Size: px
Start display at page:

Download ""

Transcription

1 (1) (2) (1) (2), bessho@econ.keio.ac.jp

2 First-best Second-best First-best Second-best

3

4 cost benefit B C NB NB = B C (1.1) NB 0 NB < 0 with/without 1.2 3

5 market failure 2 1 4

6 [1] [2] [3] [4] [5] [6] [7] Net Present Value 5

7 [8] [9]

8

9 CEA: Cost Effective Analysis t B C s (1 + s) t s T P V (B) = T t=0 B T t (1 + s) t, P V (C) = C t (1 + s) t t=0 NP V = P V (B) P V (C) NPV IRR: Internal Rate of Return 8

10 9

11 2 2.1 Vilfredo Pareto, Pareto efficient allocation Pareto improving Pareto dominant (1) 3 (2) (1) (2) 10

12 2.1.1 MRS: Marginal Rate of Substitution A B 2 X Y 2 X 1 Y (3) X Y A B X Y A B A 1 B 2 A B X 1 B A Y 1 A 1 X 1 Y 1 A B 2 X 1/2 Y 1 B X Y (3) X Y 11

13 X Y X 1 Y MRT: Marginal Rate of Transformation X 2.1: Y 2.1 e e E E e 12

14 X 1 Y 4 1 X 1 Y 1 Y 4 X (4) E X 1 Y MRS F MRT MRS F F O e f f e f 2 e F G 2 G 2 E e c abc (4) 13

15 2.2: c d d A B compensation a b c d (5) a, b,d (5) B A B 14

16 3 social welfare function Bergson-Samuelson (6) A B 2 Bergson-Samuelson W = W (U A, U B ) (2.1) (6) 15

17 W/ U i > W (U A, U B ) = W (U B, U A ) Bergson-Samuelson W = U A + U B W = min(u A, U B )

18 price taker 17

19 1 3 18

20 3 market failure A B 2 x A, x B 2 19

21 G 2 M A, M B p 1 A B g A, g B G = g A + g B A u A = u A (x A, G), x A + pg A = M A (3.1) B u B = u B (x B, G), x B + pg B = M B (3.2) u A = u A (x A, g A + g B ) = u A (M A pg A, g A + g B ) (3.3) u B = u B (x B, g A + g B ) = u B (M B pg B, g A + g B ) (3.4) B u A max u A, s.t. u B u (3.5) L = u A (M A pg A, g A + g B ) + λ (u u B (M B pg B, g A + g B )) (3.6) FONC: First Order Necessary Conditions L = u A ( p) + u A g A x A G λ u B G = 0 (3.7) L = u ( A ub λ ( p) + u ) B = 0 (3.8) g B x A x B G L λ = u u B(M B pg B, g A + g B ) = 0 (3.9) (3.7) λ = 1 u B / G ( p u A + u A x A G ) (3.10) 20

22 (3.8) u A x A 1 u B / G ( p u A + u A x A G u A / G ( 1 = p u ) ( A/ x A u A / G + 1 p u ) B/ x B u B / G + 1 MRS A = u A/ G u A / x A ( 1 = p ) ( + 1 p ) + 1 MRS A MRS B ) ( ub ( p) + u ) B = 0 (3.11) x B G (3.12) (3.13) (3.14) p = MRS A + MRS B (3.15) 1 A B A B A B A B 2 2 A B Nash A B g B A max u A = u A (x A, g A + g B ) s.t. x A + pg A = M A (3.16) 21

23 FONC u A x A ( p) + u A G = 0 (3.17) u A / G u A / x A = MRS A = p (3.18) B MRS B = p FONC MRS A + MRS B = 2p > p (3.19) G u A / G G (1) A B 2MRS A = MRS B 1 A 1 3 p B 2 3p A B MRS A = 1 3 p MRS B = 2 3 p A B (1) 22

24 1 A B C A C 3.1 A B C 3.1: p 3 (1/3)p 23

25 A a B b A 3.2 externality Coase 24

26 3.2: 25

27 2 26

28 p 1 27

29 4 4.1 p u 2 E(p 1, p 2, u) 1 p 1 p 0 1 p1 1 M 0 M 1 u 0 1 u 1 E(p 0 1, p 2, u 0 ) E(p 1 1, p 2, u 1 ) (4.1) p 1 u u 0 = u 1 EV: Equivalent Variation CV: Compensated Variation 28

30 EV = E(p 0 1, p 2, u 1 ) E(p 0 1, p 2, u 0 ) (4.2) CV = E(p 1 1, p 2, u 1 ) E(p 1 1, p 2, u 0 ) (4.3) WTA: Willingness to Accept WTP: Willingness to Pay 1 M 1 = E(p 1 1, p 2, u 1 ) EV = E(p 0 1, p 2, u 1 ) E(p 0 1, p 2, u 0 ) = E(p 0 1, p 2, u 1 ) E(p 1 1, p 2, u 1 ) + M 1 E(p 0 1, p 2, u 0 ) = E(p 0 1, p 2, u 1 ) E(p 1 1, p 2, u 1 ) + M 1 M 0 (4.4) 2 p 2 u 1 p 1 E E EV = E(p 0 1, p 2, u 1 ) E(p 1 1, p 2, u 1 ) + M 1 M 0 = p 0 1 p 1 1 p 1 E(p 1, p 2, u 1 )dp 1 + M 1 M 0 (4.5) Shephard s lemma x c EV = = p 0 1 p 1 1 p 0 1 p 1 1 p 1 E(p 1, p 2, u 1 )dp 1 + M 1 M 0 x c 1(p 1, p 2, u 1 )dp 1 + M 1 M 0 (4.6) 2 29

31 M 0 = E(p 0 1, p 2, u 0 ) CV = E(p 1 1, p 2, u 1 ) E(p 1 1, p 2, u 0 ) = E(p 1 1, p 2, u 1 ) M 0 + E(p 0 1, p 2, u 0 ) E(p 1 1, p 2, u 0 ) = M 1 M 0 + E(p 0 1, p 2, u 0 ) E(p 1 1, p 2, u 0 ) (4.7) 2 p 2 u 0 p 1 E E CV = M 1 M 0 + E(p 0 1, p 2, u 0 ) E(p 1 1, p 2, u 0 ) = M 1 M 0 + p 0 1 p 1 1 p 0 1 p 1 E(p 1, p 2, u 0 )dp 1 (4.8) CV = M 1 M 0 + E(p 1, p 2, u 0 )dp 1 p 1 p 1 1 p 0 1 = M 1 M 0 + x c 1(p 1, p 2, u 0 )dp 1 (4.9) p p 0 1 > p p 0 1 p

32 4.1:

33 p 1 x 1 2 v(x 1 ) 1 2 (x 1, x 2 ) = (0, 0) 1 x 1 2 v(x 1 ) v(0) = 0 2 quasi-linear f u(x 1, x 2 ) = f(v(x 1 ) + x 2 ) (4.10) (1) u(x 1, x 2 ) = v(x 1 ) + x 2 (4.11) MRS = u/ x 1 u/ x 2 = v (x 1 ) (4.12) 2 1 v (x 1 ) = p (4.13) x 1 x 1 2 v(x 1 ) v (x 1 ) x 1 x 1 2 p x 1 v (x 1 ) x 1 p x 1 (4.14) 1 x 1 = 0 1 x 1 x1 (v (x 1 ) p)dx 1 0 (1) (4.15) 32

34 v (x 1 ) v(x 1 ) v(0) = 0 x1 0 (v (x 1 ) p)dx 1 = v(x 1 ) px 1 (4.16) FONC v (x 1 ) = p consumer surplus 4.2:

35 5 5.1 (1) 2 CVM (1) 1996 A kanemoto/bennkk.pdf kanemoto/bc/sec4.pdf 34

36 5.2 First-best p 3 = u(x 1, x 2, x 3 ) = v(x 1, x 2 ) + x 3 (5.1) 35

37 M M = p 1 x 1 + p 2 x 2 + x 3 (5.2) v (x 1, x 2 ) = p 1 x 1 v (x 1, x 2 ) = p 2 x 2 (5.3) (5.4) x 1 = x 1(p 1, p 2 ) x 2 = x 2(p 1, p 2 ) (5.5) (5.6) C 1 (x 1 ) = p 1 x C 2 (x 2 ) = c(x 2 ) (2) first-best (3) first-best p 1 = c 1 p 2 = c 2(x 2 ) (5.7) (5.8) 1 c 1 c 1 (2) 3 1 (3) First-best 36

