Size: px
Start display at page:

Download ""

Transcription

1 214 March 31, 214, Rev.2.1

2 t δ(t) sin(ωt) D(s) D(s)

3 v i (t) = u(t), v o () = v i (t) = t, v o () = v i (t) = u(t), v o () = v G(s) s

4 s

5 2 (1) (2) (3)

6 (1) 5

7 (2) (3) (1) 1. (2) PID

8 I II,HP 7

9 :

10

11 : 2 r(t) x(t) 1.3: 1.4 x r r x y r x

12 1.4: 2 r(t) r x x(t) x 1.5:

13 : y r y m w u m u d d m

14 1.7 e = r y C u = K <, y > r(e < ), y = +K >, y < r(e > ) (1.1) e < u > e > u < e y r u +K t -K t 1.7: P C [O] [C] [P ] [O] = [C] [P ] (1.2) 13

15 [P ] PID [C] [O] P C [P ] C : 14

16 2 x y y = ax + b 2.1 t t 2.1: i i(t) = C dv dt (2.1) Ri(t) + v(t) = E (2.2) 15

17 2.2: RC dq(t) = v s (t) = E dt RC dv t(t) + v t = (2.3) dt dv t (t) = 1 dt (2.4) v t RC log v t (t) = 1 RC t + c (2.5) v t (t) = Ae 1 RC t (2.6) t v t (t) v(t) = v t (t) + v s (t) t = v = A = E v(t) = E + Ae 1 RC t (2.7) v(t) = v t (t) + v s (t) = E 1 e 1 RC t ) (2.8) i(t) = C dv dt = E 1 R e RC t (2.9) E E (E/s) (2.2) s V (s) RCsV (s) + V (s) = E s V (s) = E s RCs + 1) = E s RCE RCs

18 V (s) v(t) L 1 ( 1 s ) = 1 L 1 ( 1 s+α ) = e α v(t) = L 1 ( E s ) E L 1 ( s + 1 ) = E(1 e 1 RC t ) (2.1) RC i(t) = C dv dt = E 1 R e RC t (2.11) = f(t) = 1 2 a + (a n cos nωt + b n sin nωt) (2.12) n=1 f(t) = C n e jnωt (2.13) T f(t) = 1 { f(t)e jnωt dt}e jnωt dω (2.14) 2π { } F(jw) = f(t)e jnωt dt (2.15) F(jω) f(t) 1 17

19 f(t) F(jw) f(t) γ(t) = e σt ( t) f(t)γ(t) = 1 { f(t)γ(t)e jnωt dt}e jnωt dω (2.16) 2π γ 1 (t) f(t) = 1 { f(t)e (σ+jnω)t dt}e (σ+jnω)t dω (2.17) 2π s = σ + jnω jdω = ds f(t) = 1 σ+ { f(t)e st dt}e st ds (2.18) 2πj σ f(t) =, t > F (s) = f(t)e st dt (2.19) f(t) F (s) = L[f(t)] F (s) 2.18 f(t) = 1 σ+ F (s)e st ds (2.2) 2πj σ t c (2.19) f(t) = c t (2.21) L[f(t)] = ce st dt (2.22) = [ c s e st ] = ( c s ) = c1 s (2.23) 18

20 2.3.2 f(t) = ce pt t (2.24) L[f(t)] = ce pt e st dt = = [ c s p e (s p)t ] = ( c s p ) = ce (s p)t dt (2.25) c s p (2.26) p = f(t) = ce = c L[f(t)] = c s t f(t) = t k e pt t (2.27) h(t)g (t)dx = h(t)g(t) h (t)g(t)dt (2.28) h(t) = t k 1 (s p) g(t) = e (s p)t L[f(t)] = (t k e pt )e st dt(= = [t k 1 (s p) e (s p)t ] = I k h(t)g(t) dt) = [h(t)g(t)] kt k 1 1 (s p) e (s p)t dt h(t) g(t)dt (2.29) [t k 1 (s p) e (s p)t ] = (2.27) k 1 I k 1 = I k = kt k 1 1 (s p) e (s p)t dt (2.3) (t k 1 e pt )e st dt = t k 1 e (s p)t dt (2.31) 19

21 (2.3) I k 1 I k = kt k 1 1 (s p) e (s p)t dt k = t k 1 e (s p)t dt = (s p) k s p I k 1 (2.32) k = f(t) = t e pt = e pt L[e pt ] = 1 s p ( 2.26)) I = 1 (2.33) s p k = 1 (2.32) I 1 = 1 s p I = 1 (s p) 2 (2.34) I 2 = 2 1 s p I 1 = 2 1 (s p) 3 (2.35) I 3 = 3 1 s p I 2 = (s p) 4 (2.36) I k = k 1 s p I k 1 = k! (s p) k+1 (2.37) L[f(t)] = k! (s p) k+1 (2.38) δ(t) T 1 f(t) = T, T > t > (2.39), otherwise T δ L[f(t)] = T 1 T e st dt (2.4) = [ e st s T ] T = e s T ( e ) s T 2 = 1 e s T s T

22 1 e s T L[δ(t)] = lim T s T / T (2.41) se s T L[δ(t)] = lim T s = s s = 1 (2.42) 2.3: δ sin(ωt) e jωt = cos(ωt) + j sin(ωt) (2.43) sin(ωt) cos(ωt) = ejωt e jωt 2j = ejωt + e jωt 2 sin(ωt) L 21

23 L[sin(ωt)] = sin(ωt)e st e jωt e jωt dt = e st dt (2.44) 2j = 1 2j [ (e (s jω)t e (s+jω)t )dt = 1 2j [ 1 s jω e (s jω)t ( 1 s + jω e (s+jω)t )] = 1 2j [ 1 s jω 1 = 1 2j 2jω s 2 + ω 2 = s + jω ] = 1 2j ω s 2 + ω 2 [(s + jω) (s jω) (s + jω)(s jω) ] cos(ωt) Im A A sin Re A cos 2.4: 22

24 2.3 s I = f(t)e st dt Re(s) > a Re(s) < a Re(s) > a I s F (s) = L(f(t)) f(t) Im F(s) I Re 2.5: 23

25 2.3.6 f(t) 2.1 f(t) F (s) F (s) f(t) 2.1: Laplace transform table Item No. f(t) F (s) 1 δ(t) 1 2 u(t) 3 tu(t) 4 t n u(t) 5 e at u(t) 6 sin(ωt)u(t) 7 cos(ωt)u(t) 1 s 1 s 2 n! s n+1 1 s + a ω s 2 + ω 2 s s 2 + ω 2 u(t) t t 24

26 L[f 1 (t)] = F 1 (s) (2.45) L[f 2 (t)] = F 2 (s) (2.46) L[f 1 (t) + f 2 (t)] = F 1 (s) + F 2 (s) (2.47) a L[af 1 (t)] = af 1 (s) (2.48) F (s) = F (s) = L[f(t)] = g(t) = h(t) = f(t) f(t)e st dt (2.49) e st dt = e st s h(t)g(t) dt (= [h(t)g(t)] = [f(t)( e st s )] = [f(t)( e st s )] + 1 s df(t) ( e st dt L h(t) g(t)dt) s )dt df(t) dt e st dt (2.5) df(t) dt e st dt = L[ df(t) dt ] (2.51) 25

27 L[ df(t) dt ] F (s) = [f(t)( e st s )] + t = + 1 s L[df(t) dt ] = ( 1 s f(+)) + 1 s L[df(t) dt ] (2.52) L[ df(t) ] = sf (s) f(+) (2.53) dt f(t) F (s) = h(t) = e st g(t) = f(t)e st dt = L[f(t)] f(t)dt F (s) = = f(t)e st dt (2.54) h(t)g(t) dt (= [h(t)g(t)] = [e st f(t)dt] L F (s) = [e st f(t)dt] = [ f(+)dt + sl[ h(t) g(t)dt) f(t)dt]( s)e st dt + sl[ f(t)dt] (2.55) f(t)dt] L[ f(t)dt] = 1 s F (s) + 1 f(+)dt (2.56) s 26

28 2.4.3 u(t) t + f(t) = g(t)u(t) (2.57) T t + T H(s) = L[h(t)] = h(t) = g(t T )u(t T ) (2.58) t < T u(t T ) = t = t + T H(s) = = g(t T )u(t T )e st dt (2.59) g(t T )u(t T )e st dt (2.6) g(t )u(t )e s(t +T ) dt = e st g(t )u(t )e st dt = e st f(t )e st dt = e st F (s) T s e st 2.6: 27

29 2.4.4 f(t) F (s) f(t) f( ) f( ) = lim t f(t) = lim s sf (s) (2.61) f(t) F (s) f(t) f() f(+) = lim t f(t) = lim s sf (s) (2.62)

30 2.2: Laplace transform theorems Item No. Theorem Name 1 L[f(t)] = F (s) = f(t)e st dt 2 L[kf(t)] = kf (s) 3 L[f 1 (t) + f 2 (t)] = F 1 (s) + F 2 (s) 4 L[e at f(t)] = F (s + a) 5 L[f(t T )] = e st F (s) 6 L[f(at)] = 1 a F ( s a ) 7 L[ df ] = sf (s) f(+) dt 8 L[ dn dt n ] = sn F (s) n s n k f k 1 (+) k=1 t 9 L[ f(τ)dτ] = F (s) + 1 f(+)dt s s (n 1 f( ) = lim s sf (s) 11 f() = lim s sf (s) 29

31 3 n n n n d 2 u(t) dt 2 = a 1 du(t) dt + a 2 u(t) (3.1) u() = α du(t) t= = β u() = dt α u(1) = β (1) (2) (3) (4) (5) (6) (1) (4) 3

32 3.1 dx(t) dt = x(t) + t, x() = 1 (3.2) dx(t) dt = x(t) (3.3) dx(t) x(t) = dt (3.4) log x(t) = t + c (3.5) x t (x) = Ce t (3.6) t x t (t) x x s (t) = at + b (3.2) dx s (t) dt = x s (t) + t = (at + b) + t (3.7) (3.7) x s (t) dx s(t) = a b = a (1 a)t = dt a = 1 b = a(= 1) x s (t) = t 1 x(t) = x t (t) + x s (t) = Ce t + t 1 (3.8) x() = 1 C 1 = C + 1 C = 2 x(t) = x t (t) + x s (t) = 2e t + t 1 (3.9) 31

33 x(t) = C(t)e t (3.1) 1 dx(t) dt = dc(t) e t + C(t) de t dt dt = dc(t) e t C(t)e t dt = x(t) + t = [C(t)e t ] + t dc(t) e t = t dt dc(t) dt = te t (3.11) (3.1) C(t) = c + te t dt (3.12) x(t) = C(t)e t = (c + [te t e t ])e t = ce t + t 1 (3.13) x() = 1 x() = ce + 1 = c 1 = 1 c = 2 x(t) = 2e t + t 1 (3.14) 1 Cξ(t) C(t)ξ(t) 32

