Size: px
Start display at page:

Download ""

Transcription

1

2 µ + /µ π π TDC

3 3.2.4 ADC ADC TDC µ + /µ A 67 B π 68 3

4 1 π π [5] π R L π θ = π θ = π (ADC) TDC TDC PMT ADC (0 ) TOF TOF ADC (0 ) ADC ( )

5 24 ([19] ) tdc tdc1 tdc2 tdc3 OR PMT2 PMT3 tdc P2 1ch 20.09ns VETO µs PMT2 ADC PMT3 ADC PMT(2 3) ADC PMT2 3 TDC 2.8µs 40µs P PMT2 3 TDC 40µs P2 P PMT2 3 TDC τ µ +=2197 τ µ = PMT PMT(2) tdc P(3) P(4) PMT(2) TDC PMT(3) tdc P(3) P(4) PMT(3) TDC PMT1( ),2( ) PMT1, dead time

6 H

7 7

8 R = N µ +/N µ 1.28([15] ) 2.2µs 700MeV 1200MeV γ( ) γ = 950 ± ± (1) γ = 8.99 ± π K π + µ + + ν µ π µ + ν µ K + µ + + ν µ K µ + ν µ π K π : K 9 : 1 π ([1] ) 8

9 1.4 ( ) (2) F (θ): θ F (θ) = N(θ): θ T (θ): θ S: Ω: N(θ) T (θ) S Ω π θ j θ j θ=0 (2) j θ = j θ=0 cos n θ (3) n n= µ + e + + ν µ + ν e µ e + e + ν µ t N decay (t) N 0 N decay (t) = N 0 (1 e t/τ ) (4) τ V-A τ 1 = G2 m 5 192π 3 (5) 9

10 G = (1) 10 5 GeV 2 G m m m µ = ± MeV τ = ( ± ) 10 6 s [2] TDC dn decay dt = N 0 τ e t/τ (6) ( ) 100 ( ) K µ + p ν µ + n [15] 864 ± 1.0ns [15] TDC 10

11 dn decay dt = N 1 e t/τ µ + N 2 e t/τ µ + (7) τ µ τ µ + τ µ,τ µ +, N 1,N 2, π µ + /µ µ + /µ 1.28 [17] π π ( 1) 1: π π [5] 11

12 π π π π 0 π 0 ( ) ( ) 100 π π ( 6) 2: π R L π MeV 1200MeV 3cm 30MeV 30MeV π ( 2 ) π π π π ( 2 ) 12

13 π π ( 3) 3: π [14] π P = ( ) π w π (E, x) w π (E, x) B Ex (8) B = 120GeV E π x x [g/cm 2 ] [3] π µ + e + + ν µ + ν e µ e + ν µ + ν e 13

14 0 55MeV ( 1 ) [3] ( 4) 4: θ E V-A ρ(x, cos θ) = 2X 2 [(3 2X) + (2X 1)P cos θ] (9) X = E/E MAX P ([4] ) ( ) PMT2 PMT3 0 55MeV(E MAX ) ρ(x, cos θ) ( P=1 ) π 0 ρ(x, cos θ)sinθdθdx : 1 π 0 ρ(x, cos θ)sinθdθdx 1 2 π = 7 : 5 (10) π 1 2π π 14

15 1.6.4 ( ) (0 53MeV) π [14] π π θ = 90 ( ) θ = 90 ( ) ( ) θ = 90 ( ) [14]

16 5: π θ = 0 P P =

17 6: π θ = MeV 1200MeV ± MeV 1 1 β 2 = 950 ± ± (11) β = v/c = ± (12) cm CAMAC ADC TOF TDC (3 3 1cm 3 )

18 /MeV/g/sec/sterad COMMON /PAWC/ in memory ID 130 ENTRIES /MeV/g/sec/sterad COMMON /PAWC/ in memory ID 130 ENTRIES energy spectrum GeV energy spectrum GeV /MeV/g/sec/sterad COMMON /PAWC/ in memory ID 130 ENTRIES /MeV/g/sec/sterad COMMON /PAWC/ in memory ID 130 ENTRIES energy spectrum GeV energy spectrum GeV 7: π

19 HV(-V) Threshold(-mV) PMT PMT : PMT1( ),2( ) (PMT) 2 H1161 SN.RA8659 H1161 SN.RB6631 CAMAC Ch 1ch full scale ADC LeCroy 2249A 12Ch 0.25pC 500pC TDC HR TDC 8Ch 60ps 250ns cm 9 1 8: 19

20 9: 20

21 PMT3 2 PMT1 111/ ± 1.8 PMT2 69/ ± 2.8 2: PMT1, PMT 3 2 (adc ) 11 PMT2 PMT PMT1,2( PMT) threshold PMT3 threshold (PMT1) TDC PMT

22 10: 22

23 DIS COIN PMT1 PMT2 PMT3 DIS ADC ADC ADC 11: PMT1 DIV DIS adc1 tdc stop G.G LATCH OUTPUT REG COIN DIV G.G WID adc stop tdc start INTERRUPT REG PMT2 DIS DIV tdc stop adc2 CAMAC 12: 23

24 θ ADC 13 ( ) (sec) : 24

25 count(0deg.) r rz ID Entries Mean RMS UDFLW OVFLW ALLCHAN count(30deg.) r rz ID Entries Mean RMS UDFLW OVFLW ALLCHAN adc01 ch adc01 ch count(45deg.) r rz ID Entries Mean RMS UDFLW OVFLW ALLCHAN count(60deg.) r rz ID Entries Mean RMS UDFLW OVFLW ALLCHAN adc01 ch adc01 ch 13: (ADC) 25

26 TDC TDC TDC t(ns) / 5 P P E E ch(tdc03) t(ns) / 5 P P E E ch(tdc06) 14: TDC 26

27 INTERRUPT REGISTER CLOCK GENERATER CO GATE GENERATER ADC GATE START FLEXIBLE DELAY STOP TDC 15: TDC θ=0 ADC ( 16) 16 TOF 17, ADC 20 ADC 21 27

28 ch(adc02) r rz ID 100 ENTRIES adc01vsadc02 ch(adc01) 16: 2 PMT ADC (0 ) 28

29 r rz ID Entries Mean RMS UDFLW OVFLW ALLCHAN tdc06 17: TOF 29

30 r rz ID Entries Mean RMS UDFLW OVFLW ALLCHAN tdc06 18: TOF 30

31 19: (13) π [sec 1 sr 1 cm 2 ] Ω S = Ω(x, y)dxdy (13) DAQ TDC ADC,TDC 1 14µs ADC,TDC 5 140µs DAQ INTERRUPT RE- SISTER 105ns VETO VETO gate generator 31

32 ch(adc02) r rz ID 100 ENTRIES adc01vsadc02 ch(adc01) 20: ADC (0 ) 32

33 ch(adc02)0deg r rz ID 100 ENTRIES ch(adc02)30deg r rz ID 101 ENTRIES adc01vsadc02 ch(adc01) adc01vsadc02 ch(adc01) ch(adc02)45deg r rz ID 102 ENTRIES ch(adc02)60deg r rz ID 103 ENTRIES adc01vsadc02 ch(adc01) adc01vsadc02 ch(adc01) 21: ADC ( ) 33

34 22: 145ns 4 ( ) dead time(ms) : dead time θ=0 rate (4.54±0.23) 10 3 Hz ( ) (220±51) P P = ± 51 P = (0.64 ± 0.23) 10 3 T(θ) 34

