Size: px
Start display at page:

Download ""

Transcription

1 RCS 5 5G

2

3 ZF MMSE MIMO

4

5 1 1 0 x A v y = Ax + v MIMO (multi-input multi-output)

6 2 1 ZF (zero-forcing) MMSE (minimum mean-square-error) MIMO

7 R C T H diag[a 1 a N ] a 1,, a N N N tr{a} A det{a} A I 0 a p p 1 a l p - a p = ( n i=1 a i p ) 1 p (2.1) a 0 a l 0 - j R{ }, I{ } 2.2 {x(n); n =..., 2, 1, 0, 1, 2,...} n n 0 x(n 0 ) x(n) ( ) x(n) m x (n) = E[x(n)] (2.2)

8 4 2 1 E[ ] n x(n) p(x(n)) E[x(n)] = x(n)p(x(n))dx(n) (2.3) P (x(n)) E[x(n)] = x(n)p (x(n)) (2.4) E[ ] n x(n) x(n) ( ) r x (n, k) = E[x(n)x (n k)] (2.5) 2 n x(n) x(n k) p(x(n), x(n k)) E[x(n)x (n k)] = x(n)x (n k)p(x(n), x(n k))dx(n)dx(n k) (2.6) c x (n, k) = E[(x(n) m x (n))(x(n k) m x (n k)) ] (2.7) x(n) ( ) σ 2 x(n) = c x (n, 0) = E[(x(n) m x (n))(x(n) m x (n)) ] (2.8) 3 (2.2) n n (2.5) (2.7) n n k n k m x (n) = m x k r x (n, k) = r x (k) n n + l, l x(n) n n + l, l p(x(n 1 ), x(n 2 ),, x(n p )) = p(x(n 1 + l), x(n 2 + l),, x(n p + l)) (2.9) 1 ( E[X(n)] = x(n)p(x(n))dx(n) ) 2 3 t-

9 x(n) m x (n) r x (n, k) x(n) m m x (n) = m x (n + mt ) (2.10) r x (n, k) = r x (n + mt, k + mt ) (2.11) T [20, 21] [22] [19] x(n) x(n) = [x(n) x(n 1) x(n N + 1)] T C N (2.12) x(n) x(n) R x = E[x(n)x H (n)] (2.13) R x E[x(n)x (n)] E[x(n)x (n 1)]... E[x(n)x (n N + 1)] E[x(n 1)x = (n)] E[x(n 1)x (n 1)]... E[x(n 1)x (n N + 1)] E[x(n N + 1)x (n)] E[x(n N + 1)x (n 1)]... E[x(n N + 1)x (n N + 1)] r x (0) r x (1)... r x (N 1) r = x ( 1) r x (0)... r x (N 2)..... (2.14). r x ( N + 1) r x ( N + 2)... r x (0)

10 6 2 E[x(n)] = 0 x(n) R H x = ( E[x(n)x H (n)] ) H = E[(x(n)x H (n)) H ] = E[x(n)x H (n)] = R x r k = E[x(n)x (n + k)] = (E[x (n)x(n + k)]) = (E[x (n k)x(n)]) = rk r 0 r 1... r N 1 R x = E[x(n)x H r (n)] = 1 r 0... r N rn 1 rn 2... r 0 u C N x(n) y = u H x(n) E[ y 2 ] = E[yy ] = E[u H x(n)x H (n)u] = u H E[x(n)x H (n)]u = u H R x u y 2 x(n) y 2 0 E[ y 2 ] u H R xu u

11 A u C N (u H Au) H = u H A H u = u H Au R x λ 1,..., λ N λ i q i = [q i,1 q i,n ] T ( 0) R x q i = λ i q i (2.15) q H i q H i R x q i = λ i q H i q i q H i q i N q H i q i = q i,j 2 j=1 λ i = qh i R xq i q H i q i (2.16) q H i R xq i λ i ( ) (2.16) q i Rayleigh quotient R x λ i q i R x λ 1,..., λ N λ i q i (2.15) q H j, j i q H j R x q i = λ i q H j q i (2.17)

12 8 2 R x q j = λ j q j (2.18) R x λ j q i (2.17) (2.20) i j λ i λ j q H j R x = λ j q H j (2.19) q H j R x q i = λ j q H j q i (2.20) (λ i λ j )q H j q i = 0 (2.21) q H j q i = 0 (i j) (2.22) R x R x λ 1,..., λ N q 1,..., q N q i 2 = 1 i (2.15) 1 R x Q = Q λ... λ N (2.23) ] Q = [q 1... q N (2.24) Q H Q = I (2.25)

13 Q (2.23) Q H Q H R x Q = λ 1... λ N (2.26) q i Q [18] R x λ max λ max = max q 2 =1 qh R x q (2.27) R x λ 1 > λ 2 > > λ N q 1,, q N p q 1,, q N N p = N α i q i (2.28) i=1 5 1 R x = Q λ... Q H = λ N N λ i q i q H i (2.29) i=1

14 10 2 ( N ) p H R x p = p H λ i q i q H i p = i=1 N λ i p H q i q H i p (2.30) i=1 p H q i = α i (2.31) q H i p = α i (2.32) p H R x p = N λ i α i 2 (2.33) i=1 λ 1 > λ 2 > > λ N p H R x p p H R x p λ 1 N i=1 α i 2 (2.34) i 1 i α i = 0 p α 1 = 1 max q 2 =1 qh R x q = λ 1 (2.35) [9],[10] 2.3 ( Wirtinger ) f(z)

15 : D C f : D C f(z + z) f(z) lim z 0 z z D f D f 5 : R{f} x R{f} y = I{f} y = I{f} x 2 f(z) = z 2 = zz f(z + z) f(z) z + z 2 z 2 lim = lim z 0 z z 0 z = lim z 0 = lim z 0 (z + z)(z + z) zz z zz + z( z) + z( z) z (2.36) z 0 z = x + j y ( x, y R) x 0 z z j y y 0 z z y 0 z + z + x x 0 z + z z z z + z f(z) = z 2 = zz z z f d x, y R f df = f f dx + dy (2.37) x y 5 z = x + jy f(z) x, y f(x, y) x, y

16 12 2 f x f x (2.37) z = x + jy (2.38) z = x jy (2.39) dz = dx + jdy (2.40) dz = dx jdy (2.41) dx = 1 2 (dz + dz ) (2.42) dy = 1 2j (dz dz ) (2.43) df = f dz + dz + f dz dz x 2 y 2j = 1 ( ) f 2 x j f dz + 1 y 2 ( f x + j f y f z, z ) dz (2.44) df = f f dz + z z dz (2.45) (2.44) (2.45), : f z = 1 ( ) f 2 x j f y f z = 1 ( ) f 2 x + j f y (2.46) (2.47) z = x + jy f(z) = z f(z) = z z z = 1 ( ) (x + jy) (x + jy) j = 1 (1 j j) = 1 (2.48) 2 x y 2 z z = 1 ( ) (x jy) (x jy) + j = 1 (1 + j ( j)) = 1 (2.49) 2 x y 2 z z = 1 ( ) (x + jy) (x + jy) + j = 1 (1 + j j) = 0 (2.50) 2 x y 2 z z = 1 ( ) (x jy) (x jy) j = 1 (1 j ( j)) = 0 (2.51) 2 x y 2

17 z z z z z z z z f(z) = z 2 z 2 z z 2 z f z = 1 ( 2 x (R{f} + ji{f}) + j y = 1 ( R{f} I{f} ) + j ( R{f} 2 x y 2 y = zz z = z (2.52) = zz z = z (2.53) ) (R{f} + ji{f}) ) + I{f} x (2.54) f z = 0 (2.55) z z z f z = [z 1 z M ] T C M z m = x m + jy m, (x m, y m R) f(z) df = M m=1 ( f dx m + f ) dy m x m y m (2.56) dz m = dx m + jdy m dz m = dx m jdy m df = M m=1 { ( 1 f j f ) dz m + 1 ( f + j f ) } dzm 2 x m y m 2 x m y m (2.57) f [ z = f z 1 dz = ] f z M [ dz 1 dz M ] T (2.58)

18 14 2 f [ z = f z1 dz = ] f zm [ T dz1 dzm] (2.59) df = f f dz + z z dz (2.60) f : [ ] f f z = f z 1 z [ ( M 1 f = j f ) ( 1 f j f )] 2 x 1 y 1 2 x M y M [ ] f f z = f z1 zm [ ( 1 f = + j f ) ( 1 f + j f )] 2 x 1 y 1 2 x M y M (2.61) (2.62) f [ ] f f f = z z (2.63) f z, f z ( ) f f T z H = z (2.64) f(z) f + j f x 1 y 1 f + j f e f = x 2 y 2. f + j f x M y M (2.65)