34 3.2 L[u(x)] = U(s) dx dt = x + t (3.15) sx(s) x() = X(s) + 1 s 2 sx(s) + X(s) = x() + 1 s 2 (3.16) X(s) = = 1 s + 1 x() + 1 (s + 1)s 2 1 s + 1 x() + 1 s 1 2 s + 1 s + 1 (3.17) x() = 1 x(t) = L 1 1 [ s + 1 ]x() + L 1 [ 1 s ] 2 L 1 [ 1 s ] + 1 L 1 [ s + 1 ] = x()e t + t 1 + e t = e t + t 1 + e t = 2e t + t 1 (3.18) : 33

35 step1: s step2: step3: t step1 s step2 s step3 t 3.3 step D(s) F (s) = N(s) D(s) = b s m + b 1 s m b m (3.19) s n + a 1 s n a n m n D(s) = (s s 1 )(s s 2 ) (s s n ) (3.2) s 1 s 1 = s n F (s) F (s) = K 1 + K 2 + K n (3.21) s s 1 s s 2 s s n (s s 1 ) N(s)(s s 1 ) D(s) = K 1 + K 2(s s 1 ) s s 2 + K n(s s 1 ) s s n (3.22) s = s 1 K 2,, K n K 1 N(s)(s s 1) N(s) = (s s 1 ) D(s) s=s1 (s s = K 1 )(s s 2 ) (s s n ) 1 (3.23) s=s1 34

36 F (s) = a 1 s + a (s + α)(s + β) = K 1 s + α + K 2 s + β (3.24) K 1 = (a 1s + a ) (s + α) = a 1α + a (s + α)(s + β) s= α α + β K 2 = (a 1s + a ) (s + β) = a 1β + a (s + α) (s + β) s= β β + α (3.25) K 1 f(t) = L 1 [F (s)] = L 1 [ s + α ] + L 1 [ s + β ] (3.26) K 2 = L 1 [F (s)] = a 1α + a α + β e αt + a 1β + a α β e βt F (s) = = a 1 s + a (s + σ) 2 + ω = a 1 s + a 2 (s + σ jω)(s + σ + jω) K 1 s + σ jω + K 2 s + σ + jω K 1 = K 2 = (a 1 s + a ) (s + σ jω) = a 1σ + ja 1 ω + a (s + σ jω)(s + σ + jω) s= σ+jω 2jω (a 1 s + a ) (s + σ + jω) = a 1σ ja 1 ω + a (s + σ jω) (s + σ + jω) s= σ jω 2jω = a 1σ + ja 1 ω a 2jω f(t) = L 1 [F (s)] = K 1 e ( σ+jω)t + K 2 e ( σ jω)t = e σt {K 1 e jωt + K 2 e jωt } = e σt {K 1 (cos ωt + j sin ωt) + K 2 (cos ωt j sin ωt)} = e σt {(K 1 + K 2 ) cos ωt + (K 1 K 2 )j sin ωt} 35

37 K 1 K 2 = a 1σ + a + ja 1 ω 2jω K 1 + K 2 = a 1σ + a + ja 1 ω + a 1σ a + ja 1 ω 2jω 2jω a 1σ a + ja 1 ω 2jω = 2a 1 σ + 2a 2jω = 2a 1 j ω 2j ω = a 1 = a 1σ + a jω (3.27) f(t) = e σt {(K 1 + K 2 ) cos ωt + (K 1 K 2 )j sin ωt} = e σt {a 1 cos ωt + a a 1 σ sin ωt} (3.28) ω K M K M x(t) x() = A dx dt () = B M d2 x(t) dt 2 + Kx(t) = (3.29) L{ d2 x(t) } = s 2 X(s) sx() d x() (3.3) dt 2 dt Ms 2 X(s) Msx() M d x() + KX(s) dt = Ms 2 X(s) MsA MB + KX(s) = X(s) = As + B s 2 + K M (Ms 2 + K)X(s) = MsA + MB (s 2 + K )X(s) = sa + B (3.31) M s = A s 2 + K M + B K M K M s 2 + K M (3.32) K M K y(t) =L 1 [X(s)] = A cos M t + B K sin M t (3.33) B = cos 36 K M t

38 D(s) D(s) = F (s) s = s 1 k F (s) = N(s) D(s) = N(s) (s s 1 ) k (s s 2 ) (s s n ) (3.34) F (s) = N(s) D(s) = K 1k (s s 1 ) k + K 1 k 1 (s s 1 ) k K 1 1 (s s 1 ) + K 2 (s s 2 ) + + K n (s s n ) (s s 1 ) k N(s) D(s) (s s 1) k = K 1k + K 1k 1 (s s 1 ) + + K 11 (s s 1 ) k 1 s = s 1 K 1k K 2 +(s s 1 ) k { (s s 2 ) + + K n (s s n ) } N(s) D(s) (s s 1) k = K 1k (3.35) s=s1 (3.35) s { } d N(s) ds D(s) (s s 1) k s s 1 K 1k 1 = K 1k 1 + K 1k 2 (s s 1 ) + + K 11 (s s 1 ) k 2 K 2 +k(s s 1 ) k 1 { (s s 2 ) + + K n (s s n ) } +(s s 1 ) k d ds { K 2 (s s 2 ) + + K n (s s n ) } { } d N(s) ds D(s) (s s 1) k = K 1k 1 (3.36) s=s1 37

39 1 s 2 (T s + 1) 1 s 2 (T s + 1) = K 1 s 2 + K 2 s + K 3 T s + 1 (3.37) s 2 K 1 = s 2 = 1 (T s + 1) s= K 2 = d s 2 T ds s 2 = (T s + 1) s= (T s + 1) 2 = T s= T s + 1 K 3 = s 2 = T 2 (T s + 1) s= 1 T 1 s 2 (T s + 1) = 1 s 2 T s + T 2 T s + 1 (3.38) 38

40 RC v o (t) 3.2: RC i(t) = C dv o dt (3.39) Ri(t) = v i (t) v o (t) (3.4) RC dv (t) + v o (t) = v i (t) (3.41) dt [ L RC dv ] o(t) + L[v o (t)] = L[v i (t)] (3.42) dt L[v o (t)] = V o (s) L[v i (t)] = V i (s) [ ] dvo (t) L = sv o (s) v o () (3.43) dt (RCsV o (s) RCv o ()) + V o (s) = V i (s) V o (s) = 1 RCs + 1 V i(s) + RC RCs + 1 v o() v o (t) [ ] [ ] v o (t) = L 1 [V o (t)] = L 1 1 RCs + 1 V i(s) + L 1 RC RCs + 1 v o() v i (t) v o (t) (3.44) 39

41 3.5 v i (t) v o () v o (t) v i (t) = u(t), v o () = V i (s) = L[v i (t)] = 1 s [ ] [ ] v o (t) = L 1 [V o (t)] = L 1 1 RCs + 1 V i(s) + L 1 RC RCs + 1 v o() [ ] = L RCs + 1 s [ ] v o (t) =L 1 1 (RCs + 1)s [ ] [ = L 1 K1 + L 1 s K 2 RCs + 1 ] (3.45) 1s K 1 = = 1 (RCs + 1) s s= K 2 = 1 (RCs + 1) = RC (3.46) (RCs + 1)s s= 1 RC [ ] [ ] v o (t) = L 1 K1 + L 1 K2 1 s RC s + 1/RC = K 1 + K 2 t RC e RC = 1 e t RC (3.47) 3.3: v i (t) = u(t), v o () = 4

42 3.5.2 v i (t) = t, v o () = V i (s) = L[v i (t)] = 1 s 2 [ ] v o (t) = L 1 [V o (t)] = L RCs + 1 s 2 (3.48) [ ] v o (t) =L 1 1 (RCs + 1)s 2 [ ] = L 1 K1 s 2 [ ] [ + L 1 K2 + L 1 s K 3 RCs + 1 ] (3.49) 1 s 2 K 1 = (RCs + 1) s 2 = 1 s= K 2 = d 1 s 2 RC ds (RCs + 1) s 2 = s= (RCs + 1) 2 = RC s= K 3 = 1 (RCs + 1) (RCs + 1)s 2 = (RC) 2 (3.5) s= 1 RC [ ] v o (t) = L 1 K1 s 2 = K 1 t + K 2 + K 3 [ ] [ + L 1 K2 + L 1 s t RC e RC K 3 RCs + 1 = t RC + RCe t RC = t RC(1 e t RC ) (3.51) ] 3.4: v i (t) = t, v o () = 41

43 3.5.3 v i (t) = u(t), v o () = v V i (s) = L[v i (t)] = 1 s [ v o (t) = L 1 [V o (t)] = L 1 1 RCs + 1 ] [ 1 + L 1 s RC RCs + 1 v o() ] (3.52) [ ] L 1 RC RCs + 1 v o() = v o ()e t RC (3.53) [ ] [ v o (t) = L 1 K1 + L 1 K 2 s RCs + 1 = K 1 + K 2 t RC e RC ] + L 1 [ ] RC RCs + 1 v o() + v e t RC (3.54) K 1 = 1 (3.55) K 2 = RC v o (t) = 1 e t RC + v e t RC 3.3 v 3.5: v i (t) = u(t), v o () = v 42

44

45 4.1: x F = kx (4.1) m F ẍ F = mẍ (4.2) F ẋ F = dẋ (4.3) 4.2 x P 2 P 1 q q = 1 R h (P 2 P 1 ) (4.4) R h dt qdt A Adx qdt = Adx (4.5) 44

46 4.2: R h A 2 = d A dx dt = q = 1 R h (P 2 P 1 ) (4.6) F = (P 2 P 1 )A = R h A 2 dx dt (4.7) F = dẋ (4.8) m 2 m 1 m 1 F F m 2 x 2 = x 2 = ẍ 2 = m 1 m 1 m 2 m 2 m 1 m m 1 m 2 m 2 m 1 m 1 m 2 m m 2 m 1 ẍ 1 + k 1 x 1 + d 1 ẋ 1 = F + k 2 (x 2 x 1 ) + d 3 (ẋ 2 ẋ 1 ) m 2 ẍ 2 + k 3 x 2 + d 2 ẋ 2 = k 2 (x 1 x 2 ) + d 3 (ẋ 1 ẋ 2 ) 45

47 4.3: 4.4: RLC q = t di dt L + Ri + 1 C t idt idt = v i (4.9) d 2 q dt 2 L + R q + q C = v i (4.1)

48 4.5: : RLC

49 4.7: l 2 m θ(t) = lmgsin(θ) + f(t) M = -lmgsinq M q M q M = -lmgq 4.8: θ sin(θ) θ l 2 m θ(t) = lmgθ + f(t) θ = 4.8 M = lmgsin(θ) M = lmgθ 48

50 f 1 (t) θ 1 (t) f 2 (t) θ 2 (t) l 2 m θ 1 (t) + lmgθ 1 (t) = f 1 (t) l 2 m θ 2 (t) + lmgθ 2 (t) = f 2 (t) l 2 m( θ 1 (t) + θ 1 (t)) + lmg(θ 1 (t) + θ(t)) = f 1 (t) + f 2 (t) h q i q o q q 4.9: v = 2gh q o = k 2g h (4.11) g 49