35 SiO 2 Al 2 O 3 F e 2 O 3 CaO MgO SO 3 Na 2 O Cl ( ) : Bethe-Bloch de dx = DρZ A ( z β )2 [ln( 2m eγ 2 v 2 ) β 2 (14) I D=4πN A rem 2 e c 2 β = v/c γ = (1 β 2 ) 1/2 N A : = mol 1 r e : = m m e : = ± MeV z: v: Z: A: ρ: I: Z=27.5 A=54.9 ρ=3.5g/cm 3 I=440eV A Z cm 1 8 PC 3cm 35

36 88+21=109cm 1158MeV 1200MeV ( [19] ) [sec 1 sr 1 cm 2 ] 3cm 3cm 10cm θ =22 cos [sec 1 sr 1 cm 2 ] 23: θ = ( 2 1 ) =39cm 30 H 1 89cm 1 89cm 970MeV [sec 1 sr 1 cm 2 ] [sec 1 sr 1 cm 2 ] θ = cm 700MeV [sec 1 sr 1 cm 2 ] [sec 1 sr 1 cm 2 ] θ = cm g/cm 3 ( 4m 3.5m)4m 36

37 1 2GeV 150cm 1500MeV [sr cm 2 ] [sec 1 sr 1 cm 2 ] 24: ([19] ) N N(θ) σ N = N σ N = 25.2(0 ), 13.7(30 ), 13.5(45 ), 9.8(60 ) ɛ(θ) σɛ 2 = ( ɛ N 1 ) 2 σn ( ɛ N 2 ) 2 σn 2 2 σ P MT 1 = ɛ = N 2 N 1 σ P MT 2 = N, N 1, N 2 37

38 2.4 6 ( ) count (sec 1 sr 1 cm 2 ) (sec 1 sr 1 cm 2 ) (sec 1 sr 1 cm 2 ) ± ± ± ± ± ± ± ± ± ± ± ± 1.0 6: H 25: 38

39 cos 2 ( cos 2 3GeV ) cm cos 2 θ 26 cos 2 θ θ =60 26: 39

40 3 3.1 ( ) ( cm) 3 3 (PMT) 3 ( cm)6 CAMAC Ch 1ch full scale ADC LeCroy 2249W 12Ch 0.25pC 500pC ADC LeCroy 2249W 12Ch 0.25pC 500pC TDC OCTAL TDC 8Ch 20.09ns 10ms TDC ( 27) cm 3 3cm 3cm 40MeV 2 ADC TDC ( 28)( 29) ( 30) CO COINCIDENCE OR OR GGLA GATE GENERATOR LATCH GG GATE GENERATOR 40

41 t(ns) t(ns) / 18 P P E / 18 P P E ch(tdc1) ch(tdc2) t(ns) / 18 P P E ch(tdc3) 27: tdc tdc1 tdc2 tdc3 OR PMT2 PMT3 tdc P2 1ch 20.09ns 41

42 28: 29: 42

43 PMT3 PMT VETO 2 PMT1,2 PMT2 3 PMT PMT1 ( 31) ADC PMT2 PMT 2 ADC GATE GENER- ATOR( G.G.) OUTPUT RESISTER VETO G.G. VETO VETO PMT2 G.G. G.G. VETO ( 32) 43

44 3.2.5 ADC G.G. ADC ADC 2 PMT ADC 2 PMT TDC START G.G. OR STOP 2 PMT G.G. STOP 2,3 TDC 150µs INTERRUPT RESISTER TDC START 150µs ( 33) PMT1 ADCgate(mu) CO START GGLA OUT STOP PMT2 DELAY OUTPUTREG INTERREG TDCstart PMT3 STOP OUT GGLA START OR OR IN GG OUT OUT ADCgate(e) TDCstop1 CO TDCstop2 CO TDCstop3 30: 44

45 31: 45

46 32: VETO 46

47 33: 150µs 47

48 (1,342,569sec) ADC ADC ADC 120,000 PMT3 0ch 0ch 2 PMT ADC 0ch pedestal pedestal( ch) PMT3 PMT2 PMT3 pedestal 2 PMT 2 PMT ADC 2 (PMT2,3 ADC adc12,13 ) adc12 60ch adc13 230ch 150µs 2 PMT 2 PMT (i) 2 PMT (ii) 2 PMT ( 34)( 35)( 36) 48

49 decaycount 10 3 Chain AHO -- r hbk ID Entries Mean RMS UDFLW OVFLW ALLCHAN E adc12 ch 34: PMT2 ADC 49

50 decaycount Chain AHO -- r hbk ID Entries Mean RMS UDFLW OVFLW ALLCHAN E adc13 ch 35: PMT3 ADC 50

51 ch Chain AHO -- r hbk ID ENTRIES E adc12 VS. adc13 ch 36: 2 PMT(2 3) ADC 51

52 3.3.2 TDC ADC TDC i τ µ +=2.2µs τ µ = 864ns 2.8µs 97% 1 dn decay = P (1)e t/p (2) + P (3) (15) dt ( 37) P (1) = N 2 τ µ + P (2) = τ µ + P (3) = C (C : ) P(1),P(3) P 0 (1) = 1 P 0 (3) = 2 P(2) P 0 (3) = 2200 P (1) = (6.74 ± 0.69) 10 2 P (2) = 2.07 ± 0.09 µs P (3) = 6.2 ± 0.2 ii data dn decay = P (1)e t/p (2) + P (3)e t/p (4) + P (5) (16) dt ( 38) P (1) = N 1 τ µ P (2) = τ µ P (3) = N 2 τ µ + 52

53 P (4) = τ µ + P (5) = C P(2) P 0 (2) = 864 P(1),P(3),P(4),P(5) i 2 data τ µ,τ µ + τ µ = 1.16 ± 0.35 µs τ µ + = 2.15 ± 0.13 µs µ + /µ µ + /µ τ µ +,τ µ µ + /µ τ µ + τ µ (τ µ + = ± 0.04)[15] dn decay = P (1)e t/864 + P (3)e t/ P (5) (17) dt P(1) P(3) P(1) P(3) ( 39) P (1) = N 1 τ µ P (2) = N 2 τ µ + P (3) = C P(1),P(2) τ µ,pmt2 3 π, N 2 /N 1 N % [15] µ + /µ N 2 /N 1 = P (2) 2197/(P (1) ) = 1.20 ±

54 decaycount 10 2 Chain AHO -- r hbk ID Entries Mean RMS UDFLW OVFLW ALLCHAN / 235 P P P sum ns 37: PMT2 3 TDC 2.8µs 40µs P2 54

55 decaycount 10 2 Chain AHO -- r hbk ID Entries Mean RMS UDFLW OVFLW ALLCHAN / 245 P P P P P sum ns 38: PMT2 3 TDC 40µs P2 P4 55

56 decaycount 10 2 Chain AHO -- r hbk ID Entries Mean RMS UDFLW OVFLW ALLCHAN / 247 P P P sum ns 39: PMT2 3 TDC τ µ +=2197 τ µ =864 56

57 3.4 τ µ = 1.16 ± 0.35 µs τ µ + = 2.15 ± 0.13 µs µ + /µ N 2 /N 1 = 1.20 ± 0.16 τ µ = ± µs τ µ + = ± µs [15] N 2 /N 1 = 1.27 ±

58 3.5 µs pedestal 58

59 4 4.1 ( 40) 40: PMT 59

60 ADC TDC ( 41)( 42) P (3) tdc02 e t/p (4) tdc02 dt : P (3) tdc03 e t/p (4) tdc03 dt 0 = (429 ± 27.6) (2118 ± 103) : (132.5 ± 63.0) (2203 ± 372) (18) (9) π 0 ρ(x, cos θ)sinθdθdx : P 1 π 0 0 ρ(x, cos θ)sinθdθdx 1 2 π = P : P (19) 60