38 2 x 2 = x 2 (p 1, p 2 ) p 2 = c 2 (x 2) p 2 = c 2(x 2(p 1, p 2 )) (5.9) p 1 p 2 implicit p 2 explicit p 2 = p 2(p 1 ) (5.10) 1 p 1 = c 1 p 2 = p 2(c 1 ) (5.11) 1 2 x 1 = x 1(c 1, p 2(c 1 )) x 2 = x 2(c 1, p 2(c 1 )) (5.12) (5.13) 1 2 c (5.10) x 1 = x 1(p 1, p 2(p 1 )) (5.14) x 2 = x 2((p 2) 1 (p 2 ), p 2 ) (5.15) (4) 1 2 c 1 c u(x 1, x 2, x 3 ) = v(x 1, x 2 ) + x 3 = v(x 1, x 2 ) + M p 1 x 1 p 2 x 2 = v(x 1(c 1, p 2(c 1 )), x 2(c 1, p 2(c 1 ))) + M c 1 x 1(c 1, p 2(c 1 )) p 2(c 1 )x 2(c 1, p 2(c 1 )) (5.16) (4) (p 2) 1 p 2 37

39 c 1 c 1 du = v dx 1 dc 1 x 1 + v dx2 dc 1 x 2 dc ( 1 x 1(c 1, p dx 1 2(c 1 )) + c 1 dc 1 ) ( ) dp 2 x dc 2(c 1, p 2(c 1 )) + p 2(c 1 ) dx 2 1 dc 1 (5.17) 1 v/ x 1 = p 1 = c 1 v/ x 2 = p 2 (c 1) du dc 1 = c 1 dx 1 + p dc 2(c 1 ) dx 2 1 dc ( 1 x 1(c 1, p dx 1 2(c 1 )) + c 1 dc 1 ) ( ) dp 2 x dc 2(c 1, p 2(c 1 )) + p 2(c 1 ) dx 2 1 dc 1 = x 1(c 1, p 2(c 1 )) dp 2 dc 1 x 2(c 1, p 2(c 1 )) (5.18) 1 1 (5) 2 π 2 = p 2 x 2 C 2 (x 2 ) (5.19) c π 2 = p 2(c 1 )x 2(c 1, p 2(c 1 )) c 2 (x 2(c 1, p 2(c 1 ))) (5.20) c 1 c 1 dπ 2 dc 1 = dp 2 dc 1 x 2(c 1, p 2(c 1 )) + p 2(c 1 ) dx 2 dc 1 c 2(x 2 ) dx 2 dc 1 (5.21) p 2 = c 2 (x 2) dπ 2 dc 1 = dp 2 dc 1 x 2(c 1, p 2(c 1 )) + p 2(c 1 ) dx 2 dc 1 p 2 dx 2 dc 1 = dp 2 dc 1 x 2(c 1, p 2(c 1 )) (5.22) S ds = du + dπ 2 = x dc 1 dc 1 dc 1(c 1, p 2(c 1 )) (5.23) (5) 38

40 c 1 c First-best p 0 1 p : First-best

41 1 p p0 2 x 1 (p 1, p 0 2 ), x 2 (p0 1, p 2) 1 1 p p p1 2 x 1 (p 1, p 1 2 ), x 2 (p1 1, p 2) 1 2 p 2 2 p 2 1 p x 1 (p 1, p 2 (p 1)) 5.1 p 1 = p 0 1 x 1 (p0 1, p0 2 ) p 1 = p 1 1 x 1 (p1 1, p1 2 ) 2 2 p 2 = p 0 2 x 2 (p0 1, p0 2 ) p 2 = p 1 2 x 2 (p1 1, p1 2 ) 2 c (x 2 )

42 5.3 Second-best first-best second-best First-best 2 2 wedge t p 2 p 2 t c 2(x 2 ) = p 2 + t (5.24) t t > 0 t > 0 t first-best 2 (5.10) p 2 = p 2 (p 1, t) du dc 1 = x 1(c 1, p 2(c 1, t)) dp 2 dc 1 x 2(c 1, p 2(c 1, t)) (5.25) dπ 2 dc 1 = dp 2 dc 1 x 2(c 1, p 2(c 1, t)) (5.26) First-best 2 (6) (6) 41

43 (7) T = tx 2 (8) c 1 dt dc 1 = t dx 2 dc 1 (5.27) ds = du + dπ 2 + dt = x dc 1 dc 1 dc 1 dc 1(c 1, p 2(c 1 )) t dx 2 (5.28) 1 dc 1 First-best 2 t dx 2 /dc 1 2 c 1 dx 2 /dc 1 > 0 t > 0 c t(dx 2 /dc 1) (9) 2 2 t dx 2 /dc 1 dx 2 /dc 1 < : Second-best t < 0 t = 0 t > 0 First best dx 2 dx 2 > 0 < 0 (7) 1 2 (8) t > 0 tx 2 (9) c 1 42

44 : Second-best First-best first-best first-best c 2 (x 2) t > 0 p 2 t p 2 p 2 + t first-best t c 2 (x 2) first-best first-best

45 first-best 44

46 6 (1) sunk cost 1 shadow price first-best secondbest first-best second-best Second-best (1)

47 6.1 First-best first-best = 6.1: 6.1 x 1 (p 1, g = q 0 ) x 1 (p 1, g = q 1 ) 46

48 :

49 6.3: x 1 (p 1 ; g = q 0 ) q 0 q 1 x 1 (p 1 ; g = q 1 ) p 0 1 p1 1 p 1 1 (q 1 q 0 ) 6.3 x 1 (p 1 ; g = q 0 ) 6.3 A B 6.3 A B C C 48

50 C q 1 q 0 1 shadow price 6.2 Second-best wedge / S S + t g = q 0 x 1 (p 1, g = q 0 ) S + t p t p0 1 g = q 1 x 1 (p 1, g = q 0 ) 49

51 6.4: x 1 (p 1, g = q 1 ) x 1 (p 1, g = q 1 ) S + t p t p1 1 (p t) (q 1 q 0 ) (2) A B 6.4 A B C S + t S A A C (2) 50

52 S + t S C D (p t) (q 1 q 0 ) C q 1 q 0 p 0 1 p1 1 p 1 p 1 + t D S q 1 q 0 = D + S 6.4 p p D = (p 1 + t) D + S + p S 1 D + S (6.1) Harberger s weighted average shadow price formula

53 (3) 6.5: 6.5 p m L (3) 52

54 A B p m p m 6.5 p m C 6.5 p c p d p c p d p c p d D 6.5 p m p r C p m p r p m p r 53

55 p r E (1/2)p m D p r p m = 0 p m p r D (1/2)p m p m E B 54

56 7 1 q 2 r 3 i (1) (2) r (1) (2) 55

57 7.1: 1 + q 1 i

58 : 7.2 D S S + t / E 0 I E 1 E 1 i 57

59 q D S I = D + S 7.2 i D I + q S I (7.1) D S 8% (3) 8% % (3) AAA % 38% /(1 0.38) = % 3% 8% 58

60 % (4) (4) % 30% (1 0.30) = % 3% 2% 59

61 = =

62 depreciate capital depreciation r δ (5) 1 + q t C t K t s C 1 = r(1 s), K 1 = (1 d) + sr (7.2) r C 2 = r(1 s)(1 d + sr), K 2 = (1 d + sr)(1 d) + sr(1 d + sr) = (1 d + sr) 2 (7.3) C 3 = r(1 s)(1 d + sr) 2, K 3 = (1 d + sr) 3 (7.4) θ C 1, C 2, C 3,... θ = = = r(1 s) 1 + q r(1 s) 1 + q r(1 s) 1 + q r(1 s)(1 d + sr) r(1 s)(1 d + sr)2 + (1 + q) 2 + (1 + q) 3 + [ d + sr ] (1 d + sr) q (1 + q) 2 + [ d + sr ] q θ = r(1 s) q + d sr (7.5) s = 0 d = 0 r θ = r q (7.6) (5) Lyon, Randolph M Federal discount rate policy, the shadow price of capital, and challenges for reforms. Journal of Environmental Economics and Management 18(2-2), pp.s29 S50. Appendix 1 61

