PowerPoint Presentation

Size: px
Start display at page:

Download "PowerPoint Presentation"

Transcription

1 知能システム論 1 (11) 情報システム学研究科情報メディアシステム学専攻知能システム学講座末廣尚士

2 13. ロボットアームの逆運動学 ( 幾何的解法 ) 何をしたいか 手首 手先 ツールの3 次元空間での位置や姿勢から それを実現する関節角度を計算する アームソリューション アームの解とも呼ぶ 何のために たとえばビジョンで認識された物をつかむ場合 物の位置 姿勢は3 次元空間で表現されることが普通である したがってそれに必要な手首 手先 ツールの位置や姿勢アームの位置や姿勢も3 次元空間の位置 姿勢で与えられる 逆運動学が不要な制御もあるが 2012 年度前学期電気通信大学大学院情報システム学研究科情報メディアシステム学専攻知能システム論 1 2

3 - 幾何学的解法 hand 手先の位置が hand hand z hand のときの hand 関節角度 1, 2, 3 を求める z hand z 2012 年度前学期電気通信大学大学院情報システム学研究科情報メディアシステム学専攻知能システム論 1 3

4 - 幾何学的 ( 解析的 ) 解法 1 L1 まず順運動学の式は L1 hand = hand cos 1 =l2h sin 2 l3h sin 2 3 cos 1 2 L1 hand = hand sin 1 =l2hsin 2 l3hsin 2 3 sin 1 3 l3h l2h z hand =bhl1hl2hcos 2 l3hcos 2 3 z L1 l1h bh L1 hand =l2hsin 2 l3hsin 年度前学期電気通信大学大学院情報システム学研究科情報メディアシステム学専攻知能システム論 1 4

5 1 - の計算 1 これは簡単 L1 L1 hand = hand cos 1 L1 hand = hand sin 1 1 = hand arctan 0 hand hand arctan 0 hand /2 =0, 0 /2 =0, 0 hand hand =tan 1 不定 =0, = 年度前学期電気通信大学大学院情報システム学研究科情報メディアシステム学専攻知能システム論 1 5

6 3 - の計算 z hand =bhl1hl2hcos 2 l3hcos 2 3 L1 hand =l2hsin 2 l3hsin 2 3 ここで とすると L1 X = X 2 hand = Z= z hand bh l1h 2 hand Z=l2hcos 2 l3hcos 2 3 X =l2hsin 2 l3hsin 2 3 両辺を 2 乗して加えると Z 2 =l2h 2 cos l2hl3h cos 2 cos 2 3 l3h 2 cos X 2 =l2h 2 sin l2hl3hsin 2 sin 2 3 l3h 2 sin hand 3 l3h X 2 Z 2 z L1 2 l2h l1h bh X 2 Z 2 =l2h 2 l3h 2 2 l2hl3hcos 2 cos 2 3 sin 2 sin 年度前学期電気通信大学大学院情報システム学研究科情報メディアシステム学専攻知能システム論 1 6

7 3 - の計算 X 2 Z 2 =l2h 2 l3h 2 2 l2hl3hcos 2 cos 2 3 sin 2 sin 2 3 ここで cos =coscossin sin = 2 3 = 2 とすると X 2 Z 2 =l2h 2 l3h 2 2 l2hl3h cos 3 X 2 Z 2 l2h 2 l3h 2 =2 l2hl3h cos 3 cos 3 = X 2 Z 2 l2h 2 l3h 2 /2l2h l3h 3 =±arccos X 2 Z 2 l2h 2 l3h 2 /2 l2hl3h を思い出して 2012 年度前学期電気通信大学大学院情報システム学研究科情報メディアシステム学専攻知能システム論 1 7

8 2 - の計算 の場合 - の場合 3 2 =arcsinz / X 2 Z 2 =arcsin l3hsin 3 X 2 Z 2 2 = /2 実はこの符号が反転するだけ =arcsinz / X 2 Z 2 =arcsin l3hsin 3 X 2 Z 2 2 = / 年度前学期電気通信大学大学院情報システム学研究科情報メディアシステム学専攻知能システム論 1 8

9 - 結果のグラフィックス表示 =arcsinz / X 2 Z 2 =arcsin l3hsin 3 X 2 Z 2 2 = / 年度前学期電気通信大学大学院情報システム学研究科情報メディアシステム学専攻知能システム論 1 9

10 - 結果のグラフィック表示 =arcsinz / X 2 Z 2 =arcsin l3hsin 3 X 2 Z 2 2 = / 年度前学期電気通信大学大学院情報システム学研究科情報メディアシステム学専攻知能システム論 1 10