19 [9] e f = 2 f z H (2.66) f (2.60) f ( ) f z = (2.67) z ( ) f f z = (2.68) z f f = f ( ) f f z = (2.69) z f = [( ) f ] f z z (2.70) f f = 0 f f z = 0 z = 0 (2.65) f (2.69) (2.65) : a, A ( z H z H a ) = a (2.71) ( z H z H Az ) = Az (2.72) x ( x T a ) = a x (2.73) ( x T Ax ) = Ax + A T x x (2.74). [17]

20 16 2 Z : ( { tr Z H Z H A }) = A (2.75) ( { tr Z H Z H AZ }) = AZ (2.76) [8] [9, 11] [15, 16]

21 x = [x 1 x N ] T C N A = [a 1 a N ] C M N y = [y 1 y M ] T C M x y = Ax + v (3.1) y A x v = [v 1 v M ] T C M A y x v R y = E[yy H ] R x = E[xx H ] R v = E[vv H ] = σ 2 vi 3.2 ZF ZF x x ˆx zf = W H zf y = x + W H zf v (3.2) Wzf H ZF N M ZF A (M = N) W H zf A = I (3.3) W H zf = A 1 (3.4) A M > N (3.3) W zf (3.3) (3.2) (SNR: signal-to-noise power

22 18 3 ratio) W zf (3.2) E [ (Wzf H v)h Wzf H v] = tr { Wzf H } E[vvH ]W zf = σvtr 2 { Wzf H W } zf (3.5) SNR W zf W zf = arg min tr { W H W } s.t. W H A = I (3.6) W C M N tr{ab} = tr{ba} L zf (W) = tr { W H W } + = tr { W H W } + N ϕ H n (W H a n e n ) n=1 N n=1 tr { (W H a n e n )ϕ H } n (3.7) L zf (W) W H = W + N a n ϕ H n n=1 = W + AΦ H (3.8) ϕ n N e n n 1 0 N Φ = [ϕ 1 ϕ N ] L zf(w) W H = 0 W zf = AΦ H (3.9) (3.6) A Φ = (A H A) 1 (3.10) W H zf = (AH A) 1 A H (3.11) M = N W H zf = A 1 (3.4) M = N

23 3.2. ZF 19 ZF 2 ZF ˆx ls = arg min x C N Ax y 2 2 (3.12) Ax y 2 2 = (Ax y) H (Ax y) = x H A H Ax x H A H y y H Ax + y H y x H Ax y 2 2 = A H Ax A H y = 0 (3.13) ˆx ls = (A H A) 1 A H y (3.14) ZF (3.6) A ZF (noise enhancement) ZF (3.5) (3.11) σ 2 vtr { W H zf W zf} = σ 2 v tr { (A H A) 1} (3.15) A [ ] Ξ A = U V H (3.16) 0 (M N) N U C M M, V C N N Ξ A Ξ = diag[ξ 1 ξ N ] A H A = VΞ 2 V H (3.17) (A H A) 1 = VΞ 2 V H (3.18) σvtr 2 { Wzf H W } N zf = σ 2 1 v ξ n=1 n 2 (3.19) A ξ n 0

24 M < N (3.3) W zf ZF. M < N y = Ax x x y A y = Ax x l 2 - ˆx mn = arg min x C N x 2 2 s.t. y = Ax (3.20) L mn (x) = x (Ax y) H ϕ (3.21) Lmn(x) x H = 0 ˆx mn = A H ϕ (3.22) A ϕ = (AA H ) 1 y (3.23) ˆx mn = A H (AA H ) 1 y (3.24) 3.4 MMSE ZF MMSE MMSE MMSE MMSE MMSE MMSE f ˆx mmse = f(y) (3.25) f J mmse [f] = E [ f(y) x 2 2 y ] (3.26) y x p(x y) y x x(y) = E[x y] = xp(x y)dx (3.27)

25 3.4. MMSE 21 1, J mmse [f] =E [ f(y) x 2 2 y ] =E [ f(y) x(y) + x(y) x 2 2 y ] = f(y) x(y) E [ x(y) x 2 2 y ] + {f(y) x(y)} H E [{ x(y) x} y] + E [ { x(y) x} H y ] {f(y) x(y)} = f(y) x(y) E [ x(y) x 2 2 y ] E [ x(y) x 2 2 y ] (3.28) f(y) = x(y) MMSE ˆx mmse = x(y) (3.29) MMSE 0 MMSE W lmmse ˆx lmmse = Wlmmse H y (3.30) W lmmse W lmmse = arg min E [ W H (Ax + v) x 2 ] W C M N 2 (3.31) J lmmse (W) = E [ W H (Ax + v) x 2 ] 2 = E [ (W H Ax + W H v x) H (W H Ax + W H v x) ] = E [ tr{(w H Ax + W H v x)(w H Ax + W H v x) H } ] = tr { W H AE[xx H ]A H W } + tr { W H AE[xv H ]W } tr { W H AE[xx H ] } + tr { W H E[vx H ]A H W } + tr { W H E[vv H ]W } tr { W H E[vx H ] } tr { E[xx H ]A H W } tr { E[xv H ]W } + tr { E[xx H ] } = tr { W H AR x A H W } tr { W H AR x } + σ 2 v tr { W H W } tr { R x A H W } + tr {R x } (3.32) J lmmse (W) W H = AR x A H W AR x + σ 2 vw = 0 (3.33) 1 x

26 22 3 W H lmmse = R xa H ( AR x A H + σ 2 vi ) 1 (3.34) MMSE MMSE (x, y) [1] 3.5 y x x x (subtractive interference cancellation) [23, 24] (CDMA: code division multiple access) [25] (SIC: successive interference cancellation) (PIC: parallel interference cancellation) SIC x SNR x v A x y x SNR x 1, x 2,..., x N x 2,..., x N x 1 y (1) sic = y = Ax + v ( N ) = a 1 x 1 + a i x i + v i=2 (3.35) x 1 ˆx sic,1 ˆx sic,1 = w H 1 y (1) sic (3.36) w 1 C N ZF MMSE

27 y x 1 y (2) sic ˆx sic,1 y (2) sic = y a 1ˆx sic,1 ( N ) = a 2 x 2 + a i x i + v + a 1 (x 1 ˆx sic,1 ) i=3 ( N ) a 2 x 2 + a i x i + v i=3 (3.37) ˆx sic,1 = x 1 y (2) sic y x 2 y (2) sic x 1 x 2 w 2 C N ˆx sic,2 = w H 2 y (2) sic (3.38) x N SIC SNR SNR A [25] SIC [24] PIC x x y (1) pic = y x ˆx (1) pic y (2) pic = y A offdiagˆx (1) pic = Ax A offdiagˆx (1) pic + v A diag x + v (3.39) A diag A A offdiag = A A diag y (2) pic ˆx(2) pic PIC PIC SIC x SNR 3.6 x S x S N y x ˆx S N x

28 24 3 P (ˆx y) ˆx S N ˆx map = arg max P (x y) (3.40) x SN 2 P (x y) = p(y x)p (x) p(y) (3.41) x P (x) ˆx ml = arg max p(y x) (3.42) x SN p(y x) (3.1) v p(y x) = ( 1 π M det{r v } exp y ) Ax 2 2 σv 2 (3.43) ˆx ml = arg min x S N y Ax 2 2 (3.44) Ax S S S N N 3.7 ( ) (3.1) y = ax + v (3.45) 2 [26]

29 x C, a = [a 1 a M ] T C M y 1,, y M SNR ( ) y 1,, y M ( ) SNR MRC: maximal ratio combining w mrc ˆx mrc = w H mrcy = w H mrcax + w H mrcv (3.46) SNR γ mrc = E[ wh mrcax 2 ] E[ w H mrcv 2 ] = σ2 xw H mrcaa H w mrc σ 2 vw H mrcw mrc (3.47) E[ x 2 ] = σ 2 x (3.47) SNR aa H w mrc 2.2 aa H aa H 1 γ mrc = σ2 xa H aa H a σ 2 va H a = σ2 xa H a σ 2 v w mrc = a (3.48) = a 1 2 σ 2 x σ 2 v + a 2 2 σ 2 x σ 2 v + + a M 2 σ 2 x σ 2 v (3.49) SNR SNR (3.45) (3.1) w mrc ˆx mrc = wmrcy H = wmrcax H + wmrcv H (3.50) ˆx mrc x

30 26 3 SNR γ mrc = E[ wh mrcax 2 ] E[ w H mrcv 2 ] = wh mrcar x A H w mrc σ 2 vw H mrcw mrc (3.51) w mrc AR x A H SNR γ mrc = wh mrcar x A H w mrc w H mrcr v w mrc (3.52) w mrc AR x A H R v AR x A H w = λr v w (3.53) 3.8 x A A y( ) x v y R y = E[yy H ] = AR x A H + σ 2 vi (3.54) R y M λ 1 λ 2 λ M, AR x A H M ν 1 ν 2 ν M R y M λ m q m λ m q m = R y q m = (AR x A H + σvi)q 2 m = (ν m + σv)q 2 m λ m ν m λ m = ν m + σv 2, m = 1, 2,..., M (3.55).