63 1 s d 1.3% 2.7% % 2 A PV A ,000 B , : B % A 1,000 B 1,014 B A B A B 62

64 F. Ramsey % 4% k T (k) T (k) = t=0 B t C t k (1 + r) t = B t C t + T (k) (7.7) (1 + r) t t=0 T (k) 5 63

65 k (1) (2) 64

66 7.3.2 B/C = t=0 B t/(1 + r) t t=0 C t/(1 + r) t (7.8) 1 net B/C = t=0 (B t C t )/(1 + r) t t=0 t=0 C t/(1 + r) t = B t/(1 + r) t t=0 C t/(1 + r) t 1 (7.9) IRR: Internal Rate of Return π t=0 B t (1 + π) t t=0 C t (1 + π) t = 0 (7.10) 65

67 t B t C t t (7.10) (6) : ,000 1,500 1,500 1, ,850 2,850 2,850 6% NPV: Net Present Value NPV = 15, t=1 2, 850 1, 500 ( ) t 3, 583 (7.11) % (6)

68 7.3: B/C 4 40,938 49,282 8, ,647 39,230 3, ,887 32, ,667 31, ,140 26,867-2, B/C B/C I 0 NP V 7.4: I 0 NPV B/C A 1, B C D B/C 1 1,000 I 0 1,

69 C 2 D 2 1 B C D A (7) A 75 3,000 B 15 2, : NPV A 3, B 2, A B % B 5 = 2, , 400 2, 400 2, 400 2, , (8) (7) 2004 pp (8) 68

70 8 (1) km % 20m 1km % 20m % 1km 30 20m 1km km 5 20m 1km 1 1km (1)

71 8.1: 1km 20m-1km ,060 1, ,000 6, = (2) Y U(Y ) du/dy > 0 Y α 1, α 2,..., α K K π 1, π 2,..., π K (2)

72 K E[U(Y )] = π 1 U(α 1 ) + π 2 U(α 2 ) + + π K U(α K ) = π i U(α i ) (8.1) Y U(Y ) E[U(Y )] Y Y i=1 E[U(Y )] = U(Y ) (8.2) Y certainty equivalence U risk averse U < 0 Y E[Y ] Y < E[Y ] risk premium = E[Y ] Y (8.3) 8.1: K = 2 Y β, γ β < γ β π γ 1 π 71

73 β, γ E[Y ] = πβ + (1 π)γ β γ 1 π : π E[Y ] U(E[Y ]) U(β), U(γ) 2 1 π : π E[U(Y )] = πu(β) + (1 π)u(γ) E[U(Y )] Y Y < E[Y ] certainty equivalence 2 (3) q 1 q 2 = 1 q 1 G G = G G = 0 X r 1 (> q 1 ) r 2 (< q 2 ) (3) (3), 2-11 Freeman III, A.M Uncertainty and option value in environmental policy. in E. Miles, R. Pealy and R. Stokes eds. Natural Resources Economics and Policy Applications Essay in honor of James A. Crutchfield, Seattle and London, University of Washington Press, pp

74 i = D p 1 p 2 = 1 p 1 i = N U D (Y D, P D, G) U N (Y N, P N ) Y P U D (Y D, P D, G ) > U D (Y D, P D, 0) CS i CS D : U D (Y D CS D, P D, G ) = U D (Y D, P D, 0) (8.4) CS N : CS N = 0 (8.5) U N (Y N, P N ) p 2 U D (Y D, P D, G ) p 1 q 1 U D (Y D, P D, 0) p 1 q 2 EU SQ EU SQ = p 1 q 1 U D (Y D, P D, G ) + p 1 q 2 U D (Y D, P D, 0) + p 2 U N (Y N, P N ) (8.6) X r 1 > q 1 X EU OP EU OP = p 1 r 1 U D (Y D X, P D, G ) + p 1 r 2 U D (Y D X, P D, 0) + p 2 U N (Y N X, P N ) (8.7) p 1, q 1, r 1 X X option price X EU OP EU OP = EU SQ X 73

75 ECS CS N = 0 CS i q 1 r 1 ECS = p 1 (r 1 q 1 )CS D + p 2 0 CS N = p 1 (r 1 q 1 )CS D (8.8) option value Option Value = Option Price ECS (8.9) (4) p 2 = 0 X r 2 = 0 EU SQ = q 1 U D (Y D, P D, G ) + q 2 U D (Y D, P D, 0) (8.10) EU OP = U D (Y D X, P D, G ) (8.11) EU OP = EU SQ X U D (Y D CS D, P D, G ) = U D (Y D, P D, 0) (8.12) (4)

76 CS D G 1 2 individual risk, idiosyncratic risk collective

77

78 DVD

1 (utility) 1.1 x u(x) x i x j u(x i ) u(x j ) u (x) 0, u (x) 0 u (x) x u(x) (Marginal Utility) 1.2 Cobb-Daglas 2 x 1, x 2 u(x 1, x 2 ) max x 1,x 2 u(

1 (utility) 1.1 x u(x) x i x j u(x i ) u(x j ) u (x) 0, u (x) 0 u (x) x u(x) (Marginal Utility) 1.2 Cobb-Daglas 2 x 1, x 2 u(x 1, x 2 ) max x 1,x 2 u( 1 (utilit) 1.1 x u(x) x i x j u(x i ) u(x j ) u (x) 0, u (x) 0 u (x) x u(x) (Marginal Utilit) 1.2 Cobb-Daglas 2 x 1, x 2 u(x 1, x 2 ) x 1,x 2 u(x 1, x 2 ) s.t. P 1 x 1 + P 2 x 2 (1) (P i :, : ) u(x 1,

More information

6 2 2 x y x y t P P = P t P = I P P P ( ) ( ) ,, ( ) ( ) cos θ sin θ cos θ sin θ, sin θ cos θ sin θ cos θ y x θ x θ P

6 2 2 x y x y t P P = P t P = I P P P ( ) ( ) ,, ( ) ( ) cos θ sin θ cos θ sin θ, sin θ cos θ sin θ cos θ y x θ x θ P 6 x x 6.1 t P P = P t P = I P P P 1 0 1 0,, 0 1 0 1 cos θ sin θ cos θ sin θ, sin θ cos θ sin θ cos θ x θ x θ P x P x, P ) = t P x)p ) = t x t P P ) = t x = x, ) 6.1) x = Figure 6.1 Px = x, P=, θ = θ P

More information

ct_root.dvi

ct_root.dvi 7 1 1 3 ( ) (i) ( ) (ii) ( ) (iii) 1.1 2 1.2 1.3 1.4 1.3 1.4 1.1 1.1.1 ( ) ( ) 1) 1 x x X R X =[0, x] x b(x) b( ) 2 b(0) = 0 x 0 b (0) = + b (x) =0 x 0 b (x) < 0 x 2 ( ) Θ Θ ={θ 0,θ 1 } 0

More information

2/50 Auction: Theory and Practice 3 / 50 (WTO) 10 SDR ,600 Auction: Theory and Practice 4 / 50 2

2/50 Auction: Theory and Practice 3 / 50 (WTO) 10 SDR ,600 Auction: Theory and Practice 4 / 50 2 stakagi@econ.hokudai.ac.jp June 24, 2011 2.... 3... 4... 7 8... 9.... 10... 11... 12 IPV 13 SPSB... 15 SPSB.... 17 SPSB.... 19 FPSB... 20 FPSB.... 22 FPSB.... 23... 24 Low Price Auction.... 27 APV 29...

More information

2 / 5 Auction: Theory and Practice 3 / 5 (WTO) 1 SDR 27 1,6 Auction: Theory and Practice 4 / 5 2

2 / 5 Auction: Theory and Practice 3 / 5 (WTO) 1 SDR 27 1,6 Auction: Theory and Practice 4 / 5 2 stakagi@econ.hokudai.ac.jp June 22, 212 2................................................................ 3...................................................... 4............................................................

