....................................

More information

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A .. Laplace ). A... i),. ω i i ). {ω,..., ω } Ω,. ii) Ω. Ω. A ) r, A P A) P A) r... ).. Ω {,, 3, 4, 5, 6}. i i 6). A {, 4, 6} P A) P A) 3 6. ).. i, j i, j) ) Ω {i, j) i 6, j 6}., 36. A. A {i, j) i j }.

More information

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt S I. x yx y y, y,. F x, y, y, y,, y n http://ayapin.film.s.dendai.ac.jp/~matuda n /TeX/lecture.html PDF PS yx.................................... 3.3.................... 9.4................5..............

More information

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy f f x, y, u, v, r, θ r > = x + iy, f = u + iv C γ D f f D f f, Rm,. = x + iy = re iθ = r cos θ + i sin θ = x iy = re iθ = r cos θ i sin θ x = + = Re, y = = Im i r = = = x + y θ = arg = arctan y x e i =

More information

i

i 009 I 1 8 5 i 0 1 0.1..................................... 1 0.................................................. 1 0.3................................. 0.4........................................... 3

More information

untitled

untitled 0. =. =. (999). 3(983). (980). (985). (966). 3. := :=. A A. A A. := := 4 5 A B A B A B. A = B A B A B B A. A B A B, A B, B. AP { A, P } = { : A, P } = { A P }. A = {0, }, A, {0, }, {0}, {}, A {0}, {}.

More information

/02/18

/02/18 3 09/0/8 i III,,,, III,?,,,,,,,,,,,,,,,,,,,,?,?,,,,,,,,,,,,,,!!!,? 3,,,, ii,,,!,,,, OK! :!,,,, :!,,,,,, 3:!,, 4:!,,,, 5:!,,! 7:!,,,,, 8:!,! 9:!,,,,,,,,, ( ),, :, ( ), ( ), 6:!,,, :... : 3 ( )... iii,,

More information