61 decaycount 10 2 Chain AHO -- r hbk ID Entries Mean RMS UDFLW OVFLW ALLCHAN / 235 P P P P P tdc02 ns 41: PMT(2) tdc P(3) P(4) PMT(2) TDC 61

62 decaycount 10 2 Chain AHO -- r hbk ID Entries Mean RMS UDFLW OVFLW ALLCHAN E / 242 P P P P P tdc03 ns 42: PMT(3) tdc P(3) P(4) PMT(3) TDC 62

63 4.4 P P 100 [14] σ 2 ɛ = ( ɛ N 1 ) 2 σ 2 N 1 + ( ɛ N 2 ) 2 σ 2 N 2 (20) P = (0.51 ± 0.02) 6 P = (21) 63

64 4.5 (1) (2) PMT3 (1) (2) PMT PMT PMT PMT PMT ɛ P MT 2 = 2969 ɛ P MT 3 (22) (20) 1427 ɛ P MT 3 = 1446 ɛ P MT 2 (23) ɛ P MT 2 ɛ P MT 3 = (24) ɛ P MT 2 ɛ P MT 3 = ± (25) P = (0.53 ± 0.02) ± 6 (26) 64

65 ( 0 55MeV ) 1 2 π 0 π ρ(x, cos θ)sinθdθdx : ρ(x, cos θ)sinθdθdx (27) 1 2 π = 4X 3 6X 2 + P (2X 3 X 2 ) : 6X 2 4X 3 P (2X 3 X 2 ) (28) X

66 5 66

67 A π π m π c 2 = m µ c 2 + m ν c 2 + Q (29) E µ + E ν = Q m π m µ m ν π E π E µ E ν π P µ P ν P µ = P ν (30) E µ = (m π m µ ) 2 m 2 ν 2m π c 2 (31) µ E µ E µ 4.18MeV [3] m π m µ m ν E µ m µ c 2 = m e c 2 + m ν c 2 + m ν c 2 + Q (32) E e + E ν + E ν = Q (33) P e + P ν + P ν = P µ = 0 (34) MeV E e (max) = (m µ m e ) 2 (m ν + m ν ) 2 2m µ c 2 (35) E e (max) 53MeV [3] 67

68 B π π 1200MeV 1200MeV π ( θ θ = 0 ) (θ = 180 ) A π Q 34MeV E µ 4.18MeV (36) E ν 29.82MeV (37) E ν m π c 2 + E π = m µ c 2 + m ν c 2 + E µ + E ν (38) 1200 = E µ (39) m π c 2 = 140MeV m µ c 2 = 105MeV 0 π (m π c 2 +E π ) (m µ c 2 + E µ ) 29.82MeV π 1170MeV θ = 0 ( 1170MeV ) = 105 v µ c v µ = c (40) θ = 0 θ = 90 ( ) θ = 180 ( ) π v π = c (41) 68

69 v π = c (42) π (θ = 0 ) v µ = 105 v µ c (43) v µ = c v µ ( ) = v µ c 1 + v µ c/c 2 v µ ( ) = c (44) = c v µ = c v µ = 0 v µ ( ) = v π 1 v µ ( ) = v π π E π E 2 π 1402 = c c = c (45) Eπ 140 E π = 2205MeV (46) v µ = 0.28c v µ ( ) = 0.28c v π c v π /c 2 = c (47) v π = c (48) π E π E 2 π 1402 = c c 69 Eπ 140

70 E π = 2938MeV (49) MeV 2205MeV 2938MeV MeV 1822MeV 2429MeV MeV 1311MeV 1745MeV MeV 2822MeV 3768MeV π 70

71 [1] (2002) g [2] particle data group(2004) PHYSICS LETTERS B RE- VIEW OF PARTICLE PHYSICS [3] (1986) [4] R.Turner(1971) Polarization of Cosmic Ray Muons [5] DONALD H.PERKINS(1986) Introduction to High Energy Physics [6] (1972) [7] (1983) [8] PIERRE C.MACQ(1958) Helicity of the Electron and Positron in Muon Decay [9] SATIO HAYAKAWA(1957) Polarization of Cosmic- Ray Mesons : Theory [10] Y.Fukui(2000) Muon polarization effects in the Front End of the Neutrino Factory [11] HALE V.BRADT(1963) Polarization of Cosmic-Ray Mesons [12] STANISLAW OLBERT( 1954) Production Spectra of Cosmic- Ray Mesons in the Atmosphere [13] J.A.Morgan(1997) Neutrino Propulsion for Interstellar Spacecraft [14] S.Olbert(1954) Production Spectra of Cosmic-Ray Mesons in the Atmosphere [15] B Vulpescu(2000) The charge ratio of atmospheric muons below 1.0 GeV c 1 by measuring the lifetime of muonic atoms in aluminium [16] J.P Roalsvig(1986) Total nuclear capture for negative muons [17] G.D Badhwar(1976) Analytic representation of the protonproton and proton-nucleus and its application to the sealevel and charge ratio of muons [18] THOMAS H.JOHNSON(1932) An Interpretation of Cosmic-Ray Phenomena [19] Deba Prasad Bhattacharyya(1976) Absolute low-latitude sealevel muon intensity at large zenith angle 71

W 1983 W ± Z cm 10 cm 50 MeV TAC - ADC ADC [ (µs)] = [] (2.08 ± 0.36) 10 6 s 3 χ µ + µ 8 = (1.20 ± 0.1) 10 5 (Ge

W 1983 W ± Z cm 10 cm 50 MeV TAC - ADC ADC [ (µs)] = [] (2.08 ± 0.36) 10 6 s 3 χ µ + µ 8 = (1.20 ± 0.1) 10 5 (Ge 22 2 24 W 1983 W ± Z 0 3 10 cm 10 cm 50 MeV TAC - ADC 65000 18 ADC [ (µs)] = 0.0207[] 0.0151 (2.08 ± 0.36) 10 6 s 3 χ 2 2 1 20 µ + µ 8 = (1.20 ± 0.1) 10 5 (GeV) 2 G µ ( hc) 3 1 1 7 1.1.............................

More information

Drift Chamber

Drift Chamber Quench Gas Drift Chamber 23 25 1 2 5 2.1 Drift Chamber.............................................. 5 2.2.............................................. 6 2.2.1..............................................

More information

Muon Muon Muon lif

Muon Muon Muon lif 2005 2005 3 23 1 2 2 2 2.1 Muon.......................................... 2 2.2 Muon........................... 2 2.3................................. 3 2.4 Muon life time.........................................

More information

24 10 10 1 2 1.1............................ 2 2 3 3 8 3.1............................ 8 3.2............................ 8 3.3.............................. 11 3.4........................ 12 3.5.........................

More information

25 3 4

25 3 4 25 3 4 1 µ e + ν e +ν µ µ + e + +ν e + ν µ e e + TAC START STOP START veto START (2.04 ± 0.18)µs 1/2 STOP (2.09 ± 0.11)µs 1/8 G F /( c) 3 (1.21±0.09) 5 /GeV 2 (1.19±0.05) 5 /GeV 2 Weinberg θ W sin θ W

More information

thesis.dvi

thesis.dvi 3 17 03SA210A 2005 3 1 introduction 1 1.1 Positronium............ 1 1.2 Positronium....................... 4 1.2.1 moderation....................... 5 1.2.2..................... 6 1.2.3...................