More information

3/4/8:9 { } { } β β β α β α β β

3/4/8:9 { } { } β β β α β α β β α β : α β β α β α, [ ] [ ] V, [ ] α α β [ ] β 3/4/8:9 3/4/8:9 { } { } β β β α β α β β [] β [] β β β β α ( ( ( ( ( ( [ ] [ ] [ β ] [ α β β ] [ α ( β β ] [ α] [ ( β β ] [] α [ β β ] ( / α α [ β β ] [ ] 3

More information

°ÌÁê¿ô³ØII

°ÌÁê¿ô³ØII July 14, 2007 Brouwer f f(x) = x x f(z) = 0 2 f : S 2 R 2 f(x) = f( x) x S 2 3 3 2 - - - 1. X x X U(x) U(x) x U = {U(x) x X} X 1. U(x) A U(x) x 2. A U(x), A B B U(x) 3. A, B U(x) A B U(x) 4. A U(x),

More information

21 2 26 i 1 1 1.1............................ 1 1.2............................ 3 2 9 2.1................... 9 2.2.......... 9 2.3................... 11 2.4....................... 12 3 15 3.1..........

More information

inkiso.dvi

inkiso.dvi Ken Urai May 19, 2004 5 27 date-event uncertainty risk 51 ordering preordering X X X (preordering) reflexivity x X x x transitivity x, y, z X x y y z x z asymmetric x y y x x = y X (ordering) completeness

More information

20 4 20 i 1 1 1.1............................ 1 1.2............................ 4 2 11 2.1................... 11 2.2......................... 11 2.3....................... 19 3 25 3.1.............................

More information

ii 3.,. 4. F. ( ), ,,. 8.,. 1. (75% ) (25% ) =7 24, =7 25, =7 26 (. ). 1.,, ( ). 3.,...,.,.,.,.,. ( ) (1 2 )., ( ), 0., 1., 0,.

ii 3.,. 4. F. ( ), ,,. 8.,. 1. (75% ) (25% ) =7 24, =7 25, =7 26 (. ). 1.,, ( ). 3.,...,.,.,.,.,. ( ) (1 2 )., ( ), 0., 1., 0,. (1 C205) 4 10 (2 C206) 4 11 (2 B202) 4 12 25(2013) http://www.math.is.tohoku.ac.jp/~obata,.,,,..,,. 1. 2. 3. 4. 5. 6. 7. 8. 1., 2007 ( ).,. 2. P. G., 1995. 3. J. C., 1988. 1... 2.,,. ii 3.,. 4. F. ( ),..

More information

第1章 微分方程式と近似解法

第1章 微分方程式と近似解法 April 12, 2018 1 / 52 1.1 ( ) 2 / 52 1.2 1.1 1.1: 3 / 52 1.3 Poisson Poisson Poisson 1 d {2, 3} 4 / 52 1 1.3.1 1 u,b b(t,x) u(t,x) x=0 1.1: 1 a x=l 1.1 1 (0, t T ) (0, l) 1 a b : (0, t T ) (0, l) R, u

More information

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,.

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,. 24(2012) (1 C106) 4 11 (2 C206) 4 12 http://www.math.is.tohoku.ac.jp/~obata,.,,,.. 1. 2. 3. 4. 5. 6. 7.,,. 1., 2007 (). 2. P. G. Hoel, 1995. 3... 1... 2.,,. ii 3.,. 4. F. (),.. 5... 6.. 7.,,. 8.,. 1. (75%)

More information

,398 4% 017,

,398 4% 017, 6 3 JEL Classification: D4; K39; L86,,., JSPS 34304, 47301.. 1 01301 79 1 7,398 4% 017,390 01 013 1 1 01 011 514 8 1 Novos and Waldman (1984) Johnson (1985) Chen and Png (003) Arai (011) 3 1 4 3 4 5 0

More information

Welfare Economics (1920) The main motive of economic study is to help social improvement help social improvement society society improvement help 1885

Welfare Economics (1920) The main motive of economic study is to help social improvement help social improvement society society improvement help 1885 1 27 4 10 1 toyotaka.sakai@gmail.com Welfare Economics (1920) The main motive of economic study is to help social improvement help social improvement society society improvement help 1885 cool heads but

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

COE-RES Discussion Paper Series Center of Excellence Project The Normative Evaluation and Social Choice of Contemporary Economic Systems Graduate Scho

COE-RES Discussion Paper Series Center of Excellence Project The Normative Evaluation and Social Choice of Contemporary Economic Systems Graduate Scho COE-RES Discussion Paper Series Center of Excellence Project The Normative Evaluation and Social Choice of Contemporary Economic Systems Graduate School of Economics and Institute of Economic Research

More information

Page

Page Page Page 1 3 4 M&A DCF NPV 1-1 BIS 1-3 1-2 5 6 1-3 2 2 0 200 010 2-1 A B B A B 7 8 Coffee Break CAPM Capital Asset Pricing model 3 IRR NPV EVA BS PL 9 2 ROA 3-1 EBIT Earnings Before Interest,Taxes) 3-2

More information

( ) 2002 1 1 1 1.1....................................... 1 1.1.1................................. 1 1.1.2................................. 1 1.1.3................... 3 1.1.4......................................

More information

gr09.dvi

gr09.dvi .1, θ, ϕ d = A, t dt + B, t dtd + C, t d + D, t dθ +in θdϕ.1.1 t { = f1,t t = f,t { D, t = B, t =.1. t A, tdt e φ,t dt, C, td e λ,t d.1.3,t, t d = e φ,t dt + e λ,t d + dθ +in θdϕ.1.4 { = f1,t t = f,t {

More information

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2 2005 9/8-11 2 2.2 ( 2-5) γ ( ) γ cos θ 2πr πρhr 2 g h = 2γ cos θ ρgr (2.1) γ = ρgrh (2.2) 2 cos θ θ cos θ = 1 (2.2) γ = 1 ρgrh (2.) 2 2. p p ρgh p ( ) p p = p ρgh (2.) h p p = 2γ r 1 1 (Berry,1975) 2-6

More information

( ) ( )

( ) ( ) 20 21 2 8 1 2 2 3 21 3 22 3 23 4 24 5 25 5 26 6 27 8 28 ( ) 9 3 10 31 10 32 ( ) 12 4 13 41 0 13 42 14 43 0 15 44 17 5 18 6 18 1 1 2 2 1 2 1 0 2 0 3 0 4 0 2 2 21 t (x(t) y(t)) 2 x(t) y(t) γ(t) (x(t) y(t))

More information

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω ω α 3 3 2 2V 3 33+.6T m T 5 34m Hz. 34 3.4m 2 36km 5Hz. 36km m 34 m 5 34 + m 5 33 5 =.66m 34m 34 x =.66 55Hz, 35 5 =.7 485.7Hz 2 V 5Hz.5V.5V V

More information

2 F 300 130 2270 K 200 320 4180 F 500 567 6433 F K 717 cf. 1-5 1.4. 3 1-9 (1) 8 8 (public goods) 9 (nonrivalrous) 10 (nonexcludable) 11 (goods) (2) 12

2 F 300 130 2270 K 200 320 4180 F 500 567 6433 F K 717 cf. 1-5 1.4. 3 1-9 (1) 8 8 (public goods) 9 (nonrivalrous) 10 (nonexcludable) 11 (goods) (2) 12 1 2005 9 20 http://www.rikkyo.ne.jp/~asatsuma/ 1. 1.1. / / (1) (2) 1.2. ( 2004) ( 2005) ( ) ( ) ( )( ) ( )( ) ( ) ( ( ) ( ) ( ( ) ( ( ) 1220 119 1221 145 (2002 ) 1.3. : (1) (4 ) 2000 8 239 113 240 104

More information

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0 1 1 1.1 1.) T D = T = D = kn 1. 1.4) F W = F = W/ = kn/ = 15 kn 1. 1.9) R = W 1 + W = 6 + 5 = 11 N. 1.9) W b W 1 a = a = W /W 1 )b = 5/6) = 5 cm 1.4 AB AC P 1, P x, y x, y y x 1.4.) P sin 6 + P 1 sin 45

More information

Part y mx + n mt + n m 1 mt n + n t m 2 t + mn 0 t m 0 n 18 y n n a 7 3 ; x α α 1 7α +t t 3 4α + 3t t x α x α y mx + n

Part y mx + n mt + n m 1 mt n + n t m 2 t + mn 0 t m 0 n 18 y n n a 7 3 ; x α α 1 7α +t t 3 4α + 3t t x α x α y mx + n Part2 47 Example 161 93 1 T a a 2 M 1 a 1 T a 2 a Point 1 T L L L T T L L T L L L T T L L T detm a 1 aa 2 a 1 2 + 1 > 0 11 T T x x M λ 12 y y x y λ 2 a + 1λ + a 2 2a + 2 0 13 D D a + 1 2 4a 2 2a + 2 a

More information

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ = 1 1.1 ( ). z = + bi,, b R 0, b 0 2 + b 2 0 z = + bi = ( ) 2 + b 2 2 + b + b 2 2 + b i 2 r = 2 + b 2 θ cos θ = 2 + b 2, sin θ = b 2 + b 2 2π z = r(cos θ + i sin θ) 1.2 (, ). 1. < 2. > 3. ±,, 1.3 ( ). A

More information

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt S I. x yx y y, y,. F x, y, y, y,, y n http://ayapin.film.s.dendai.ac.jp/~matuda n /TeX/lecture.html PDF PS yx.................................... 3.3.................... 9.4................5..............