31 M > N A R x AR x A H M N 0. (3.55) { ν m + σ 2 λ m = v, m = 1,..., N σv, 2 m = N + 1,..., M (3.56). rank A H = N A H N (A H ) M N q N (A H ) R y q = σ 2 vq q σ 2 v M N (3.56) M N q N+1,, q M N (A H ) q H ma = 0, m = N + 1,..., M (3.57) Q S = [q 1,, q N ] Q N = [q N+1,, q M ] R(Q S ) R(Q N ) [2] (R( ) ) (3.57) R(Q N ) = N (A H ) q 1,, q M R(Q S ) = R(Q N ) ( ) R(A) = N (A H ) R(Q S ) = R(A) R(Q N ) = R(A) (3.57) A A 3.9 x x N M < N y = Ax [3, 4, 5] M < N y = Ax x x ˆx l0 = arg min x x 0 s.t. y = Ax (3.58) x l 0 l 0 - NP l 0 - l 1 - ˆx l1 = arg min x x 1 s.t. y = Ax (3.59)

32 28 3 A M < N x ϵ > 0 ˆx cl1 = arg min x x 1 s.t. Ax y 2 2 ϵ (3.60) µ > 0 (3.60) ( ˆx l1 l 2 = arg min µ x ) x 2 Ax y 2 2 (3.61) (3.61) l 1 - l 2 - l 1 l 2 Lasso (least absolute shrinkage and selection operator)[6] (3.60), (3.61) ˆx lasso = arg min x Ax y 2 2 s.t. x 1 t (3.62) [7]

33 (3.1) s r H v r = Hs + v (4.1) H h h L... h 1.. h h L hl H = C M M h L... h 0 h 0,, h L (DFT: discrete Fourier transform) D = 1 2π 1 1 2π 1 (M 1) j j 1 e M... e M M... 2π(M 1) 1 2π(M 1) (M 1) j j 1 e M... e M. H {h 0, h 1,..., h L } H = D H ΛD (4.2)

34 30 4. Λ = diag[λ 1 λ M ] h 0 λ 1. = MD. λ M h L 0 (M L 1) 1 (4.3) 1.. ZF (3.4) r = D H ΛDs + v (4.4) ŝ = W H r (4.5) W H = (D H ΛD) 1 = D 1 Λ 1 D H MMSE (3.34) = D H Λ 1 D (4.6) W H = σ 2 s H H ( σ 2 s HH H + σ 2 vi ) 1 = σs 2 D H Λ H D ( σs 2 D H ΛΛ H D + σvi 2 ) 1 ( 1 = D H Λ H ΛΛ H + σ2 v I) D E[ss H ] = σ 2 s I D W H ZF MMSE IDFT D H DFT D (FFT: fast Fourier transform) ZF MMSE (MLSE: maximum likelihood sequence estimation) σ 2 s [λ 1,..., λ M ] T,

35 4.3. MIMO 31 r = Hp + v (4.7) p = [p 1 p M ] T H (4.7) r = Ph + v (4.8) P p 1 p M... p 2 p P = 2 p 1 p p M p M 1... p 1 (4.9) h H (4.8) h H (4.1) s E[hh H ] MMSE ZF P 2 ZF 2 (4.8) h 4.3 MIMO MIMO (3.1) N M s C N r C M H C M N v C M r = Hs + v (4.10) (4.10) 2 E[hh H ] MMSE

36 32 4 incoming plane wave d sinθ θ antenna 0 d (M-1)d 4.1: MIMO (4.10) MIMO H MIMO [12] MIMO MIMO MIMO more is different MIMO [27] 4.4 N M d 4.1 n θ n d sin θ n ϕ n = 2π d sin θ n η (4.11) η 1 {s 1, s 2,, s N } m N r m = s n e jϕn(m 1) + v m (4.12) n=1 v m 0, σv 2 N r = [r 1 r M ] T = s n a(θ n ) + v (4.13) n=1

37 v = [v 1 v M ] T a(θ) = [ 1, e d sin θ j2π η,, e (N 1)d sin θ j2π η ] T (4.14) A = [a(θ 1 ) a(θ N )] s = [s 1 s N ] T (3.1) r = As + v (4.15) s A N M M > N (3.57) q H ma = 0, m = N + 1,..., M (4.16) q m R = E[rr H ] M N S(θ) = 1 M m=n+1 ah (θ)q m 2 (4.17) θ, θ = θ n (n = 1,, N) 0 3 MUSIC (multiple signal classification) [13] [14] 3 0 R

38

39

40 Jordan σ- 9 IEEE Trans. Information Theory IEEE Trans. Signal Processing

41 S. Haykin, Adaptive Filter Theory (5th edition), Pearson, B. F.-Boroujeny Adaptive Filters, Theory and Applications, John Wiley & Sons, C. Bishop, Pattern Recognition and Machine Learning, Springer, 2006.

42 T. M. Cover, J. A. Thomas, Elements of Information Theory, John Wiley & Sons, R. G. Gallager, Information Theory and Reliable Communication, John Wiley & Sons, Cover D. J. C. Mackay, Information Theory, Inference, and Learning Algorithms, Cambridge University Press, T. Richardson, Modern Coding Theory, Cambridge University Press, J. G. Proakis, M. Salehi, Digital Communications, McGraw-Hill, D. Tse, P. Viswanath, Fundamentals of Wireless Communication, Cambridge University Press, R. G. Gallager, Principles of Digital Communication, Cambridge University Press, 2008.

43 MIMO MIMO

44

45 G 1 1

46

47 43 [1],,, [2],,, vol. 43, no. 4, pp , [3] D.L. Donoho, Compressed sensing, IEEE Trans. Inf. Theory, vol.52, no.4, pp , April [4] E.J. Candes and T. Tao, Decoding by linear programming, IEEE Trans. Inf. Theory, vol.51, no.12, pp , Dec [5] E.J. Candes, J. Romberg, and T. Tao, Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information, IEEE Trans. Inf. Theory, vol.52, no.2, pp , Feb [6] R. Tibshirani, Regression shrinkage and selection via the lasso, J. R. Statist. Soc. B, vol.58, no.1, pp , [7] K. Hayashi, M. Nagahara, T. Tanaka, A User s Guide to Compressed Sensing for Communications Systems, IEICE Trans. Commun., Vol. E96-B, No. 03, pp , Mar [8] L. Schwartz, 6,, [9] S. Haykin, Adaptive Filter Theory, 3rd Edition, Prentice Hall, [10] B. F.-Boroujeny Adaptive Filters, Theory and Applications, John Wiley & Sons, [11] T. Kailath, A. Sayed, B. Hassibi, Linear Estimation, Prentice Hall, [12] MIMO [13] R. O. Schmidt, Multiple Emitter Location and Signal Parameter Estimation, IEEE Trans. Antennas and Propag., Vol. AP-34, Vo. 3, pp , [14],, Fundamentals Review, Vol. 8, No. 3, pp , Jan

48 44 6 [15] P. J. Schreier and L. L. Scharf, Statistical Signal Processing of Complex-Valued Data, Cambridge University Press, [16] A. Hjørungnes, Complex-Valued Matrix Derivatives, Cambridge University Press, [17] [18] [19] W. A. Gardner, Cyclostationarity in Communications and Signal Processing, IEEE Press, [20] L. Tong, G. Xu, and T. Kailath, Blind Channel Identification Based on Second- Order Statistics : A Time Domain Approach, IEEE Trans. Inform. Theory, vol.41, pp , Mar [21] L. Tong, G. Xu, B. Hassibi,and T. Kailath, Blind Channel Identification Based on Second-Order Statistics : A Frequency Domain Approach, IEEE Trans. Inform. Theory, vol.40, pp , Mar [22] G. Xu, T. Kailath, Direction-of-arrival estimation via exploitation of cyclostationarity - A combination of temporal and spatial processing, IEEE Trans. Signal Processing, vol. 40, no. 7, pp , July [23] Thomas M. Cover and Joy A. Thomas, Elements of Information Theory, 2nd Edition, Wiley-Interscience, [24] D. Tse, P. Viswanath, Fundamentals of Wireless Communication, Cambridge University Press, [25] S. Moshan, Multi-user detection for DS-CDMA communications, IEEE Communications Magazine,pp , Oct [26] D. P. Bertsekas and J. N. Tsitsiklis, Introduction to Probability, Athena Scientific, [27] A. Chockalingam, B. S. Rajan, Large MIMO Systems, Cambridge University Press, 2014.

untitled

untitled 1 SS 2 2 (DS) 3 2.1 DS................................ 3 2.2 DS................................ 4 2.3.................................. 4 2.4 (channel papacity)............................ 6 2.5........................................

