I 1

Size: px
Start display at page:

Download "I 1"

Transcription

1

2 I 1

3 m = µm. cm = 1 4 km 3. 1 m = cm 4. 5 cm 3 = km = = = = π m + 1 cm = 1.1 m. 1 hr + 64 sec = 1 4 sec kg g = kg 4. 7 m/min + 4 km/hr =.8 m/sec m 3. m/s 3. m/s 4. kg/m 3 5. m 3 /kg 6. kg m/s 7. kg m /s 8. kg m /s 9. kg m /s 3

4 cm =.5 1 m. 8 m/6 s = 1.3 m/s kg/ 4 3 π(1 cm)3 = 33 kg/ 4 3 π(.1 m)3 = kg/m d [m]. e At/m K [m] 3. t [s] 4. m [kg] 5. At/m A [kg/s] 6. r [m] 7. A = Cr A [kg/s], r [m] C [kg/m s] [kg], [m/s ] [N]=[kg m/s ]. G [kg /m ] [kg m/s ] G [m 3 /kg s ] 3. [m ] [Pa]=[kg/m s ] 4. [kg m/s ] [m]=[kg m /s ] [kg] [m/s] = [kg m /s ] 5. [kg/m s ] [m 3 ] = [kg m /s ] 6. nrt n [mol] T [K] R [J/mol K] = [kg m /s mol K] 7. 1 L 1 m 3 1/1 = [m 3 ] [L] V 1 1 3

5 1.7 1 kg=1 3 g, 1 m=1 cm 1 kg m /s = 1 3 (1 ) g cm /s = 1 7 g cm /s [L], [M], [T ] 1. h [L] g [LT ] h a g b [L a+b T b ] = [LT 1 ] a = 1/, b = 1/ gh h a g b [L a+b T b ] = [T ] a = 1/, b = 1/ h/g. [MLT ] k [MT ] P [T ] m [M] P = k a m b a = 1/, b = 1/ P = m/k 4

6 .1 1,, 5 3, 4, 6, (1,). (,1) 3. (cos(3 ), sin(3 )) = ( 3/, 1/) 4. 4 ( 3, ) 5. (6 cos(6 ), 6 sin(6 )) = (3, 3 3) 6. (3, 3 3) = 3(1, ) + 3 3(, 1) 3e x + 3 3e y.3 1. a = = 35. b = ( 1) = a b = ( 1) = 4 4. a b = (3 ( 1) 5, ( 1), 1 3 3) = ( 13, 16, 7).4 d = e x + e y d = 4 y 3 A d B 1 e y e x x 5

7 .5 1. A (, ) A B x y 45 B y = x 4 m B (, ) C B B x y 7 C (, 7). P A x B y P e y 3. C P 7 m, m (, 7) 4. C P (, 7) (, ) (, 7).6 x, y, v, A, ω (1) x =, y =, v = (3) A=1, ω=1 1-1 () A=1, ω=1-1 1 (4) A=1, ω= (x(t), y(t)) t 1. x = x +v t t = (x x )/v y(t) = y +t y = y +(x x ) /v. cos (ωt) + sin (ωt) = 1 x + y = A 3. x = A cos(ωt) = A(1 sin (ωt)) = A(1 (y/a) ) x = A y /A 4. x = A cos(ωt) = A(1 sin (ωt)) = A( cos (ωt) 1) sin (ωt) = (1 (x/a))/ cos (ωt) = (1 + (x/a))/ y = A sin(3ωt) = A sin(ωt)(3 cos (ωt) sin (ωt)) y = ±A(1 + x/a) (1 (x/a))/ 6

8 .7 1. x P = x P x O y P = y P y O. x x y y 1 e x = e x e y = e y 3. x P = x P cos θ y P sin θ y P = x P sin θ + y P cos θ 4. P O xy x P e x +y P e y O x y x P e x +y P e y x P e x + y P e y = x P e x + y P e y 5. e x = cos θe x + sin θe y e y = sin θe x + cos θe y 3 O x y (x P, ) x y θ θ θ θ θ θ.8 7

9 .9 [cm] 1. P (1,). Q (, ) 3. R (,) Q R 8

10 t [s] x [m] (x(1) x())/(1 ) = [m/s] 3. (x(.8) x())/(.8 ) =.4 [m/s] 4. (x(.6) x())/(.6 ) =.8 [m/s] 5. (x(.4) x())/(.4 ) = 1. [m/s] 6. (x(.) x())/(. ) = 1.6 [m/s] 7. t = t x( t) = t t 8. lim t ( t ) = x( t) x() t = t t t 9. t = m/s = t t = s v() = m/s t = 1 s x = m 3. t = v() = m/s t =.5 s t =.5 s x = 1 m t =.5 s v(.5) = m/s t =.5 s t = 1 s t =.5 s 1 m 4. t = s t =.5 s v() = m/s t =.5 s x =.5 m t =.5 s t =.5 s v(.5) = 1 m/s t =.5 s.5 + ( 1).5 =.75 m t =.5 s t =.75 s v(.5) = m/s t =.5 s =.75 m t =.75 s t = 1 s v(.75) = 1 m/s t = 1 s =.5 m x =.5 m 5. x =.5 6. t = x() = t x(t) 9

11 x(t) = x() + t=1 v(t) = + 1 t= (4t ) = m a v(t) = v, a(t) = b v(t) = v + gt, a(t) = g c v(t) = x γe γt + u, a(t) = x γ e γt d v(t) = γx e γt, a(t) = γ x e γt e v(t) = ωx sin(ωt), a(t) = ω x cos(ωt). x(t) a(t) t (d) e γt = (e) cos(ωt) = (d) a(t) = γ x(t) (e) a(t) = ω x(t) 3.4 x(t) y(t) t x y t x y 1. v = (1, 3), a = (, ). v = (1, t), a = (, 1) 3. v = ( 6 sin(3t), 6 cos(3t)), a = ( 18 cos(3t), 18 sin(3t)) 4. v = ( 6 sin(3t), 3 cos(3t)), a = ( 18 cos(3t), 9 sin(3t)) 5. v = ( 6 sin(3t), 6 cos(3t + 1)), a = ( 18 cos(3t), 18 sin(3t + 1)) u 1, k, t u 1 [LT 1 ] k [LT ] t [T ]. v = v = u 1 + k (t t ) t t = t 3. x y x x u 1 x /u 1 1

12 3 (1) 3 () 1 1 y y x x 3 (3) 3 (4) 1 1 y y x x 3 (5) 1 y x r e r 3. e r e x e y re r = r cos(ωt)e x + r sin(ωt)e y r e r = cos(ωt)e x + sin(ωt)e y 4. e ϕ = Ae x + Be y e r e ϕ = A cos(ωt) + B sin(ωt) = 11

13 e ϕ = 1 A + B = 1 e ϕ = sin(ωt)e x + cos(ωt)e y 5. e x e y de r = ω sin(ωt)e x + ω cos(ωt)e y = ωe ϕ 6. de ϕ = ω cos(ωt)e x ω sin(ωt)e y = ωe r x y L/v. (V t, ) 3. A: x y (vt, ) ((v + V )t, ) B: x y (, vt) (V t, vt) 4. T L/v A L + V T, L V T L B xy (V L/v, L) L (1 + V ) 1/ 5. ϵ = (V/v) L V m/s 7. δ v v δ = 15 m (3 14 m/s) (3 1 8 m/s) = m = 15 nm 1/4 1

14 /3. a =, b = 1, f(x) = x 3. N 1/3 =.333 a 1/8 =.15 b (3/15 =) 6/5 =.4 c (85/1 =) 57/ =.85 b a f(x)dx = lim f(x) x f(x) = x, a =, b = 1 [, 1] N N =, 5, 1 (b a)/n x C (1) 1 x + C () x 1 + C (3) log(x) + C (4) log(x + 3) + C (5) cos(x) + C (6) sin(x) + C (7) log cos(x) + C x (1) f(x) f(x) x f(x) x 1 C (1) 1 x + 3 () x (3) log(x) + (4) log(x + 3) log 4 + (5) cos(x) + cos(1) + (6) sin(x) sin(1) (7) log cos(x) + log cos(1) + 1. t x dx t t 3t dx = t 3t. t = 1 x = t = 1 x(1) = 13

15 3. 1 x(t) C x(t) = 3 t3 3 t + C t = 1 x(t = 1) = C = C = 5/6 t x(t) = 3 t3 3 t + 5 t = 4 [s] x(t = 4) = 39/ [m] x y(t) x(t) = x() + t v x (t) x(t) = x(t)e x + y(t)e y dx = v(t) (1) x y (1) x dx = v () x(t) v x(t) C x(t) = v t + C (3) x t = t x(t ) = x t = t x = v t + C (4) C x(t) C = x v t (5) x(t) = x + v (t t ) (6) 1. (x(t), y(t)) = (x + v (t t ), 1 ) g(t t ) + y (. (x(t), y(t)) = x, v ) γ (e γt e γt ) + y ( v 3. (x(t), y(t)) = ω (sin(ωt) sin(ωt )) + x, v ) ω (cos(ωt) cos(ωt )) + y 14

16 t = 1 x = [m] 3e x 3 [m/s] t = 1 x 1 [m/s ]. 3. r = x(t)e x d r = (4t 3)e x 4. x d x = 4t 3 t = 1 x(t = 1) =, dx (t = 1) = 3 d x = 4t 3 dx = t 3t + C C dx dx (t = 1) = 3 dx(t = 1) = 1 + C = 3 C = = t 3t t x x(t) = 3 t3 3 t t + D D x(t = 1) = x(t = 1) = 17 + D = D = 17/6 t 6 x(t) = 3 t3 3 t t dx/ x(t) t = 3 t = 3 7 m/s x = 4 3 [m] x(t) = 1 a t + v t + x. x(t) = 1 6 kt3 + v t + x 3. x(t) = β ( ω sin(ωt) + v + β ) t + x ω 4.8 a(t) = 1 4 t 1 t [s] a [m/s ] d x = 1 4 t 1 15