More information

Mott散乱によるParity対称性の破れを検証

Mott散乱によるParity対称性の破れを検証 Mott Parity P2 Mott target Mott Parity Parity Γ = 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 t P P ),,, ( 3 2 1 0 1 γ γ γ γ γ γ ν ν µ µ = = Γ 1 : : : Γ P P P P x x P ν ν µ µ vector axial vector ν ν µ µ γ γ Γ ν γ

More information

1 1 (proton, p) (neutron, n) (uud), (udd) u ( ) d ( ) u d ( ) 1: 2: /2 1 0 ( ) ( 2) 0 (γ) 0 (g) ( fm) W Z 0 0 β( )

1 1 (proton, p) (neutron, n) (uud), (udd) u ( ) d ( ) u d ( ) 1: 2: /2 1 0 ( ) ( 2) 0 (γ) 0 (g) ( fm) W Z 0 0 β( ) ( ) TA 2234 oda@phys.kyushu-u.ac.jp TA (M1) 2161 sumi@epp.phys.kyushu-u.ac.jp TA (M1) 2161 takada@epp.phys.kyushu-u.ac.jp TA (M1) 2254 tanaka@epp.phys.kyushu-u.ac.jp µ ( ) 1 2 1.1...............................................

More information

soturon.dvi

soturon.dvi Stopped Muon 94S2003J 11 3 10 1 2 2 3 2.1 Muon : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 3 2.2 : : : : : : : : 4 2.3 : : : : : : : : : : : : : 6 3 7 3.1 : : : : : : : : : : : : : : : :

More information

Bethe-Bloch Bethe-Bloch (stopping range) Bethe-Bloch FNAL (Fermi National Accelerator Laboratory) - (SciBooNE ) SciBooNE Bethe-Bloch FNAL - (SciBooNE

Bethe-Bloch Bethe-Bloch (stopping range) Bethe-Bloch FNAL (Fermi National Accelerator Laboratory) - (SciBooNE ) SciBooNE Bethe-Bloch FNAL - (SciBooNE 21 2 27 Bethe-Bloch Bethe-Bloch (stopping range) Bethe-Bloch FNAL (Fermi National Accelerator Laboratory) - (SciBooNE ) SciBooNE Bethe-Bloch FNAL - (SciBooNE ) Bethe-Bloch 1 0.1..............................

More information

main.dvi

main.dvi MICE Sci-Fi 2 15 3 7 1 1 5 1.1 MICE(Muon Ionization Cooling Experiment)............. 5 1.1.1........................... 5 1.1.2............................... 7 1.1.3 MICE.......................... 10

More information

untitled

untitled masato@icrr.u-tokyo.ac.jp 996 Start 997 998 999 000 00 00 003 004 005 006 007 008 SK-I Accident Partial Reconstruction SK-II Full reconstruction ( SK-III ( ),46 (40%) 5,8 (9%),9 (40%) 5MeV 7MeV 4MeV(plan)

More information

3 1 4 1.1......................... 4 1.1.1....................... 4 1.1.2.................. 4 1.1.3 Coulomb potential.............. 5 1.2.............

3 1 4 1.1......................... 4 1.1.1....................... 4 1.1.2.................. 4 1.1.3 Coulomb potential.............. 5 1.2............. Fe muonic atom X 25 5 21 3 1 4 1.1......................... 4 1.1.1....................... 4 1.1.2.................. 4 1.1.3 Coulomb potential.............. 5 1.2.......................... 6 1.2.1...................

More information

positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) MeV : thermalization m psec 100

positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) MeV : thermalization m psec 100 positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) 0.5 1.5MeV : thermalization 10 100 m psec 100psec nsec E total = 2mc 2 + E e + + E e Ee+ Ee-c mc

More information

untitled

untitled BELLE TOP 12 1 3 2 BELLE 4 2.1 BELLE........................... 4 2.1.1......................... 4 2.1.2 B B........................ 7 2.1.3 B CP............... 8 2.2 BELLE...................... 9 2.3

More information

2004 A1 10 4 1 2 2 3 2.1................................................ 3 2.2............................................. 4 2.3.................................................. 5 2.3.1.......................

More information

1 2 1 a(=,incident particle A(target nucleus) b (projectile B( product nucleus, residual nucleus, ) ; a + A B + b a A B b 1: A(a,b)B A=B,a=b 2 1. ( 10

1 2 1 a(=,incident particle A(target nucleus) b (projectile B( product nucleus, residual nucleus, ) ; a + A B + b a A B b 1: A(a,b)B A=B,a=b 2 1. ( 10 1 2 1 a(=,incident particle A(target nucleus) b (projectile B( product nucleus, residual nucleus, ) ; a + A B + b a A B b 1: A(a,b)B A=B,a=b 2 1. ( 10 14 m) ( 10 10 m) 2., 3 1 =reaction-text20181101b.tex

More information

[ ] [ ] [ ] [ ] [ ] [ ] ADC

[ ] [ ] [ ] [ ] [ ] [ ] ADC [ ] [ ] [ ] [ ] [ ] [ ] ADC BS1 m1 PMT m2 BS2 PMT1 PMT ADC PMT2 α PMT α α = n ω n n Pn TMath::Poisson(x,[0]) 0.35 0.3 0.25 0.2 0.15 λ 1.5 ω n 2 = ( α 2 ) n n! e α 2 α 2 = λ = λn n! e λ Poisson Pn 0.1

More information

= hυ = h c λ υ λ (ev) = 1240 λ W=NE = Nhc λ W= N 2 10-16 λ / / Φe = dqe dt J/s Φ = km Φe(λ)v(λ)dλ THBV3_0101JA Qe = Φedt (W s) Q = Φdt lm s Ee = dφe ds E = dφ ds Φ Φ THBV3_0102JA Me = dφe ds M = dφ ds

More information

Donald Carl J. Choi, β ( )

Donald Carl J. Choi, β ( ) :: α β γ 200612296 20 10 17 1 3 2 α 3 2.1................................... 3 2.2................................... 4 2.3....................................... 6 2.4.......................................

More information

( ) Note (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e

( ) Note (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e ( ) Note 3 19 12 13 8 8.1 (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e µ τ, e R, µ R, τ R (1a) L ( ) ) * 3) W Z 1/2 ( - )

More information

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H 199 1 1 199 1 1. Vx) m e V cos x π x π Vx) = x < π, x > π V i) x = Vx) V 1 x /)) n n d f dξ ξ d f dξ + n f = H n ξ) ii) H n ξ) = 1) n expξ ) dn dξ n exp ξ )) H n ξ)h m ξ) exp ξ )dξ = π n n!δ n,m x = Vx)

More information

スーパーカミオカンデにおける 高エネルギーニュートリノ研究

スーパーカミオカンデにおける 高エネルギーニュートリノ研究 2009 11 20 Cosmic Ray PD D M P4 ? CR M f M PD MOA M1 ν ν p+p+p+p 4 He +2e - +2ν e MeV e - + p n+ ν e γ e + + e - ν x + ν x p + p, γ + p π + X π µ + ν µ e + ν µ + ν e TeV p + p π + X π µ + ν µ e + ν µ +

More information

LEPS

LEPS LEPS2 2016 2 17 LEPS2 SPring-8 γ 3 GeV γ 10 Mcps LEPS2 7 120 LEPS Λ(1405) LEPS2 LEPS2 Silicon Strip Detector (SSD) SSD 100 µm 512 ch 6 cm 3 x y 2 SSD 6 3072 ch APV25-s1 APVDAQ VME APV25-s1 SSD 128 ch

More information

KamLAND (µ) ν e RSFP + ν e RSFP(Resonant Spin Flavor Precession) ν e RSFP 1. ν e ν µ ν e RSFP.ν e νµ ν e νe µ KamLAND νe KamLAND (ʼ4). kton-day 8.3 < E ν < 14.8 MeV candidates Φ(νe) < 37 cm - s -1 P(νe

More information

The Physics of Atmospheres CAPTER :

The Physics of Atmospheres CAPTER : The Physics of Atmospheres CAPTER 4 1 4 2 41 : 2 42 14 43 17 44 25 45 27 46 3 47 31 48 32 49 34 41 35 411 36 maintex 23/11/28 The Physics of Atmospheres CAPTER 4 2 4 41 : 2 1 σ 2 (21) (22) k I = I exp(

More information

LHC ALICE (QGP) QGP QGP QGP QGP ω ϕ J/ψ ALICE s = ev + J/ψ

LHC ALICE (QGP) QGP QGP QGP QGP ω ϕ J/ψ ALICE s = ev + J/ψ 8 + J/ψ ALICE B597 : : : 9 LHC ALICE (QGP) QGP QGP QGP QGP ω ϕ J/ψ ALICE s = ev + J/ψ 6..................................... 6. (QGP)..................... 6.................................... 6.4..............................