More information

1 12 ( )150 ( ( ) ) x M x 0 1 M 2 5x 2 + 4x + 3 x 2 1 M x M 2 1 M x (x + 1) 2 (1) x 2 + x + 1 M (2) 1 3 M (3) x 4 +

1 12 ( )150 ( ( ) ) x M x 0 1 M 2 5x 2 + 4x + 3 x 2 1 M x M 2 1 M x (x + 1) 2 (1) x 2 + x + 1 M (2) 1 3 M (3) x 4 + ( )5 ( ( ) ) 4 6 7 9 M M 5 + 4 + M + M M + ( + ) () + + M () M () 4 + + M a b y = a + b a > () a b () y V a () V a b V n f() = n k= k k () < f() = log( ) t dt log () n+ (i) dt t (n + ) (ii) < t dt n+ n

More information

untitled

untitled 20010916 22;1017;23;20020108;15;20; 1 N = {1, 2, } Z + = {0, 1, 2, } Z = {0, ±1, ±2, } Q = { p p Z, q N} R = { lim a q n n a n Q, n N; sup a n < } R + = {x R x 0} n = {a + b 1 a, b R} u, v 1 R 2 2 R 3

More information

9. 05 L x P(x) P(0) P(x) u(x) u(x) (0 < = x < = L) P(x) E(x) A(x) P(L) f ( d EA du ) = 0 (9.) dx dx u(0) = 0 (9.2) E(L)A(L) du (L) = f (9.3) dx (9.) P

9. 05 L x P(x) P(0) P(x) u(x) u(x) (0 < = x < = L) P(x) E(x) A(x) P(L) f ( d EA du ) = 0 (9.) dx dx u(0) = 0 (9.2) E(L)A(L) du (L) = f (9.3) dx (9.) P 9 (Finite Element Method; FEM) 9. 9. P(0) P(x) u(x) (a) P(L) f P(0) P(x) (b) 9. P(L) 9. 05 L x P(x) P(0) P(x) u(x) u(x) (0 < = x < = L) P(x) E(x) A(x) P(L) f ( d EA du ) = 0 (9.) dx dx u(0) = 0 (9.2) E(L)A(L)

More information

2019 1 5 0 3 1 4 1.1.................... 4 1.1.1......................... 4 1.1.2........................ 5 1.1.3................... 5 1.1.4........................ 6 1.1.5......................... 6 1.2..........................

More information

Untitled

Untitled II 14 14-7-8 8/4 II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ 6/ ] Navier Stokes 3 [ ] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I 1 balance law t (ρv i )+ j

More information

現代物理化学 2-1(9)16.ppt

現代物理化学 2-1(9)16.ppt --- S A, G U S S ds = d 'Q r / ΔS = S S = ds =,r,r d 'Q r r S -- ds = d 'Q r / ΔS = S S = ds =,r,r d 'Q r r d Q r e = P e = P ΔS d 'Q / e (d'q / e ) --3,e Q W Q (> 0),e e ΔU = Q + W = (Q + Q ) + W = 0

More information

Autumn II III Zon and Muysken 2005 Zon and Muysken 2005 IV II 障害者への所得移転の経済効果 分析に用いるデータ

Autumn II III Zon and Muysken 2005 Zon and Muysken 2005 IV II 障害者への所得移転の経済効果 分析に用いるデータ 212 Vol. 44 No. 2 I はじめに 2008 1 2 Autumn 08 213 II III Zon and Muysken 2005 Zon and Muysken 2005 IV II 障害者への所得移転の経済効果 17 18 1 分析に用いるデータ 1 2005 10 12 200 2 2006 9 12 1 1 2 129 35 113 3 1 2 6 1 2 3 4 4 1

More information

8 OR (a) A A 3 1 B 7 B (game theory) (a) (b) 8.1: 8.1(a) (b) strategic form game extensive form game 1

8 OR (a) A A 3 1 B 7 B (game theory) (a) (b) 8.1: 8.1(a) (b) strategic form game extensive form game 1 8 OR 8.1 8.1.1 8.1(a) A A 3 1 B 7 B (game theory) (a) (b) 8.1: 8.1(a) (b) strategic form game extensive form game 1 2 [5] player 2 1 noncooperative game 2 cooperative game8.4 8.1.2 2 8.1.1 ( ). A B A B

More information

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d S I.. http://ayapin.film.s.dendai.ac.jp/~matuda /TeX/lecture.html PDF PS.................................... 3.3.................... 9.4................5.............. 3 5. Laplace................. 5....

More information

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A .. Laplace ). A... i),. ω i i ). {ω,..., ω } Ω,. ii) Ω. Ω. A ) r, A P A) P A) r... ).. Ω {,, 3, 4, 5, 6}. i i 6). A {, 4, 6} P A) P A) 3 6. ).. i, j i, j) ) Ω {i, j) i 6, j 6}., 36. A. A {i, j) i j }.

More information

OABC OA OC 4, OB, AOB BOC COA 60 OA a OB b OC c () AB AC () ABC D OD ABC OD OA + p AB + q AC p q () OABC 4 f(x) + x ( ), () y f(x) P l 4 () y f(x) l P

OABC OA OC 4, OB, AOB BOC COA 60 OA a OB b OC c () AB AC () ABC D OD ABC OD OA + p AB + q AC p q () OABC 4 f(x) + x ( ), () y f(x) P l 4 () y f(x) l P 4 ( ) ( ) ( ) ( ) 4 5 5 II III A B (0 ) 4, 6, 7 II III A B (0 ) ( ),, 6, 8, 9 II III A B (0 ) ( [ ] ) 5, 0, II A B (90 ) log x x () (a) y x + x (b) y sin (x + ) () (a) (b) (c) (d) 0 e π 0 x x x + dx e

More information

25 7 18 1 1 1.1 v.s............................. 1 1.1.1.................................. 1 1.1.2................................. 1 1.1.3.................................. 3 1.2................... 3

More information

名古屋工業大の数学 2000 年 ~2015 年 大学入試数学動画解説サイト

名古屋工業大の数学 2000 年 ~2015 年 大学入試数学動画解説サイト 名古屋工業大の数学 年 ~5 年 大学入試数学動画解説サイト http://mathroom.jugem.jp/ 68 i 4 3 III III 3 5 3 ii 5 6 45 99 5 4 3. () r \= S n = r + r + 3r 3 + + nr n () x > f n (x) = e x + e x + 3e 3x + + ne nx f(x) = lim f n(x) lim

More information

(2004 ) 2 (A) (B) (C) 3 (1987) (1988) Shimono and Tachibanaki(1985) (2008) , % 2 (1999) (2005) 3 (2005) (2006) (2008)

(2004 ) 2 (A) (B) (C) 3 (1987) (1988) Shimono and Tachibanaki(1985) (2008) , % 2 (1999) (2005) 3 (2005) (2006) (2008) ,, 23 4 30 (i) (ii) (i) (ii) Negishi (1960) 2010 (2010) ( ) ( ) (2010) E-mail:fujii@econ.kobe-u.ac.jp E-mail:082e527e@stu.kobe-u.ac.jp E-mail:iritani@econ.kobe-u.ac.jp 1 1 16 (2004 ) 2 (A) (B) (C) 3 (1987)

More information

1 3 1.1.......................... 3 1............................... 3 1.3....................... 5 1.4.......................... 6 1.5........................ 7 8.1......................... 8..............................