51 P ρv2 + ρgz = const[pa] P ρ z v 2 ρgz = 1 2 ρv2 v = 2gz h h q = q o + q o = k 2g( h + h) (4.12) q( h) = q o + q o q( h) =k 2g( h + h) = k 2g h 1 + h h = q o 1 + h h (4.13) a q( h) = q(a) + q (a)( h a) + + q(n) (a) ( h a) n (4.14) n! ( q(a) = q 1 + ā ) 1 2 h q (a) = 1 2 a = q h ( 1 + ā ) 1 2 h q( h) = q + q h + (4.15) 2 h 2 R 1 R = q 2 h q( h) = q + 1 R h = q + q (4.16) S h + q t = S h + 1 R h t = q i t (4.17) S d h dt + 1 R h = q i (4.18) 4.9 h q o 5

52 m g mẍ + kx = f + mg (4.19) f = x mg = kx x = x x x = x + x x ẍ = ẍ m ẍ + k( x + x ) = f + mg = f + kx m ẍ + k x = f (4.2) (mg) 4.1: 51

53 5 jω s RC 5.1: RC i(t) = C dv(t) (5.1) dt Ri(t) = v i (t) v o (t) (5.2) [ ] [ ] v o (t) = L 1 [V o (s)] = L 1 1 RCs + 1 V i(s) + L 1 RC RCs + 1 v o() (5.3) 52

54 v i (t) = u(t), v o () = V i (s) = L[u(t)] = 1 s v o (t) = 1 e t RC (5.4) v i (t) = t, v o () = V i (s) = L[u(t)] = 1 s 2 v o (t) = t RC + RCe t RC = t RC(1 e t RC ) (5.5) v o(t) v i (t) (3.47) (3.51) (5.2) RCsV o (s) + V o (s) = V i (s) + RCv o () V o (s) = 1 RCs + 1 V i(s) + RC RCs + 1 v o() v o () = V o (s) V i (s) = 1 RCs + 1 (5.6) s R C V i (s) s L[ ] = G L[ ] (5.7) 53

55 (1) (2) (3) G(s) = V o(s) = 1 V i (1) (s) RCs+1 (2) R C (3) 1 2 G 1 (s) G 2 (s) G 1 (s)g 2 (s) 5.2 v o () RCsV o (s) + V o (s) = V i (s) + RCv o () (5.8) t = v o () RC RCs + 1 v o() 1 RCs + 1 RCv o() v o () V i (s) V i (s) + RCv o () 1 V o (s) = RCs + 1 (V i(s) + RCv o ()) (5.9)

56 5.3 (1) (2) (3) = L[ ] L[ ] 5.2 K x D M f 5.2: Mẍ(t) = Dẋ(t) Kx(t) + f (5.1) s 2 MX(s) + sdx(s) + KX(s) = F (s) (5.11) L(x(t)) = X(s), L(f(t)) = F (s) G(s) = X(s) F (s) = 1 Ms 2 + Ds + k (5.12)

57 6 s t convolution 2 f g f g x(t) y(t) G(s) Y (s) = G(s)X(s) Y (s) = G(s)U(s) s t g(t) u(t) 6.1 G(s) δ(t) 2 x(t) g(t) x(t) g(t) 1 fig:1-1a 2 x(t) g(t) g(t) L[δ(t)] = 1 G g(t) = L 1 [G(s)L[δ(t)]] = L 1 [G(s)] (6.1) G(s) g(t) G(s) g(t) x(t) y(t) x(t) 6.2 t 1 56

58 6.1: 6.2: τ = n t x(τ) t τ x(τ) tg(t τ) (6.2) y(t) y(t) = x(τ) tg(t τ) (6.3) n t y(t) = lim x(τ) tg(t τ) = t t n x(τ)g(t τ)dτ (6.4) 57

59 τ = t τ y(t) = = t t x(t τ )g(τ )d( τ ) (6.5) x(t τ )g(τ )dτ (6.6) [ ] g(t) = L 1 1 = e αt u(t) y(t) (t ) s + α y(t) = = t t = e αt 1 α x(τ)g(t τ)dτ t [ ] 1 t e α(t τ) dτ = e αt e ατ dτ = e αt α eατ [ e αt 1 ] = 1 [ ] 1 e αt α u(t) 1 y(t) s +α 6.3: 58

60 : g(t) 6.5: 59

61 g(t) f(t) g(t) = u(t) u(t 1) (6.7) f(t) = u(t) 3u(t 1) + 2u(t 2) (6.8) u(t 1) t = 1 1 G(s) = 1 s 1 s e s = 1 s [1 e s ] (6.9) F (s) = 1 s 3 s e s + 2 s e 2s = 1 s [1 3e s + 2e 2s ] (6.1) Y (s) = G(s)F (s) = 1 s [1 e s ] 1 s [1 3e s + 2e 2s ] y(t) = 1 s 2 [1 e s ][1 3e s + 2e 2s ] = 1 s 2 [1 4e s + 5e 2s 2e 3s ] (6.11) y(t) = L 1 [Y (s)] = t 4(t 1)u(t 1) + 5(t 2)u(t 2) 2(t 3)u(t 3) t t < 1 3t t < 2 = (6.12) 2t 6 2 t < 3 3 t 6.6: 6

62 6.2.2 t y(t) = x(τ)g(t τ)dτ (6.13) 6.5 f(τ) = τ < 1 τ < τ < 2 2 τ (6.14) g(t ) = t < 1 t < 1 (6.15) 1 t g(t τ) 6.7 τ g(t τ) = t < τ 1 t 1 < τ t τ t 1 (6.16) t < t τ < t < τ 1 t τ t 1 t < 1 t 1 < τ t (6.16) 6.7 g(t ) τ t τ 6.7: g(t τ) t

63 t < 1 t y(t) = 1 1dτ = t (6.17) 1 t < 2 y(t) = t 1 1dτ + 1 t 1 1 1dτ + t 1 1 ( 2)dτ = + [t] 1 t 1 2 [t]t 1 = [1 (t 1)] 2[t 1] = 3t + 4 (6.18) 2 t < 3 y(t) = dτ + t 1 t ( 2)dτ + ( 2)dτ t 2 1 dτ = + 2 [t] 2 t 1 + = 2[2 (t 1)] = 2t 6 (6.19) 3 t y(t) = dτ + t dτ + ( 2)dτ + t 3 1 dτ = t 1 2 dτ (6.2) (6.12) y(t) = t t < 1 3t t < 2 2t 6 2 t < 3 3 t (6.21) 62

64 6.8: 6.3 s (6.4) y(t)e st dt = t = t + τ y(t)e st dt = = = = [ G(s) = X(s) = Y (s) = x(τ) ] x(τ)g(t τ)dτ [ [ x(τ) τ [ x(τ) x(τ)e sτ dτ 63 e st dt ] g(t τ)e st dt dτ g(t )e st dt ] e sτ dτ g(t )e st dt ] e sτ dτ g(τ)e sτ dτ x(τ)e sτ dτ y(τ)e sτ dτ g(t )e st dt

65 Y (s) = X(s)G(s) (6.22) s L[x(t) g(t)] = X(s)G(s) (6.23) * s 6.9 s F 2 (s) = G 1 (s)f 1 (s) Y (s) = G 2 (s)f 2 (s) Y (s) = G 2 (s)g 1 (s)f 1 (s) 6.9: L[f 1 (t) f 2 (t)] = F 1 (s)f 2 (s) L[f 1 (t)f 2 (t)] = F 1 (s)f 2 (s) (6.24) F 1 (s)f 2 (s) s 64

66 7 7.1 (1) (2) (3) Ms 2 X(s) = KX(s) DsX(s) + F (s) (7.1) 65

67 7.1: F (s) X(s) F (s) KX(s)+DsX(s) X(s) 1 Ms f f D M K x D x M Kx M x 7.2: 7.3: 66

68 X(s) F (s) = 1 Ms 2 + Ds + K (7.2) F(s) X(s) 7.4: ( ) R 1 R 2 vi i1 v 2 C 1 1 i C 2 vo 7.5: C 1 V 1 (s) V 1 (s) = V i (s) R 1 [I 1 (s) + I 2 (s)] V o (s) = V 1 (s) R 2 I 2 (s) V 1 (s) = I 1(s) sc 1 V o (s) = I 2(s) sc 2 V i (s) V o (s) I 2 = sc 2 V o (s) V o = V 1 (s) R 2 I 2 (s) I 1 (s)+i 2 (s) V 1 (s) = V i (s) R 1 [I 1 (s) + I 2 (s)]

69 V i (s) + V o (s) + R 1 sc 1 R 2 + I 1 + sc 2 ( s) I : 7.2 (a) (b) (a) (b) (a) (b) (c) (d) G 1 G 2 G 1 (s)g 2 (s) 7.7: 68

70 7.2.2 G 1 G 2 U 1 (s) U 2 (s) Y 1 (s) Y 2 (s) Y 1 (s) = G 1 (s)u 1 (s) Y 2 (s) = G 2 (s)u 2 (s) U 1 (s) = U 2 (s) 7.8: Y (s) =Y 1 (s) + Y 2 (s) = [G 1 (s) + G 2 (s)]u(s) (7.3) ( ) G 1 (s) = G 2 (s) = G(s) Y (s) =Y 1 (s) + Y 2 (s) = G(s)[U 1 (s) + U 2 (s)] (7.4) ( ) 69

71 7.2.3 G(s) E(s) E(s) = U(s) H(s)Y (s) Y (s) = G(s)E(s) Y (s) U(s) = G(s) 1 + G(s)H(s) (7.5) H(s) = G(s) 7.9:

72 7.1: u + G ( ) G ( s) 2 1 s H ( s 1 ) y u u + G ' 1 ( s) G ( ) 2 s y G ( ) G ( s) 2 1 s H ( s 1 ) 1/ G 2( s ) y 7.11: ) + + G 1 ( s) + H 2 ( s) G 2 ( s) H 1 ( s) G ( s 3 ) H 3 ( s) 7.12: 71

73 : Y (s) U(s) = G 1 G 2 G G 2 G 3 H 2 + G 1 G 2 H 1 + G 1 G 2 G 3 H 3 (7.6) 72

74 8 s 8.1 δ(t) u(t) t(t) G(s) g(t) = L 1 [G(s)1] (8.1) [ f(t) = L 1 G(s) 1 ] (8.2) s [ h(t) = L 1 G(s) 1 ] (8.3) s 2 g(t) f(t) h(t) s G(s) = N(s) D(s) = b s m + b 1 s m b m e Ls s n + a 1 s n a n = Ksp n p1 i=1(1 + T i s) n p2 i=1 1(s 2 + 2ω i ξ i s + ωi 2 ) s l j l1 j=1(1 + T j s) n l2 e Ls (8.4) j=1(s 2 + 2ω j ξ j s + ωj 2 ) { K, s, 1 s, T s, 1 } e Ls s 2 +2ωξs+ω 2 n 2 73

75 N A θ A N B θ B θ A θ B θ B = N A N B θ A (8.5) N A N B 8.1: A h(t) V (t) = Ah(t) Ah(t) = t u(t)dt (8.6) H(s) U(s) = 1 As (8.7) 1 s 1 Cs 74

76 8.2: q +u h o +h U(s) 1 sa+ 1 R h H(s) A q o +y 8.3: h q R h = 2h y = 1 h(t) R h dh dt A = u(t) 1 R h h(t) (8.8) sah(s) = U(s) 1 R h H(s) {sa + 1 R h }H(s) = U(s) q H(s) U(s) = 1 sa + 1 R h (8.9) s 75