11 - まだ他に解がある 1 を裏に回して とを反対に曲げる L1 1 = hand arctan 0 hand hand arctan 0 /2 hand =0, 0 /2 =0, 0 不定 =0, = 年度前学期電気通信大学大学院情報システム学研究科情報メディアシステム学専攻知能システム論 1 11

12 - プログラム :arm3dof_draft2.p def arm_sol(self,trans) : =trans.vec[0] =trans.vec[1] z=trans.vec[2] th1_1=atan2(,) th1_2=th1_1-pi zz=z-self.bh-self.l1h zz_2=zz**2 _2=**2+**2 th3=acos((_2+zz_2-self.l2h**2-self.l3h**2)/2.0/self.l2h/self.l3h) psi=asin(zz/sqrt(_2+zz_2)) phi=asin(self.l3h*sin(th3)/sqrt(_2+zz_2)) th2_1=pi/2-psi-phi th2_2=pi/2-psi+phi self.solutions=[[th1_1,th2_1,th3],[th1_1,th2_2,-th3], [th1_2,-th2_1,-th3],[th1_2,-th2_2,th3]] return self.solutions # arm.solve=new.instancemethod(arm_sol,arm,arm. class ) 2012 年度前学期電気通信大学大学院情報システム学研究科情報メディアシステム学専攻知能システム論 1 12

13 - arm3dof_draft2.p の使い方 まず env_arm3dof_draft2.p を走らせる. >>> arm.make_shape() >>> arm.mark() >>> create_env() >>> a=arm.solve(bo.where(arm.base)) >>> a [[ , , ], [ , , ], [ , , ], [ , , ]] >>> for pp in a: arm.set_joints(pp) sleep(1) >>> 2012 年度前学期電気通信大学大学院情報システム学研究科情報メディアシステム学専攻知能システム論 1 13

14 - 6 自由度の場合 位置だけでなく姿勢も指定できる手首に手先 3 自由度が集まった形になっている場合 位置と姿勢を分離して求めることが出来る まず手先の位置 姿勢から手首位置が決まる 手首位置について3 自由度の解を求める 手首姿勢と整合するように手先の 3 自由度を求める そうでない場合 一般には解くのが難しい 2012 年度前学期電気通信大学大学院情報システム学研究科情報メディアシステム学専攻知能システム論 1 14

15 - 6 自由度アームの解の求め方の例 姿勢と先端位置が決まるとこの点が決まる ここは 3 自由度アームの求め方 根元側 3 自由度が決まると残り 3 自由度は姿勢合わせで簡単に求められる 2012 年度前学期電気通信大学大学院情報システム学研究科情報メディアシステム学専攻知能システム論 1 15

16 - 例題 :6 関節アームの逆運動学 hand wrist l h =0.1 l 6 =0.05 l 5 =0.1 l 4 =.01 l 3 =0.3 手首座標系が目標座標系 target に一致するように関節角を求めよ l 2 =0.5 base l 1 =0.05 l b = 年度前学期電気通信大学大学院情報システム学研究科情報メディアシステム学専攻知能システム論 1 16

17 - 逆運動学 (1) (1)joint 5 の位置を求める ハンド座標の z 軸方向 lh5+lh6(-0.15) の位置 def arm_sol(self,target) : self.solutions=[] pos=target.vec z_ais=target.mat.col(2) pos=pos-((self.l5h+self.l6h)*z_ais).. pos target (self.l5h+self.l6h)*z_ais z 2012 年度前学期電気通信大学大学院情報システム学研究科情報メディアシステム学専攻知能システム論 1 17

18 - 逆運動学 (2) (2)1,2,3 は 前の l3h =l3h+l4h(0.4) としたときの 3 関節と同様に解くことが出来る pos ここは 3 自由度アームの求め方 def arm_sol_pos(self,pos) : 年度前学期電気通信大学大学院情報システム学研究科情報メディアシステム学専攻知能システム論 1 18

19 - 逆運動学 (3) (3)joint 5 の回転軸 () は 手首 z 軸と link3z 軸に垂直 回転角はそれらの間の角度 (2 方向あることに注意 ) def arm_sol_ori(self,target,th123) : T123=self.fk123(th123) zt=target.mat.col(2) z3=t123.mat.col(2).. T123 z z3 target zt 5, th5 z 2012 年度前学期電気通信大学大学院情報システム学研究科情報メディアシステム学専攻知能システム論 1 19