More information

2 1 1 α = a + bi(a, b R) α (conjugate) α = a bi α (absolute value) α = a 2 + b 2 α (norm) N(α) = a 2 + b 2 = αα = α 2 α (spure) (trace) 1 1. a R aα =

2 1 1 α = a + bi(a, b R) α (conjugate) α = a bi α (absolute value) α = a 2 + b 2 α (norm) N(α) = a 2 + b 2 = αα = α 2 α (spure) (trace) 1 1. a R aα = 1 1 α = a + bi(a, b R) α (conjugate) α = a bi α (absolute value) α = a + b α (norm) N(α) = a + b = αα = α α (spure) (trace) 1 1. a R aα = aα. α = α 3. α + β = α + β 4. αβ = αβ 5. β 0 6. α = α ( ) α = α

More information

熊本県数学問題正解

熊本県数学問題正解 00 y O x Typed by L A TEX ε ( ) (00 ) 5 4 4 ( ) http://www.ocn.ne.jp/ oboetene/plan/. ( ) (009 ) ( ).. http://www.ocn.ne.jp/ oboetene/plan/eng.html 8 i i..................................... ( )0... (

More information

O1-1 O1-2 O1-3 O1-4 O1-5 O1-6

O1-1 O1-2 O1-3 O1-4 O1-5 O1-6 O1-1 O1-2 O1-3 O1-4 O1-5 O1-6 O1-7 O1-8 O1-9 O1-10 O1-11 O1-12 O1-13 O1-14 O1-15 O1-16 O1-17 O1-18 O1-19 O1-20 O1-21 O1-22 O1-23 O1-24 O1-25 O1-26 O1-27 O1-28 O1-29 O1-30 O1-31 O1-32 O1-33 O1-34 O1-35

More information

ii 3.,. 4. F. (), ,,. 8.,. 1. (75% ) (25% ) =9 7, =9 8 (. ). 1.,, (). 3.,. 1. ( ).,.,.,.,.,. ( ) (1 2 )., ( ), 0. 2., 1., 0,.

ii 3.,. 4. F. (), ,,. 8.,. 1. (75% ) (25% ) =9 7, =9 8 (. ). 1.,, (). 3.,. 1. ( ).,.,.,.,.,. ( ) (1 2 )., ( ), 0. 2., 1., 0,. 23(2011) (1 C104) 5 11 (2 C206) 5 12 http://www.math.is.tohoku.ac.jp/~obata,.,,,.. 1. 2. 3. 4. 5. 6. 7.,,. 1., 2007 ( ). 2. P. G. Hoel, 1995. 3... 1... 2.,,. ii 3.,. 4. F. (),.. 5.. 6.. 7.,,. 8.,. 1. (75%

More information

note1.dvi

note1.dvi (1) 1996 11 7 1 (1) 1. 1 dx dy d x τ xx x x, stress x + dx x τ xx x+dx dyd x x τ xx x dyd y τ xx x τ xx x+dx d dx y x dy 1. dx dy d x τ xy x τ x ρdxdyd x dx dy d ρdxdyd u x t = τ xx x+dx dyd τ xx x dyd

More information

1 θ i (1) A B θ ( ) A = B = sin 3θ = sin θ (A B sin 2 θ) ( ) 1 2 π 3 < = θ < = 2 π 3 Ax Bx3 = 1 2 θ = π sin θ (2) a b c θ sin 5θ = sin θ f(sin 2 θ) 2

1 θ i (1) A B θ ( ) A = B = sin 3θ = sin θ (A B sin 2 θ) ( ) 1 2 π 3 < = θ < = 2 π 3 Ax Bx3 = 1 2 θ = π sin θ (2) a b c θ sin 5θ = sin θ f(sin 2 θ) 2 θ i ) AB θ ) A = B = sin θ = sin θ A B sin θ) ) < = θ < = Ax Bx = θ = sin θ ) abc θ sin 5θ = sin θ fsin θ) fx) = ax bx c ) cos 5 i sin 5 ) 5 ) αβ α iβ) 5 α 4 β α β β 5 ) a = b = c = ) fx) = 0 x x = x =

More information

( )

( ) 18 10 01 ( ) 1 2018 4 1.1 2018............................... 4 1.2 2018......................... 5 2 2017 7 2.1 2017............................... 7 2.2 2017......................... 8 3 2016 9 3.1 2016...............................

More information

n=1 1 n 2 = π = π f(z) f(z) 2 f(z) = u(z) + iv(z) *1 f (z) u(x, y), v(x, y) f(z) f (z) = f/ x u x = v y, u y = v x

n=1 1 n 2 = π = π f(z) f(z) 2 f(z) = u(z) + iv(z) *1 f (z) u(x, y), v(x, y) f(z) f (z) = f/ x u x = v y, u y = v x n= n 2 = π2 6 3 2 28 + 4 + 9 + = π2 6 2 f(z) f(z) 2 f(z) = u(z) + iv(z) * f (z) u(x, y), v(x, y) f(z) f (z) = f/ x u x = v y, u y = v x f x = i f y * u, v 3 3. 3 f(t) = u(t) + v(t) [, b] f(t)dt = u(t)dt

More information

x,, z v = (, b, c) v v 2 + b 2 + c 2 x,, z 1 i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1) v 1 = ( 1, b 1, c 1 ), v 2 = ( 2, b 2, c 2 ) v

x,, z v = (, b, c) v v 2 + b 2 + c 2 x,, z 1 i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1) v 1 = ( 1, b 1, c 1 ), v 2 = ( 2, b 2, c 2 ) v 12 -- 1 4 2009 9 4-1 4-2 4-3 4-4 4-5 4-6 4-7 4-8 4-9 4-10 c 2011 1/(13) 4--1 2009 9 3 x,, z v = (, b, c) v v 2 + b 2 + c 2 x,, z 1 i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1) v 1 = ( 1, b 1, c 1 ), v 2

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 3.............................. 3.............................. 4.3 4................... 5.4........................ 6.5........................ 8.6...........................7

More information

(1) D = [0, 1] [1, 2], (2x y)dxdy = D = = (2) D = [1, 2] [2, 3], (x 2 y + y 2 )dxdy = D = = (3) D = [0, 1] [ 1, 2], 1 {

(1) D = [0, 1] [1, 2], (2x y)dxdy = D = = (2) D = [1, 2] [2, 3], (x 2 y + y 2 )dxdy = D = = (3) D = [0, 1] [ 1, 2], 1 { 7 4.., ], ], ydy, ], 3], y + y dy 3, ], ], + y + ydy 4, ], ], y ydy ydy y y ] 3 3 ] 3 y + y dy y + 3 y3 5 + 9 3 ] 3 + y + ydy 5 6 3 + 9 ] 3 73 6 y + y + y ] 3 + 3 + 3 3 + 3 + 3 ] 4 y y dy y ] 3 y3 83 3

More information

さくらの個別指導 ( さくら教育研究所 ) A 2 2 Q ABC 2 1 BC AB, AC AB, BC AC 1 B BC AB = QR PQ = 1 2 AC AB = PR 3 PQ = 2 BC AC = QR PR = 1

さくらの個別指導 ( さくら教育研究所 ) A 2 2 Q ABC 2 1 BC AB, AC AB, BC AC 1 B BC AB = QR PQ = 1 2 AC AB = PR 3 PQ = 2 BC AC = QR PR = 1 ... 0 60 Q,, = QR PQ = = PR PQ = = QR PR = P 0 0 R 5 6 θ r xy r y y r, x r, y x θ x θ θ (sine) (cosine) (tangent) sin θ, cos θ, tan θ. θ sin θ = = 5 cos θ = = 4 5 tan θ = = 4 θ 5 4 sin θ = y r cos θ =

More information

V 0 = + r pv (H) + qv (T ) = + r ps (H) + qs (T ) = S 0 X n+ (T ) = n S n+ (T ) + ( + r)(x n n S n ) = ( + r)x n + n (d r)s n = ( + r)v n + V n+(h) V

V 0 = + r pv (H) + qv (T ) = + r ps (H) + qs (T ) = S 0 X n+ (T ) = n S n+ (T ) + ( + r)(x n n S n ) = ( + r)x n + n (d r)s n = ( + r)v n + V n+(h) V I (..2) (0 < d < + r < u) X 0, X X = 0 S + ( + r)(x 0 0 S 0 ) () X 0 = 0, P (X 0) =, P (X > 0) > 0 0 H, T () X 0 = 0, X (H) = 0 us 0 ( + r) 0 S 0 = 0 S 0 (u r) X (T ) = 0 ds 0 ( + r) 0 S 0 = 0 S 0 (d r)