77 8.4 x(t) y(t) y() = K(x(t) y(t)) = D dy dt G(s) = Y (s) X(s) = K K + Ds K x y D 8.4: : 1 v 2 (t) i 1 (t) v 2 (t) = M di 1 dt (8.1) 76

78 M Ls 8.6 f(t) = D dx dt oil D dx D dt f 8.6: D M f K x F(s) 1 2 Ms + Ds+ K X(s) 8.7: 77

79 M d2 x(t) dt 2 + D dx(t) dt + Kx(t) = f(t) (8.11) X(s) F (s) = 1 Ms 2 + Ds + K (8.12) s L v y(t) = {, t < L v u(t L), L t (8.13) v v Y (s U(s) = L e v s (8.14) l A v B 8.8: 78

80 A B 79

81 9 (1) (2) (3) (a) (b) (c)2 9.1 f(t) = L 1 [ K s 1 ] = K (9.1) g(t) = L 1 [ K s 1 s ] = Kt (9.2) h(t) = L 1 [ K s 1 s 2 ] = Kt2 2 (9.3) 9.2 L [ ] f(t) =L 1 K T s [ ] K/T = L 1 = K t s + 1/T T e T (9.4) 8

82 !"#$%&!'()*#%& +!,%& u(t) u(t) y(t)! t y(t) t y(t) t y(t)! t t t 9.1: [ g(t) =L 1 K T s ] s [ ] [ = L 1 K + L 1 s K = K K 1 = K K 1 s + 1/T ] (9.5) g(t) = K(1 e t T ) (9.6) [ h(t) =L 1 K T s ] = K [ ] t T (1 e tt ) s 2 (9.7) (3.47) (3.51) 9.2 t t 81

83 9.2: 9.2 Y (s) = t = u() 1 K U(s) (9.8) T s + 1 sy (s) = 1 { Y (s) + KU(s)} (9.9) T dy(t) t= = K dt T (9.1) (9.6) y( ) = lim t {K(1 e t T )} = K (9.11) t = K T T K t = 82

84 τ T s[sec] (R) (C) RC (τ) (τ) R(Ω) C(F ) 1 v(t) = E(1 e t RC ) τ = RC v(τ) = E(1 e τ RC ) = E(1 e 1 ).632E G(s) = K s 2 + as + b = ω 2 n s 2 + 2ω n ζs + ω 2 n (9.12) s 2 + 2ω n ζs + ωn 2 = (s s 1 )(s s 2 ) (9.13) s 1 s 2 (1)ζ = 1 s 1 = s 2 s 2 + 2ω n ζs + ωn 2 = (s + ω n ) 2 (9.14) (2)ζ > 1 s = ζω n ± ζ 2 ω 2 n ω 2 n = ζω n ± ω n ζ 2 1 (9.15) ζ 2 1 > s 1 s 2 s 2 + 2ω n ζs + ω 2 n = (s s 1 )(s s 2 ) (9.16) (3)ζ < 1 ζ 2 1 < s = ζω n ± ω n j s 1 s 2 1 ζ 2 (9.17) 83

85 g(t) s 1, s 2 [ g(t) =L 1 ωn 2 ] 1 s 2 + 2ω n ζs + ωn 2 [ ] [ ] = L 1 K1 + L 1 K2 s s 1 s s 2 (9.18) (1)ζ = 1 G(s) = ωn 2 (s + ω n ) = ωn1! 2 (9.19) 2 (s + ω n ) (1+1) (t k = 1 ) g(t) = ω 2 nt 1 e ωnt (9.2) (2)ζ > 1 s 1 = ζω n + ω n ζ 2 1 s 2 = ζω n ω n ζ 2 1 (9.21) s 1 s 2 = 2ω n ζ2 1 (9.18) K 1 = K 2 = [ ] g(t) = L 1 K1 s s 1 = = = [ ωn 2 (s s ] 1 ) (s s = ω2 n ω n = 1 )(s s 2 ) s=s 1 s 1 s 2 2 ζ 2 1 [ ωn 2 (s s ] 2 ) (s s 1 ) (s s = ω2 n = ω n 2 ) s=s 2 s 1 s 2 2 ζ 2 1 [ ] + L 1 K2 s s 2 ω n 2 ζ 2 1 e( ζωn+ωn ζ 2 1)t ζ ζ ω 2 1t n eωn e ωn 2 1t ζ2 1 e ζωnt 2 ω n 2 ζ 2 1)t ζ 2 1 e( ζωn ωn ω n ζ2 1 e ζω nt sinh(ω n ζ 2 1t) (9.22) 84

86 x 2 + y 2 = 1 x = sin θ y = cos θ x 2 y 2 = 1 cosh θ = eθ + e θ sinh θ = eθ e θ 2 2 (3)ζ < 1 s 1 = ζω n + ω n j 1 ζ 2 s 2 = ζω n ω n j 1 ζ 2 (9.23) s 1 s 2 = 2jω n 1 ζ2 (9.18) [ ωn 2 (s K 1 = s ] 1 ) (s s = ω2 n ω n = 1 )(s s 2 ) s=s 1 s 1 s 2 2j 1 ζ 2 [ ωn 2 ] (s s 2 ) K 2 = (s s 1 ) (s s = ω2 n ω n = 2 ) s=s 2 s 1 s 2 2j 1 ζ 2 [ ] g(t) = L 1 K1 s s 1 = = = [ ] + L 1 K2 s s 2 ω n 2j 1 ζ 2 e( ζω n+jω n ω n 1 ζ 2 e ζωnt ejω n ζ = 1 ζ 2 )t ω n 2j 1 ζ 2 e( ζω n jω n 1 ζ 2 )t 1 ζ 2t e jω n 1 ζ 2 t 2j ω n 1 ζ 2 e ζω nt sin(ω n 1 ζ 2 t) (9.24) g(t) = ω n sin ω n t (9.25) f(t) [ 1 h(t) = L 1 s (s 2 + 2ω n ζs + ωn) 2 [ ] [ ] [ ] = L 1 K + L 1 K1 + L 1 K2 s s + s 1 s + s 2 ω 2 n ] (9.26) 85

87 9.3: (1)ζ = 1 h(t) = L 1 [ 1 s ωn 2 ] (s 2 + 2ω n ζs + ωn) 2 = ω 2 n s(s + ω n ) 2 (9.27) (9.26) K = K 1 = K 2 = [ ωn s 2 ] = 1 s(s + ω n ) 2 s= [ ω 2 n (s + ω n ) 2 ] s (s + ω n ) 2 = ω n s= ω [ n d ωn 2 (s ω n ) 2 ] ds s (s ω n ) 2 = 1 s= ω n [ ] [ ] [ ] h(t) = L 1 K + L 1 K 1 + L 1 K 2 s (s + s n ) 2 (s + s n ) = 1 ω n te ωnt e ωnt = 1 (ω n t + 1)e ωnt (9.28) 86

88 (2)ζ > 1 h(t) = 1 e ζω nt ζ2 1 sinh( ζ 2 1ω n t + tan 1 ζ2 1 ) (9.29) ζ (3)ζ < 1 (9.26) K = K 1 = K 2 = [ ωn s 2 ] s(s 2 + 2ζω n s + ωn) 2 [ ωn 2 (s s ] 1 ) s (s s 1 )(s s 2 ) [ ωn 2 (s s ] 2 ) s(s s 1 ) (s s 2 ) s= s=s 1 = s=s 2 = = 1 ω 2 n s 1 (s 1 s 2 ) ω 2 n s 2 (s 2 s 1 ) s 1 = ζω n + ω n j 1 ζ 2 s 2 = ζω n ω n j 1 ζ 2 (9.3) s 1 s 2 = 2jω n 1 ζ2 K 1 = ω 2 n s 1 (s 1 s 2 ) = K 2 = ζ j 1 ζ 2 2j 1 ζ 2 ωn 2 ( ζω n + ω n j 1 ζ 2 )(2jω n 1 ζ2 ) = ζ j 1 ζ 2 2j 1 ζ 2 [ ] [ ] h(t) = L 1 K + L 1 K1 s s + s 1 = K + K 1 e s1t + K 2 e s2t [ (ζ + j = 1 e ζωnt 2j 1 ζ 2 = 1 e ζω nt 1 ζ 2 [ ζ sin( [ ] + L 1 K2 s + s 2 1 ζ 2 )e j 1 ζ 2 ω nt + ( ζ + j 1 ζ 2 ω n t) + = 1 e ζω nt 1 ζ sin( 1 ζ 2 ω 1 ζ 2 n t + tan 1 2 ) ζ ] 1 ζ 2 cos( 1 ζ 2 ω n t) ] 1 ζ 2 )e j 1 ζ 2 ω nt 87

89 ζ = h(t) = 1 cos ω n t (9.31) K 9.4: 2 88

90 9.4 1 ζ ζ > 1 ζ < 1 ζ = 1 1 ζ > 1 2 ζ = 1 3 ζ < 1 ζ ω 2 s 1, s 2 = σ ± jω = ζω n ± jω n 1 ζ 2 (9.32) s 1, s 2 ω n Im s 1 +j - Re s 2 -j 9.5: 2 89

91 1 G(s) H(s) 7 H 1 (s) H 2 (s) H 3 (s) Y (s) U(s) = G 1 G 2 G G 2 G 3 H 2 + G 1 G 2 H 1 + G 1 G 2 G 3 H 3 (1.1) G(s) H(s) 8 s Y (s) U(s) = G(s) 1 + G(s)H(s) (1.2) U(s) Y (s) U(s) Y (s) = K 1 s s 1 + K 2 s s K n s s n + K+ s s i + K s s i (1.3)

92 s 1 s n 1 + G(s)H(s) = (1.2) y(t) y(t) = K 1 e s 1t + K 2 e s 2t + + K n e s nt + K + e s i + K e s i (1.4) s i = σ i + jγ i y i (t) s i K + e s it = K + e (σ i+jγ i )t K e s it = K e (σ i jγ i )t (1.5) (1.6) y(t) [ ] [ ] K g(t) = L 1 + K + L 1 s s i s s i 1 = e (σ i+jω i )t 1 e (σ i jω i )t 2jω i 2jω i = 1 ω i e σ it ejω it e jω it 2j = 1 ω i e σ it sin(ω i t) (1.7) 1.1: (1)s 1 s n (1.7) σ i < t (2) s s = 91

93 (3)s 1 s n (1.7) σ i = g(t) = (1/ω i ) sin(ω i t) t (4)s 1 s n (1.7) σ i > ω i = ω i σ i > σ i = σ i < jω > 1 + G(s)H(s) = H(s) 1.2: 92

94 1.3 G(s) = N(s) D(s) (1.8) (D(s) = ) (N(s) = ) U(s) Y (s) G(s) = K(s z 1)(s z 2 ) (s z m ) (s p 1 )(s p 2 ) (s p n ) (1.9) U(s) = 1 Y (s) s K 1 Y (s) = K s + K 1 + K n (1.1) s p 1 s p n y(t) = K + K 1 e p 1t + K n e pnt (1.11) K = [Y (s)s] s= = K( z 1)( z 2 ) ( z m ) ( p 1 )( p 2 ) ( p n ) (1.12) K 1 = [Y (s)(s p 1 )] s=p1 = K(p 1 z 1 )(p 1 z 2 ) (p 1 z m ) (1.13) p 1 (p 1 p 2 ) (p 1 p n ) K 2 K 3 (1) (K i p i K i ) (2) p i z i K i (3) (4) 93