20 - 逆運動学 (4) (4)joint 4 の回転角は link5 と link3 の成す角 T123 def arm_sol_ori(self,target,th123) : T123=self.fk123(th123) zt=target.mat.col(2) z3=t123.mat.col(2).. 5 th4 3 z target z 2012 年度前学期電気通信大学大学院情報システム学研究科情報メディアシステム学専攻知能システム論 1 20

21 - 逆運動学 (5) (5)joint 6 の回転角は link5 と wrist(=target) の成す角 T123 def arm_sol_ori(self,target,th123) : T123=self.fk123(th123) zt=target.mat.col(2) z3=t123.mat.col(2).. t 5 th6 z target z 2012 年度前学期電気通信大学大学院情報システム学研究科情報メディアシステム学専攻知能システム論 1 21

22 - 例題 :6 関節アームの逆運動学 hand wrist base l h =0.1 l 6 =0.05 l 5 =0.1 l 4 =.01 l 3 =0.3 l 2 =0.5 l 1 =0.05 l b =0.1 (1)joint 5 の位置を求める ハンド座標の z 軸方向 の位置 (2)1-3 は l3h=l3+l4=0.4 としたときの 3 関節と同様に解くことが出来る (3)joint 5 の回転軸 () は 手首 z 軸と link3z 軸に垂直 回転角はそれらの間の角度 (2 方向あることに注意 ) 2012 年度前学期電気通信大学大学院情報システム学研究科情報メディアシステム学専攻知能システム論 1 22

23 - 例題 :6 関節アームの逆運動学 hand wrist l h =0.1 l 6 =0.05 l 5 =0.1 l 4 =.01 l 3 =0.3 l 2 =0.5 (4)joint 4 の回転角は link5 と link3 の成す角 (5)joint 6 の回転角は link5 と wrist の成す角 base l 1 =0.05 l b = 年度前学期電気通信大学大学院情報システム学研究科情報メディアシステム学専攻知能システム論 1 23

24 - arm6dof_draft2.p(1) def arm_sol_pos(self,pos) : =pos[0] =pos[1] z=pos[2] th1_1=atan2(,) th1_2=th1_1-pi lh=self.l3h+self.l4h zz=z-self.bh-self.l1h zz_2=zz**2 _2=**2+**2 th3=acos((_2+zz_2-self.l2h**2-lh**2)/2.0/self.l2h/lh) psi=asin(zz/sqrt(_2+zz_2)) phi=asin(lh*sin(th3)/sqrt(_2+zz_2)) th2_1=pi/2-psi-phi th2_2=pi/2-psi+phi self.solutions_pos=[[th1_1,th2_1,th3],[th1_1,th2_2,-th3], [th1_2,-th2_1,-th3],[th1_2,-th2_2,th3]] return self.solutions_pos # 2012 年度前学期電気通信大学大学院情報システム学研究科情報メディアシステム学専攻知能システム論 1 24

25 - arm6dof_draft2.p(2) (3)(4)(5) def fk123(self,th123): T1=FRAME(zabc=[0,0,self.bh,0,0,th123[0]]) T2=FRAME(zabc=[0,0,self.l1h,0,th123[1],0]) T3=FRAME(zabc=[0,0,self.l3h+self.l4h,0,th123[2],0]) return T1*T2*T3 # def arm_sol_ori(self,target,th123) : T123=self.fk123(th123) zt=target.mat.col(2) z3=t123.mat.col(2).... return [th4,th5,th6],[th4_2,-th5,th6_2] 2012 年度前学期電気通信大学大学院情報システム学研究科情報メディアシステム学専攻知能システム論 1 25

26 - arm6dof_draft2.p(3) (1) (2) def arm_sol(self,target) : self.solutions=[] pos=target.vec z_ais=target.mat.col(2) pos=pos-((self.l5h+self.l6h)*z_ais) self.solve_pos(pos) for th123 in self.solutions_pos : rslt=self.solve_ori(target,th123) self.solutions.append(th123+rslt[0]) self.solutions.append(th123+rslt[1]) return self.solutions 2012 年度前学期電気通信大学大学院情報システム学研究科情報メディアシステム学専攻知能システム論 1 26

27 - arm6dof_draft2.p の使い方 まず env_arm6dof_draft2.p を走らせる. >>> create_env() >>> arm <larm_w_hand.linkedarm instance at 00350F5F8> >>> arm.solve(bo.where(arm.base)*arm.wrist.where(arm.hand)) [[ , , , e-16, , ], [ , , , [ , , , , , ], [ , , , e-16, , ]] >>> show_all_solutions(arm,bo) >>> 2012 年度前学期電気通信大学大学院情報システム学研究科情報メディアシステム学専攻知能システム論 1 27