More information

h(n) x(n) s(n) S (ω) = H(ω)X(ω) (5 1) H(ω) H(ω) = F[h(n)] (5 2) F X(ω) x(n) X(ω) = F[x(n)] (5 3) S (ω) s(n) S (ω) = F[s(n)] (5

h(n) x(n) s(n) S (ω) = H(ω)X(ω) (5 1) H(ω) H(ω) = F[h(n)] (5 2) F X(ω) x(n) X(ω) = F[x(n)] (5 3) S (ω) s(n) S (ω) = F[s(n)] (5 1 -- 5 5 2011 2 1940 N. Wiener FFT 5-1 5-2 Norbert Wiener 1894 1912 MIT c 2011 1/(12) 1 -- 5 -- 5 5--1 2008 3 h(n) x(n) s(n) S (ω) = H(ω)X(ω) (5 1) H(ω) H(ω) = F[h(n)] (5 2) F X(ω) x(n) X(ω) = F[x(n)]

More information

main.dvi

main.dvi CDMA 1 CDMA ( ) CDMA CDMA CDMA 1 ( ) Hopfield [1] Hopfield 1 E-mail: okada@brain.riken.go.jp 1 1: 1 [] Hopfield Sourlas Hopfield [3] Sourlas 1? CDMA.1 DS/BPSK CDMA (Direct Sequence; DS) (Binary Phase-Shift-Keying;

More information

2005 1

2005 1 2005 1 1 1 2 2 2.1....................................... 2 2.2................................... 5 2.3 VSWR................................. 6 2.4 VSWR 2............................ 7 2.5.......................................

More information

4 1 7 Ver.1/ MIMO MIMO Multiple Input Multiple Output MIMO = = MIMO LAN IEEE802.11n MIMO Alamouti STBC Space Time Block Code

4 1 7 Ver.1/ MIMO MIMO Multiple Input Multiple Output MIMO = = MIMO LAN IEEE802.11n MIMO Alamouti STBC Space Time Block Code 4 -- 1 7 MIMO 2009 4 MIMO Multiple Input Multiple Output MIMO = = MIMO LAN IEEE802.11n MIMO Alamouti STBC Space Time Block Code 1 7-1 MIMO 7-2 MIMO 7-3 MIMO MIMO 7-4 MIMO 8 8-5 c 2010 1/(18) 4 -- 1 --

More information

Kalman ( ) 1) (Kalman filter) ( ) t y 0,, y t x ˆx 3) 10) t x Y [y 0,, y ] ) x ( > ) ˆx (prediction) ) x ( ) ˆx (filtering) )

Kalman ( ) 1) (Kalman filter) ( ) t y 0,, y t x ˆx 3) 10) t x Y [y 0,, y ] ) x ( > ) ˆx (prediction) ) x ( ) ˆx (filtering) ) 1 -- 5 6 2009 3 R.E. Kalman ( ) H 6-1 6-2 6-3 H Rudolf Emil Kalman IBM IEEE Medal of Honor(1974) (1985) c 2011 1/(23) 1 -- 5 -- 6 6--1 2009 3 Kalman ( ) 1) (Kalman filter) ( ) t y 0,, y t x ˆx 3) 10) t

More information

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K II. () 7 F 7 = { 0,, 2, 3, 4, 5, 6 }., F 7 a, b F 7, a b, F 7,. (a) a, b,,. (b) 7., 4 5 = 20 = 2 7 + 6, 4 5 = 6 F 7., F 7,., 0 a F 7, ab = F 7 b F 7. (2) 7, 6 F 6 = { 0,, 2, 3, 4, 5 },,., F 6., 0 0 a F

More information

x T = (x 1,, x M ) x T x M K C 1,, C K 22 x w y 1: 2 2

x T = (x 1,, x M ) x T x M K C 1,, C K 22 x w y 1: 2 2 Takio Kurita Neurosceince Research Institute, National Institute of Advanced Indastrial Science and Technology takio-kurita@aistgojp (Support Vector Machine, SVM) 1 (Support Vector Machine, SVM) ( ) 2

More information

waseda2010a-jukaiki1-main.dvi

waseda2010a-jukaiki1-main.dvi November, 2 Contents 6 2 8 3 3 3 32 32 33 5 34 34 6 35 35 7 4 R 2 7 4 4 9 42 42 2 43 44 2 5 : 2 5 5 23 52 52 23 53 53 23 54 24 6 24 6 6 26 62 62 26 63 t 27 7 27 7 7 28 72 72 28 73 36) 29 8 29 8 29 82 3

More information

20 4 20 i 1 1 1.1............................ 1 1.2............................ 4 2 11 2.1................... 11 2.2......................... 11 2.3....................... 19 3 25 3.1.............................

More information

25 11M15133 0.40 0.44 n O(n 2 ) O(n) 0.33 0.52 O(n) 0.36 0.52 O(n) 2 0.48 0.52

25 11M15133 0.40 0.44 n O(n 2 ) O(n) 0.33 0.52 O(n) 0.36 0.52 O(n) 2 0.48 0.52 26 1 11M15133 25 11M15133 0.40 0.44 n O(n 2 ) O(n) 0.33 0.52 O(n) 0.36 0.52 O(n) 2 0.48 0.52 1 2 2 4 2.1.............................. 4 2.2.................................. 5 2.2.1...........................

More information

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi) 0. A A = 4 IC () det A () A () x + y + z = x y z X Y Z = A x y z ( 5) ( s5590) 0. a + b + c b c () a a + b + c c a b a + b + c 0 a b c () a 0 c b b c 0 a c b a 0 0. A A = 7 5 4 5 0 ( 5) ( s5590) () A ()

More information

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F F 1 F 2 F, (3) F λ F λ F λ F. 3., A λ λ A λ. B λ λ

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,.

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,. 24(2012) (1 C106) 4 11 (2 C206) 4 12 http://www.math.is.tohoku.ac.jp/~obata,.,,,.. 1. 2. 3. 4. 5. 6. 7.,,. 1., 2007 (). 2. P. G. Hoel, 1995. 3... 1... 2.,,. ii 3.,. 4. F. (),.. 5... 6.. 7.,,. 8.,. 1. (75%)

More information

n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

(a) (b) (c) Canny (d) 1 ( x α, y α ) 3 (x α, y α ) (a) A 2 + B 2 + C 2 + D 2 + E 2 + F 2 = 1 (3) u ξ α u (A, B, C, D, E, F ) (4) ξ α (x 2 α, 2x α y α,

(a) (b) (c) Canny (d) 1 ( x α, y α ) 3 (x α, y α ) (a) A 2 + B 2 + C 2 + D 2 + E 2 + F 2 = 1 (3) u ξ α u (A, B, C, D, E, F ) (4) ξ α (x 2 α, 2x α y α, [II] Optimization Computation for 3-D Understanding of Images [II]: Ellipse Fitting 1. (1) 2. (2) (edge detection) (edge) (zero-crossing) Canny (Canny operator) (3) 1(a) [I] [II] [III] [IV ] E-mail sugaya@iim.ics.tut.ac.jp

More information

21 2 26 i 1 1 1.1............................ 1 1.2............................ 3 2 9 2.1................... 9 2.2.......... 9 2.3................... 11 2.4....................... 12 3 15 3.1..........