95 t = 1.3 p 1 I R 1. t z1 p1 I R p/z 1. t I p/z R p 1 z 1 1. t 1.3: ( Y (s) = p 1 z 1 s + z 1 s + p 1 1 s = K s + K 1 s + p 1 (1.14) K = p 1 [ (s + z 1) s z 1 (s + p 1 ) s ] s= = p 1 z 1 = 1 z 1 p 1 (1.15) K 1 = p 1 [ s + z 1 s + p 1 z 1 s + p ] s= p1 = p 1 p 1 + z 1 = p 1 z 1 1 s z 1 p 1 z 1 (1.16) y(t) = 1 + p 1 z 1 e p 1t z 1 (1.17) t = y() = p 1 z 1 z > p ( ) y() 1 p > z ( ) y() 1 94

96 I 1. I 1. p2 p1 R p 2 R 1. t p 1 t I I 1. p 2 p 1 z 1 R p 2 p 1 R I 1. t p 3 I 1. t p 2 z1 p 2 p1 R p 1 R t p 3 t 1.4: (

97 f(t) =, t > F (s) = f(t)e st dt (11.1) f(t) F (s) = L[f(t)] t t s s t step1 s step2 step3 t step1 s step2 s s step3 t 96

98 11.2 L[ ] = G L[ ] (11.2) (1) (2) (3) m x F, X mẍ + kx = f (11.3) ms 2 X + kx = F (11.4) X F = 1 ms 2 + k (11.5) mg mg 11.3 s y(t) = t x(τ)g(t τ)dτ (11.6) 97

99 s Y (s) = X(s)G(s) (11.7) s 11.1 s F 2 (s) = G 1 (s)f 1 (s) Y (s) = G 2 (s)f 2 (s) Y (s) = G 2 (s)g 1 (s)f 1 (s) 11.1: L[f 1 (t) + f 2 (t)] = F 1 (s) + F 2 (s) L[f 1 (t) f 2 (t)] = F 1 (s)f 2 (s) L[f 1 (t)f 2 (t)] = F 1 (s)f 2 (s) (11.8) F 1 (s)f 2 (s) s 11.4 P 11.2 C 1 C E E = C 2 R Y Y = C 1 P E 98

100 11.2: Y = C 1 P (C 2 R Y ) (1 + C 1 P )Y = C 1 C 2 RP R Y R = C 2C 1 P 1 + C 1 P (11.9) s 99

101 11.5 ( ) ( )L ( ) ( ) ( ) ( ) ( ) ( ) 1

102 Rev.. August 3 29 TEX Rev.1. March 3, 212 PPT Rev.1.5 March 25, Rev.2.1 March

213 March 25, 213, Rev.1.5 4........................ 4........................ 6 1 8 1.1............................... 8 1.2....................... 9 2 14 2.1..................... 14 2.2............................

More information

2012 September 21, 2012, Rev.2.2

2012 September 21, 2012, Rev.2.2 212 September 21, 212, Rev.2.2 4................. 4 1 6 1.1.................. 6 1.2.................... 7 1.3 s................... 8 1.4....................... 9 1.5..................... 11 2 12 2.1.........................

More information

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d S I.. http://ayapin.film.s.dendai.ac.jp/~matuda /TeX/lecture.html PDF PS.................................... 3.3.................... 9.4................5.............. 3 5. Laplace................. 5....

More information

IA hara@math.kyushu-u.ac.jp Last updated: January,......................................................................................................................................................................................

More information

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt S I. x yx y y, y,. F x, y, y, y,, y n http://ayapin.film.s.dendai.ac.jp/~matuda n /TeX/lecture.html PDF PS yx.................................... 3.3.................... 9.4................5..............

More information

Note.tex 2008/09/19( )

Note.tex 2008/09/19( ) 1 20 9 19 2 1 5 1.1........................ 5 1.2............................. 8 2 9 2.1............................. 9 2.2.............................. 10 3 13 3.1.............................. 13 3.2..................................

More information

p06.dvi

p06.dvi I 6 : 1 (1) u(t) y(t) : n m a n i y (i) = b m i u (i) i=0 i=0 t, y (i) y i (u )., a 0 0, b 0 0. : 2 (2), Laplace, (a 0 s n +a 1 s n 1 + +a n )Y(s) = (b 0 s m + b 1 s m 1 + +b m )U(s),, Y(s) U(s) = b 0s

More information

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 0 < t < τ I II 0 No.2 2 C x y x y > 0 x 0 x > b a dx

More information

08-Note2-web

08-Note2-web r(t) t r(t) O v(t) = dr(t) dt a(t) = dv(t) dt = d2 r(t) dt 2 r(t), v(t), a(t) t dr(t) dt r(t) =(x(t),y(t),z(t)) = d 2 r(t) dt 2 = ( dx(t) dt ( d 2 x(t) dt 2, dy(t), dz(t) dt dt ), d2 y(t) dt 2, d2 z(t)

More information

http://www.ike-dyn.ritsumei.ac.jp/ hyoo/wave.html 1 1, 5 3 1.1 1..................................... 3 1.2 5.1................................... 4 1.3.......................... 5 1.4 5.2, 5.3....................

More information

2 0.1 Introduction NMR 70% 1/2

2 0.1 Introduction NMR 70% 1/2 Y. Kondo 2010 1 22 2 0.1 Introduction NMR 70% 1/2 3 0.1 Introduction......................... 2 1 7 1.1.................... 7 1.2............................ 11 1.3................... 12 1.4..........................

More information

sikepuri.dvi

sikepuri.dvi 2009 2 2 2. 2.. F(s) G(s) H(s) G(s) F(s) H(s) F(s),G(s) H(s) : V (s) Z(s)I(s) I(s) Y (s)v (s) Z(s): Y (s): 2: ( ( V V 2 I I 2 ) ( ) ( Z Z 2 Z 2 Z 22 ) ( ) ( Y Y 2 Y 2 Y 22 ( ) ( ) Z Z 2 Y Y 2 : : Z 2 Z

More information

pdf

pdf http://www.ns.kogakuin.ac.jp/~ft13389/lecture/physics1a2b/ pdf I 1 1 1.1 ( ) 1. 30 m µm 2. 20 cm km 3. 10 m 2 cm 2 4. 5 cm 3 km 3 5. 1 6. 1 7. 1 1.2 ( ) 1. 1 m + 10 cm 2. 1 hr + 6400 sec 3. 3.0 10 5 kg

More information

I 1

I 1 I 1 1 1.1 1. 3 m = 3 1 7 µm. cm = 1 4 km 3. 1 m = 1 1 5 cm 4. 5 cm 3 = 5 1 15 km 3 5. 1 = 36 6. 1 = 8.64 1 4 7. 1 = 3.15 1 7 1 =3 1 7 1 3 π 1. 1. 1 m + 1 cm = 1.1 m. 1 hr + 64 sec = 1 4 sec 3. 3. 1 5 kg

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 3.............................. 3.............................. 4.3 4................... 5.4........................ 6.5........................ 8.6...........................7

More information

K E N Z OU

K E N Z OU K E N Z OU 11 1 1 1.1..................................... 1.1.1............................ 1.1..................................................................................... 4 1.........................................

More information

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y [ ] 7 0.1 2 2 + y = t sin t IC ( 9) ( s090101) 0.2 y = d2 y 2, y = x 3 y + y 2 = 0 (2) y + 2y 3y = e 2x 0.3 1 ( y ) = f x C u = y x ( 15) ( s150102) [ ] y/x du x = Cexp f(u) u (2) x y = xey/x ( 16) ( s160101)

More information

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8)

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8) 4 4 ) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8) a b a b = 6i j 4 b c b c 9) a b = 4 a b) c = 7

More information

[1.1] r 1 =10e j(ωt+π/4), r 2 =5e j(ωt+π/3), r 3 =3e j(ωt+π/6) ~r = ~r 1 + ~r 2 + ~r 3 = re j(ωt+φ) =(10e π 4 j +5e π 3 j +3e π 6 j )e jωt

[1.1] r 1 =10e j(ωt+π/4), r 2 =5e j(ωt+π/3), r 3 =3e j(ωt+π/6) ~r = ~r 1 + ~r 2 + ~r 3 = re j(ωt+φ) =(10e π 4 j +5e π 3 j +3e π 6 j )e jωt 3.4.7 [.] =e j(t+/4), =5e j(t+/3), 3 =3e j(t+/6) ~ = ~ + ~ + ~ 3 = e j(t+φ) =(e 4 j +5e 3 j +3e 6 j )e jt = e jφ e jt cos φ =cos 4 +5cos 3 +3cos 6 =.69 sin φ =sin 4 +5sin 3 +3sin 6 =.9 =.69 +.9 =7.74 [.]

More information

D:/BOOK/MAIN/MAIN.DVI

D:/BOOK/MAIN/MAIN.DVI 8 2 F (s) =L f(t) F (s) =L f(t) := Z 0 f()e ;s d (2.2) s s = + j! f(t) (f(0)=0 f(0) _ = 0 d n; f(0)=dt n; =0) L dn f(t) = s n F (s) (2.3) dt n Z t L 0 f()d = F (s) (2.4) s s =s f(t) L _ f(t) Z Z ;s L f(t)

More information

23 7 28 i i 1 1 1.1................................... 2 1.2............................... 3 1.2.1.................................... 3 1.2.2............................... 4 1.2.3 SI..............................

More information

() (, y) E(, y) () E(, y) (3) q ( ) () E(, y) = k q q (, y) () E(, y) = k r r (3).3 [.7 ] f y = f y () f(, y) = y () f(, y) = tan y y ( ) () f y = f y

() (, y) E(, y) () E(, y) (3) q ( ) () E(, y) = k q q (, y) () E(, y) = k r r (3).3 [.7 ] f y = f y () f(, y) = y () f(, y) = tan y y ( ) () f y = f y 5. [. ] z = f(, y) () z = 3 4 y + y + 3y () z = y (3) z = sin( y) (4) z = cos y (5) z = 4y (6) z = tan y (7) z = log( + y ) (8) z = tan y + + y ( ) () z = 3 8y + y z y = 4 + + 6y () z = y z y = (3) z =

More information

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2 No.2 1 2 2 δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i δx j (5) δs 2 = δx i δx i + 2 u i δx i δx j = δs 2 + 2s ij δx i δx j

More information

2019 1 5 0 3 1 4 1.1.................... 4 1.1.1......................... 4 1.1.2........................ 5 1.1.3................... 5 1.1.4........................ 6 1.1.5......................... 6 1.2..........................

More information

n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................

More information

x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ dt iωζ = ẍ + ω2 x (2.1) ζ ζ = Aωe iωt = Aω cos ωt + iaω sin

x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ dt iωζ = ẍ + ω2 x (2.1) ζ ζ = Aωe iωt = Aω cos ωt + iaω sin 2 2.1 F (t) 2.1.1 mẍ + kx = F (t). m ẍ + ω 2 x = F (t)/m ω = k/m. 1 : (ẋ, x) x = A sin ωt, ẋ = Aω cos ωt 1 2-1 x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ

More information

Fr

Fr 2007 04 02 12 1 2 2 3 2.1............................ 4 3 6 3.1............................. 7 3.2....................... 9 3.3............................. 10 4 Frenet 12 5 14 6 Frenet-Serret 15 6.1 Frenet-Serret.......................