More information

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e 7 -a 7 -a February 4, 2007 1. 2. 3. 4. 1. 2. 3. 1 Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e z

More information

nenmatsu5c19_web.key

nenmatsu5c19_web.key KL π ± e νe + e - (Ke3ee) Ke3ee ν e + e - Ke3 K 0 γ e + π - Ke3 KL ; 40.67(%) Ke3ee K 0 ν γ e + π - Ke3 KL ; 40.67(%) Me + e - 10 4 10 3 10 2 : MC Ke3γ : data K L real γ e detector matter e e 10 1 0 0.02

More information

Μ粒子電子転換事象探索実験による世界最高感度での 荷電LFV探索 第3回機構シンポジューム 2009年5月11日 素粒子原子核研究所 三原 智

Μ粒子電子転換事象探索実験による世界最高感度での 荷電LFV探索  第3回機構シンポジューム 2009年5月11日 素粒子原子核研究所 三原 智 µ COMET LFV esys clfv (Charged Lepton Flavor Violation) J-PARC µ COMET ( ) ( ) ( ) ( ) B ( ) B ( ) B ( ) B ( ) B ( ) B ( ) B 2016 J- PARC µ KEK 3 3 3 3 3 3 3 3 3 3 3 clfv clfv clfv clfv clfv clfv clfv

More information

untitled

untitled MPPC 18 2 16 MPPC(Multi Pixel Photon Counter), MPPC T2K MPPC T2K (HPK) CPTA, MPPC T2K p,π T2K > 5 10 5 < 1MHz > 15% 200p.e. MIP 5p.e. p/π MPPC HPK MPPC 2 1 MPPC 5 1.1...................................

More information

( ) ,

( ) , II 2007 4 0. 0 1 0 2 ( ) 0 3 1 2 3 4, - 5 6 7 1 1 1 1 1) 2) 3) 4) ( ) () H 2.79 10 10 He 2.72 10 9 C 1.01 10 7 N 3.13 10 6 O 2.38 10 7 Ne 3.44 10 6 Mg 1.076 10 6 Si 1 10 6 S 5.15 10 5 Ar 1.01 10 5 Fe 9.00

More information

untitled

untitled 9118 154 B-1 B-3 B- 5cm 3cm 5cm 3m18m5.4m.5m.66m1.3m 1.13m 1.134m 1.35m.665m 5 , 4 13 7 56 M 1586.1.18 7.77.9 599.5.8 7 1596.9.5 7.57.75 684.11.9 8.5 165..3 7.9 87.8.11 6.57. 166.6.16 7.57.6 856 6.6.5

More information

main.dvi

main.dvi CeF 3 1 1 3 1.1 KEK E391a... 3 1.1.1 KL 0 π0 νν... 3 1.1.2 E391a... 4 1.1.3... 5 1.2... 6 2 8 2.1... 8 2.2... 10 2.3 CeF 3... 12 2.4... 13 3 15 3.1... 15 3.2... 15 3.3... 18 3.4... 22 4 23 4.1... 23 4.2...

More information

(e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ,µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) [ ] [ ] [ ] ν e ν µ ν τ e µ τ, e R,µ R,τ R (2.1a

(e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ,µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) [ ] [ ] [ ] ν e ν µ ν τ e µ τ, e R,µ R,τ R (2.1a 1 2 2.1 (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ,µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) [ ] [ ] [ ] ν e ν µ ν τ e µ τ, e R,µ R,τ R (2.1a) L ( ) ) * 2) W Z 1/2 ( - ) d u + e + ν e 1 1 0 0

More information

untitled

untitled 71 7 3,000 1 MeV t = 1 MeV = c 1 MeV c 200 MeV fm 1 MeV 3.0 10 8 10 15 fm/s 0.67 10 21 s (1) 1fm t = 1fm c 1fm 3.0 10 8 10 15 fm/s 0.33 10 23 s (2) 10 22 s 7.1 ( ) a + b + B(+X +...) (3) a b B( X,...)

More information

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2 2005 9/8-11 2 2.2 ( 2-5) γ ( ) γ cos θ 2πr πρhr 2 g h = 2γ cos θ ρgr (2.1) γ = ρgrh (2.2) 2 cos θ θ cos θ = 1 (2.2) γ = 1 ρgrh (2.) 2 2. p p ρgh p ( ) p p = p ρgh (2.) h p p = 2γ r 1 1 (Berry,1975) 2-6

More information

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k 63 3 Section 3.1 g 3.1 3.1: : 64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () 3 9.8 m/s 2 3.2 3.2: : a) b) 5 15 4 1 1. 1 3 14. 1 3 kg/m 3 2 3.3 1 3 5.8 1 3 kg/m 3 3 2.65 1 3 kg/m 3 4 6 m 3.1. 65 5

More information

Λ (Λ ) Λ (Ge) Hyperball γ ΛN J-PARC Λ dead time J-PARC flash ADC 1 dead time ( ) 1 µsec 3

Λ (Λ ) Λ (Ge) Hyperball γ ΛN J-PARC Λ dead time J-PARC flash ADC 1 dead time ( ) 1 µsec 3 19 Λ (Λ ) Λ (Ge) Hyperball γ ΛN J-PARC Λ dead time J-PARC flash ADC 1 dead time ( ) 1 µsec 3 1 1 1.1 γ ΛN................. 1 1.2 KEK J-PARC................................ 2 1.2.1 J-PARC....................................

More information

4‐E ) キュリー温度を利用した消磁:熱消磁

4‐E ) キュリー温度を利用した消磁:熱消磁 ( ) () x C x = T T c T T c 4D ) ) Fe Ni Fe Fe Ni (Fe Fe Fe Fe Fe 462 Fe76 Ni36 4E ) ) (Fe) 463 4F ) ) ( ) Fe HeNe 17 Fe Fe Fe HeNe 464 Ni Ni Ni HeNe 465 466 (2) Al PtO 2 (liq) 467 4G ) Al 468 Al ( 468

More information

23 1 Section ( ) ( ) ( 46 ) , 238( 235,238 U) 232( 232 Th) 40( 40 K, % ) (Rn) (Ra). 7( 7 Be) 14( 14 C) 22( 22 Na) (1 ) (2 ) 1 µ 2 4

23 1 Section ( ) ( ) ( 46 ) , 238( 235,238 U) 232( 232 Th) 40( 40 K, % ) (Rn) (Ra). 7( 7 Be) 14( 14 C) 22( 22 Na) (1 ) (2 ) 1 µ 2 4 23 1 Section 1.1 1 ( ) ( ) ( 46 ) 2 3 235, 238( 235,238 U) 232( 232 Th) 40( 40 K, 0.0118% ) (Rn) (Ra). 7( 7 Be) 14( 14 C) 22( 22 Na) (1 ) (2 ) 1 µ 2 4 2 ( )2 4( 4 He) 12 3 16 12 56( 56 Fe) 4 56( 56 Ni)

More information

Note.tex 2008/09/19( )

Note.tex 2008/09/19( ) 1 20 9 19 2 1 5 1.1........................ 5 1.2............................. 8 2 9 2.1............................. 9 2.2.............................. 10 3 13 3.1.............................. 13 3.2..................................