More information

20 9 19 1 3 11 1 3 111 3 112 1 4 12 6 121 6 122 7 13 7 131 8 132 10 133 10 134 12 14 13 141 13 142 13 143 15 144 16 145 17 15 19 151 1 19 152 20 2 21 21 21 211 21 212 1 23 213 1 23 214 25 215 31 22 33

More information

it-ken_open.key

it-ken_open.key 深層学習技術の進展 ImageNet Classification 画像認識 音声認識 自然言語処理 機械翻訳 深層学習技術は これらの分野において 特に圧倒的な強みを見せている Figure (Left) Eight ILSVRC-2010 test Deep images and the cited4: from: ``ImageNet Classification with Networks et

More information

Microsoft Word - 信号処理3.doc

Microsoft Word - 信号処理3.doc Junji OHTSUBO 2012 FFT FFT SN sin cos x v ψ(x,t) = f (x vt) (1.1) t=0 (1.1) ψ(x,t) = A 0 cos{k(x vt) + φ} = A 0 cos(kx ωt + φ) (1.2) A 0 v=ω/k φ ω k 1.3 (1.2) (1.2) (1.2) (1.1) 1.1 c c = a + ib, a = Re[c],

More information

IPSJ SIG Technical Report 1, Instrument Separation in Reverberant Environments Using Crystal Microphone Arrays Nobutaka ITO, 1, 2 Yu KITANO, 1

IPSJ SIG Technical Report 1, Instrument Separation in Reverberant Environments Using Crystal Microphone Arrays Nobutaka ITO, 1, 2 Yu KITANO, 1 1, 2 1 1 1 Instrument Separation in Reverberant Environments Using Crystal Microphone Arrays Nobutaka ITO, 1, 2 Yu KITANO, 1 Nobutaka ONO 1 and Shigeki SAGAYAMA 1 This paper deals with instrument separation

More information

X G P G (X) G BG [X, BG] S 2 2 2 S 2 2 S 2 = { (x 1, x 2, x 3 ) R 3 x 2 1 + x 2 2 + x 2 3 = 1 } R 3 S 2 S 2 v x S 2 x x v(x) T x S 2 T x S 2 S 2 x T x S 2 = { ξ R 3 x ξ } R 3 T x S 2 S 2 x x T x S 2

More information

ばらつき抑制のための確率最適制御

ばらつき抑制のための確率最適制御 ( ) http://wwwhayanuemnagoya-uacjp/ fujimoto/ 2011 3 9 11 ( ) 2011/03/09-11 1 / 46 Outline 1 2 3 4 5 ( ) 2011/03/09-11 2 / 46 Outline 1 2 3 4 5 ( ) 2011/03/09-11 3 / 46 (1/2) r + Controller - u Plant y

More information

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) =

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) = 1 1 1.1 I R 1.1.1 c : I R 2 (i) c C (ii) t I c (t) (0, 0) c (t) c(i) c c(t) 1.1.2 (1) (2) (3) (1) r > 0 c : R R 2 : t (r cos t, r sin t) (2) C f : I R c : I R 2 : t (t, f(t)) (3) y = x c : R R 2 : t (t,

More information

ohgane

ohgane Signal Detection Based on Belief Propagation in a Massive MIMO System Takeo Ohgane Hokkaido University, Japan 28 October 2013 Background (1) 2 Massive MIMO An order of 100 antenna elements channel capacity

More information

ohpmain.dvi

ohpmain.dvi fujisawa@ism.ac.jp 1 Contents 1. 2. 3. 4. γ- 2 1. 3 10 5.6, 5.7, 5.4, 5.5, 5.8, 5.5, 5.3, 5.6, 5.4, 5.2. 5.5 5.6 +5.7 +5.4 +5.5 +5.8 +5.5 +5.3 +5.6 +5.4 +5.2 =5.5. 10 outlier 5 5.6, 5.7, 5.4, 5.5, 5.8,

More information

9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x

9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x 2009 9 6 16 7 1 7.1 1 1 1 9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x(cos y y sin y) y dy 1 sin

More information

untitled

untitled 2 : n =1, 2,, 10000 0.5125 0.51 0.5075 0.505 0.5025 0.5 0.4975 0.495 0 2000 4000 6000 8000 10000 2 weak law of large numbers 1. X 1,X 2,,X n 2. µ = E(X i ),i=1, 2,,n 3. σi 2 = V (X i ) σ 2,i=1, 2,,n ɛ>0

More information

1 n A a 11 a 1n A =.. a m1 a mn Ax = λx (1) x n λ (eigenvalue problem) x = 0 ( x 0 ) λ A ( ) λ Ax = λx x Ax = λx y T A = λy T x Ax = λx cx ( 1) 1.1 Th

1 n A a 11 a 1n A =.. a m1 a mn Ax = λx (1) x n λ (eigenvalue problem) x = 0 ( x 0 ) λ A ( ) λ Ax = λx x Ax = λx y T A = λy T x Ax = λx cx ( 1) 1.1 Th 1 n A a 11 a 1n A = a m1 a mn Ax = λx (1) x n λ (eigenvalue problem) x = ( x ) λ A ( ) λ Ax = λx x Ax = λx y T A = λy T x Ax = λx cx ( 1) 11 Th9-1 Ax = λx λe n A = λ a 11 a 12 a 1n a 21 λ a 22 a n1 a n2

More information

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10% 1 2006.4.17. A 3-312 tel: 092-726-4774, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office hours: B A I ɛ-δ ɛ-δ 1. 2. A 1. 1. 2. 3. 4. 5. 2. ɛ-δ 1. ɛ-n

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

n ( (

n ( ( 1 2 27 6 1 1 m-mat@mathscihiroshima-uacjp 2 http://wwwmathscihiroshima-uacjp/~m-mat/teach/teachhtml 2 1 3 11 3 111 3 112 4 113 n 4 114 5 115 5 12 7 121 7 122 9 123 11 124 11 125 12 126 2 2 13 127 15 128

More information

A Study of Adaptive Array Implimentation for mobile comunication in cellular system GD133

A Study of Adaptive Array Implimentation for mobile comunication in cellular system GD133 A Study of Adaptive Array Implimentation for mobile comunication in cellular system 15 1 31 01GD133 LSI DSP CMA 10km/s i 1 1 2 LS-CMA 5 2.1 CMA... 5 2.1.1... 5 2.1.2... 7 2.1.3... 10 2.2 LS-CMA... 13 2.2.1...

More information

& 3 3 ' ' (., (Pixel), (Light Intensity) (Random Variable). (Joint Probability). V., V = {,,, V }. i x i x = (x, x,, x V ) T. x i i (State Variable),

& 3 3 ' ' (., (Pixel), (Light Intensity) (Random Variable). (Joint Probability). V., V = {,,, V }. i x i x = (x, x,, x V ) T. x i i (State Variable), .... Deeping and Expansion of Large-Scale Random Fields and Probabilistic Image Processing Kazuyuki Tanaka The mathematical frameworks of probabilistic image processing are formulated by means of Markov

More information

IA 2013 : :10722 : 2 : :2 :761 :1 (23-27) : : ( / ) (1 /, ) / e.g. (Taylar ) e x = 1 + x + x xn n! +... sin x = x x3 6 + x5 x2n+1 + (

IA 2013 : :10722 : 2 : :2 :761 :1 (23-27) : : ( / ) (1 /, ) / e.g. (Taylar ) e x = 1 + x + x xn n! +... sin x = x x3 6 + x5 x2n+1 + ( IA 2013 : :10722 : 2 : :2 :761 :1 23-27) : : 1 1.1 / ) 1 /, ) / e.g. Taylar ) e x = 1 + x + x2 2 +... + xn n! +... sin x = x x3 6 + x5 x2n+1 + 1)n 5! 2n + 1)! 2 2.1 = 1 e.g. 0 = 0.00..., π = 3.14..., 1

More information

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2 II No.1 [n/] [1]H n x) H n x) = 1) r n! r!n r)! x)n r r= []H n x) n,, H n x) = 1) n H n x) [3] H n x) = 1) n dn x e dx n e x [4] H n+1 x) = xh n x) nh n 1 x) ) d dx x H n x) = H n+1 x) d dx H nx) = nh

More information

IA hara@math.kyushu-u.ac.jp Last updated: January,......................................................................................................................................................................................

More information

untitled

untitled 20010916 22;1017;23;20020108;15;20; 1 N = {1, 2, } Z + = {0, 1, 2, } Z = {0, ±1, ±2, } Q = { p p Z, q N} R = { lim a q n n a n Q, n N; sup a n < } R + = {x R x 0} n = {a + b 1 a, b R} u, v 1 R 2 2 R 3

More information

20 6 4 1 4 1.1 1.................................... 4 1.1.1.................................... 4 1.1.2 1................................ 5 1.2................................... 7 1.2.1....................................