More information

DE-resume

DE-resume - 2011, http://c-faculty.chuo-u.ac.jp/ nishioka/ 2 11 21131 : 4 1 x y(x, y (x,y (x,,y (n, (1.1 F (x, y, y,y,,y (n =0. (1.1 n. (1.1 y(x. y(x (1.1. 1 1 1 1.1... 2 1.2... 9 1.3 1... 26 2 2 34 2.1,... 35 2.2

More information

( ) ( )

( ) ( ) 20 21 2 8 1 2 2 3 21 3 22 3 23 4 24 5 25 5 26 6 27 8 28 ( ) 9 3 10 31 10 32 ( ) 12 4 13 41 0 13 42 14 43 0 15 44 17 5 18 6 18 1 1 2 2 1 2 1 0 2 0 3 0 4 0 2 2 21 t (x(t) y(t)) 2 x(t) y(t) γ(t) (x(t) y(t))

More information

30 (11/04 )

30 (11/04 ) 30 (11/04 ) i, 1,, II I?,,,,,,,,, ( ),,, ϵ δ,,,,, (, ),,,,,, 5 : (1) ( ) () (,, ) (3) ( ) (4) (5) ( ) (1),, (),,, () (3), (),, (4), (1), (3), ( ), (5),,,,,,,, ii,,,,,,,, Richard P. Feynman, The best teaching

More information

(u(x)v(x)) = u (x)v(x) + u(x)v (x) ( ) u(x) = u (x)v(x) u(x)v (x) v(x) v(x) 2 y = g(t), t = f(x) y = g(f(x)) dy dx dy dx = dy dt dt dx., y, f, g y = f (g(x))g (x). ( (f(g(x)). ). [ ] y = e ax+b (a, b )

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

d (K + U) = v [ma F(r)] = (2.4.4) t = t r(t ) = r t 1 r(t 1 ) = r 1 U(r 1 ) U(r ) = t1 t du t1 = t F(r(t)) dr(t) r1 = F dr (2.4.5) r F 2 F ( F) r A r

d (K + U) = v [ma F(r)] = (2.4.4) t = t r(t ) = r t 1 r(t 1 ) = r 1 U(r 1 ) U(r ) = t1 t du t1 = t F(r(t)) dr(t) r1 = F dr (2.4.5) r F 2 F ( F) r A r 2.4 ( ) U(r) ( ) ( ) U F(r) = x, U y, U = U(r) (2.4.1) z 2 1 K = mv 2 /2 dk = d ( ) 1 2 mv2 = mv dv = v (ma) (2.4.2) ( ) U(r(t)) r(t) r(t) + dr(t) du du = U(r(t) + dr(t)) U(r(t)) = U x = U(r(t)) dr(t)

More information

(1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10)

(1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10) 2017 12 9 4 1 30 4 10 3 1 30 3 30 2 1 30 2 50 1 1 30 2 10 (1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10) (1) i 23 c 23 0 1 2 3 4 5 6 7 8 9 a b d e f g h i (2) 23 23 (3) 23 ( 23 ) 23 x 1 x 2 23 x

More information

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x [ ] IC. f(x) = e x () f(x) f (x) () lim f(x) lim f(x) x + x (3) lim f(x) lim f(x) x + x (4) y = f(x) ( ) ( s46). < a < () a () lim a log xdx a log xdx ( ) n (3) lim log k log n n n k=.3 z = log(x + y ),

More information

r d 2r d l d (a) (b) (c) 1: I(x,t) I(x+ x,t) I(0,t) I(l,t) V in V(x,t) V(x+ x,t) V(0,t) l V(l,t) 2: 0 x x+ x 3: V in 3 V in x V (x, t) I(x, t

r d 2r d l d (a) (b) (c) 1: I(x,t) I(x+ x,t) I(0,t) I(l,t) V in V(x,t) V(x+ x,t) V(0,t) l V(l,t) 2: 0 x x+ x 3: V in 3 V in x V (x, t) I(x, t 1 1 2 2 2r d 2r d l d (a) (b) (c) 1: I(x,t) I(x+ x,t) I(0,t) I(l,t) V in V(x,t) V(x+ x,t) V(0,t) l V(l,t) 2: 0 x x+ x 3: V in 3 V in x V (x, t) I(x, t) V (x, t) I(x, t) V in x t 3 4 1 L R 2 C G L 0 R 0

More information

n=1 1 n 2 = π = π f(z) f(z) 2 f(z) = u(z) + iv(z) *1 f (z) u(x, y), v(x, y) f(z) f (z) = f/ x u x = v y, u y = v x

n=1 1 n 2 = π = π f(z) f(z) 2 f(z) = u(z) + iv(z) *1 f (z) u(x, y), v(x, y) f(z) f (z) = f/ x u x = v y, u y = v x n= n 2 = π2 6 3 2 28 + 4 + 9 + = π2 6 2 f(z) f(z) 2 f(z) = u(z) + iv(z) * f (z) u(x, y), v(x, y) f(z) f (z) = f/ x u x = v y, u y = v x f x = i f y * u, v 3 3. 3 f(t) = u(t) + v(t) [, b] f(t)dt = u(t)dt

More information

(1) (2) (3) (4) 1

(1) (2) (3) (4) 1 8 3 4 3.................................... 3........................ 6.3 B [, ].......................... 8.4........................... 9........................................... 9.................................

More information

#A A A F, F d F P + F P = d P F, F y P F F x A.1 ( α, 0), (α, 0) α > 0) (x, y) (x + α) 2 + y 2, (x α) 2 + y 2 d (x + α)2 + y 2 + (x α) 2 + y 2 =

#A A A F, F d F P + F P = d P F, F y P F F x A.1 ( α, 0), (α, 0) α > 0) (x, y) (x + α) 2 + y 2, (x α) 2 + y 2 d (x + α)2 + y 2 + (x α) 2 + y 2 = #A A A. F, F d F P + F P = d P F, F P F F A. α, 0, α, 0 α > 0, + α +, α + d + α + + α + = d d F, F 0 < α < d + α + = d α + + α + = d d α + + α + d α + = d 4 4d α + = d 4 8d + 6 http://mth.cs.kitmi-it.c.jp/

More information

M3 x y f(x, y) (= x) (= y) x + y f(x, y) = x + y + *. f(x, y) π y f(x, y) x f(x + x, y) f(x, y) lim x x () f(x,y) x 3 -

M3 x y f(x, y) (= x) (= y) x + y f(x, y) = x + y + *. f(x, y) π y f(x, y) x f(x + x, y) f(x, y) lim x x () f(x,y) x 3 - M3............................................................................................ 3.3................................................... 3 6........................................... 6..........................................

More information

Z: Q: R: C: sin 6 5 ζ a, b

Z: Q: R: C: sin 6 5 ζ a, b Z: Q: R: C: 3 3 7 4 sin 6 5 ζ 9 6 6............................... 6............................... 6.3......................... 4 7 6 8 8 9 3 33 a, b a bc c b a a b 5 3 5 3 5 5 3 a a a a p > p p p, 3,

More information

December 28, 2018

December 28, 2018 e-mail : kigami@i.kyoto-u.ac.jp December 28, 28 Contents 2............................. 3.2......................... 7.3..................... 9.4................ 4.5............. 2.6.... 22 2 36 2..........................

More information

128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds = 0 (3.4) S 1, S 2 { B( r) n( r)}ds

128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds = 0 (3.4) S 1, S 2 { B( r) n( r)}ds 127 3 II 3.1 3.1.1 Φ(t) ϕ em = dφ dt (3.1) B( r) Φ = { B( r) n( r)}ds (3.2) S S n( r) Φ 128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds

More information

chap1.dvi

chap1.dvi 1 1 007 1 e iθ = cos θ + isin θ 1) θ = π e iπ + 1 = 0 1 ) 3 11 f 0 r 1 1 ) k f k = 1 + r) k f 0 f k k = 01) f k+1 = 1 + r)f k ) f k+1 f k = rf k 3) 1 ) ) ) 1+r/)f 0 1 1 + r/) f 0 = 1 + r + r /4)f 0 1 f

More information

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s ... x, y z = x + iy x z y z x = Rez, y = Imz z = x + iy x iy z z () z + z = (z + z )() z z = (z z )(3) z z = ( z z )(4)z z = z z = x + y z = x + iy ()Rez = (z + z), Imz = (z z) i () z z z + z z + z.. z

More information

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi) 0. A A = 4 IC () det A () A () x + y + z = x y z X Y Z = A x y z ( 5) ( s5590) 0. a + b + c b c () a a + b + c c a b a + b + c 0 a b c () a 0 c b b c 0 a c b a 0 0. A A = 7 5 4 5 0 ( 5) ( s5590) () A ()

More information

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2 2005 9/8-11 2 2.2 ( 2-5) γ ( ) γ cos θ 2πr πρhr 2 g h = 2γ cos θ ρgr (2.1) γ = ρgrh (2.2) 2 cos θ θ cos θ = 1 (2.2) γ = 1 ρgrh (2.) 2 2. p p ρgh p ( ) p p = p ρgh (2.) h p p = 2γ r 1 1 (Berry,1975) 2-6

More information

main.dvi

main.dvi 3 Discrete Fourie Transform: DFT DFT 3.1 3.1.1 x(n) X(e jω ) X(e jω )= x(n)e jωnt (3.1) n= X(e jω ) N X(k) ωt f 2π f s N X(k) =X(e j2πk/n )= x(n)e j2πnk/n, k N 1 (3.2) n= X(k) δ X(e jω )= X(k)δ(ωT 2πk

More information

Gmech08.dvi

Gmech08.dvi 51 5 5.1 5.1.1 P r P z θ P P P z e r e, z ) r, θ, ) 5.1 z r e θ,, z r, θ, = r sin θ cos = r sin θ sin 5.1) e θ e z = r cos θ r, θ, 5.1: 0 r

More information

( ) 5. VSS (VIM ) 10. ( ) 11. (ANN ) ( )

( ) 5. VSS (VIM ) 10. ( ) 11. (ANN ) ( ) 1.... ( ) 5. VSS.. 8. 9. (VIM ) 1. ( ) 11. (ANN ) 1. 1. ( ) 1 Lagrange 1..1 Lagrange q, Lagrange D(q)q + C(q; _q)_q + G(q) = (1.1) D(q)q C(q; _q)_q G(q) ( ) D(q) D(q) m ; M < M m (D(q)) (1.) (D(q)) M

More information

<4D F736F F D B B BB2D834A836F815B82D082C88C602E646F63>

<4D F736F F D B B BB2D834A836F815B82D082C88C602E646F63> 信号処理の基礎 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/081051 このサンプルページの内容は, 初版 1 刷発行時のものです. i AI ii z / 2 3 4 5 6 7 7 z 8 8 iii 2013 3 iv 1 1 1.1... 1 1.2... 2 2 4 2.1...