17 dx (t = ) = 4, x(t = ) = 5 x(t) = 1 48 t4 1 t 4t + 5 t =.5 x(.5) = 7.3 [m] x(t)e x + y(t)e y. d [x(t)e x + y(t)e y ] =.96e x +.7e y x(t) d x =.96, y(t) d y =.7 t = x(t = ) =, y(t = ) =, dx dy (t = ) =, (t = ) = 3. 4 x(t) =.48t, y(t) =.36t.48t e x +.36t e y 4. t = 1 = 6 x(6) m, y(6) m 5. x(t) y(t) t y = 3 4 x 3/ (x(t), y(t)) = (x + v x (t t ), 1 ) g(t t ) + v y (t t ) + y (. (x(t), y(t)) = x + v x (t t ), v ( ) ) v γ e γt + γ v (t t ) e γt + v y (t t ) + y 3. x(t) = v ω (sin(ωt) sin(ωt )) v (t t ) cos(ωt ) + v x (t t ) + x y(t) = v ω (cos(ωt) cos(ωt )) v (t t ) sin(ωt ) + v y (t t ) + y 16

18 f x = x f(x) f() = p p x f(x). ( ) f(x) log = 1 p ax f(x) = f(x) = pe ax / 5. f 5.3 (1) f(x) = f 1 af x () f(x) = [ (x f ) 1] 1/ (3) f(x) = log(x + e f ) 1. t a =.5v dv =.5v t = v(t = ) = dv. v t dv =.5 v v(t) dv v =.5 [ ] v(t) log =.5t log v(t) = e.5t 3. dx = e.5t x(t) x(t = ) = 4. t 3 x(t) C x(t) = 4e.5t + C x(t = ) = C = 4 x(t) = 4 4e.5t x t x 4 x = 4 t 17

19 5.4 v = u a /k 1 1 u du = 1 ( 1 1 u + 1 ) du = 1 [ ] 1 + u 1 + u log 1 u [ 1 t = log 1 + v(t) k/a ka 1 v(t) log 1 + v ] k/a k/a 1 v k/a v(t) 3 u = kv 1 cos u tan u du = du = log(sin(u)) sin u t = 1 ka log sin(kv) sin(kv ) v(t) kv(t) 1. v(t) = 1 [ a (a kv )e kt] k a γe t ka 1. v(t) = γ = 1 + v k/a k γe t ka v k/a 3. v(t) = 1 [ k sin 1 e ka(t t) sin(kv ) ] 3 kv(t) = π/ dv dx = a = v. v v dv = 1 d v v dv = av d v = v dv 1 d v = a(t)v(t) 18

20 t t t t d v = [ v(t) ] t t = v v 1 ( v(t) v ) = a(t)v(t) 3. t x(t) = dx dx dx = 1 dx = 1 v t x x a(t)v(t) = av 1 t x v dx = adx x a 4. a x x adx = a dx = a(x x ) x x 19

21 x ( [m/s ]) x ( [m]) 9 [1/s ]. d x = 9x 3. x(t) = Ce pt Cp e pt = 9Ce pt p = 9 p = ±3i 4. x(t) = C 1 e 3it x(t) = C e 3it C 1 C e ±3it = cos(3t) ± i sin(3t) x(t) = C 1 (cos(3t) + i sin(3t)) + C (cos(3t) i sin(3t)) = (C 1 + C ) cos(3it) + i(c 1 C ) sin(3it) A = C 1 + C, B = i(c 1 C ) x(t) = A cos(3t) + B sin(3t) 5. x() = A =, dx (t = ) = 3B = 3 A =, B = 1 6. t x(t) = cos(3t) + sin(3t) = 5 cos(3t α) α cos(α) = / 5, sin(α) = 1/ 5 x(t) = cos(3t α) = / 5 = cos(α) n t = πn 3 t = 3 α + πn 3 6. x 16x d x = 16x x(t) = Ce pt p p = ±4 C 1, C x(t) = C 1 e 4t + C e 4t x(t = ) = dx (t = ) = C 1 = C = 1 x(t) = e 4t + e 4t x(t) d x y(t) d y = p x = q y. x(t) x() = x dx (t = ) = y(t) y() = dy (t = ) = v 3. A, B, C, D x(t) = A cos(pt)+b sin(qt) y(t) = C cos(qt)+ D sin(qt) x(t) A = x, Bp = y(t) C =, Dq = v A = x, B =, C =, D = v /q

22 x(t) = x cos(pt) y(t) = (v /q) sin(qt) 4. (x(t), y(t)) = (3 cos(t), 3 sin(3t)).6 4 (ω = 1 ) 6.4 t 1. ωt t ω SI [s 1 ]. dx/ = v x dy/ = v y v x v y x(t) y(t) 3. dx/ = ωy dy/ = ωx d x d x = ω dy = ω x x(t) 4. x() = x dx/ = ωy t = dx/ dx/(t = ) = ωy 5. x(t) x(t) = A cos(ωt) + B sin(ωt) A B t = x(t = ) = A = x dx (t = ) = B = y A = x B = y x(t) = x cos(ωt) + y sin(ωt) y(t) = (1/ω)dx/ y(t) = x sin(ωt) + y cos(ωt) 6. x(t) = y(t) = x + y cos( ωt + α) x + y sin( ωt + α) α cos α = x / x + y sin α = y / x + y x + y 7. g > g = x g < x y 1

23 dv ω x. t f(t) f(t) df = 1 d f(t) v dv = 1 d v x dx = 1 d x 3. ( ) = t ( ) = ω t d v = 1 ( v(t) v() ) = 1 ( v(t) v ) d x = ω ( x(t) x() ) = ω x(t) v v = ω x v v = v ω x 4. t x = (v /ω) sin(u) x u sin 1 (ωx/v ) 1 v v ω (v /ω) sin (u) ω cos(u)du = 1 ω sin 1 (ωx/v ) t = 1 ( ) ωx ω sin 1 t x(t) = v v ω sin(ωt) du = 1 ( ) ωx ω sin 1 v

24 [1] 1, [] 5, [3] 1, [4] 3, [5], [6] 5, [7] 4, [8] 4, [9], [1], [11] 3, [1], [13], [14] 5, [15] 6, [16] 3, [17] 3, [18] 5, [19] 1, [], [1] [1] 3, [] 6, [3], [4] 1, [5] 5, [6], [7], [8] 8, [9] 6, [1] 1, [11], [1] 1, [13] 6, [14] 1, [15] 1, [16], [17] 4, [18] 7.4 [1] 5, [] 3, [3] 5, [4] [1] 4, [] 4, [3], [4] 3, [5] 1, [6] 5, [7] 7, [8] 3, [9] 3, [1] 6, [11] 9, [1] 3, [13] 3, [14] 6, [15] 3, [16] 3

25 II 4

26 8 1.. a A B B B b c g m mg 3. a b 8.1 a 1. x d x = a x a. x x t = x, v t = x(t = ) = x, dx/(t = ) = v 8. 5

27 v = dx e x a = d x e x. ( ) ( )=( ) x (a) m d x = (b) x md = mg (c) x md = kx m x(t) (a) (b) (c) t = x(t = ) = x, dx/(t = ) = (a) x(t) = Ax + B (b) x(t) = 1 gt + At + B (c) x(t) = A cos A B (a) x(t) = x (b) x(t) = 1 ( k/mt ) gt + x (c) x(t) = x cos ( k/mt ) ( k/mt ) + B sin 8.4 T A, T B T A sin α = T B sin β T A cos α + T B cos β = mg T A, T B T A = mg sin β sin(α + β), T mg sin α B = sin(α + β) 8.5 N f N = mg cos θ, f = mg sin θ 6

28 f = µn mg sin θ = µmg cos θ µ = mg sin θ mg cos θ = tan θ m/s m/s N N N N N 8.7 k 1 k 1. k 1 x k x (k 1 + k ) x x k 1 + k. k 1 x 1 k x x 1 + x F F = k x F F = k x k 1 x 1 = k x F = k x x 1 + x K K( x 1 + x ) = k x x 1 = (k /k 1 ) x K K = k 1 k /(k 1 + k ) 3. N K = k 1 + k + + k N 1 K = k 1 k k N µ mg. T cos α + T = µ mg T T = µ mg cos α + 1 7

29 3. T T cos α = µ mg cos α/( cos α+ 1) µ mg µ mg µ mg cos α cos α + 1 = 1 µ mg cos α + 1 µ g β β = v cos α + 1 τ τ = v β = v µ ( cos α + 1) g v vτ 1 βτ = µ ( cos α + 1) g 4. α α α T cos α = µ mg T cos α = cos α + 1 cos α 1 cos α 1 α 6 T 8.9 ( ) dy 1. l = x 1 + λ l dx λg l y (, λg l). x T x +T x + x = y T y +T y + T y λg l = 3. T x = x = T T x = T ( ) dy 4. y T y = λg x 1 + T y dx x = λg 1 + T x = T u 5. = 1 + t sinh 1 u sinh 1 sinh 6. x = T y = dt ( ) y dx = λg Ty 1 + Ty(x) T dt x y 1 + (Ty /T ) = λgdx ( Ty T ) ( ) λg u = T y /T 5 T y (x) = T sinh x T 7. x = y = y dy ( ) λg dx = sinh x T y(x) = T [ ( ) ] λg cosh x 1 + y λg T y = a cosh(x/a) 8

30 1. sinh x = ex e x. cosh x = ex + e x 3. tanh x = sinh x cosh x = ex e x e x + e x 4. cosh x sinh x = 1 d 5. cosh x = sinh x dx d 6. sinh x = cosh x dx 9