More information

1 1 3 ABCD ABD AC BD E E BD 1 : 2 (1) AB = AD =, AB AD = (2) AE = AB + (3) A F AD AE 2 = AF = AB + AD AF AE = t AC = t AE AC FC = t = (4) ABD ABCD 1 1

1 1 3 ABCD ABD AC BD E E BD 1 : 2 (1) AB = AD =, AB AD = (2) AE = AB + (3) A F AD AE 2 = AF = AB + AD AF AE = t AC = t AE AC FC = t = (4) ABD ABCD 1 1 ABCD ABD AC BD E E BD : () AB = AD =, AB AD = () AE = AB + () A F AD AE = AF = AB + AD AF AE = t AC = t AE AC FC = t = (4) ABD ABCD AB + AD AB + 7 9 AD AB + AD AB + 9 7 4 9 AD () AB sin π = AB = ABD AD

More information

29

29 9 .,,, 3 () C k k C k C + C + C + + C 8 + C 9 + C k C + C + C + C 3 + C 4 + C 5 + + 45 + + + 5 + + 9 + 4 + 4 + 5 4 C k k k ( + ) 4 C k k ( k) 3 n( ) n n n ( ) n ( ) n 3 ( ) 3 3 3 n 4 ( ) 4 4 4 ( ) n n

More information

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y [ ] 7 0.1 2 2 + y = t sin t IC ( 9) ( s090101) 0.2 y = d2 y 2, y = x 3 y + y 2 = 0 (2) y + 2y 3y = e 2x 0.3 1 ( y ) = f x C u = y x ( 15) ( s150102) [ ] y/x du x = Cexp f(u) u (2) x y = xey/x ( 16) ( s160101)

More information

‚åŁÎ“·„´Šš‡ðŠp‡¢‡½‹âfi`fiI…A…‰…S…−…Y…•‡ÌMarkovŸA“½fiI›ð’Í

‚åŁÎ“·„´Šš‡ðŠp‡¢‡½‹âfi`fiI…A…‰…S…−…Y…•‡ÌMarkovŸA“½fiI›ð’Í Markov 2009 10 2 Markov 2009 10 2 1 / 25 1 (GA) 2 GA 3 4 Markov 2009 10 2 2 / 25 (GA) (GA) L ( 1) I := {0, 1} L f : I (0, ) M( 2) S := I M GA (GA) f (i) i I Markov 2009 10 2 3 / 25 (GA) ρ(i, j), i, j I

More information

現代物理化学 1-1(4)16.ppt

現代物理化学 1-1(4)16.ppt (pdf) pdf pdf http://www1.doshisha.ac.jp/~bukka/lecture/index.html http://www.doshisha.ac.jp/ Duet -1-1-1 2-a. 1-1-2 EU E = K E + P E + U ΔE K E = 0P E ΔE = ΔU U U = εn ΔU ΔU = Q + W, du = d 'Q + d 'W

More information

1 911 9001030 9:00 A B C D E F G H I J K L M 1A0900 1B0900 1C0900 1D0900 1E0900 1F0900 1G0900 1H0900 1I0900 1J0900 1K0900 1L0900 1M0900 9:15 1A0915 1B0915 1C0915 1D0915 1E0915 1F0915 1G0915 1H0915 1I0915

More information

70 : 20 : A B (20 ) (30 ) 50 1

70 : 20 : A B (20 ) (30 ) 50 1 70 : 0 : A B (0 ) (30 ) 50 1 1 4 1.1................................................ 5 1. A............................................... 6 1.3 B............................................... 7 8.1 A...............................................

More information

< E A E D E E C837C815B83672E706466>

< E A E D E E C837C815B83672E706466> () () () SAVE JAPAN ()SAVE JAPAN ()SAVE JAPAN ()2014 SAVE JAPAN () () () () () () () SROI () SROI ()SROI () ()() 2014 2 3 3 5 5 7 8 11 12 14 20 23 23 26 27 30 30 38 40 SROI 45 51 NPO NPO NPO SAVE JAPAN

More information

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =,

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =, [ ] IC. r, θ r, θ π, y y = 3 3 = r cos θ r sin θ D D = {, y ; y }, y D r, θ ep y yddy D D 9 s96. d y dt + 3dy + y = cos t dt t = y = e π + e π +. t = π y =.9 s6.3 d y d + dy d + y = y =, dy d = 3 a, b

More information

L Y L( ) Y0.15Y 0.03L 0.01L 6% L=(10.15)Y 108.5Y 6%1 Y y p L ( 19 ) [1990] [1988] 1

L Y L( ) Y0.15Y 0.03L 0.01L 6% L=(10.15)Y 108.5Y 6%1 Y y p L ( 19 ) [1990] [1988] 1 1. 1-1 00 001 9 J-REIT 1- MM CAPM 1-3 [001] [1997] [003] [001] [1999] [003] 1-4 0 . -1 18 1-1873 6 1896 L Y L( ) Y0.15Y 0.03L 0.01L 6% L=(10.15)Y 108.5Y 6%1 Y y p L 6 1986 ( 19 ) -3 17 3 18 44 1 [1990]

More information

untitled

untitled Horioka Nakagawa and Oshima u ( c ) t+ 1 E β (1 + r ) 1 = t i+ 1 u ( c ) t 0 β c t y t uc ( t ) E () t r t c E β t ct γ ( + r ) 1 0 t+ 1 1 = t+ 1 ξ ct + β ct γ c t + 1 1+ r ) E β t + 1 t ct (1

More information

19 σ = P/A o σ B Maximum tensile strength σ % 0.2% proof stress σ EL Elastic limit Work hardening coefficient failure necking σ PL Proportional

19 σ = P/A o σ B Maximum tensile strength σ % 0.2% proof stress σ EL Elastic limit Work hardening coefficient failure necking σ PL Proportional 19 σ = P/A o σ B Maximum tensile strength σ 0. 0.% 0.% proof stress σ EL Elastic limit Work hardening coefficient failure necking σ PL Proportional limit ε p = 0.% ε e = σ 0. /E plastic strain ε = ε e

More information

01.Œk’ì/“²fi¡*

01.Œk’ì/“²fi¡* AIC AIC y n r n = logy n = logy n logy n ARCHEngle r n = σ n w n logσ n 2 = α + β w n 2 () r n = σ n w n logσ n 2 = α + β logσ n 2 + v n (2) w n r n logr n 2 = logσ n 2 + logw n 2 logσ n 2 = α +β logσ

More information

Auerbach and Kotlikoff(1987) (1987) (1988) 4 (2004) 5 Diamond(1965) Auerbach and Kotlikoff(1987) 1 ( ) ,

Auerbach and Kotlikoff(1987) (1987) (1988) 4 (2004) 5 Diamond(1965) Auerbach and Kotlikoff(1987) 1 ( ) , ,, 2010 8 24 2010 9 14 A B C A (B Negishi(1960) (C) ( 22 3 27 ) E-mail:fujii@econ.kobe-u.ac.jp E-mail:082e527e@stu.kobe-u.ac.jp E-mail:iritani@econ.kobe-u.ac.jp 1 1 1 2 3 Auerbach and Kotlikoff(1987) (1987)

More information

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 2 ), ϕ(t) = B 1 cos(ω 1 t + α 1 ) + B 2 cos(ω 2 t

More information

78 TPP TPP 5 TPP CVM Contingent Valuation Method 6 TPP TPP 2 TPP 2 1 TPP TPP 4 06 P4 Pacific 4 EPA TPP 2 2

78 TPP TPP 5 TPP CVM Contingent Valuation Method 6 TPP TPP 2 TPP 2 1 TPP TPP 4 06 P4 Pacific 4 EPA TPP 2 2 2012 TPP 77 TPP 1 TPP 1 Trans-Pacific Partnership WTOWorld Trade Organization 2 TPP TPP 2 TPP 3 TPP 4 TPP TPP 78 TPP TPP 5 TPP CVM Contingent Valuation Method 6 TPP TPP 2 TPP 2 1 TPP TPP 4 06 P4 Pacific

More information

II Karel Švadlenka * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* u = au + bv v = cu + dv v u a, b, c, d R

II Karel Švadlenka * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* u = au + bv v = cu + dv v u a, b, c, d R II Karel Švadlenka 2018 5 26 * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* 5 23 1 u = au + bv v = cu + dv v u a, b, c, d R 1.3 14 14 60% 1.4 5 23 a, b R a 2 4b < 0 λ 2 + aλ + b = 0 λ =

More information

1 B64653 1 1 3.1....................................... 3.......................... 3..1.............................. 4................................ 4..3.............................. 5..4..............................