More information

Microsoft Word - 信号処理3.doc

Microsoft Word - 信号処理3.doc Junji OHTSUBO 2012 FFT FFT SN sin cos x v ψ(x,t) = f (x vt) (1.1) t=0 (1.1) ψ(x,t) = A 0 cos{k(x vt) + φ} = A 0 cos(kx ωt + φ) (1.2) A 0 v=ω/k φ ω k 1.3 (1.2) (1.2) (1.2) (1.1) 1.1 c c = a + ib, a = Re[c],

More information

Gmech08.dvi

Gmech08.dvi 145 13 13.1 13.1.1 0 m mg S 13.1 F 13.1 F /m S F F 13.1 F mg S F F mg 13.1: m d2 r 2 = F + F = 0 (13.1) 146 13 F = F (13.2) S S S S S P r S P r r = r 0 + r (13.3) r 0 S S m d2 r 2 = F (13.4) (13.3) d 2

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

1 3 1.1.......................... 3 1............................... 3 1.3....................... 5 1.4.......................... 6 1.5........................ 7 8.1......................... 8..............................

More information

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2 II No.1 [n/] [1]H n x) H n x) = 1) r n! r!n r)! x)n r r= []H n x) n,, H n x) = 1) n H n x) [3] H n x) = 1) n dn x e dx n e x [4] H n+1 x) = xh n x) nh n 1 x) ) d dx x H n x) = H n+1 x) d dx H nx) = nh

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 24 I 1.1.. ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 1 (t), x 2 (t),, x n (t)) ( ) ( ), γ : (i) x 1 (t),

More information

9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x

9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x 2009 9 6 16 7 1 7.1 1 1 1 9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x(cos y y sin y) y dy 1 sin

More information

数学演習:微分方程式

数学演習:微分方程式 ( ) 1 / 21 1 2 3 4 ( ) 2 / 21 x(t)? ẋ + 5x = 0 ( ) 3 / 21 x(t)? ẋ + 5x = 0 x(t) = t 2? ẋ = 2t, ẋ + 5x = 2t + 5t 2 0 ( ) 3 / 21 x(t)? ẋ + 5x = 0 x(t) = t 2? ẋ = 2t, ẋ + 5x = 2t + 5t 2 0 x(t) = sin 5t? ẋ

More information

meiji_resume_1.PDF

meiji_resume_1.PDF β β β (q 1,q,..., q n ; p 1, p,..., p n ) H(q 1,q,..., q n ; p 1, p,..., p n ) Hψ = εψ ε k = k +1/ ε k = k(k 1) (x, y, z; p x, p y, p z ) (r; p r ), (θ; p θ ), (ϕ; p ϕ ) ε k = 1/ k p i dq i E total = E

More information

( ) 2.1. C. (1) x 4 dx = 1 5 x5 + C 1 (2) x dx = x 2 dx = x 1 + C = 1 2 x + C xdx (3) = x dx = 3 x C (4) (x + 1) 3 dx = (x 3 + 3x 2 + 3x +

( ) 2.1. C. (1) x 4 dx = 1 5 x5 + C 1 (2) x dx = x 2 dx = x 1 + C = 1 2 x + C xdx (3) = x dx = 3 x C (4) (x + 1) 3 dx = (x 3 + 3x 2 + 3x + (.. C. ( d 5 5 + C ( d d + C + C d ( d + C ( ( + d ( + + + d + + + + C (5 9 + d + d tan + C cos (sin (6 sin d d log sin + C sin + (7 + + d ( + + + + d log( + + + C ( (8 d 7 6 d + 6 + C ( (9 ( d 6 + 8 d

More information

II 1 II 2012 II Gauss-Bonnet II

II 1 II 2012 II Gauss-Bonnet II II 1 II 212 II Gauss-Bonnet II 1 1 1.1......................................... 1 1.2............................................ 2 1.3.................................. 3 1.4.............................................

More information

dynamics-solution2.dvi

dynamics-solution2.dvi 1 1. (1) a + b = i +3i + k () a b =5i 5j +3k (3) a b =1 (4) a b = 7i j +1k. a = 14 l =/ 14, m=1/ 14, n=3/ 14 3. 4. 5. df (t) d [a(t)e(t)] =ti +9t j +4k, = d a(t) d[a(t)e(t)] e(t)+ da(t) d f (t) =i +18tj

More information

e a b a b b a a a 1 a a 1 = a 1 a = e G G G : x ( x =, 8, 1 ) x 1,, 60 θ, ϕ ψ θ G G H H G x. n n 1 n 1 n σ = (σ 1, σ,..., σ N ) i σ i i n S n n = 1,,

e a b a b b a a a 1 a a 1 = a 1 a = e G G G : x ( x =, 8, 1 ) x 1,, 60 θ, ϕ ψ θ G G H H G x. n n 1 n 1 n σ = (σ 1, σ,..., σ N ) i σ i i n S n n = 1,, 01 10 18 ( ) 1 6 6 1 8 8 1 6 1 0 0 0 0 1 Table 1: 10 0 8 180 1 1 1. ( : 60 60 ) : 1. 1 e a b a b b a a a 1 a a 1 = a 1 a = e G G G : x ( x =, 8, 1 ) x 1,, 60 θ, ϕ ψ θ G G H H G x. n n 1 n 1 n σ = (σ 1,

More information

構造と連続体の力学基礎

構造と連続体の力学基礎 II 37 Wabash Avenue Bridge, Illinois 州 Winnipeg にある歩道橋 Esplanade Riel 橋6 6 斜張橋である必要は多分無いと思われる すぐ横に道路用桁橋有り しかも塔基部のレストランは 8 年には営業していなかった 9 9. 9.. () 97 [3] [5] k 9. m w(t) f (t) = f (t) + mg k w(t) Newton

More information

II Karel Švadlenka * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* u = au + bv v = cu + dv v u a, b, c, d R

II Karel Švadlenka * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* u = au + bv v = cu + dv v u a, b, c, d R II Karel Švadlenka 2018 5 26 * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* 5 23 1 u = au + bv v = cu + dv v u a, b, c, d R 1.3 14 14 60% 1.4 5 23 a, b R a 2 4b < 0 λ 2 + aλ + b = 0 λ =

More information

振動と波動

振動と波動 Report JS0.5 J Simplicity February 4, 2012 1 J Simplicity HOME http://www.jsimplicity.com/ Preface 2 Report 2 Contents I 5 1 6 1.1..................................... 6 1.2 1 1:................ 7 1.3

More information

A (1) = 4 A( 1, 4) 1 A 4 () = tan A(0, 0) π A π

A (1) = 4 A( 1, 4) 1 A 4 () = tan A(0, 0) π A π 4 4.1 4.1.1 A = f() = f() = a f (a) = f() (a, f(a)) = f() (a, f(a)) f(a) = f 0 (a)( a) 4.1 (4, ) = f() = f () = 1 = f (4) = 1 4 4 (4, ) = 1 ( 4) 4 = 1 4 + 1 17 18 4 4.1 A (1) = 4 A( 1, 4) 1 A 4 () = tan

More information

keisoku01.dvi

keisoku01.dvi 2.,, Mon, 2006, 401, SAGA, JAPAN Dept. of Mechanical Engineering, Saga Univ., JAPAN 4 Mon, 2006, 401, SAGA, JAPAN Dept. of Mechanical Engineering, Saga Univ., JAPAN 5 Mon, 2006, 401, SAGA, JAPAN Dept.

More information

LCR e ix LC AM m k x m x x > 0 x < 0 F x > 0 x < 0 F = k x (k > 0) k x = x(t)

LCR e ix LC AM m k x m x x > 0 x < 0 F x > 0 x < 0 F = k x (k > 0) k x = x(t) 338 7 7.3 LCR 2.4.3 e ix LC AM 7.3.1 7.3.1.1 m k x m x x > 0 x < 0 F x > 0 x < 0 F = k x k > 0 k 5.3.1.1 x = xt 7.3 339 m 2 x t 2 = k x 2 x t 2 = ω 2 0 x ω0 = k m ω 0 1.4.4.3 2 +α 14.9.3.1 5.3.2.1 2 x

More information

KENZOU

KENZOU KENZOU 2008 8 2 3 2 3 2 2 4 2 4............................................... 2 4.2............................... 3 4.2........................................... 4 4.3..............................

More information

7-12.dvi

7-12.dvi 26 12 1 23. xyz ϕ f(x, y, z) Φ F (x, y, z) = F (x, y, z) G(x, y, z) rot(grad ϕ) rot(grad f) H(x, y, z) div(rot Φ) div(rot F ) (x, y, z) rot(grad f) = rot f x f y f z = (f z ) y (f y ) z (f x ) z (f z )

More information

chap03.dvi

chap03.dvi 99 3 (Coriolis) cm m (free surface wave) 3.1 Φ 2.5 (2.25) Φ 100 3 r =(x, y, z) x y z F (x, y, z, t) =0 ( DF ) Dt = t + Φ F =0 onf =0. (3.1) n = F/ F (3.1) F n Φ = Φ n = 1 F F t Vn on F = 0 (3.2) Φ (3.1)

More information

chap9.dvi

chap9.dvi 9 AR (i) (ii) MA (iii) (iv) (v) 9.1 2 1 AR 1 9.1.1 S S y j = (α i + β i j) D ij + η j, η j = ρ S η j S + ε j (j =1,,T) (1) i=1 {ε j } i.i.d(,σ 2 ) η j (j ) D ij j i S 1 S =1 D ij =1 S>1 S =4 (1) y j =

More information

II K116 : January 14, ,. A = (a ij ) ij m n. ( ). B m n, C n l. A = max{ a ij }. ij A + B A + B, AC n A C (1) 1. m n (A k ) k=1,... m n A, A k k

II K116 : January 14, ,. A = (a ij ) ij m n. ( ). B m n, C n l. A = max{ a ij }. ij A + B A + B, AC n A C (1) 1. m n (A k ) k=1,... m n A, A k k : January 14, 28..,. A = (a ij ) ij m n. ( ). B m n, C n l. A = max{ a ij }. ij A + B A + B, AC n A C (1) 1. m n (A k ) k=1,... m n A, A k k, A. lim k A k = A. A k = (a (k) ij ) ij, A k = (a ij ) ij, i,

More information

X G P G (X) G BG [X, BG] S 2 2 2 S 2 2 S 2 = { (x 1, x 2, x 3 ) R 3 x 2 1 + x 2 2 + x 2 3 = 1 } R 3 S 2 S 2 v x S 2 x x v(x) T x S 2 T x S 2 S 2 x T x S 2 = { ξ R 3 x ξ } R 3 T x S 2 S 2 x x T x S 2

More information

F S S S S S S S 32 S S S 32: S S rot F ds = F d l (63) S S S 0 F rot F ds = 0 S (63) S rot F S S S S S rot F F (63)

F S S S S S S S 32 S S S 32: S S rot F ds = F d l (63) S S S 0 F rot F ds = 0 S (63) S rot F S S S S S rot F F (63) 211 12 1 19 2.9 F 32 32: rot F d = F d l (63) F rot F d = 2.9.1 (63) rot F rot F F (63) 12 2 F F F (63) 33 33: (63) rot 2.9.2 (63) I = [, 1] [, 1] 12 3 34: = 1 2 1 2 1 1 = C 1 + C C 2 2 2 = C 2 + ( C )

More information

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy z fz fz x, y, u, v, r, θ r > z = x + iy, f = u + iv γ D fz fz D fz fz z, Rm z, z. z = x + iy = re iθ = r cos θ + i sin θ z = x iy = re iθ = r cos θ i sin θ x = z + z = Re z, y = z z = Im z i r = z = z

More information

Microsoft Word - 11問題表紙(選択).docx

Microsoft Word - 11問題表紙(選択).docx A B A.70g/cm 3 B.74g/cm 3 B C 70at% %A C B at% 80at% %B 350 C γ δ y=00 x-y ρ l S ρ C p k C p ρ C p T ρ l t l S S ξ S t = ( k T ) ξ ( ) S = ( k T) ( ) t y ξ S ξ / t S v T T / t = v T / y 00 x v S dy dx

More information

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google I4 - : April, 4 Version :. Kwhir, Tomoki TA (Kondo, Hirotk) Google http://www.mth.ngoy-u.c.jp/~kwhir/courses/4s-biseki.html pdf 4 4 4 4 8 e 5 5 9 etc. 5 6 6 6 9 n etc. 6 6 6 3 6 3 7 7 etc 7 4 7 7 8 5 59

More information

(Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fou

(Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fou (Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fourier) (Fourier Bessel).. V ρ(x, y, z) V = 4πGρ G :.