More information

( )/2 hara/lectures/lectures-j.html 2, {H} {T } S = {H, T } {(H, H), (H, T )} {(H, T ), (T, T )} {(H, H), (T, T )} {1

( )/2   hara/lectures/lectures-j.html 2, {H} {T } S = {H, T } {(H, H), (H, T )} {(H, T ), (T, T )} {(H, H), (T, T )} {1 ( )/2 http://www2.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html 1 2011 ( )/2 2 2011 4 1 2 1.1 1 2 1 2 3 4 5 1.1.1 sample space S S = {H, T } H T T H S = {(H, H), (H, T ), (T, H), (T, T )} (T, H) S

More information

1 -- 9 -- 3 3--1 LMS NLMS 2009 2 LMS Least Mean Square LMS Normalized LMS NLMS 3--1--1 3 1 AD 3 1 h(n) y(n) d(n) FIR w(n) n = 0, 1,, N 1 N N = 2 3--1-

1 -- 9 -- 3 3--1 LMS NLMS 2009 2 LMS Least Mean Square LMS Normalized LMS NLMS 3--1--1 3 1 AD 3 1 h(n) y(n) d(n) FIR w(n) n = 0, 1,, N 1 N N = 2 3--1- 1 -- 9 3 2009 2 LMS NLMS RLS FIR IIR 3-1 3-2 3-3 3-4 c 2011 1/(13) 1 -- 9 -- 3 3--1 LMS NLMS 2009 2 LMS Least Mean Square LMS Normalized LMS NLMS 3--1--1 3 1 AD 3 1 h(n) y(n) d(n) FIR w(n) n = 0, 1,, N

More information

1 I 1.1 ± e = = - = C C MKSA [m], [Kg] [s] [A] 1C 1A 1 MKSA 1C 1C +q q +q q 1

1 I 1.1 ± e = = - = C C MKSA [m], [Kg] [s] [A] 1C 1A 1 MKSA 1C 1C +q q +q q 1 1 I 1.1 ± e = = - =1.602 10 19 C C MKA [m], [Kg] [s] [A] 1C 1A 1 MKA 1C 1C +q q +q q 1 1.1 r 1,2 q 1, q 2 r 12 2 q 1, q 2 2 F 12 = k q 1q 2 r 12 2 (1.1) k 2 k 2 ( r 1 r 2 ) ( r 2 r 1 ) q 1 q 2 (q 1 q 2

More information

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

I A A441 : April 15, 2013 Version : 1.1 I   Kawahira, Tomoki TA (Shigehiro, Yoshida ) I013 00-1 : April 15, 013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida) http://www.math.nagoya-u.ac.jp/~kawahira/courses/13s-tenbou.html pdf * 4 15 4 5 13 e πi = 1 5 0 5 7 3 4 6 3 6 10 6 17

More information

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ = 1 1.1 ( ). z = + bi,, b R 0, b 0 2 + b 2 0 z = + bi = ( ) 2 + b 2 2 + b + b 2 2 + b i 2 r = 2 + b 2 θ cos θ = 2 + b 2, sin θ = b 2 + b 2 2π z = r(cos θ + i sin θ) 1.2 (, ). 1. < 2. > 3. ±,, 1.3 ( ). A

More information

Untitled

Untitled II 14 14-7-8 8/4 II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ 6/ ] Navier Stokes 3 [ ] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I 1 balance law t (ρv i )+ j

More information

2016 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 1 16 2 1 () X O 3 (O1) X O, O (O2) O O (O3) O O O X (X, O) O X X (O1), (O2), (O3) (O2) (O3) n (O2) U 1,..., U n O U k O k=1 (O3) U λ O( λ Λ) λ Λ U λ O 0 X 0 (O2) n =

More information

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) (

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) ( 6 20 ( ) sin, cos, tan sin, cos, tan, arcsin, arccos, arctan. π 2 sin π 2, 0 cos π, π 2 < tan < π 2 () ( 2 2 lim 2 ( 2 ) ) 2 = 3 sin (2) lim 5 0 = 2 2 0 0 2 2 3 3 4 5 5 2 5 6 3 5 7 4 5 8 4 9 3 4 a 3 b

More information

1. A0 A B A0 A : A1,...,A5 B : B1,...,B

1. A0 A B A0 A : A1,...,A5 B : B1,...,B 1. A0 A B A0 A : A1,...,A5 B : B1,...,B12 2. 3. 4. 5. A0 A, B Z Z m, n Z m n m, n A m, n B m=n (1) A, B (2) A B = A B = Z/ π : Z Z/ (3) A B Z/ (4) Z/ A, B (5) f : Z Z f(n) = n f = g π g : Z/ Z A, B (6)

More information

mugensho.dvi

mugensho.dvi 1 1 f (t) lim t a f (t) = 0 f (t) t a 1.1 (1) lim(t 1) 2 = 0 t 1 (t 1) 2 t 1 (2) lim(t 1) 3 = 0 t 1 (t 1) 3 t 1 2 f (t), g(t) t a lim t a f (t) g(t) g(t) f (t) = o(g(t)) (t a) = 0 f (t) (t 1) 3 1.2 lim

More information

第1章 微分方程式と近似解法

第1章 微分方程式と近似解法 April 12, 2018 1 / 52 1.1 ( ) 2 / 52 1.2 1.1 1.1: 3 / 52 1.3 Poisson Poisson Poisson 1 d {2, 3} 4 / 52 1 1.3.1 1 u,b b(t,x) u(t,x) x=0 1.1: 1 a x=l 1.1 1 (0, t T ) (0, l) 1 a b : (0, t T ) (0, l) R, u

More information

ver.1 / c /(13)

ver.1 / c /(13) 1 -- 11 1 c 2010 1/(13) 1 -- 11 -- 1 1--1 1--1--1 2009 3 t R x R n 1 ẋ = f(t, x) f = ( f 1,, f n ) f x(t) = ϕ(x 0, t) x(0) = x 0 n f f t 1--1--2 2009 3 q = (q 1,..., q m ), p = (p 1,..., p m ) x = (q,

More information

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a =

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a = [ ] 9 IC. dx = 3x 4y dt dy dt = x y u xt = expλt u yt λ u u t = u u u + u = xt yt 6 3. u = x, y, z = x + y + z u u 9 s9 grad u ux, y, z = c c : grad u = u x i + u y j + u k i, j, k z x, y, z grad u v =

More information

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4 1. k λ ν ω T v p v g k = π λ ω = πν = π T v p = λν = ω k v g = dω dk 1) ) 3) 4). p = hk = h λ 5) E = hν = hω 6) h = h π 7) h =6.6618 1 34 J sec) hc=197.3 MeV fm = 197.3 kev pm= 197.3 ev nm = 1.97 1 3 ev

More information

(ii) (iii) z a = z a =2 z a =6 sin z z a dz. cosh z z a dz. e z dz. (, a b > 6.) (z a)(z b) 52.. (a) dz, ( a = /6.), (b) z =6 az (c) z a =2 53. f n (z

(ii) (iii) z a = z a =2 z a =6 sin z z a dz. cosh z z a dz. e z dz. (, a b > 6.) (z a)(z b) 52.. (a) dz, ( a = /6.), (b) z =6 az (c) z a =2 53. f n (z B 4 24 7 9 ( ) :,..,,.,. 4 4. f(z): D C: D a C, 2πi C f(z) dz = f(a). z a a C, ( ). (ii), a D, a U a,r D f. f(z) = A n (z a) n, z U a,r, n= A n := 2πi C f(ζ) dζ, n =,,..., (ζ a) n+, C a D. (iii) U a,r

More information

ii 3.,. 4. F. (), ,,. 8.,. 1. (75% ) (25% ) =9 7, =9 8 (. ). 1.,, (). 3.,. 1. ( ).,.,.,.,.,. ( ) (1 2 )., ( ), 0. 2., 1., 0,.

ii 3.,. 4. F. (), ,,. 8.,. 1. (75% ) (25% ) =9 7, =9 8 (. ). 1.,, (). 3.,. 1. ( ).,.,.,.,.,. ( ) (1 2 )., ( ), 0. 2., 1., 0,. 23(2011) (1 C104) 5 11 (2 C206) 5 12 http://www.math.is.tohoku.ac.jp/~obata,.,,,.. 1. 2. 3. 4. 5. 6. 7.,,. 1., 2007 ( ). 2. P. G. Hoel, 1995. 3... 1... 2.,,. ii 3.,. 4. F. (),.. 5.. 6.. 7.,,. 8.,. 1. (75%

More information

ii 3.,. 4. F. ( ), ,,. 8.,. 1. (75% ) (25% ) =7 24, =7 25, =7 26 (. ). 1.,, ( ). 3.,...,.,.,.,.,. ( ) (1 2 )., ( ), 0., 1., 0,.

ii 3.,. 4. F. ( ), ,,. 8.,. 1. (75% ) (25% ) =7 24, =7 25, =7 26 (. ). 1.,, ( ). 3.,...,.,.,.,.,. ( ) (1 2 )., ( ), 0., 1., 0,. (1 C205) 4 10 (2 C206) 4 11 (2 B202) 4 12 25(2013) http://www.math.is.tohoku.ac.jp/~obata,.,,,..,,. 1. 2. 3. 4. 5. 6. 7. 8. 1., 2007 ( ).,. 2. P. G., 1995. 3. J. C., 1988. 1... 2.,,. ii 3.,. 4. F. ( ),..

More information

i I II I II II IC IIC I II ii 5 8 5 3 7 8 iii I 3........................... 5......................... 7........................... 4........................ 8.3......................... 33.4...................