More information

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x [ ] IC. f(x) = e x () f(x) f (x) () lim f(x) lim f(x) x + x (3) lim f(x) lim f(x) x + x (4) y = f(x) ( ) ( s46). < a < () a () lim a log xdx a log xdx ( ) n (3) lim log k log n n n k=.3 z = log(x + y ),

More information

A 2 3. m S m = {x R m+1 x = 1} U + k = {x S m x k > 0}, U k = {x S m x k < 0}, ϕ ± k (x) = (x 0,..., ˆx k,... x m ) 1. {(U ± k, ϕ± k ) 0 k m} S m 1.2.

A 2 3. m S m = {x R m+1 x = 1} U + k = {x S m x k > 0}, U k = {x S m x k < 0}, ϕ ± k (x) = (x 0,..., ˆx k,... x m ) 1. {(U ± k, ϕ± k ) 0 k m} S m 1.2. A A 1 A 5 A 6 1 2 3 4 5 6 7 1 1.1 1.1 (). Hausdorff M R m M M {U α } U α R m E α ϕ α : U α E α U α U β = ϕ α (ϕ β ϕβ (U α U β )) 1 : ϕ β (U α U β ) ϕ α (U α U β ) C M a m dim M a U α ϕ α {x i, 1 i m} {U,

More information

K E N Z OU

K E N Z OU K E N Z OU 11 1 1 1.1..................................... 1.1.1............................ 1.1..................................................................................... 4 1.........................................

More information

untitled

untitled - k k k = y. k = ky. y du dx = ε ux ( ) ux ( ) = ax+ b x u() = ; u( ) = AE u() = b= u () = a= ; a= d x du ε x = = = dx dx N = σ da = E ε da = EA ε A x A x x - σ x σ x = Eε x N = EAε x = EA = N = EA k =

More information

1 29 ( ) I II III A B (120 ) 2 5 I II III A B (120 ) 1, 6 8 I II A B (120 ) 1, 6, 7 I II A B (100 ) 1 OAB A B OA = 2 OA OB = 3 OB A B 2 :

1 29 ( ) I II III A B (120 ) 2 5 I II III A B (120 ) 1, 6 8 I II A B (120 ) 1, 6, 7 I II A B (100 ) 1 OAB A B OA = 2 OA OB = 3 OB A B 2 : 9 ( ) 9 5 I II III A B (0 ) 5 I II III A B (0 ), 6 8 I II A B (0 ), 6, 7 I II A B (00 ) OAB A B OA = OA OB = OB A B : P OP AB Q OA = a OB = b () OP a b () OP OQ () a = 5 b = OP AB OAB PAB a f(x) = (log

More information

1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C

1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C 0 9 (1990 1999 ) 10 (2000 ) 1900 1994 1995 1999 2 SAT ACT 1 1990 IMO 1990/1/15 1:00-4:00 1 N 1990 9 N N 1, N 1 N 2, N 2 N 3 N 3 2 x 2 + 25x + 52 = 3 x 2 + 25x + 80 3 2, 3 0 4 A, B, C 3,, A B, C 2,,,, 7,

More information

DVIOUT-HYOU

DVIOUT-HYOU () P. () AB () AB ³ ³, BA, BA ³ ³ P. A B B A IA (B B)A B (BA) B A ³, A ³ ³ B ³ ³ x z ³ A AA w ³ AA ³ x z ³ x + z +w ³ w x + z +w ½ x + ½ z +w x + z +w x,,z,w ³ A ³ AA I x,, z, w ³ A ³ ³ + + A ³ A A P.

More information

206“ƒŁ\”ƒ-fl_“H„¤‰ZŁñ

206“ƒŁ\”ƒ-fl_“H„¤‰ZŁñ 105 206 105 117 2007 105 3 LCC 110 106 LCC 111 106 1 111 107 2 112 1 107 3 114 2 108 115 109 115 1 LCC 110 Summary 117 2 110 2005 3 LCC 19 3 6 LCC LCC LCC 1.0 2 3, 1997 B/C Cost Benefit Ratio 1997 NPV

More information

入試の軌跡

入試の軌跡 4 y O x 4 Typed by L A TEX ε ) ) ) 6 4 ) 4 75 ) http://kumamoto.s.xrea.com/plan/.. PDF) Ctrl +L) Ctrl +) Ctrl + Ctrl + ) ) Alt + ) Alt + ) ESC. http://kumamoto.s.xrea.com/nyusi/kumadai kiseki ri i.pdf

More information

B

B B YES NO 5 7 6 1 4 3 2 BB BB BB AA AA BB 510J B B A 510J B A A A A A A 510J B A 510J B A A A A A 510J M = σ Z Z = M σ AAA π T T = a ZP ZP = a AAA π B M + M 2 +T 2 M T Me = = 1 + 1 + 2 2 M σ Te = M 2 +T

More information

solutionJIS.dvi

solutionJIS.dvi May 0, 006 6 morimune@econ.kyoto-u.ac.jp /9/005 (7 0/5/006 1 1.1 (a) (b) (c) c + c + + c = nc (x 1 x)+(x x)+ +(x n x) =(x 1 + x + + x n ) nx = nx nx =0 c(x 1 x)+c(x x)+ + c(x n x) =c (x i x) =0 y i (x

More information

st.dvi

st.dvi 9 3 5................................... 5............................. 5....................................... 5.................................. 7.........................................................................

More information

3.2 [ ]< 86, 87 > ( ) T = U V,N,, du = TdS PdV + µdn +, (3) P = U V S,N,, µ = U N. (4) S,V,, ( ) ds = 1 T du + P T dv µ dn +, (5) T 1 T = P U V,N,, T

3.2 [ ]< 86, 87 > ( ) T = U V,N,, du = TdS PdV + µdn +, (3) P = U V S,N,, µ = U N. (4) S,V,, ( ) ds = 1 T du + P T dv µ dn +, (5) T 1 T = P U V,N,, T 3 3.1 [ ]< 85, 86 > ( ) ds > 0. (1) dt ds dt =0, S = S max. (2) ( δq 1 = TdS 1 =0) (δw 1 < 0) (du 1 < 0) (δq 2 > 0) (ds = ds 2 = TδQ 2 > 0) 39 3.2 [ ]< 86, 87 > ( ) T = U V,N,, du = TdS PdV + µdn +, (3)

More information

1W II K =25 A (1) office(a439) (2) A4 etc. 12:00-13:30 Cafe David 1 2 TA appointment Cafe D

1W II K =25 A (1) office(a439) (2) A4 etc. 12:00-13:30 Cafe David 1 2 TA  appointment Cafe D 1W II K200 : October 6, 2004 Version : 1.2, kawahira@math.nagoa-u.ac.jp, http://www.math.nagoa-u.ac.jp/~kawahira/courses.htm TA M1, m0418c@math.nagoa-u.ac.jp TA Talor Jacobian 4 45 25 30 20 K2-1W04-00

More information

untitled

untitled 1 17 () BAC9ABC6ACB3 1 tan 6 = 3, cos 6 = AB=1 BC=2, AC= 3 2 A BC D 2 BDBD=BA 1 2 ABD BADBDA ABC6 BAD = (18 6 ) / 2 = 6 θ = 18 BAD = 12 () AD AD=BADCAD9 ABD ACD A 1 1 1 1 dsinαsinα = d 3 sin β 3 sin β

More information

p *2 DSGEDynamic Stochastic General Equilibrium New Keynesian *2 2

p *2 DSGEDynamic Stochastic General Equilibrium New Keynesian *2 2 2013 1 nabe@ier.hit-u.ac.jp 2013 4 11 Jorgenson Tobin q : Hayashi s Theorem : Jordan : 1 investment 1 2 3 4 5 6 7 8 *1 *1 93SNA 1 p.180 1936 100 1970 *2 DSGEDynamic Stochastic General Equilibrium New Keynesian

More information