More information

2011de.dvi

2011de.dvi 211 ( 4 2 1. 3 1.1............................... 3 1.2 1- -......................... 13 1.3 2-1 -................... 19 1.4 3- -......................... 29 2. 37 2.1................................ 37

More information

Untitled

Untitled II 14 14-7-8 8/4 II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ 6/ ] Navier Stokes 3 [ ] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I 1 balance law t (ρv i )+ j

More information

,,,17,,, ( ),, E Q [S T F t ] < S t, t [, T ],,,,,,,,

,,,17,,, ( ),, E Q [S T F t ] < S t, t [, T ],,,,,,,, 14 5 1 ,,,17,,,194 1 4 ( ),, E Q [S T F t ] < S t, t [, T ],,,,,,,, 1 4 1.1........................................ 4 5.1........................................ 5.........................................

More information

2 1 (10 5 ) 1 (10 5 ) () (1) (2) (3) (4) (1) 2 T T T T T T T T? *

2 1 (10 5 ) 1 (10 5 ) () (1) (2) (3) (4) (1) 2 T T T T T T T T? * 1 2011 2012 1 30 1 (10 5 ) 2 2 6 2.1 (10 12 )..................... 6 2.2 (FP) (10 19 ).............. 14 2.3 2 (10 26 )...................... 26 2.4 (2. )(11 2 )..... 35 3 40 3.1 (11 9 )..........................

More information

1 I 1.1 ± e = = - = C C MKSA [m], [Kg] [s] [A] 1C 1A 1 MKSA 1C 1C +q q +q q 1

1 I 1.1 ± e = = - = C C MKSA [m], [Kg] [s] [A] 1C 1A 1 MKSA 1C 1C +q q +q q 1 1 I 1.1 ± e = = - =1.602 10 19 C C MKA [m], [Kg] [s] [A] 1C 1A 1 MKA 1C 1C +q q +q q 1 1.1 r 1,2 q 1, q 2 r 12 2 q 1, q 2 2 F 12 = k q 1q 2 r 12 2 (1.1) k 2 k 2 ( r 1 r 2 ) ( r 2 r 1 ) q 1 q 2 (q 1 q 2

More information

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2) 3 215 4 27 1 1 u u(x, t) u tt a 2 u xx, a > (1) D : {(x, t) : x, t } u (, t), u (, t), t (2) u(x, ) f(x), u(x, ) t 2, x (3) u(x, t) X(x)T (t) u (1) 1 T (t) a 2 T (t) X (x) X(x) α (2) T (t) αa 2 T (t) (4)

More information

9 5 ( α+ ) = (α + ) α (log ) = α d = α C d = log + C C 5. () d = 4 d = C = C = 3 + C 3 () d = d = C = C = 3 + C 3 =

9 5 ( α+ ) = (α + ) α (log ) = α d = α C d = log + C C 5. () d = 4 d = C = C = 3 + C 3 () d = d = C = C = 3 + C 3 = 5 5. 5.. A II f() f() F () f() F () = f() C (F () + C) = F () = f() F () + C f() F () G() f() G () = F () 39 G() = F () + C C f() F () f() F () + C C f() f() d f() f() C f() f() F () = f() f() f() d =

More information

B ver B

B ver B B ver. 2017.02.24 B Contents 1 11 1.1....................... 11 1.1.1............. 11 1.1.2.......................... 12 1.2............................. 14 1.2.1................ 14 1.2.2.......................

More information

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H 199 1 1 199 1 1. Vx) m e V cos x π x π Vx) = x < π, x > π V i) x = Vx) V 1 x /)) n n d f dξ ξ d f dξ + n f = H n ξ) ii) H n ξ) = 1) n expξ ) dn dξ n exp ξ )) H n ξ)h m ξ) exp ξ )dξ = π n n!δ n,m x = Vx)

More information

2 2 L 5 2. L L L L k.....

2 2 L 5 2. L L L L k..... L 528 206 2 9 2 2 L 5 2. L........................... 5 2.2 L................................... 7 2............................... 9. L..................2 L k........................ 2 4 I 5 4. I...................................

More information

(9 30 ) (10 7 ) (FP) (10 14 ) (10 21 ) (2

(9 30 ) (10 7 ) (FP) (10 14 ) (10 21 ) (2 1 2009 2010 1 18 1 (9 30 ) 2 2 7 2.1 (10 7 )...................... 7 2.2 (FP) (10 14 ).............. 14 2.3 2 (10 21 )...................... 26 2.4 (2. )(10 28 ).......... 35 3 42 3.1 (11 4 )..........................

More information

5. [1 ] 1 [], u(x, t) t c u(x, t) x (5.3) ξ x + ct, η x ct (5.4),u(x, t) ξ, η u(ξ, η), ξ t,, ( u(ξ,η) ξ η u(x, t) t ) u(x, t) { ( u(ξ, η) c t ξ ξ { (

5. [1 ] 1 [], u(x, t) t c u(x, t) x (5.3) ξ x + ct, η x ct (5.4),u(x, t) ξ, η u(ξ, η), ξ t,, ( u(ξ,η) ξ η u(x, t) t ) u(x, t) { ( u(ξ, η) c t ξ ξ { ( 5 5.1 [ ] ) d f(t) + a d f(t) + bf(t) : f(t) 1 dt dt ) u(x, t) c u(x, t) : u(x, t) t x : ( ) ) 1 : y + ay, : y + ay + by : ( ) 1 ) : y + ay, : yy + ay 3 ( ): ( ) ) : y + ay, : y + ay b [],,, [ ] au xx

More information

1 1.1 H = µc i c i + c i t ijc j + 1 c i c j V ijklc k c l (1) V ijkl = V jikl = V ijlk = V jilk () t ij = t ji, V ijkl = V lkji (3) (1) V 0 H mf = µc

1 1.1 H = µc i c i + c i t ijc j + 1 c i c j V ijklc k c l (1) V ijkl = V jikl = V ijlk = V jilk () t ij = t ji, V ijkl = V lkji (3) (1) V 0 H mf = µc 013 6 30 BCS 1 1.1........................ 1................................ 3 1.3............................ 3 1.4............................... 5 1.5.................................... 5 6 3 7 4 8

More information

2.2 ( y = y(x ( (x 0, y 0 y (x 0 (y 0 = y(x 0 y = y(x ( y (x 0 = F (x 0, y(x 0 = F (x 0, y 0 (x 0, y 0 ( (x 0, y 0 F (x 0, y 0 xy (x, y (, F (x, y ( (

2.2 ( y = y(x ( (x 0, y 0 y (x 0 (y 0 = y(x 0 y = y(x ( y (x 0 = F (x 0, y(x 0 = F (x 0, y 0 (x 0, y 0 ( (x 0, y 0 F (x 0, y 0 xy (x, y (, F (x, y ( ( (. x y y x f y = f(x y x y = y(x y x y dx = d dx y(x = y (x = f (x y = y(x x ( (differential equation ( + y 2 dx + xy = 0 dx = xy + y 2 2 2 x y 2 F (x, y = xy + y 2 y = y(x x x xy(x = F (x, y(x + y(x 2

More information

(ii) (iii) z a = z a =2 z a =6 sin z z a dz. cosh z z a dz. e z dz. (, a b > 6.) (z a)(z b) 52.. (a) dz, ( a = /6.), (b) z =6 az (c) z a =2 53. f n (z

(ii) (iii) z a = z a =2 z a =6 sin z z a dz. cosh z z a dz. e z dz. (, a b > 6.) (z a)(z b) 52.. (a) dz, ( a = /6.), (b) z =6 az (c) z a =2 53. f n (z B 4 24 7 9 ( ) :,..,,.,. 4 4. f(z): D C: D a C, 2πi C f(z) dz = f(a). z a a C, ( ). (ii), a D, a U a,r D f. f(z) = A n (z a) n, z U a,r, n= A n := 2πi C f(ζ) dζ, n =,,..., (ζ a) n+, C a D. (iii) U a,r

More information

2 Chapter 4 (f4a). 2. (f4cone) ( θ) () g M. 2. (f4b) T M L P a θ (f4eki) ρ H A a g. v ( ) 2. H(t) ( )

2 Chapter 4 (f4a). 2. (f4cone) ( θ) () g M. 2. (f4b) T M L P a θ (f4eki) ρ H A a g. v ( ) 2. H(t) ( ) http://astr-www.kj.yamagata-u.ac.jp/~shibata f4a f4b 2 f4cone f4eki f4end 4 f5meanfp f6coin () f6a f7a f7b f7d f8a f8b f9a f9b f9c f9kep f0a f0bt version feqmo fvec4 fvec fvec6 fvec2 fvec3 f3a (-D) f3b

More information

K E N Z U 01 7 16 HP M. 1 1 4 1.1 3.......................... 4 1.................................... 4 1..1..................................... 4 1...................................... 5................................

More information

x i [, b], (i 0, 1, 2,, n),, [, b], [, b] [x 0, x 1 ] [x 1, x 2 ] [x n 1, x n ] ( 2 ). x 0 x 1 x 2 x 3 x n 1 x n b 2: [, b].,, (1) x 0, x 1, x 2,, x n

x i [, b], (i 0, 1, 2,, n),, [, b], [, b] [x 0, x 1 ] [x 1, x 2 ] [x n 1, x n ] ( 2 ). x 0 x 1 x 2 x 3 x n 1 x n b 2: [, b].,, (1) x 0, x 1, x 2,, x n 1, R f : R R,.,, b R < b, f(x) [, b] f(x)dx,, [, b] f(x) x ( ) ( 1 ). y y f(x) f(x)dx b x 1: f(x)dx, [, b] f(x) x ( ).,,,,,., f(x)dx,,,, f(x)dx. 1.1 Riemnn,, [, b] f(x) x., x 0 < x 1 < x 2 < < x n 1

More information