31 ( ). 1 N 3. m/s ( ) 4. 1 [N]/4 m/s = 3 kg [kg/m 3 ] 9. F/m F m, g F mg N z. z d z d z = 196 kg, N z 3. d z = 9.8 t = t = z = 3 m z() = 3 t = dz (t = ) = 4. z(t) = 4.9t z = = 4.9t + 3 t t =.78 s 6. 3 kg t =.78 s kg ( ) 3

32 9.4 x x z 196 N(= kg 9.8 m/s ) z t x x(t), z z(t) x d x, z d z d x = (x ), d z = 196 (z ) x(t) x(t = ) =, dx (t = ) = 15 z(t) z(t = ) = 3, dz (t = ) = x(t) = 15t, z(t) = 4.9t + 3 z = = 4.9t + 3 t =.78 s x x(t = 15) = = 1 m 9.5 x t = s t x(t) 1 d x = 4t x(t) t = s x(t = ) =, dx (t = ) = 3 x(t) = 1 15 t t 74 t = 1 s x t = s 1 s 15 (t = s ) x(1) = 156/15 = 83.7 m 9.6 t x F (t) F (t) = 5 4 t 5 t x(t) x 5 d x = 5 4 t 5 x(t = ) = 5 dx (t = ) = 4 x(t) x(t) = 1 48 t4 1 t 4t + 5 x(.5) = 5615/768 = 7.3 m 9.7 h/g gh 31

33 9.8 x = v = gt + v, x = 1 gt + v t + H x = t = v + v + gh g v = gt + v = v + gh x = v t h/g v h/g 9.1 (u x = (u + V cos θ)t, y = 1 gt + V sin θt V sin θ L = (u + V cos θ) g dl dθ = V g (( V sin θ) sin θ + (u + V cos θ) cos θ) = L sin θ + cos θ = 1 V (cos θ) + u cos θ V = cos θ cos θ = u + u + 8V 4V z mg mge z x z x m d x = z z md = mg 3. t = (x(), z()) = (, ( ) ) x v cos θ, z v sin θ t = dx dz (t = ), (t = ) = (v cos θ, v sin θ) x(t) = v t cos θ, z(t) = 1 gt + v t sin θ 3

34 4. t = x/v cos θ z z = gx v cos θ + x tan θ γ = tan θ z = g(1 + γ ) x + γx 1 + tan θ = 1/ cos θ 5. d x z = x d d = v γ g(1 + γ H z x ) v z H = γ g(1 + γ ) 6. 4 (x s, z s ) x = x s z = z s v v = gx s 1 + γ γ z s /x s θ v 7. 5 d H 6 v d = x γ s, H = γ z s /x s x s γ 4 γ z s /x s 8. x x p x p > x s x p = d/ γ < z s /x s γ > z s /x s γ > z s /x s H z c H < z c H x s γ < z c γ > z s /x s 4 γ z s /x s γ z s /x s > γ > z s /x s γ < z [ c z ] s Γ = z [ c z ] s x s z c x s z c 9. d γ γ = Γ d d min d min = Γ x s Γ z s /x s 1. H γ H γ γ min = z s /x s H min = z s d Hmin = x s (x s, z s ) γ γ x s 11. Γ = d min = 144 m d Hmin = 194 m v 33

35 13. γ = v = 41 m/s = 147 km/h x m d x = z z md = mg. t x(t) = v t z(t) = z 1 gt z(t) = t = z /g x x f = v z /g 3. H = R + x f R 4. H = z x f /R = z x f z (1 v /gr ) = v = gr

36 1 1.1 A B A B = AB cos(θ) A, B A, B θ A cos(θ) A B A B B dx F dx N.5 m = 1 J. F F = 4e x + e y x x = 1e x + 4e y F x = 4 J 3. F = xye x + 1 y e y ds = dxe x + dye y dw dw = F ds = xydx + 1 y dy (, 1) (3, 6) y = 5x 9 (3,6) (,1) [xydx + 1y ] dy = xy(x)dx + 1 y dy = x(5x 9)dx + 1 y dy = log = 3 J 3 J. 5 J 4 kg 5 m/s W = 5 y = W = 5 (x y)dx = 5 F x dx + (x )dx = [ x x ] 5 = F y dy

37 . x = 5 W = 5 5 F x dx + 6 F y dy 6 ( x + y)dy = 6 3. y = x x = y W = 6 F x dx + 6 F y dy 6 (x y)dx + 6 ( 5 + y)dy = [ 5y + y ] 6 = 1 ( x + y)dy = 6 xdx + 6 [ x ydy = F [J] F = x [m] N/m ] 6 = F = mg h W P = W t t = W P = mgh P = = 8.9s W dx = v. (ev B) dx = ev (v B) = eb (v v) = A (B C) = B (C A) = C (A B) mge y x m d x =, y y md = mg. x v x (t) = v x, y v y (t) = gt + v y t x(t) = v x t + x, y(t) = 1 gt + v y t + y x(t), y(t) t y = (g/v x)(x x ) + (v y /v x )(x x + y ) (x max, y max ) = (x + v x v y /g, y + v y/g) x t max = (x max x )/v x = v y /g 3. ds = dxe x + dye y = v x e x + v y e y = v x e x + (v y gt)e y 4. F = mge y F ds = mg(v y gt) 5. W = tmax F v = vy/g mg(v y gt) = 1 mv y 36

38 6. x y F = mge y y y max y = v y/g W = mg (y max y ) = 1 mv y ( 3. ) 1.8 dx 1. = rω sin(ωt)e x + r cos(ωt)e y. r rω 3. rω cos(ωt)e x rω sin(ωt)e y mrω cos(ωt)e x mrω sin(ωt)e y 4. t t + ds = v x e x + v y e y = rω sin(ωt)e x + rω cos(ωt)e y ( mrω cos(ωt)e x mrω sin(ωt)e y ) ( rω sin(ωt)ex + rω cos(ωt)e y ) =

39 (1) y () y cos(x) (3) y cos(xy) (4) xy cos(x y) (5) tan(x) (6) 1/y (7) 6x y exp[x y 3 ] (8) 11. U(x) du dx = F x F x U(x) 1. U(x) = mgx. U(x) = 1 kx 3. U(x) = A x x > +x x < x. du = 3x U(x) dx 3. U(x) = 3 x + U U U() = U = U(x) U(x) = 3 x 4. U(x = 4) = 4 J 5. x = J 5 kg 1 m/s 5/ J 5/ J x = 4 m 4 J K 5/ = K 4 K = 53/ J v mv / = 53/ m = 5 kg v = 53/5 m/s 6. x U(x) K x = x K K + U(x ) = K + U(x) K > K + U(x ) U(x) > U(x) x = U() = x < K + U(x ) > x = 4 m U(x ) = 4 J K > 4 J 5 kg 48/5 m/s 38

40 U = F dx = 1 kx 1 3 hx3 + C C =. U (x) = kx hx = x =, k h x = a = k/h U(a) = U ( ) k h = 1 k 3 6 h 3. x a U + k 3 U 1 6 h 4. 1 mv U(a) = 1 6 h k 3 /3mh k d x e x mge x x m d x = mg. x(t) = 1 gt + x v(t) = gt 3. du dx = mg 4. U(x) = mgx 5. x(t) v(t) E = 1 mv(t) + mgx(t) = 1 m( gt) + mg ( 1 ) gt + x = mgx 6. mg x mgx x(t) = t = x /g gt = gx (1/)m( gx ) = mgx Ave x A v. dv/ m dv = mg Av 39

41 3. dv/ = g (A/m)v v(t) 1 g + (A/m)v dv = t = (m/a) log [(g + (A/m)v(t))/g] v(t) v(t) = mg (1 e (A/m)t) A t v( ) = mg/a 4. v(t) v m dv = d ( ) 1 mv v = dx/ mgv(t) Av = d (mgx) Av t de = d ( ) 1 mv + mgx = Av < E E m/s. b = 6πηr m = ρ 4π 3 r3 v = ρgr 9η 1.m/s 11.8 m dv = bv log v = b m t + C log v = b m t+log v v = v e bt/m x x = m b v (e bt/m 1) t (e = x = m b v m d x = Av x, m d y = Av y F. v x v y x y v x (t) = v x e (A/m)t ( v y (t) = v y + F ) e (A/m)t F A A x(t) = mv x A 4 (1 e (A/m)t)

42 y(t) = m A ( v y + F ) ( 1 e (A/m)t) F A A t 3. A = 4. x(t) = v x t, y(t) = v y t + 1 F m t y A= A becomes large x r = x + y + z. x x/r GMmx r 3 e x GMmy r 3 e y GMmz r 3 e z 3. U(x, y, z) = GMm GMm = U(x, y, z) x, y, z r x + y + z 4. d (R cos(ωt), R sin(ωt)) = (Rω cos(ωt), Rω sin(ωt)) xy (R cos(ωt), R sin(ωt)) ( ) GMmR cos(ωt) GMmR sin(ωt) GM R 3, R 3 ω = R 3 5. ( Rω sin(ωt), Rω cos(ωt)) 1 mv = 1 mr ω = 1 GMm GMm R R 1 mv GMm R = GMm R 6. E = GMm/R E 1 = GMm/R 1 R > R

43 m d z = GM m (R + z). GM /R = 9.8 m/s 3. (64 km) (1 m) 4. t dz d z t = GM dz (R + z) dz d z = 1 ( ) d dz = 1 d v t = z v t z v(t) t t z t dz d z = 1 t d v = 1 v(t) 1 v GM dz z(t) (R + z) = GM (R + z) dz = GM R + z(t) GM R v(t) z(t) 1 v = GM R + z GM + 1 R v 5. z v v GM v = m/s = 11 km/s R 4