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 1 19 3 19.1................... 3 19.............................. 4 19.3............................... 6 19.4.............................. 8 19.5.............................

More information

9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) Ĥ0 ψ n (r) ω n Schrödinger Ĥ 0 ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ0 + Ĥint (

9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) Ĥ0 ψ n (r) ω n Schrödinger Ĥ 0 ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ0 + Ĥint ( 9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) 2. 2.1 Ĥ ψ n (r) ω n Schrödinger Ĥ ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ + Ĥint (t)] ψ (r, t), (2) Ĥ int (t) = eˆxe cos ωt ˆdE cos ωt, (3)

More information

Abstruct CANGAROO-III (PhotoMultiplier Tube PMT PMT ) PMT PMT R3479 ND 1 PMT 10 ( 90 ) Woomera PMT PMT (Light Guide LG) LG 0.944±0.023 PMT (4 ch) PMT

Abstruct CANGAROO-III (PhotoMultiplier Tube PMT PMT ) PMT PMT R3479 ND 1 PMT 10 ( 90 ) Woomera PMT PMT (Light Guide LG) LG 0.944±0.023 PMT (4 ch) PMT CANGAROOIII January 16, 2009 Abstruct CANGAROO-III (PhotoMultiplier Tube PMT PMT ) PMT PMT R3479 ND 1 PMT 10 ( 90 ) Woomera PMT PMT (Light Guide LG) LG 0.944±0.023 PMT (4 ch) PMT R8900U (HPKK) R8900U Bialkali

More information

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2 1 6 6.1 (??) (P = ρ rad /3) ρ rad T 4 d(ρv ) + PdV = 0 (6.1) dρ rad ρ rad + 4 da a = 0 (6.2) dt T + da a = 0 T 1 a (6.3) ( ) n ρ m = n (m + 12 ) m v2 = n (m + 32 ) T, P = nt (6.4) (6.1) d [(nm + 32 ] )a

More information

From Evans Application Notes

From Evans Application Notes 3 From Evans Application Notes http://www.eaglabs.com From Evans Application Notes http://www.eaglabs.com XPS AES ISS SSIMS ATR-IR 1-10keV µ 1 V() r = kx 2 = 2π µν x mm 1 2 µ= m + m 1 2 1 k ν = OSC 2

More information

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

II ( ) (7/31) II (  [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re II 29 7 29-7-27 ( ) (7/31) II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I Euler Navier

More information

C: PC H19 A5 2.BUN Ohm s law

C: PC H19 A5 2.BUN Ohm s law C: PC H19 A5 2.BUN 19 8 6 3 19 3.1........................... 19 3.2 Ohm s law.................... 21 3.3.......................... 24 4 26 4.1................................. 26 4.2.................................

More information

B 1 B.1.......................... 1 B.1.1................. 1 B.1.2................. 2 B.2........................... 5 B.2.1.......................... 5 B.2.2.................. 6 B.2.3..................

More information

m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120)

m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120) 2.6 2.6.1 mẍ + γẋ + ω 0 x) = ee 2.118) e iωt Pω) = χω)e = ex = e2 Eω) m ω0 2 ω2 iωγ 2.119) Z N ϵω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j 2.120) Z ω ω j γ j f j f j f j sum j f j = Z 2.120 ω ω j, γ ϵω) ϵ

More information

目次 2 1. イントロダクション 2. 実験原理 3. データ取得 4. データ解析 5. 結果 考察 まとめ

目次 2 1. イントロダクション 2. 実験原理 3. データ取得 4. データ解析 5. 結果 考察 まとめ オルソポジトロニウムの寿命測定による QED の実験的検証 課題演習 A2 2016 年後期 大田力也鯉渕駿龍澤誠之 羽田野真友喜松尾一輝三野裕哉 目次 2 1. イントロダクション 2. 実験原理 3. データ取得 4. データ解析 5. 結果 考察 まとめ 第 1 章イントロダクション 実験の目的 4 ポジトロニウム ( 後述 ) の崩壊を観測 オルソポジトロニウム ( スピン 1 状態 ) の寿命を測定

More information

SPECT(Single Photon Emission Computer Tomography ) SPECT FWHM 3 4mm [] MPPC SPECT MPPC LSO 6mm 67.5 photo electron 78% kev γ 4.6 photo electron SPECT

SPECT(Single Photon Emission Computer Tomography ) SPECT FWHM 3 4mm [] MPPC SPECT MPPC LSO 6mm 67.5 photo electron 78% kev γ 4.6 photo electron SPECT 3 SPECT SJ SPECT(Single Photon Emission Computer Tomography ) SPECT FWHM 3 4mm [] MPPC SPECT MPPC LSO 6mm 67.5 photo electron 78% kev γ 4.6 photo electron SPECT 9ch MPPC array 3 3 9 3 3 9.mm(sigma) . SPECT..................................................................3............

More information

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z I 1 m 2 l k 2 x = 0 x 1 x 1 2 x 2 g x x 2 x 1 m k m 1-1. L x 1, x 2, ẋ 1, ẋ 2 ẋ 1 x = 0 1-2. 2 Q = x 1 + x 2 2 q = x 2 x 1 l L Q, q, Q, q M = 2m µ = m 2 1-3. Q q 1-4. 2 x 2 = h 1 x 1 t = 0 2 1 t x 1 (t)

More information

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0 1 1 1.1 1.) T D = T = D = kn 1. 1.4) F W = F = W/ = kn/ = 15 kn 1. 1.9) R = W 1 + W = 6 + 5 = 11 N. 1.9) W b W 1 a = a = W /W 1 )b = 5/6) = 5 cm 1.4 AB AC P 1, P x, y x, y y x 1.4.) P sin 6 + P 1 sin 45

More information

1 2 2 (Dielecrics) Maxwell ( ) D H

1 2 2 (Dielecrics) Maxwell ( ) D H 2003.02.13 1 2 2 (Dielecrics) 4 2.1... 4 2.2... 5 2.3... 6 2.4... 6 3 Maxwell ( ) 9 3.1... 9 3.2 D H... 11 3.3... 13 4 14 4.1... 14 4.2... 14 4.3... 17 4.4... 19 5 22 6 THz 24 6.1... 24 6.2... 25 7 26

More information

19 σ = P/A o σ B Maximum tensile strength σ % 0.2% proof stress σ EL Elastic limit Work hardening coefficient failure necking σ PL Proportional

19 σ = P/A o σ B Maximum tensile strength σ % 0.2% proof stress σ EL Elastic limit Work hardening coefficient failure necking σ PL Proportional 19 σ = P/A o σ B Maximum tensile strength σ 0. 0.% 0.% proof stress σ EL Elastic limit Work hardening coefficient failure necking σ PL Proportional limit ε p = 0.% ε e = σ 0. /E plastic strain ε = ε e

More information

Thick-GEM 06S2026A 22 3

Thick-GEM 06S2026A 22 3 Thick-GEM 06S2026A 22 3 (MWPC-Multi Wire Proportional Chamber) MPGD(Micro Pattern Gas Detector) MPGD MPGD MPGD MPGD GEM(Gas Electron Multiplier) GEM GEM GEM Thick-GEM GEM Thick-GEM 10 4 Thick-GEM 1 Introduction

More information

3-2 PET ( : CYRIC ) ( 0 ) (3-1 ) PET PET [min] 11 C 13 N 15 O 18 F 68 Ga [MeV] [mm] [MeV]

3-2 PET ( : CYRIC ) ( 0 ) (3-1 ) PET PET [min] 11 C 13 N 15 O 18 F 68 Ga [MeV] [mm] [MeV] 3 PET 3-1 PET 3-1-1 PET PET 1-1 X CT MRI(Magnetic Resonance Imaging) X CT MRI PET 3-1 PET [1] H1 D2 11 C-doxepin 11 C-raclopride PET H1 D2 3-2 PET 0 0 H1 D2 3-1 PET 3-2 PET ( : CYRIC ) ( 0 ) 3-1-2 (3-1

More information

CdTe γ 02cb059e :

CdTe γ 02cb059e : CdTe γ 02cb059e : 2006 5 2 i 1 1 1.1............................................ 1 1.2............................................. 2 1.3............................................. 2 2 3 2.1....................................