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

2 (March 13, 2010) N Λ a = i,j=1 x i ( d (a) i,j x j ), Λ h = N i,j=1 x i ( d (h) i,j x j ) B a B h B a = N i,j=1 ν i d (a) i,j, B h = x j N i,j=1 ν i

2 (March 13, 2010) N Λ a = i,j=1 x i ( d (a) i,j x j ), Λ h = N i,j=1 x i ( d (h) i,j x j ) B a B h B a = N i,j=1 ν i d (a) i,j, B h = x j N i,j=1 ν i 1. A. M. Turing [18] 60 Turing A. Gierer H. Meinhardt [1] : (GM) ) a t = D a a xx µa + ρ (c a2 h + ρ 0 (0 < x < l, t > 0) h t = D h h xx νh + c ρ a 2 (0 < x < l, t > 0) a x = h x = 0 (x = 0, l) a = a(x,

More information

2 1,2, , 2 ( ) (1) (2) (3) (4) Cameron and Trivedi(1998) , (1987) (1982) Agresti(2003)

2 1,2, , 2 ( ) (1) (2) (3) (4) Cameron and Trivedi(1998) , (1987) (1982) Agresti(2003) 3 1 1 1 2 1 2 1,2,3 1 0 50 3000, 2 ( ) 1 3 1 0 4 3 (1) (2) (3) (4) 1 1 1 2 3 Cameron and Trivedi(1998) 4 1974, (1987) (1982) Agresti(2003) 3 (1)-(4) AAA, AA+,A (1) (2) (3) (4) (5) (1)-(5) 1 2 5 3 5 (DI)

More information

CDMA (high-compaciton multicarrier codedivision multiple access: HC/MC-CDMA),., HC/MC-CDMA,., 32.,, 64. HC/MC-CDMA, HC-MCM, i

CDMA (high-compaciton multicarrier codedivision multiple access: HC/MC-CDMA),., HC/MC-CDMA,., 32.,, 64. HC/MC-CDMA, HC-MCM, i 24 Investigation on HC/MC-CDMA Signals with Non-Uniform Frequency Intervals 1130401 2013 3 1 CDMA (high-compaciton multicarrier codedivision multiple access: HC/MC-CDMA),., HC/MC-CDMA,., 32.,, 64. HC/MC-CDMA,

More information

untitled

untitled 18 1 2,000,000 2,000,000 2007 2 2 2008 3 31 (1) 6 JCOSSAR 2007pp.57-642007.6. LCC (1) (2) 2 10mm 1020 14 12 10 8 6 4 40,50,60 2 0 1998 27.5 1995 1960 40 1) 2) 3) LCC LCC LCC 1 1) Vol.42No.5pp.29-322004.5.

More information

Z: Q: R: C: sin 6 5 ζ a, b

Z: Q: R: C: sin 6 5 ζ a, b Z: Q: R: C: 3 3 7 4 sin 6 5 ζ 9 6 6............................... 6............................... 6.3......................... 4 7 6 8 8 9 3 33 a, b a bc c b a a b 5 3 5 3 5 5 3 a a a a p > p p p, 3,

More information

i

i i 3 4 4 7 5 6 3 ( ).. () 3 () (3) (4) /. 3. 4/3 7. /e 8. a > a, a = /, > a >. () a >, a =, > a > () a > b, a = b, a < b. c c n a n + b n + c n 3c n..... () /3 () + (3) / (4) /4 (5) m > n, a b >, m > n,

More information

December 28, 2018

December 28, 2018 e-mail : kigami@i.kyoto-u.ac.jp December 28, 28 Contents 2............................. 3.2......................... 7.3..................... 9.4................ 4.5............. 2.6.... 22 2 36 2..........................

More information

i 18 2H 2 + O 2 2H 2 + ( ) 3K

i 18 2H 2 + O 2 2H 2 + ( ) 3K i 18 2H 2 + O 2 2H 2 + ( ) 3K ii 1 1 1.1.................................. 1 1.2........................................ 3 1.3......................................... 3 1.4....................................

More information

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 24 I 1.1.. ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 1 (t), x 2 (t),, x n (t)) ( ) ( ), γ : (i) x 1 (t),

More information

On the Limited Sample Effect of the Optimum Classifier by Bayesian Approach he Case of Independent Sample Size for Each Class Xuexian HA, etsushi WAKA

On the Limited Sample Effect of the Optimum Classifier by Bayesian Approach he Case of Independent Sample Size for Each Class Xuexian HA, etsushi WAKA Journal Article / 学術雑誌論文 ベイズアプローチによる最適識別系の有限 標本効果に関する考察 : 学習標本の大きさ がクラス間で異なる場合 (< 論文小特集 > パ ターン認識のための学習 : 基礎と応用 On the limited sample effect of bayesian approach : the case of each class 韓, 雪仙 ; 若林, 哲史

More information

201711grade1ouyou.pdf

201711grade1ouyou.pdf 2017 11 26 1 2 52 3 12 13 22 23 32 33 42 3 5 3 4 90 5 6 A 1 2 Web Web 3 4 1 2... 5 6 7 7 44 8 9 1 2 3 1 p p >2 2 A 1 2 0.6 0.4 0.52... (a) 0.6 0.4...... B 1 2 0.8-0.2 0.52..... (b) 0.6 0.52.... 1 A B 2

More information

8 i, III,,,, III,, :!,,,, :!,,,,, 4:!,,,,,,!,,,, OK! 5:!,,,,,,,,,, OK 6:!, 0, 3:!,,,,! 7:!,,,,,, ii,,,,,, ( ),, :, ( ), ( ), :... : 3 ( )...,, () : ( )..., :,,, ( ), (,,, ),, (ϵ δ ), ( ), (ˆ ˆ;),,,,,,!,,,,.,,

More information

Trapezoidal Rule θ = 1/ x n x n 1 t = 1 [f(t n 1, x n 1 ) + f(t n, x n )] (6) 1. dx dt = f(t, x), x(t 0) = x 0 (7) t [t 0, t 1 ] f t [t 0, t 1 ], x x

Trapezoidal Rule θ = 1/ x n x n 1 t = 1 [f(t n 1, x n 1 ) + f(t n, x n )] (6) 1. dx dt = f(t, x), x(t 0) = x 0 (7) t [t 0, t 1 ] f t [t 0, t 1 ], x x University of Hyogo 8 8 1 d x(t) =f(t, x(t)), dt (1) x(t 0 ) =x 0 () t n = t 0 + n t x x n n x n x 0 x i i = 0,..., n 1 x n x(t) 1 1.1 1 1 1 0 θ 1 θ x n x n 1 t = θf(t n 1, x n 1 ) + (1 θ)f(t n, x n )

More information

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence Hanbury-Brown Twiss (ver. 2.) 25 4 4 1 2 2 2 2.1 van Cittert - Zernike..................................... 2 2.2 mutual coherence................................. 4 3 Hanbury-Brown Twiss ( ) 5 3.1............................................

More information

φ 4 Minimal subtraction scheme 2-loop ε 2008 (University of Tokyo) (Atsuo Kuniba) version 21/Apr/ Formulas Γ( n + ɛ) = ( 1)n (1 n! ɛ + ψ(n + 1)

φ 4 Minimal subtraction scheme 2-loop ε 2008 (University of Tokyo) (Atsuo Kuniba) version 21/Apr/ Formulas Γ( n + ɛ) = ( 1)n (1 n! ɛ + ψ(n + 1) φ 4 Minimal subtraction scheme 2-loop ε 28 University of Tokyo Atsuo Kuniba version 2/Apr/28 Formulas Γ n + ɛ = n n! ɛ + ψn + + Oɛ n =,, 2, ψn + = + 2 + + γ, 2 n ψ = γ =.5772... Euler const, log + ax x

More information

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s ... x, y z = x + iy x z y z x = Rez, y = Imz z = x + iy x iy z z () z + z = (z + z )() z z = (z z )(3) z z = ( z z )(4)z z = z z = x + y z = x + iy ()Rez = (z + z), Imz = (z z) i () z z z + z z + z.. z

More information

http://www.ike-dyn.ritsumei.ac.jp/ hyoo/wave.html 1 1, 5 3 1.1 1..................................... 3 1.2 5.1................................... 4 1.3.......................... 5 1.4 5.2, 5.3....................

More information

/02/18

/02/18 3 09/0/8 i III,,,, III,?,,,,,,,,,,,,,,,,,,,,?,?,,,,,,,,,,,,,,!!!,? 3,,,, ii,,,!,,,, OK! :!,,,, :!,,,,,, 3:!,, 4:!,,,, 5:!,,! 7:!,,,,, 8:!,! 9:!,,,,,,,,, ( ),, :, ( ), ( ), 6:!,,, :... : 3 ( )... iii,,

More information

L. S. Abstract. Date: last revised on 9 Feb translated to Japanese by Kazumoto Iguchi. Original papers: Received May 13, L. Onsager and S.