44 m /.5 = 4 N/m. 4/1 = 6.3 rad/s π/6.3 = 1. s 1/1. = 1. Hz = 6.8 N 6.8/9.8 =.69 kg 1. k, l, m, g l l = mg/k g 1/6 1/ x x 1x [N].5 kg.5 d x = 1x. d x = 4x x(t) A B x(t) = A cos ( 4t ) + B sin ( 4t ) t = x(t = ) =.1, dx (t = ) =.4 A =.1, B =.63 x(t) =.1 cos ( 4t ) +.63 sin ( 4t ) x(t) =.1 sin ( 4t α ) α cos(α) =.53, sin(α) =.85 ([rad] ) 3. x(t) dx dx t = 3 x(3) =.91 m, (t = 3) =.47 m/s 4. K(t) = 1.5 v x(t) K(t) = 1.5 (.1 4 cos ( 4t α )) ( =.7 cos 4t α ) 5. U(t) = 1 kx k = 1 N/m x(t) U(t) =.7 sin ( 4t α ) 6. t = K(t = ) =.7 cos (α) =. J, U(t = ) =.7 sin (α) =.5 J.7 J 7. K(t = 3) =.8 J, U(t = 3) =.4 J.7 J 8. sin θ + cos θ = 1 K(t) + U(t) =.7 J 43

45 F = kx x = C 1 sin ωt + C cos ωt C 1, C v v = dx = C 1ω cos ωt C ω sin ωt t = x =, v = v = C 1 sin ω + C cos ω C = v = C 1 ω cos ω C ω sin ω C 1 = v /ω x = v sin ωt ω. l = C 1 sin ωt + C cos ωt = C 1 ω cos ωt C ω sin ωt C 1, C C 1 = l sin ωt, C = l cos ωt x = l cos (ω(t t )) 3. v x v = dx = Aω cos(ωt) x v K = 1 mv = 1 ma ω cos (ωt), U = 1 kx = 1 ka sin (ωt) ω = k m k = mω U (sin θ) + (cos θ) = 1 K + U = 1 ma ω l k l = mg l = mg/k. z z = t z(t) mge z fe z z(t) < fe z = kz(t)e z z(t) > f = z f m d z = mg + f (t = ) z(t = ) = mg k h dz (t = ) = 44

46 z < d z = mg k k m z z(t) = mg + z(t) z(t) k z(t) d z = k m z z ω = k/m z z(t = ) = h, d z = z(t) z(t) = h cos(ωt) z(t) = mg h cos(ωt) z(t) < k h < mg k h > mg z < z > k m d z = mg z = t = t = mg k h cos(ωt ) z v v = dz ( mg ) (t = t ) = h sin(ωt ) = ω h z > k t = t v z(t) = 1 ( ( g(t t ) + v (t t ) v g = ω mg ) ) h g k z = l l < v/g mg(kl + mg) h < k < h < mg/k mg/k < h < mg(kl + mg)/k h v = dx = d [R cos ϕe x + R sin ϕe y ] = R dϕ sin ϕe x + R dϕ cos ϕe y. e x e y e r e ϕ e x r φ 3. a e x e y ( ) dϕ a = R e r + R d ϕ e ϕ 4. mg F g F g = φ mge x = mg cos ϕe r mg sin ϕe ϕ 5. T T e r T 6. m d x = F g + T F g T e r e ϕ e ϕ mr d ϕ = mg sin ϕ 7. ϕ sin ϕ ϕ 45

47 d ϕ = g R ϕ 8. ϕ ϕ ϕ = A cos(ωt) + B sin(ωt) ω = g/r A B dϕ = Aω sin(ωt) + Bω cos(ωt) A = ϕ, B = ϕ(t) = ϕ cos(ωt) Av k β, f f sin(βt) z m d x = Av kx + f sin(βt) m τ = m/a, ω = k/m, a = f/m. x sp (t) x hom (t) d x sp + 1 τ d x hom dx sp + 1 τ + ω x sp = a sin(βt) dx hom + ω x hom = x sp (t) + x hom (t) 3. A ϕ β A sin(βt + ϕ ) + Aβ τ (β ω )A (sin(βt) cos ϕ + cos(βt) sin ϕ ) + Aβ τ cos(βt + ϕ ) + ω A sin(βt + ϕ ) = a sin βt (cos(βt) cos ϕ sin(βt) sin ϕ ) = a sin(βt) t sin(βt) cos(βt) A tan ϕ (β ω )A cos ϕ Aβ τ sin ϕ = a (β ω )A sin ϕ + Aβ τ cos ϕ = A = a (ω β ) + β /τ tan ϕ = 46 β/τ β ω

48 tan(ϕ ) nπ 4. x hom (t) 5. x hom (t) x sp (t) + x hom (t) x sp (t) x sp (t) ω τ ρ M = ρ4πr /3, M = ρ4πx /3 M = M x3 R 3. F = GmM /x = GmMx/R 3 3. M 1 F = GmMx/R 3 = mgx/r 4. k = mg/r ω = k/m = g/r T/ = π/ω = π R/g = s r/r 1 B f(r) f(r) < f(r) >. U(r) x U(r) x F x = du dr r x = d( W ) dr r x = x x + y + z = 1 y z 3. x x r = f(r)x r x x + y + z = x r U ] x = du x [6 dr r = 8ϵ σ1 x 3σ6 r13 r 7 r y z r = 1/6 σ r < r r > r 4. 47

49 [1] 1, [], [3], [4], [5], [6], [7], [8] 4, [9], [1], [11] 1, [1], [13] 4, [14], [15] 4, [16], [17] 13.3 [1], [], [3], [4], [5], [6] 1//3/4/5/7/8, [7] 1, [8], [9] 1, [1] 6, [11], [1] 6, [13] 8, [14], [15] 1, [16] 1, [17] 13.4 [1] 4, [] 8, [3], [4] 8, [5], [6] 7, [7], [8] 1, [9], [1], [11] 5, [1] 4, [13], [14], [15], [16] 4, [17] 4, [18] 8, [19], [] [1] 9, [] 9, [3] 7, [4] 3, [5] 9, [6] 6, [7] 6, [8], [9] 3, [1], [11], [1] 3, [13], [14] 8, [15] [1] 3, [], [3] 1, [4] 1, [5] 5, [6] 1, [7], [8], [9] 1, [1], [11] 3 48

pdf

pdf http://www.ns.kogakuin.ac.jp/~ft13389/lecture/physics1a2b/ pdf I 1 1 1.1 ( ) 1. 30 m µm 2. 20 cm km 3. 10 m 2 cm 2 4. 5 cm 3 km 3 5. 1 6. 1 7. 1 1.2 ( ) 1. 1 m + 10 cm 2. 1 hr + 6400 sec 3. 3.0 10 5 kg

More information

I ( ) 2019

I ( ) 2019 I ( ) 2019 i 1 I,, III,, 1,,,, III,,,, (1 ) (,,, ), :...,, : NHK... NHK, (YouTube ),!!, manaba http://pen.envr.tsukuba.ac.jp/lec/physics/,, Richard Feynman Lectures on Physics Addison-Wesley,,,, x χ,

More information

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d A 2. x F (t) =f sin ωt x(0) = ẋ(0) = 0 ω θ sin θ θ 3! θ3 v = f mω cos ωt x = f mω (t sin ωt) ω t 0 = f ( cos ωt) mω x ma2-2 t ω x f (t mω ω (ωt ) 6 (ωt)3 = f 6m ωt3 2.2 u ( v w) = v ( w u) = w ( u v) ma22-9

More information

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y [ ] 7 0.1 2 2 + y = t sin t IC ( 9) ( s090101) 0.2 y = d2 y 2, y = x 3 y + y 2 = 0 (2) y + 2y 3y = e 2x 0.3 1 ( y ) = f x C u = y x ( 15) ( s150102) [ ] y/x du x = Cexp f(u) u (2) x y = xey/x ( 16) ( s160101)

More information

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt S I. x yx y y, y,. F x, y, y, y,, y n http://ayapin.film.s.dendai.ac.jp/~matuda n /TeX/lecture.html PDF PS yx.................................... 3.3.................... 9.4................5..............

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

i

i i 3 4 4 7 5 6 3 ( ).. () 3 () (3) (4) /. 3. 4/3 7. /e 8. a > a, a = /, > a >. () a >, a =, > a > () a > b, a = b, a < b. c c n a n + b n + c n 3c n..... () /3 () + (3) / (4) /4 (5) m > n, a b >, m > n,

More information

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d S I.. http://ayapin.film.s.dendai.ac.jp/~matuda /TeX/lecture.html PDF PS.................................... 3.3.................... 9.4................5.............. 3 5. Laplace................. 5....

More information

d (K + U) = v [ma F(r)] = (2.4.4) t = t r(t ) = r t 1 r(t 1 ) = r 1 U(r 1 ) U(r ) = t1 t du t1 = t F(r(t)) dr(t) r1 = F dr (2.4.5) r F 2 F ( F) r A r

d (K + U) = v [ma F(r)] = (2.4.4) t = t r(t ) = r t 1 r(t 1 ) = r 1 U(r 1 ) U(r ) = t1 t du t1 = t F(r(t)) dr(t) r1 = F dr (2.4.5) r F 2 F ( F) r A r 2.4 ( ) U(r) ( ) ( ) U F(r) = x, U y, U = U(r) (2.4.1) z 2 1 K = mv 2 /2 dk = d ( ) 1 2 mv2 = mv dv = v (ma) (2.4.2) ( ) U(r(t)) r(t) r(t) + dr(t) du du = U(r(t) + dr(t)) U(r(t)) = U x = U(r(t)) dr(t)

More information

Note.tex 2008/09/19( )

Note.tex 2008/09/19( ) 1 20 9 19 2 1 5 1.1........................ 5 1.2............................. 8 2 9 2.1............................. 9 2.2.............................. 10 3 13 3.1.............................. 13 3.2..................................