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 3.............................. 3.............................. 4.3 4................... 5.4........................ 6.5........................ 8.6...........................7

More information

Microsoft Word - 章末問題

Microsoft Word - 章末問題 1906 R n m 1 = =1 1 R R= 8h ICP s p s HeNeArXe 1 ns 1 1 1 1 1 17 NaCl 1.3 nm 10nm 3s CuAuAg NaCl CaF - - HeNeAr 1.7(b) 2 2 2d = a + a = 2a d = 2a 2 1 1 N = 8 + 6 = 4 8 2 4 4 2a 3 4 π N πr 3 3 4 ρ = = =

More information

pdf

pdf http://www.ns.kogakuin.ac.jp/~ft13389/lecture/physics1a2b/ pdf I 1 1 1.1 ( ) 1. 30 m µm 2. 20 cm km 3. 10 m 2 cm 2 4. 5 cm 3 km 3 5. 1 6. 1 7. 1 1.2 ( ) 1. 1 m + 10 cm 2. 1 hr + 6400 sec 3. 3.0 10 5 kg

More information

LT 低コスト、シャットダウン機能付き デュアルおよびトリプル300MHz 電流帰還アンプ

LT 低コスト、シャットダウン機能付き デュアルおよびトリプル300MHz 電流帰還アンプ µ µ LT1398/LT1399 V IN A R G 00Ω CHANNEL A SELECT EN A R F 3Ω B C 97.6Ω CABLE V IN B R G 00Ω EN B R F 3Ω 97.6Ω V OUT OUTPUT (00mV/DIV) EN C V IN C 97.6Ω R G 00Ω R F 3Ω 1399 TA01 R F = R G = 30Ω f = 30MHz

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 +

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 + 2.6 2.6.1 ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.121) Z ω ω j γ j f j

More information

untitled

untitled SPring-8 RFgun JASRI/SPring-8 6..7 Contents.. 3.. 5. 6. 7. 8. . 3 cavity γ E A = er 3 πε γ vb r B = v E c r c A B A ( ) F = e E + v B A A A A B dp e( v B+ E) = = m d dt dt ( γ v) dv e ( ) dt v B E v E

More information

PDF

PDF 1 1 1 1-1 1 1-9 1-3 1-1 13-17 -3 6-4 6 3 3-1 35 3-37 3-3 38 4 4-1 39 4- Fe C TEM 41 4-3 C TEM 44 4-4 Fe TEM 46 4-5 5 4-6 5 5 51 6 5 1 1-1 1991 1,1 multiwall nanotube 1993 singlewall nanotube ( 1,) sp 7.4eV

More information

all.dvi

all.dvi 72 9 Hooke,,,. Hooke. 9.1 Hooke 1 Hooke. 1, 1 Hooke. σ, ε, Young. σ ε (9.1), Young. τ γ G τ Gγ (9.2) X 1, X 2. Poisson, Poisson ν. ν ε 22 (9.) ε 11 F F X 2 X 1 9.1: Poisson 9.1. Hooke 7 Young Poisson G

More information

橡実験IIINMR.PDF

橡実験IIINMR.PDF (NMR) 0 (NMR) 2µH hω ω 1 h 2 1 1-1 NMR NMR h I µ = γµ N 1-2 1 H 19 F Ne µ = Neh 2mc ( 1) N 2 ( ) I =1/2 I =3/2 I z =+1/2 I z = 1/2 γh H>0 2µH H=0 µh I z =+3/2 I z =+1/2 I z = 1/2 I z = 3/2 γh H>0 2µH H=0

More information

B

B B07557 0 0 (AGN) AGN AGN X X AGN AGN Geant4 AGN X X X (AGN) AGN AGN X AGN. AGN AGN Seyfert Seyfert Seyfert AGN 94 Carl Seyfert Seyfert Seyfert z < 0. Seyfert I II I 000 km/s 00 km/s II AGN (BLR) (NLR)

More information

OHO.dvi

OHO.dvi 1 Coil D-shaped electrodes ( [1] ) Vacuum chamber Ion source Oscillator 1.1 m e v B F = evb (1) r m v2 = evb r v = erb (2) m r T = 2πr v = 2πm (3) eb v

More information

( ) : 1997

( ) : 1997 ( ) 2008 2 17 : 1997 CMOS FET AD-DA All Rights Reserved (c) Yoichi OKABE 2000-present. [ HTML ] [ PDF ] [ ] [ Web ] [ ] [ HTML ] [ PDF ] 1 1 4 1.1..................................... 4 1.2..................................

More information

1. (8) (1) (x + y) + (x + y) = 0 () (x + y ) 5xy = 0 (3) (x y + 3y 3 ) (x 3 + xy ) = 0 (4) x tan y x y + x = 0 (5) x = y + x + y (6) = x + y 1 x y 3 (

1. (8) (1) (x + y) + (x + y) = 0 () (x + y ) 5xy = 0 (3) (x y + 3y 3 ) (x 3 + xy ) = 0 (4) x tan y x y + x = 0 (5) x = y + x + y (6) = x + y 1 x y 3 ( 1 1.1 (1) (1 + x) + (1 + y) = 0 () x + y = 0 (3) xy = x (4) x(y + 3) + y(y + 3) = 0 (5) (a + y ) = x ax a (6) x y 1 + y x 1 = 0 (7) cos x + sin x cos y = 0 (8) = tan y tan x (9) = (y 1) tan x (10) (1 +

More information

7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ±

7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ± 7 7. ( ) SU() SU() 9 ( MeV) p 98.8 π + π 0 n 99.57 9.57 97.4 497.70 δm m 0.4%.% 0.% 0.8% π 9.57 4.96 Σ + Σ 0 Σ 89.6 9.46 K + K 0 49.67 (7.) p p = αp + βn, n n = γp + δn (7.a) [ ] p ψ ψ = Uψ, U = n [ α

More information

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 2 ), ϕ(t) = B 1 cos(ω 1 t + α 1 ) + B 2 cos(ω 2 t

More information

FPWS2018講義千代

FPWS2018講義千代 千代勝実(山形大学) 素粒子物理学入門@FPWS2018 3つの究極の 宗教や神話 哲学や科学が行き着く人間にとって究極の問い 宇宙 世界 はどのように始まり どのように終わるのか 全てをつかさどる究極原理は何か 今日はこれを考えます 人類はどういう存在なのか Wikipediaより 4 /72 千代勝実(山形大学) 素粒子物理学入門@FPWS2018 電子レンジ 可視光では中が透け

More information

JPS2016_Aut_Takahashi_ver4

JPS2016_Aut_Takahashi_ver4 CTA 111: CTA 7 A B A C D A E F G D H I J K H H J L H I A C B I A J I H A M H D G Dang Viet Tan G Daniela Hadasch A Daniel Mazin A C CTA-Japan A, B, Max-Planck-Inst. fuer Phys. C, D, ISEE E, F, G, H, I,

More information

Electron Ion Collider と ILC-N 宮地義之 山形大学

Electron Ion Collider と ILC-N 宮地義之 山形大学 Electron Ion Collider と ILC-N 宮地義之 山形大学 ILC-N ILC-N Ee Ee == 250, 250, 500 500 GeV GeV Fixed Fixed target: target: p, p, d, d, A A 33-34 cm-2 LL ~~ 10 1033-34 cm-2 ss-1-1 s s == 22, 22, 32 32 GeV GeV

More information

- γ 1929 γ - SI γ 137 Cs 662 kev γ NaI active target NaI γ NaI 2 NaI γ NaI(Tl) γ 2 NaI γ γ γ

- γ 1929 γ - SI γ 137 Cs 662 kev γ NaI active target NaI γ NaI 2 NaI γ NaI(Tl) γ 2 NaI γ γ γ - 28 2 15 - γ 1929 γ - SI γ 137 Cs 662 kev γ NaI active target NaI γ NaI 2 NaI γ NaI(Tl) γ 2 NaI γ γ 10 3 4 γ 1 3 2 γ 5 2.1..................................... 5 2.1.1.................... 5 2.1.2..............................