L. S. Abstract. Date: last revised on 9 Feb translated to Japanese by Kazumoto Iguchi. Original papers: Received May 13, L. Onsager and S. L. S. Abstract. Date: last revised on 9 Feb 01. translated to Japanese by Kazumoto Iguchi. Original papers: Received May 13, 1953. L. Onsager and S. Machlup, Fluctuations and Irreversibel Processes, Physical

More information

RIMS98R2.dvi

RIMS98R2.dvi RIMS Kokyuroku, vol.084, (999), 45 59. Euler Fourier Euler Fourier S = ( ) n f(n) = e in f(n) (.) I = 0 e ix f(x) dx (.2) Euler Fourier Fourier Euler Euler Fourier Euler Euler Fourier Fourier [5], [6]

More information

(n ) 1. Ungerboe TCM (trellis oded modulation) 3 [4] (i ) (ii) (iii).1 TV [,3]. MPEG PCM 1/10. 3 (B.B.) 1/ B.B. (i ) AC AMI (ii) ( ) (n ) (iii) NRZ (i

(n ) 1. Ungerboe TCM (trellis oded modulation) 3 [4] (i ) (ii) (iii).1 TV [,3]. MPEG PCM 1/10. 3 (B.B.) 1/ B.B. (i ) AC AMI (ii) ( ) (n ) (iii) NRZ (i Fundamentals of Modulation and Demodulation Tehniques ----- Observations in the time and frequeny domains ----- Yoihi Saito Waayama University Abstra: This tutorial paper presents fundamental aspes of

More information

応力とひずみ.ppt

応力とひずみ.ppt in yukawa@numse.nagoya-u.ac.jp 2 3 4 5 x 2 6 Continuum) 7 8 9 F F 10 F L L F L 1 L F L F L F 11 F L F F L F L L L 1 L 2 12 F L F! A A! S! = F S 13 F L L F F n = F " cos# F t = F " sin# S $ = S cos# S S

More information

newmain.dvi

newmain.dvi 数論 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/008142 このサンプルページの内容は, 第 2 版 1 刷発行当時のものです. Daniel DUVERNEY: THÉORIE DES NOMBRES c Dunod, Paris, 1998, This book is published

More information

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4 35-8585 7 8 1 I I 1 1.1 6kg 1m P σ σ P 1 l l λ λ l 1.m 1 6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m

More information

A B P (A B) = P (A)P (B) (3) A B A B P (B A) A B A B P (A B) = P (B A)P (A) (4) P (B A) = P (A B) P (A) (5) P (A B) P (B A) P (A B) A B P

A B P (A B) = P (A)P (B) (3) A B A B P (B A) A B A B P (A B) = P (B A)P (A) (4) P (B A) = P (A B) P (A) (5) P (A B) P (B A) P (A B) A B P 1 1.1 (population) (sample) (event) (trial) Ω () 1 1 Ω 1.2 P 1. A A P (A) 0 1 0 P (A) 1 (1) 2. P 1 P 0 1 6 1 1 6 0 3. A B P (A B) = P (A) + P (B) (2) A B A B A 1 B 2 A B 1 2 1 2 1 1 2 2 3 1.3 A B P (A

More information

量子力学 問題

量子力学 問題 3 : 203 : 0. H = 0 0 2 6 0 () = 6, 2 = 2, 3 = 3 3 H 6 2 3 ϵ,2,3 (2) ψ = (, 2, 3 ) ψ Hψ H (3) P i = i i P P 2 = P 2 P 3 = P 3 P = O, P 2 i = P i (4) P + P 2 + P 3 = E 3 (5) i ϵ ip i H 0 0 (6) R = 0 0 [H,

More information

main.dvi

main.dvi 4 DFT DFT Fast Fourier Transform: FFT 4.1 DFT IDFT X(k) = 1 n=0 x(n)e j2πkn (4.1) 1 x(n) = 1 X(k)e j2πkn (4.2) k=0 x(n) X(k) DFT 2 ( 1) 2 4 2 2(2 1) 2 O( 2 ) 4.2 FFT 4.2.1 radix2 FFT 1 (4.1) 86 4. X(0)

More information

seminar0220a.dvi

seminar0220a.dvi 1 Hi-Stat 2 16 2 20 16:30-18:00 2 2 217 1 COE 4 COE RA E-MAIL: ged0104@srv.cc.hit-u.ac.jp 2004 2 25 S-PLUS S-PLUS S-PLUS S-code 2 [8] [8] [8] 1 2 ARFIMA(p, d, q) FI(d) φ(l)(1 L) d x t = θ(l)ε t ({ε t }

More information

2011 8 26 3 I 5 1 7 1.1 Markov................................ 7 2 Gau 13 2.1.................................. 13 2.2............................... 18 2.3............................ 23 3 Gau (Le vy

More information

A

A A 2563 15 4 21 1 3 1.1................................................ 3 1.2............................................. 3 2 3 2.1......................................... 3 2.2............................................

More information

l µ l µ l 0 (1, x r, y r, z r ) 1 r (1, x r, y r, z r ) l µ g µν η µν 2ml µ l ν 1 2m r 2mx r 2 2my r 2 2mz r 2 2mx r 2 1 2mx2 2mxy 2mxz 2my r 2mz 2 r

l µ l µ l 0 (1, x r, y r, z r ) 1 r (1, x r, y r, z r ) l µ g µν η µν 2ml µ l ν 1 2m r 2mx r 2 2my r 2 2mz r 2 2mx r 2 1 2mx2 2mxy 2mxz 2my r 2mz 2 r 2 1 (7a)(7b) λ i( w w ) + [ w + w ] 1 + w w l 2 0 Re(γ) α (7a)(7b) 2 γ 0, ( w) 2 1, w 1 γ (1) l µ, λ j γ l 2 0 Re(γ) α, λ w + w i( w w ) 1 + w w γ γ 1 w 1 r [x2 + y 2 + z 2 ] 1/2 ( w) 2 x2 + y 2 + z 2

More information

st.dvi

st.dvi 9 3 5................................... 5............................. 5....................................... 5.................................. 7.........................................................................

More information

6 2 2 x y x y t P P = P t P = I P P P ( ) ( ) ,, ( ) ( ) cos θ sin θ cos θ sin θ, sin θ cos θ sin θ cos θ y x θ x θ P

6 2 2 x y x y t P P = P t P = I P P P ( ) ( ) ,, ( ) ( ) cos θ sin θ cos θ sin θ, sin θ cos θ sin θ cos θ y x θ x θ P 6 x x 6.1 t P P = P t P = I P P P 1 0 1 0,, 0 1 0 1 cos θ sin θ cos θ sin θ, sin θ cos θ sin θ cos θ x θ x θ P x P x, P ) = t P x)p ) = t x t P P ) = t x = x, ) 6.1) x = Figure 6.1 Px = x, P=, θ = θ P

More information

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1)

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1) 1. 1.1...,. 1.1.1 V, V x, y, x y x + y x + y V,, V x α, αx αx V,, (i) (viii) : x, y, z V, α, β C, (i) x + y = y + x. (ii) (x + y) + z = x + (y + z). 1 (iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y

More information

Z: Q: R: C:

Z: Q: R: C: 0 Z: Q: R: C: 3 4 4 4................................ 4 4.................................. 7 5 3 5...................... 3 5......................... 40 5.3 snz) z)........................... 4 6 46 x

More information

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2 filename=mathformula58.tex ax + bx + c =, x = b ± b 4ac, (.) a x + x = b a, x x = c a, (.) ax + b x + c =, x = b ± b ac. a (.3). sin(a ± B) = sin A cos B ± cos A sin B, (.) cos(a ± B) = cos A cos B sin

More information

PDF

PDF 1 1 1 1-1 1 1-9 1-3 1-1 13-17 -3 6-4 6 3 3-1 35 3-37 3-3 38 4 4-1 39 4- Fe C TEM 41 4-3 C TEM 44 4-4 Fe TEM 46 4-5 5 4-6 5 5 51 6 5 1 1-1 1991 1,1 multiwall nanotube 1993 singlewall nanotube ( 1,) sp 7.4eV

More information

: , 2.0, 3.0, 2.0, (%) ( 2.

: , 2.0, 3.0, 2.0, (%) ( 2. 2017 1 2 1.1...................................... 2 1.2......................................... 4 1.3........................................... 10 1.4................................. 14 1.5..........................................

More information

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

II ( ) (7/31) II (  [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re II 29 7 29-7-27 ( ) (7/31) II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I Euler Navier

More information