More information

08-Note2-web

08-Note2-web r(t) t r(t) O v(t) = dr(t) dt a(t) = dv(t) dt = d2 r(t) dt 2 r(t), v(t), a(t) t dr(t) dt r(t) =(x(t),y(t),z(t)) = d 2 r(t) dt 2 = ( dx(t) dt ( d 2 x(t) dt 2, dy(t), dz(t) dt dt ), d2 y(t) dt 2, d2 z(t)

More information

2014 S hara/lectures/lectures-j.html r 1 S phone: ,

2014 S hara/lectures/lectures-j.html r 1 S phone: , 14 S1-1+13 http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html r 1 S1-1+13 14.4.11. 19 phone: 9-8-4441, e-mail: hara@math.kyushu-u.ac.jp Office hours: 1 4/11 web download. I. 1. ϵ-δ 1. 3.1, 3..

More information

dynamics-solution2.dvi

dynamics-solution2.dvi 1 1. (1) a + b = i +3i + k () a b =5i 5j +3k (3) a b =1 (4) a b = 7i j +1k. a = 14 l =/ 14, m=1/ 14, n=3/ 14 3. 4. 5. df (t) d [a(t)e(t)] =ti +9t j +4k, = d a(t) d[a(t)e(t)] e(t)+ da(t) d f (t) =i +18tj

More information

2011de.dvi

2011de.dvi 211 ( 4 2 1. 3 1.1............................... 3 1.2 1- -......................... 13 1.3 2-1 -................... 19 1.4 3- -......................... 29 2. 37 2.1................................ 37

More information

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi) 0. A A = 4 IC () det A () A () x + y + z = x y z X Y Z = A x y z ( 5) ( s5590) 0. a + b + c b c () a a + b + c c a b a + b + c 0 a b c () a 0 c b b c 0 a c b a 0 0. A A = 7 5 4 5 0 ( 5) ( s5590) () A ()

More information

() (, y) E(, y) () E(, y) (3) q ( ) () E(, y) = k q q (, y) () E(, y) = k r r (3).3 [.7 ] f y = f y () f(, y) = y () f(, y) = tan y y ( ) () f y = f y

() (, y) E(, y) () E(, y) (3) q ( ) () E(, y) = k q q (, y) () E(, y) = k r r (3).3 [.7 ] f y = f y () f(, y) = y () f(, y) = tan y y ( ) () f y = f y 5. [. ] z = f(, y) () z = 3 4 y + y + 3y () z = y (3) z = sin( y) (4) z = cos y (5) z = 4y (6) z = tan y (7) z = log( + y ) (8) z = tan y + + y ( ) () z = 3 8y + y z y = 4 + + 6y () z = y z y = (3) z =

More information

M3 x y f(x, y) (= x) (= y) x + y f(x, y) = x + y + *. f(x, y) π y f(x, y) x f(x + x, y) f(x, y) lim x x () f(x,y) x 3 -

M3 x y f(x, y) (= x) (= y) x + y f(x, y) = x + y + *. f(x, y) π y f(x, y) x f(x + x, y) f(x, y) lim x x () f(x,y) x 3 - M3............................................................................................ 3.3................................................... 3 6........................................... 6..........................................

More information

1.1 ft t 2 ft = t 2 ft+ t = t+ t 2 1.1 d t 2 t + t 2 t 2 = lim t 0 t = lim t 0 = lim t 0 t 2 + 2t t + t 2 t 2 t + t 2 t 2t t + t 2 t 2t + t = lim t 0

1.1 ft t 2 ft = t 2 ft+ t = t+ t 2 1.1 d t 2 t + t 2 t 2 = lim t 0 t = lim t 0 = lim t 0 t 2 + 2t t + t 2 t 2 t + t 2 t 2t t + t 2 t 2t + t = lim t 0 A c 2008 by Kuniaki Nakamitsu 1 1.1 t 2 sin t, cos t t ft t t vt t xt t + t xt + t xt + t xt t vt = xt + t xt t t t vt xt + t xt vt = lim t 0 t lim t 0 t 0 vt = dxt ft dft dft ft + t ft = lim t 0 t 1.1

More information

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2) 3 215 4 27 1 1 u u(x, t) u tt a 2 u xx, a > (1) D : {(x, t) : x, t } u (, t), u (, t), t (2) u(x, ) f(x), u(x, ) t 2, x (3) u(x, t) X(x)T (t) u (1) 1 T (t) a 2 T (t) X (x) X(x) α (2) T (t) αa 2 T (t) (4)

More information

i

i 009 I 1 8 5 i 0 1 0.1..................................... 1 0.................................................. 1 0.3................................. 0.4........................................... 3

More information

23 7 28 i i 1 1 1.1................................... 2 1.2............................... 3 1.2.1.................................... 3 1.2.2............................... 4 1.2.3 SI..............................

More information

DE-resume

DE-resume - 2011, http://c-faculty.chuo-u.ac.jp/ nishioka/ 2 11 21131 : 4 1 x y(x, y (x,y (x,,y (n, (1.1 F (x, y, y,y,,y (n =0. (1.1 n. (1.1 y(x. y(x (1.1. 1 1 1 1.1... 2 1.2... 9 1.3 1... 26 2 2 34 2.1,... 35 2.2

More information

IA hara@math.kyushu-u.ac.jp Last updated: January,......................................................................................................................................................................................

More information

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8)

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8) 4 4 ) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8) a b a b = 6i j 4 b c b c 9) a b = 4 a b) c = 7

More information

2019 1 5 0 3 1 4 1.1.................... 4 1.1.1......................... 4 1.1.2........................ 5 1.1.3................... 5 1.1.4........................ 6 1.1.5......................... 6 1.2..........................

More information

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x [ ] IC. f(x) = e x () f(x) f (x) () lim f(x) lim f(x) x + x (3) lim f(x) lim f(x) x + x (4) y = f(x) ( ) ( s46). < a < () a () lim a log xdx a log xdx ( ) n (3) lim log k log n n n k=.3 z = log(x + y ),

More information

mugensho.dvi

mugensho.dvi 1 1 f (t) lim t a f (t) = 0 f (t) t a 1.1 (1) lim(t 1) 2 = 0 t 1 (t 1) 2 t 1 (2) lim(t 1) 3 = 0 t 1 (t 1) 3 t 1 2 f (t), g(t) t a lim t a f (t) g(t) g(t) f (t) = o(g(t)) (t a) = 0 f (t) (t 1) 3 1.2 lim

More information

1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N m 1.

1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N m 1. 1.1 1. 1.3.1..3.4 3.1 3. 3.3 4.1 4. 4.3 5.1 5. 5.3 6.1 6. 6.3 7.1 7. 7.3 1 1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N

More information

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 0 < t < τ I II 0 No.2 2 C x y x y > 0 x 0 x > b a dx

More information

2 Chapter 4 (f4a). 2. (f4cone) ( θ) () g M. 2. (f4b) T M L P a θ (f4eki) ρ H A a g. v ( ) 2. H(t) ( )

2 Chapter 4 (f4a). 2. (f4cone) ( θ) () g M. 2. (f4b) T M L P a θ (f4eki) ρ H A a g. v ( ) 2. H(t) ( ) http://astr-www.kj.yamagata-u.ac.jp/~shibata f4a f4b 2 f4cone f4eki f4end 4 f5meanfp f6coin () f6a f7a f7b f7d f8a f8b f9a f9b f9c f9kep f0a f0bt version feqmo fvec4 fvec fvec6 fvec2 fvec3 f3a (-D) f3b

More information

(1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10)

(1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10) 2017 12 9 4 1 30 4 10 3 1 30 3 30 2 1 30 2 50 1 1 30 2 10 (1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10) (1) i 23 c 23 0 1 2 3 4 5 6 7 8 9 a b d e f g h i (2) 23 23 (3) 23 ( 23 ) 23 x 1 x 2 23 x

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2 2005 9/8-11 2 2.2 ( 2-5) γ ( ) γ cos θ 2πr πρhr 2 g h = 2γ cos θ ρgr (2.1) γ = ρgrh (2.2) 2 cos θ θ cos θ = 1 (2.2) γ = 1 ρgrh (2.) 2 2. p p ρgh p ( ) p p = p ρgh (2.) h p p = 2γ r 1 1 (Berry,1975) 2-6

More information

II 1 3 2 5 3 7 4 8 5 11 6 13 7 16 8 18 2 1 1. x 2 + xy x y (1 lim (x,y (1,1 x 1 x 3 + y 3 (2 lim (x,y (, x 2 + y 2 x 2 (3 lim (x,y (, x 2 + y 2 xy (4 lim (x,y (, x 2 + y 2 x y (5 lim (x,y (, x + y x 3y

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

r d 2r d l d (a) (b) (c) 1: I(x,t) I(x+ x,t) I(0,t) I(l,t) V in V(x,t) V(x+ x,t) V(0,t) l V(l,t) 2: 0 x x+ x 3: V in 3 V in x V (x, t) I(x, t

r d 2r d l d (a) (b) (c) 1: I(x,t) I(x+ x,t) I(0,t) I(l,t) V in V(x,t) V(x+ x,t) V(0,t) l V(l,t) 2: 0 x x+ x 3: V in 3 V in x V (x, t) I(x, t 1 1 2 2 2r d 2r d l d (a) (b) (c) 1: I(x,t) I(x+ x,t) I(0,t) I(l,t) V in V(x,t) V(x+ x,t) V(0,t) l V(l,t) 2: 0 x x+ x 3: V in 3 V in x V (x, t) I(x, t) V (x, t) I(x, t) V in x t 3 4 1 L R 2 C G L 0 R 0

More information

C:/KENAR/0p1.dvi

C:/KENAR/0p1.dvi 2{3. 53 2{3 [ ] 4 2 1 2 10,15 m 10,10 m 2 2 54 2 III 1{I U 2.4 U r (2.16 F U F =, du dt du dr > 0 du dr < 0 O r 0 r 2.4: 1 m =1:00 10 kg 1:20 10 kgf 8:0 kgf g =9:8 m=s 2 (a) x N mg 2.5: N 2{3. 55 (b) x

More information

/Volumes/NO NAME/gakujututosho/chap1.tex i

/Volumes/NO NAME/gakujututosho/chap1.tex i 2012 4 10 /Volumes/NO NAME/gakujututosho/chap1.tex i iii 1 7 1.1............................... 7 2 11 2.1........................................... 11 2.2................................... 18 2.3...................................