28 - アームの逆運動学の数値解法 いろいろな場合に応用できるニュートン法の応用 1 変数 : 微分 多変数 : ヤコビ行列 ( 偏微分 ) 解の収束性が問題 良い初期近似があると良いロボットアームの場合 : 軌跡に沿って逐次計算それでも越えられないところがあるはずだが ロボットアームの場合 特異点に近寄らなければ大丈夫なことが多い 2012 年度前学期電気通信大学大学院情報システム学研究科情報メディアシステム学専攻知能システム論 1 28

29 - 1 変数のニュートン法 ( 復習 ) 関数 f の 0 回りでのテーラー展開を考える f f 0 f ' ここをもとめたい f = f 近似的に f =0 とするを求める 1 0= f 0 f ' これを解いて 1 = 0 f 0 / f ' 0 これを繰り返すことで 十分に良い近似解を求めることが出来る 微分を使うと逆が簡単に解ける 2012 年度前学期電気通信大学大学院情報システム学研究科情報メディアシステム学専攻知能システム論 1 29

30 - 1 変数の一次近似 テーラー展開 f f 0 f ' 当然誤差はある 0 次 1 次 = f 変形して f f 0 = f ' 0 0 = f ' 0 f 0 0 つまり 微小な変化は簡単な比例で近似できるということ 2012 年度前学期電気通信大学大学院情報システム学研究科情報メディアシステム学専攻知能システム論 1 30

31 - ニュートン法で困る例 単純なニュートン法だと極値が零に近くなるとで発散してしまう発散しないように用心深くすると停留点を越えられない多くの場合 別な初期値からやり直すのが良い = f 本当の解はここ 0 停留点 2012 年度前学期電気通信大学大学院情報システム学研究科情報メディアシステム学専攻知能システム論 1 31

32 - ニュートン法で困る例 2 解が停留点の場合微分して0を使うなど工夫が必要 解がここだと工夫が必要 = f 0 停留点 2012 年度前学期電気通信大学大学院情報システム学研究科情報メディアシステム学専攻知能システム論 1 32

33 - 多変数の場合 ( アームのヤコビアン ) 制御したい ( 解を求めたい ) パラメタと 制御できる ( 関節角度など ) パラメタとの 微小変化量の関係を (1 次偏微分係数で ) 表した行列を使う 一般に このような多変数関数の1 次偏微分係数行列はヤコビ行列 ヤコビアンなどと呼ばれる イメージとしては ( 超 ) 曲面の接 ( 超 ) 平面によ る近似 一次微分が曲線を接線で近似していたことを思い出して欲しい 2012 年度前学期電気通信大学大学院情報システム学研究科情報メディアシステム学専攻知能システム論 1 33

34 - ロボットアームのヤコビアンの例 関節角度を少し動かしたとき手先の位置 姿勢がどのように変化するか : いわゆる ロボットアームのヤコビアン 関節角度を少し動かしたときカメラ画像中の位置がどのように変化するか : ビジュアルヤコビアン などと呼ばれる 2012 年度前学期電気通信大学大学院情報システム学研究科情報メディアシステム学専攻知能システム論 1 34

35 - 次回の予告 ヤコビアンについて詳しく 2012 年度前学期電気通信大学大学院情報システム学研究科情報メディアシステム学専攻知能システム論 1 35

PowerPoint Presentation

PowerPoint Presentation 知能システム論 1 (9) 201365 情報システム学研究科情報メディアシステム学専攻知能システム学講座末廣尚士 12 ロボットアームの逆運動学 ( 幾何学的 ( 解析的 ) 解法 ) 何をしたいか 手首 手先 ツールの3 次元空間での位置や姿勢から それを実現する関節角度を計算する アームソリューション アームの解とも呼ぶ 何のために たとえばビジョンで認識された物をつかむ場合 物の位置 姿勢は3

More information

スライド 1

スライド 1 (10) 2016.6.22 電気通信大学大学院情報理工学研究科末廣尚士 14. ロボットアームの逆運動学 ( 幾何 学的 ( 解析的 ) 解法 ) 何をしたいか 手首, 手先, ツールの 3 次元空間での位置や姿勢から, それを実現する関節角度を計算する. アームソリューション, アームの解とも呼ぶ 何のために たとえばビジョンで認識された物をつかむ場合, 物の位置 姿勢は 3 次元空間で表現されることが普通である.