More information

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d A 2. x F (t) =f sin ωt x(0) = ẋ(0) = 0 ω θ sin θ θ 3! θ3 v = f mω cos ωt x = f mω (t sin ωt) ω t 0 = f ( cos ωt) mω x ma2-2 t ω x f (t mω ω (ωt ) 6 (ωt)3 = f 6m ωt3 2.2 u ( v w) = v ( w u) = w ( u v) ma22-9

More information

LTC 自己給電絶縁型コンパレータ

LTC 自己給電絶縁型コンパレータ AC 120V TECCOR 4008L4 OR EUIVALENT NEUTRAL 2N2222 HEATER 25Ω 150Ω 1k 1N4004 2.5k 5W 5.6V R1 680k 390Ω 100µF LE 47k C1 0.01µF ZC ZC COMPARISON > R = R O e B (1/T 1/T O ) B = 3807 1µF THERM 30k YSI 44008

More information

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x Compton Scattering Beaming exp [i k x ωt] k λ k π/λ ω πν k ω/c k x ωt ω k α c, k k x ωt η αβ k α x β diag + ++ x β ct, x O O x O O v k α k α β, γ k γ k βk, k γ k + βk k γ k k, k γ k + βk 3 k k 4 k 3 k

More information

LLG-R8.Nisus.pdf

LLG-R8.Nisus.pdf d M d t = γ M H + α M d M d t M γ [ 1/ ( Oe sec) ] α γ γ = gµ B h g g µ B h / π γ g = γ = 1.76 10 [ 7 1/ ( Oe sec) ] α α = λ γ λ λ λ α γ α α H α = γ H ω ω H α α H K K H K / M 1 1 > 0 α 1 M > 0 γ α γ =

More information

Canvas-tr01(title).cv3

Canvas-tr01(title).cv3 Working Group DaiMaJin DaiRittaikaku Multiparticle Jiki-Bunnsekiki Samurai7 Superconducting Analyser for Multi particles from RadioIsotope Beams with 7Tm of bending power (γ,n) softgdr, GDR non resonant

More information

21 Daya Bay θ 13 Lawrence Berkeley National Laboratory Brookhaven National Laboratory 2012 ( 24 ) Daya Bay 2011

21 Daya Bay θ 13 Lawrence Berkeley National Laboratory Brookhaven National Laboratory 2012 ( 24 ) Daya Bay 2011 21 Daya Bay θ 13 Lawrence Berkeley National Laboratory YNakajima@lbl.gov Brookhaven National Laboratory thide@bnl.gov 2012 ( 24 ) 5 16 1 Daya Bay 2011 12,, θ 13, 55 2012 3 sin 2 2θ 13 Daya Bay sin 2 2θ

More information

rcnp01may-2

rcnp01may-2 E22 RCP Ring-Cyclotron 97 953 K beam K-atom HF X K, +,K + e,e K + -spectroscopy OK U U I= First-order -exchange - coupling I= U LS U LS Meson-exchange model /5/ I= Symmetric LS Anti-symmetric LS ( σ Λ

More information

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T NHK 204 2 0 203 2 24 ( ) 7 00 7 50 203 2 25 ( ) 7 00 7 50 203 2 26 ( ) 7 00 7 50 203 2 27 ( ) 7 00 7 50 I. ( ν R n 2 ) m 2 n m, R = e 2 8πε 0 hca B =.09737 0 7 m ( ν = ) λ a B = 4πε 0ħ 2 m e e 2 = 5.2977

More information

05Mar2001_tune.dvi

05Mar2001_tune.dvi 2001 3 5 COD 1 1.1 u d2 u + ku =0 (1) dt2 u = a exp(pt) (2) p = ± k (3) k>0k = ω 2 exp(±iωt) (4) k

More information

201711grade1ouyou.pdf

201711grade1ouyou.pdf 2017 11 26 1 2 52 3 12 13 22 23 32 33 42 3 5 3 4 90 5 6 A 1 2 Web Web 3 4 1 2... 5 6 7 7 44 8 9 1 2 3 1 p p >2 2 A 1 2 0.6 0.4 0.52... (a) 0.6 0.4...... B 1 2 0.8-0.2 0.52..... (b) 0.6 0.52.... 1 A B 2

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc2.com/ 1 30 3 30.1.............. 3 30.2........................... 4 30.3...................... 5 30.4........................ 6 30.5.................................. 8 30.6...............................

More information

( ) ( )

( ) ( ) 20 21 2 8 1 2 2 3 21 3 22 3 23 4 24 5 25 5 26 6 27 8 28 ( ) 9 3 10 31 10 32 ( ) 12 4 13 41 0 13 42 14 43 0 15 44 17 5 18 6 18 1 1 2 2 1 2 1 0 2 0 3 0 4 0 2 2 21 t (x(t) y(t)) 2 x(t) y(t) γ(t) (x(t) y(t))

More information

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n 003...............................3 Debye................. 3.4................ 3 3 3 3. Larmor Cyclotron... 3 3................ 4 3.3.......... 4 3.3............ 4 3.3...... 4 3.3.3............ 5 3.4.........

More information

A

A A04-164 2008 2 13 1 4 1.1.......................................... 4 1.2..................................... 4 1.3..................................... 4 1.4..................................... 5 2

More information

( ) 2002 1 1 1 1.1....................................... 1 1.1.1................................. 1 1.1.2................................. 1 1.1.3................... 3 1.1.4......................................

More information

B

B B09170 5 8 ) ( ) π 0-1 s -1 sr -1 MeV HI Emissivity (3rd quadrant) -3-4 Abdo et al. 009 (6 months, P6V3_DIFFUSE) Local arm interarm Perseus arm and beyond Emissivity (MeV E -5-6 3 4 Energy (MeV) 5 1: 1

More information

QMI_10.dvi

QMI_10.dvi ... black body radiation black body black body radiation Gustav Kirchhoff 859 895 W. Wien O.R. Lummer cavity radiation ν ν +dν f T (ν) f T (ν)dν = 8πν2 c 3 kt dν (Rayleigh Jeans) (.) f T (ν) spectral energy

More information

修士論文

修士論文 SAW 14 2 M3622 i 1 1 1-1 1 1-2 2 1-3 2 2 3 2-1 3 2-2 5 2-3 7 2-3-1 7 2-3-2 2-3-3 SAW 12 3 13 3-1 13 3-2 14 4 SAW 19 4-1 19 4-2 21 4-2-1 21 4-2-2 22 4-3 24 4-4 35 5 SAW 36 5-1 Wedge 36 5-1-1 SAW 36 5-1-2

More information