More information

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq 49 2 I II 2.1 3 e e = 1.602 10 19 A s (2.1 50 2 I SI MKSA 2.1.1 r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = 3 10 8 m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq F = k r

More information

i 18 2H 2 + O 2 2H 2 + ( ) 3K

i 18 2H 2 + O 2 2H 2 + ( ) 3K i 18 2H 2 + O 2 2H 2 + ( ) 3K ii 1 1 1.1.................................. 1 1.2........................................ 3 1.3......................................... 3 1.4....................................

More information

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a =

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a = II 6 ishimori@phys.titech.ac.jp 6.. 5.4.. f Rx = f Lx = fx fx + lim = lim x x + x x f c = f x + x < c < x x x + lim x x fx fx x x = lim x x f c = f x x < c < x cosmx cosxdx = {cosm x + cosm + x} dx = [

More information

1 180m g 10m/s 2 2 6 1 3 v 0 (t=0) z max t max t z = z max 1 2 g(t t max) 2 (6) 1.3 2 3 3 r = (x, y, z) e x, e y, e z r = xe x + ye y + ze z. (7) v =

1 180m g 10m/s 2 2 6 1 3 v 0 (t=0) z max t max t z = z max 1 2 g(t t max) 2 (6) 1.3 2 3 3 r = (x, y, z) e x, e y, e z r = xe x + ye y + ze z. (7) v = 1. 2. 3 3. 4. 5. 6. 7. 8. 9. I http://risu.lowtem.hokudai.ac.jp/ hidekazu/class.html 1 1.1 1 a = g, (1) v = g t + v 0, (2) z = 1 2 g t2 + v 0 t + z 0. (3) 1.2 v-t. z-t. z 1 z 0 = dz = v, t1 dv v(t), v

More information

5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h 0 g(a + h) g(a) h g(x) a A = g (a) = f x (a, b)

5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h 0 g(a + h) g(a) h g(x) a A = g (a) = f x (a, b) 5 partial differentiation (total) differentiation 5. z = f(x, y) (a, b) A = lim h 0 f(a + h, b) f(a, b) h............................................................... ( ) f(x, y) (a, b) x A (a, b) x

More information

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10% 1 2006.4.17. A 3-312 tel: 092-726-4774, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office hours: B A I ɛ-δ ɛ-δ 1. 2. A 1. 1. 2. 3. 4. 5. 2. ɛ-δ 1. ɛ-n

More information

4................................. 4................................. 4 6................................. 6................................. 9.................................................... 3..3..........................

More information

chap1.dvi

chap1.dvi 1 1 007 1 e iθ = cos θ + isin θ 1) θ = π e iπ + 1 = 0 1 ) 3 11 f 0 r 1 1 ) k f k = 1 + r) k f 0 f k k = 01) f k+1 = 1 + r)f k ) f k+1 f k = rf k 3) 1 ) ) ) 1+r/)f 0 1 1 + r/) f 0 = 1 + r + r /4)f 0 1 f

More information

/Volumes/NO NAME/gakujututosho/chap1.tex i

/Volumes/NO NAME/gakujututosho/chap1.tex i 2010 4 8 /Volumes/NO NAME/gakujututosho/chap1.tex i iii 1 5 1.1............................... 5 2 9 2.1........................................... 9 2.2................................... 16 2.3...................................

More information

5. [1 ] 1 [], u(x, t) t c u(x, t) x (5.3) ξ x + ct, η x ct (5.4),u(x, t) ξ, η u(ξ, η), ξ t,, ( u(ξ,η) ξ η u(x, t) t ) u(x, t) { ( u(ξ, η) c t ξ ξ { (

5. [1 ] 1 [], u(x, t) t c u(x, t) x (5.3) ξ x + ct, η x ct (5.4),u(x, t) ξ, η u(ξ, η), ξ t,, ( u(ξ,η) ξ η u(x, t) t ) u(x, t) { ( u(ξ, η) c t ξ ξ { ( 5 5.1 [ ] ) d f(t) + a d f(t) + bf(t) : f(t) 1 dt dt ) u(x, t) c u(x, t) : u(x, t) t x : ( ) ) 1 : y + ay, : y + ay + by : ( ) 1 ) : y + ay, : yy + ay 3 ( ): ( ) ) : y + ay, : y + ay b [],,, [ ] au xx

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

K E N Z OU

K E N Z OU K E N Z OU 11 1 1 1.1..................................... 1.1.1............................ 1.1..................................................................................... 4 1.........................................

More information

n=1 1 n 2 = π = π f(z) f(z) 2 f(z) = u(z) + iv(z) *1 f (z) u(x, y), v(x, y) f(z) f (z) = f/ x u x = v y, u y = v x

n=1 1 n 2 = π = π f(z) f(z) 2 f(z) = u(z) + iv(z) *1 f (z) u(x, y), v(x, y) f(z) f (z) = f/ x u x = v y, u y = v x n= n 2 = π2 6 3 2 28 + 4 + 9 + = π2 6 2 f(z) f(z) 2 f(z) = u(z) + iv(z) * f (z) u(x, y), v(x, y) f(z) f (z) = f/ x u x = v y, u y = v x f x = i f y * u, v 3 3. 3 f(t) = u(t) + v(t) [, b] f(t)dt = u(t)dt

More information

振動と波動

振動と波動 Report JS0.5 J Simplicity February 4, 2012 1 J Simplicity HOME http://www.jsimplicity.com/ Preface 2 Report 2 Contents I 5 1 6 1.1..................................... 6 1.2 1 1:................ 7 1.3

More information

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2 No.2 1 2 2 δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i δx j (5) δs 2 = δx i δx i + 2 u i δx i δx j = δs 2 + 2s ij δx i δx j

More information

Gmech08.dvi

Gmech08.dvi 145 13 13.1 13.1.1 0 m mg S 13.1 F 13.1 F /m S F F 13.1 F mg S F F mg 13.1: m d2 r 2 = F + F = 0 (13.1) 146 13 F = F (13.2) S S S S S P r S P r r = r 0 + r (13.3) r 0 S S m d2 r 2 = F (13.4) (13.3) d 2

More information

20 4 20 i 1 1 1.1............................ 1 1.2............................ 4 2 11 2.1................... 11 2.2......................... 11 2.3....................... 19 3 25 3.1.............................

More information

Gmech08.dvi

Gmech08.dvi 51 5 5.1 5.1.1 P r P z θ P P P z e r e, z ) r, θ, ) 5.1 z r e θ,, z r, θ, = r sin θ cos = r sin θ sin 5.1) e θ e z = r cos θ r, θ, 5.1: 0 r

More information

m d2 x = kx αẋ α > 0 (3.5 dt2 ( de dt = d dt ( 1 2 mẋ kx2 = mẍẋ + kxẋ = (mẍ + kxẋ = αẋẋ = αẋ 2 < 0 (3.6 Joule Joule 1843 Joule ( A B (> A ( 3-2

m d2 x = kx αẋ α > 0 (3.5 dt2 ( de dt = d dt ( 1 2 mẋ kx2 = mẍẋ + kxẋ = (mẍ + kxẋ = αẋẋ = αẋ 2 < 0 (3.6 Joule Joule 1843 Joule ( A B (> A ( 3-2 3 3.1 ( 1 m d2 x(t dt 2 = kx(t k = (3.1 d 2 x dt 2 = ω2 x, ω = x(t = 0, ẋ(0 = v 0 k m (3.2 x = v 0 ω sin ωt (ẋ = v 0 cos ωt (3.3 E = 1 2 mẋ2 + 1 2 kx2 = 1 2 mv2 0 cos 2 ωt + 1 2 k v2 0 ω 2 sin2 ωt = 1

More information

x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ dt iωζ = ẍ + ω2 x (2.1) ζ ζ = Aωe iωt = Aω cos ωt + iaω sin

x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ dt iωζ = ẍ + ω2 x (2.1) ζ ζ = Aωe iωt = Aω cos ωt + iaω sin 2 2.1 F (t) 2.1.1 mẍ + kx = F (t). m ẍ + ω 2 x = F (t)/m ω = k/m. 1 : (ẋ, x) x = A sin ωt, ẋ = Aω cos ωt 1 2-1 x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ

More information

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x (

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x ( II (1 4 ) 1. p.13 1 (x, y) (a, b) ε(x, y; a, b) f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a x a A = f x (a, b) y x 3 3y 3 (x, y) (, ) f (x, y) = x + y (x, y) = (, )

More information

4 5.............................................. 5............................................ 6.............................................. 7......................................... 8.3.................................................4.........................................4..............................................4................................................4.3...............................................