More information

スライド 1

スライド 1 (8) 2017.6.7 電気通信大学大学院情報理工学研究科末廣尚士 9. ロボットアームの逆運動学 ( 幾何 学的 ( 解析的 ) 解法 ) 何をしたいか 手首, 手先, ツールの 3 次元空間での位置や姿勢から, それを実現する関節角度を計算する. アームソリューション, アームの解とも呼ぶ 何のために たとえばビジョンで認識された物をつかむ場合, 物の位置 姿勢は 3 次元空間で表現されることが普通である.

More information

PowerPoint Presentation

PowerPoint Presentation 知能システム論 1 (9) 2015.6.17 情報システム学研究科情報メディアシステム学専攻知能システム学講座末廣尚士 13. アームモデルの Python による表現 理想ロボット :ArmWithHand 構造は関係なし move: 手先や持った物を動かす ハンド :Hand open, close, width アームのリンクの計算 :Link set_jparam シリアルリンクアーム :LinkedArm

More information

PowerPoint Presentation

PowerPoint Presentation 知能システム論 1 (12) 2013.6.26 情報システム学研究科情報メディアシステム学専攻知能システム学講座末廣尚士 - 自由な構造のシリアルアームを作る larm_w_hand_arm_sol.py arm6dof のうち以下の関数は関節数が 6 以上ならいくつでも使えるので larm_w_hand_arm_sol.py に移す solve() ready(), park() move()

More information

PowerPoint Presentation

PowerPoint Presentation 知能システム論 1 (13) 2014.7.2 情報システム学研究科情報メディアシステム学専攻知能システム学講座末廣尚士 16 物体の位置 姿勢計測 ロボットでのハンドリングに不可欠 物差しで測るステレオカメラで測る depthカメラ ( たとえばkinect) で測る depthカメラのデータは座標変換で議論できるイメージカメラの場合は透視投影変換を考える必要がある 物体の位置 姿勢計測は座標系の決定やキャリブレーションの基本でもある

More information

Microsoft PowerPoint - ロボットの運動学forUpload'C5Q [互換モード]

Microsoft PowerPoint - ロボットの運動学forUpload'C5Q [互換モード] ロボットの運動学 順運動学とは 座標系の回転と並進 同次座標変換行列 Denavit-Hartenberg の表記法 多関節ロボットの順運動学 レポート課題 & 中間試験について 逆運動学とは ヤコビアン行列 運動方程式 ( 微分方程式 ) ロボットの運動学 動力学 Equation of motion f ( ( t), ( t), ( t)) τ( t) 姿勢 ( 関節角の組合せ ) Posture

More information

Microsoft PowerPoint - Robotics_13_review_1short.pptx

Microsoft PowerPoint - Robotics_13_review_1short.pptx 東北文化学園大学 科学技術学部知能情報システム学科 費 仙鳳 ロボットの概要 数学的基礎 座標変換 同次変換 オイラー角 ロールピッチヨウ角 座標系設定 リンクパラメータ 腕型ロボットの構造 腕型ロボットの順運動学 腕型ロボットの逆運動学 腕型ロボットのヤコビアン 速度 特異姿勢 1 2 3 4 1 三角関数 ベクトルと行列 並進変換と回転変換 同次変換行列の導入 オイラー角 (Z-Y-Z) ロール

More information

パソコンシミュレータの現状

パソコンシミュレータの現状 第 2 章微分 偏微分, 写像 豊橋技術科学大学森謙一郎 2. 連続関数と微分 工学において物理現象を支配する方程式は微分方程式で表されていることが多く, 有限要素法も微分方程式を解く数値解析法であり, 定式化においては微分 積分が一般的に用いられており. 数学の基礎知識が必要になる. 図 2. に示すように, 微分は連続な関数 f() の傾きを求めることであり, 微小な に対して傾きを表し, を無限に

More information

スライド 1

スライド 1 (11-2) 2019.6.26 電気通信大学大学院情報理工学研究科末廣尚士 - 手先の軌道生成 ( 再掲 ) その都度, 逆運動学計算をするとは少し手間がかかる. 本当に必要か? 分割が小さければ, ニュートン ラフソン法で 収束 させる必要はないかもしれない. 2 - 直線軌道で分割する ( 再掲 ) 3 - 関節角の微少量をもとめる ( 再掲 ) 4 - 分解運動 ( 速度 ) 制御 ( 再掲