More information

1 I 1.1 ± e = = - = C C MKSA [m], [Kg] [s] [A] 1C 1A 1 MKSA 1C 1C +q q +q q 1

1 I 1.1 ± e = = - = C C MKSA [m], [Kg] [s] [A] 1C 1A 1 MKSA 1C 1C +q q +q q 1 1 I 1.1 ± e = = - =1.602 10 19 C C MKA [m], [Kg] [s] [A] 1C 1A 1 MKA 1C 1C +q q +q q 1 1.1 r 1,2 q 1, q 2 r 12 2 q 1, q 2 2 F 12 = k q 1q 2 r 12 2 (1.1) k 2 k 2 ( r 1 r 2 ) ( r 2 r 1 ) q 1 q 2 (q 1 q 2

More information

2. 2 P M A 2 F = mmg AP AP 2 AP (G > : ) AP/ AP A P P j M j F = n j=1 mm j G AP j AP j 2 AP j 3 P ψ(p) j ψ(p j ) j (P j j ) A F = n j=1 mgψ(p j ) j AP

2. 2 P M A 2 F = mmg AP AP 2 AP (G > : ) AP/ AP A P P j M j F = n j=1 mm j G AP j AP j 2 AP j 3 P ψ(p) j ψ(p j ) j (P j j ) A F = n j=1 mgψ(p j ) j AP 1. 1 213 1 6 1 3 1: ( ) 2: 3: SF 1 2 3 1: 3 2 A m 2. 2 P M A 2 F = mmg AP AP 2 AP (G > : ) AP/ AP A P P j M j F = n j=1 mm j G AP j AP j 2 AP j 3 P ψ(p) j ψ(p j ) j (P j j ) A F = n j=1 mgψ(p j ) j AP

More information

< 1 > (1) f 0 (a) =6a ; g 0 (a) =6a 2 (2) y = f(x) x = 1 f( 1) = 3 ( 1) 2 =3 ; f 0 ( 1) = 6 ( 1) = 6 ; ( 1; 3) 6 x =1 f(1) = 3 ; f 0 (1) = 6 ; (1; 3)

< 1 > (1) f 0 (a) =6a ; g 0 (a) =6a 2 (2) y = f(x) x = 1 f( 1) = 3 ( 1) 2 =3 ; f 0 ( 1) = 6 ( 1) = 6 ; ( 1; 3) 6 x =1 f(1) = 3 ; f 0 (1) = 6 ; (1; 3) < 1 > (1) f 0 (a) =6a ; g 0 (a) =6a 2 (2) y = f(x) x = 1 f( 1) = 3 ( 1) 2 =3 ; f 0 ( 1) = 6 ( 1) = 6 ; ( 1; 3) 6 x =1 f(1) = 3 ; f 0 (1) = 6 ; (1; 3) 6 y = g(x) x = 1 g( 1) = 2 ( 1) 3 = 2 ; g 0 ( 1) =

More information

21 2 26 i 1 1 1.1............................ 1 1.2............................ 3 2 9 2.1................... 9 2.2.......... 9 2.3................... 11 2.4....................... 12 3 15 3.1..........

More information

2 1 x 1.1: v mg x (t) = v(t) mv (t) = mg 0 x(0) = x 0 v(0) = v 0 x(t) = x 0 + v 0 t 1 2 gt2 v(t) = v 0 gt t x = x 0 + v2 0 2g v2 2g 1.1 (x, v) θ

2 1 x 1.1: v mg x (t) = v(t) mv (t) = mg 0 x(0) = x 0 v(0) = v 0 x(t) = x 0 + v 0 t 1 2 gt2 v(t) = v 0 gt t x = x 0 + v2 0 2g v2 2g 1.1 (x, v) θ 1 1 1.1 (Isaac Newton, 1642 1727) 1. : 2. ( ) F = ma 3. ; F a 2 t x(t) v(t) = x (t) v (t) = x (t) F 3 3 3 3 3 3 6 1 2 6 12 1 3 1 2 m 2 1 x 1.1: v mg x (t) = v(t) mv (t) = mg 0 x(0) = x 0 v(0) = v 0 x(t)

More information

Acrobat Distiller, Job 128

Acrobat Distiller, Job 128 (2 ) 2 < > ( ) f x (x, y) 2x 3+y f y (x, y) x 2y +2 f(3, 2) f x (3, 2) 5 f y (3, 2) L y 2 z 5x 5 ` x 3 z y 2 2 2 < > (2 ) f(, 2) 7 f x (x, y) 2x y f x (, 2),f y (x, y) x +4y,f y (, 2) 7 z (x ) + 7(y 2)

More information

2.2 ( y = y(x ( (x 0, y 0 y (x 0 (y 0 = y(x 0 y = y(x ( y (x 0 = F (x 0, y(x 0 = F (x 0, y 0 (x 0, y 0 ( (x 0, y 0 F (x 0, y 0 xy (x, y (, F (x, y ( (

2.2 ( y = y(x ( (x 0, y 0 y (x 0 (y 0 = y(x 0 y = y(x ( y (x 0 = F (x 0, y(x 0 = F (x 0, y 0 (x 0, y 0 ( (x 0, y 0 F (x 0, y 0 xy (x, y (, F (x, y ( ( (. x y y x f y = f(x y x y = y(x y x y dx = d dx y(x = y (x = f (x y = y(x x ( (differential equation ( + y 2 dx + xy = 0 dx = xy + y 2 2 2 x y 2 F (x, y = xy + y 2 y = y(x x x xy(x = F (x, y(x + y(x 2

More information

構造と連続体の力学基礎

構造と連続体の力学基礎 II 37 Wabash Avenue Bridge, Illinois 州 Winnipeg にある歩道橋 Esplanade Riel 橋6 6 斜張橋である必要は多分無いと思われる すぐ横に道路用桁橋有り しかも塔基部のレストランは 8 年には営業していなかった 9 9. 9.. () 97 [3] [5] k 9. m w(t) f (t) = f (t) + mg k w(t) Newton

More information

Gmech08.dvi

Gmech08.dvi 63 6 6.1 6.1.1 v = v 0 =v 0x,v 0y, 0) t =0 x 0,y 0, 0) t x x 0 + v 0x t v x v 0x = y = y 0 + v 0y t, v = v y = v 0y 6.1) z 0 0 v z yv z zv y zv x xv z xv y yv x = 0 0 x 0 v 0y y 0 v 0x 6.) 6.) 6.1) 6.)

More information

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C 8 ( ) 8 5 4 I II III A B C( ),,, 5 I II A B ( ),, I II A B (8 ) 6 8 I II III A B C(8 ) n ( + x) n () n C + n C + + n C n = 7 n () 7 9 C : y = x x A(, 6) () A C () C P AP Q () () () 4 A(,, ) B(,, ) C(,,

More information

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 2 ), ϕ(t) = B 1 cos(ω 1 t + α 1 ) + B 2 cos(ω 2 t

More information

II Karel Švadlenka * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* u = au + bv v = cu + dv v u a, b, c, d R

II Karel Švadlenka * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* u = au + bv v = cu + dv v u a, b, c, d R II Karel Švadlenka 2018 5 26 * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* 5 23 1 u = au + bv v = cu + dv v u a, b, c, d R 1.3 14 14 60% 1.4 5 23 a, b R a 2 4b < 0 λ 2 + aλ + b = 0 λ =

More information

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0 1 1 1.1 1.) T D = T = D = kn 1. 1.4) F W = F = W/ = kn/ = 15 kn 1. 1.9) R = W 1 + W = 6 + 5 = 11 N. 1.9) W b W 1 a = a = W /W 1 )b = 5/6) = 5 cm 1.4 AB AC P 1, P x, y x, y y x 1.4.) P sin 6 + P 1 sin 45

More information

K E N Z U 2012 7 16 HP M. 1 1 4 1.1 3.......................... 4 1.2................................... 4 1.2.1..................................... 4 1.2.2.................................... 5................................

More information

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5. A 1. Boltzmann Planck u(ν, T )dν = 8πh ν 3 c 3 kt 1 dν h 6.63 10 34 J s Planck k 1.38 10 23 J K 1 Boltzmann u(ν, T ) T ν e hν c = 3 10 8 m s 1 2. Planck λ = c/ν Rayleigh-Jeans u(ν, T )dν = 8πν2 kt dν c

More information

Untitled

Untitled II 14 14-7-8 8/4 II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ 6/ ] Navier Stokes 3 [ ] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I 1 balance law t (ρv i )+ j

More information

P F ext 1: F ext P F ext (Count Rumford, ) H 2 O H 2 O 2 F ext F ext N 2 O 2 2

P F ext 1: F ext P F ext (Count Rumford, ) H 2 O H 2 O 2 F ext F ext N 2 O 2 2 1 1 2 2 2 1 1 P F ext 1: F ext P F ext (Count Rumford, 1753 1814) 0 100 H 2 O H 2 O 2 F ext F ext N 2 O 2 2 P F S F = P S (1) ( 1 ) F ext x W ext W ext = F ext x (2) F ext P S W ext = P S x (3) S x V V

More information

t θ, τ, α, β S(, 0 P sin(θ P θ S x cos(θ SP = θ P (cos(θ, sin(θ sin(θ P t tan(θ θ 0 cos(θ tan(θ = sin(θ cos(θ ( 0t tan(θ

t θ, τ, α, β S(, 0 P sin(θ P θ S x cos(θ SP = θ P (cos(θ, sin(θ sin(θ P t tan(θ θ 0 cos(θ tan(θ = sin(θ cos(θ ( 0t tan(θ 4 5 ( 5 3 9 4 0 5 ( 4 6 7 7 ( 0 8 3 9 ( 8 t θ, τ, α, β S(, 0 P sin(θ P θ S x cos(θ SP = θ P (cos(θ, sin(θ sin(θ P t tan(θ θ 0 cos(θ tan(θ = sin(θ cos(θ ( 0t tan(θ S θ > 0 θ < 0 ( P S(, 0 θ > 0 ( 60 θ

More information

A (1) = 4 A( 1, 4) 1 A 4 () = tan A(0, 0) π A π

A (1) = 4 A( 1, 4) 1 A 4 () = tan A(0, 0) π A π 4 4.1 4.1.1 A = f() = f() = a f (a) = f() (a, f(a)) = f() (a, f(a)) f(a) = f 0 (a)( a) 4.1 (4, ) = f() = f () = 1 = f (4) = 1 4 4 (4, ) = 1 ( 4) 4 = 1 4 + 1 17 18 4 4.1 A (1) = 4 A( 1, 4) 1 A 4 () = tan

More information

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google I4 - : April, 4 Version :. Kwhir, Tomoki TA (Kondo, Hirotk) Google http://www.mth.ngoy-u.c.jp/~kwhir/courses/4s-biseki.html pdf 4 4 4 4 8 e 5 5 9 etc. 5 6 6 6 9 n etc. 6 6 6 3 6 3 7 7 etc 7 4 7 7 8 5 59

More information

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2 II No.1 [n/] [1]H n x) H n x) = 1) r n! r!n r)! x)n r r= []H n x) n,, H n x) = 1) n H n x) [3] H n x) = 1) n dn x e dx n e x [4] H n+1 x) = xh n x) nh n 1 x) ) d dx x H n x) = H n+1 x) d dx H nx) = nh

More information

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

II ( ) (7/31) II (  [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re II 29 7 29-7-27 ( ) (7/31) II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I Euler Navier

More information

(u(x)v(x)) = u (x)v(x) + u(x)v (x) ( ) u(x) = u (x)v(x) u(x)v (x) v(x) v(x) 2 y = g(t), t = f(x) y = g(f(x)) dy dx dy dx = dy dt dt dx., y, f, g y = f (g(x))g (x). ( (f(g(x)). ). [ ] y = e ax+b (a, b )

More information

m dv = mg + kv2 dt m dv dt = mg k v v m dv dt = mg + kv2 α = mg k v = α 1 e rt 1 + e rt m dv dt = mg + kv2 dv mg + kv 2 = dt m dv α 2 + v 2 = k m dt d

m dv = mg + kv2 dt m dv dt = mg k v v m dv dt = mg + kv2 α = mg k v = α 1 e rt 1 + e rt m dv dt = mg + kv2 dv mg + kv 2 = dt m dv α 2 + v 2 = k m dt d m v = mg + kv m v = mg k v v m v = mg + kv α = mg k v = α e rt + e rt m v = mg + kv v mg + kv = m v α + v = k m v (v α (v + α = k m ˆ ( v α ˆ αk v = m v + α ln v α v + α = αk m t + C v α v + α = e αk m

More information

B ver B

B ver B B ver. 2017.02.24 B Contents 1 11 1.1....................... 11 1.1.1............. 11 1.1.2.......................... 12 1.2............................. 14 1.2.1................ 14 1.2.2.......................

More information

1. (8) (1) (x + y) + (x + y) = 0 () (x + y ) 5xy = 0 (3) (x y + 3y 3 ) (x 3 + xy ) = 0 (4) x tan y x y + x = 0 (5) x = y + x + y (6) = x + y 1 x y 3 (

1. (8) (1) (x + y) + (x + y) = 0 () (x + y ) 5xy = 0 (3) (x y + 3y 3 ) (x 3 + xy ) = 0 (4) x tan y x y + x = 0 (5) x = y + x + y (6) = x + y 1 x y 3 ( 1 1.1 (1) (1 + x) + (1 + y) = 0 () x + y = 0 (3) xy = x (4) x(y + 3) + y(y + 3) = 0 (5) (a + y ) = x ax a (6) x y 1 + y x 1 = 0 (7) cos x + sin x cos y = 0 (8) = tan y tan x (9) = (y 1) tan x (10) (1 +

More information

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a =

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a = [ ] 9 IC. dx = 3x 4y dt dy dt = x y u xt = expλt u yt λ u u t = u u u + u = xt yt 6 3. u = x, y, z = x + y + z u u 9 s9 grad u ux, y, z = c c : grad u = u x i + u y j + u k i, j, k z x, y, z grad u v =

More information

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s ... x, y z = x + iy x z y z x = Rez, y = Imz z = x + iy x iy z z () z + z = (z + z )() z z = (z z )(3) z z = ( z z )(4)z z = z z = x + y z = x + iy ()Rez = (z + z), Imz = (z z) i () z z z + z z + z.. z

More information

214 March 31, 214, Rev.2.1 4........................ 4........................ 5............................. 7............................... 7 1 8 1.1............................... 8 1.2.......................

More information

.1 z = e x +xy y z y 1 1 x 0 1 z x y α β γ z = αx + βy + γ (.1) ax + by + cz = d (.1') a, b, c, d x-y-z (a, b, c). x-y-z 3 (0,

.1 z = e x +xy y z y 1 1 x 0 1 z x y α β γ z = αx + βy + γ (.1) ax + by + cz = d (.1') a, b, c, d x-y-z (a, b, c). x-y-z 3 (0, .1.1 Y K L Y = K 1 3 L 3 L K K (K + ) 1 1 3 L 3 K 3 L 3 K 0 (K + K) 1 3 L 3 K 1 3 L 3 lim K 0 K = L (K + K) 1 3 K 1 3 3 lim K 0 K = 1 3 K 3 L 3 z = f(x, y) x y z x-y-z.1 z = e x +xy y 3 x-y ( ) z 0 f(x,

More information

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g(

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g( 06 5.. ( y = x x y 5 y 5 = (x y = x + ( y = x + y = x y.. ( Y = C + I = 50 + 0.5Y + 50 r r = 00 0.5Y ( L = M Y r = 00 r = 0.5Y 50 (3 00 0.5Y = 0.5Y 50 Y = 50, r = 5 .3. (x, x = (, u = = 4 (, x x = 4 x,

More information

24.15章.微分方程式

24.15章.微分方程式 m d y dt = F m d y = mg dt V y = dy dt d y dt = d dy dt dt = dv y dt dv y dt = g dv y dt = g dt dt dv y = g dt V y ( t) = gt + C V y ( ) = V y ( ) = C = V y t ( ) = gt V y ( t) = dy dt = gt dy = g t dt

More information

No2 4 y =sinx (5) y = p sin(2x +3) (6) y = 1 tan(3x 2) (7) y =cos 2 (4x +5) (8) y = cos x 1+sinx 5 (1) y =sinx cos x 6 f(x) = sin(sin x) f 0 (π) (2) y

No2 4 y =sinx (5) y = p sin(2x +3) (6) y = 1 tan(3x 2) (7) y =cos 2 (4x +5) (8) y = cos x 1+sinx 5 (1) y =sinx cos x 6 f(x) = sin(sin x) f 0 (π) (2) y No1 1 (1) 2 f(x) =1+x + x 2 + + x n, g(x) = 1 (n +1)xn + nx n+1 (1 x) 2 x 6= 1 f 0 (x) =g(x) y = f(x)g(x) y 0 = f 0 (x)g(x)+f(x)g 0 (x) 3 (1) y = x2 x +1 x (2) y = 1 g(x) y0 = g0 (x) {g(x)} 2 (2) y = µ

More information

D xy D (x, y) z = f(x, y) f D (2 ) (x, y, z) f R z = 1 x 2 y 2 {(x, y); x 2 +y 2 1} x 2 +y 2 +z 2 = 1 1 z (x, y) R 2 z = x 2 y

D xy D (x, y) z = f(x, y) f D (2 ) (x, y, z) f R z = 1 x 2 y 2 {(x, y); x 2 +y 2 1} x 2 +y 2 +z 2 = 1 1 z (x, y) R 2 z = x 2 y 5 5. 2 D xy D (x, y z = f(x, y f D (2 (x, y, z f R 2 5.. z = x 2 y 2 {(x, y; x 2 +y 2 } x 2 +y 2 +z 2 = z 5.2. (x, y R 2 z = x 2 y + 3 (2,,, (, 3,, 3 (,, 5.3 (. (3 ( (a, b, c A : (x, y, z P : (x, y, x

More information

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT I (008 4 0 de Broglie (de Broglie p λ k h Planck ( 6.63 0 34 Js p = h λ = k ( h π : Dirac k B Boltzmann (.38 0 3 J/K T U = 3 k BT ( = λ m k B T h m = 0.067m 0 m 0 = 9. 0 3 kg GaAs( a T = 300 K 3 fg 07345

More information

77

77 O r r r, F F r,r r = r r F = F (. ) r = r r 76 77 d r = F d r = F (. ) F + F = 0 d ( ) r + r = 0 (. 3) M = + MR = r + r (. 4) P G P MX = + MY = + MZ = z + z PG / PG = / M d R = 0 (. 5) 78 79 d r = F d

More information

K E N Z U 01 7 16 HP M. 1 1 4 1.1 3.......................... 4 1.................................... 4 1..1..................................... 4 1...................................... 5................................

More information

B 38 1 (x, y), (x, y, z) (x 1, x 2 ) (x 1, x 2, x 3 ) 2 : x 2 + y 2 = 1. (parameter) x = cos t, y = sin t. y = f(x) r(t) = (x(t), y(t), z(t)), a t b.

B 38 1 (x, y), (x, y, z) (x 1, x 2 ) (x 1, x 2, x 3 ) 2 : x 2 + y 2 = 1. (parameter) x = cos t, y = sin t. y = f(x) r(t) = (x(t), y(t), z(t)), a t b. 2009 7 9 1 2 2 2 3 6 4 9 5 14 6 18 7 23 8 25 9 26 10 29 11 32 12 35 A 37 1 B 38 1 (x, y), (x, y, z) (x 1, x 2 ) (x 1, x 2, x 3 ) 2 : x 2 + y 2 = 1. (parameter) x = cos t, y = sin t. y = f(x) r(t) = (x(t),

More information

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω ω α 3 3 2 2V 3 33+.6T m T 5 34m Hz. 34 3.4m 2 36km 5Hz. 36km m 34 m 5 34 + m 5 33 5 =.66m 34m 34 x =.66 55Hz, 35 5 =.7 485.7Hz 2 V 5Hz.5V.5V V

More information