More information

解析力学B - 第11回: 正準変換

解析力学B - 第11回: 正準変換 解析力学 B 第 11 回 : 正準変換 神戸大 : 陰山聡 ホームページ ( 第 6 回から今回までの講義ノート ) http://tinyurl.com/kage2010 2011.01.27 正準変換 バネ問題 ( あえて下手に座標をとった ) ハミルトニアンを考える q 正準方程式は H = p2 2m + k 2 (q l 0) 2 q = H p = p m ṗ = H q = k(q

More information

代数 幾何 < ベクトル > 1 ベクトルの演算 和 差 実数倍については 文字の計算と同様 2 ベクトルの成分表示 平面ベクトル : a x e y e x, ) ( 1 y1 空間ベクトル : a x e y e z e x, y, ) ( 1 1 z1

代数 幾何 < ベクトル > 1 ベクトルの演算 和 差 実数倍については 文字の計算と同様 2 ベクトルの成分表示 平面ベクトル : a x e y e x, ) ( 1 y1 空間ベクトル : a x e y e z e x, y, ) ( 1 1 z1 代数 幾何 < ベクトル > ベクトルの演算 和 差 実数倍については 文字の計算と同様 ベクトルの成分表示 平面ベクトル :, 空間ベクトル : z,, z 成分での計算ができるようにすること ベクトルの内積 : os 平面ベクトル :,, 空間ベクトル :,,,, z z zz 4 ベクトルの大きさ 平面上 : 空間上 : z は 良く用いられる 5 m: に分ける点 : m m 図形への応用

More information

<4D F736F F D2097CD8A7793FC96E582BD82ED82DD8A E6318FCD2E646F63>

<4D F736F F D2097CD8A7793FC96E582BD82ED82DD8A E6318FCD2E646F63> - 第 章たわみ角法の基本式 ポイント : たわみ角法の基本式を理解する たわみ角法の基本式を梁の微分方程式より求める 本章では たわみ角法の基本式を導くことにする 基本式の誘導法は各種あるが ここでは 梁の微分方程式を解いて基本式を求める方法を採用する この本で使用する座標系は 右手 右ネジの法則に従った座標を用いる また ひとつの部材では 図 - に示すように部材の左端の 点を原点とし 軸線を

More information

Microsoft PowerPoint - 三次元座標測定 ppt

Microsoft PowerPoint - 三次元座標測定 ppt 冗長座標測定機 ()( 三次元座標計測 ( 第 9 回 ) 5 年度大学院講義 6 年 月 7 日 冗長性を持つ 次元座標測定機 次元 辺測量 : 冗長性を出すために つのレーザトラッカを配置し, キャッツアイまでの距離から座標を測定する つのカメラ ( 次元的なカメラ ) とレーザスキャナ : つの角度測定システムによる座標測定 つの回転関節による 次元 自由度多関節機構 高増潔東京大学工学系研究科精密機械工学専攻

More information

Microsoft Word - 微分入門.doc

Microsoft Word - 微分入門.doc 基本公式 例題 0 定義式 f( ) 数 Ⅲ 微分入門 = の導関数を定義式にもとづいて計算しなさい 基本事項 ( f( ), g( ) が微分可能ならば ) y= f( ) g( ) のとき, y = y= f( ) g( ) h( ) のとき, y = ( f( ), g( ) が微分可能で, g( ) 0 ならば ) f( ) y = のとき, y = g ( ) とくに, y = のとき,

More information

スライド 1

スライド 1 機構学 Part6: ロボットの運動学 金子真 きんにく筋肉 筋紡錘 : 筋肉の長さを測るセンサ モータ センサ ロボットの運動学 関節にモータがついている場合の角度の取り方 関節にモータがついている場合の角度の取り方 関節にモータがついている場合の角度の取り方 関節にモータがついている場合の角度の取り方 関節にモータがついている場合の角度の取り方 ワイヤ駆動式ロボット ワイヤ駆動式ロボット ワイヤプーリ機構の場合

More information

Microsoft Word - mathtext8.doc

Microsoft Word - mathtext8.doc 8 章偏微分と重積分 8. 偏微分とは これまで微分を考える際 関数は f という形で 関数値がつの変数 に依存している場合のみを扱ってきました しかし一般に変数はつとは決まっておらず f のように 複数の変数を持つ関数も考えなければなりません そ こでこの節では今まで学んできた微分を一般化させ 複数の変数に対応した偏微分と呼ばれるものについて説明します これまでの微分を偏微分と区別したいとき 常微分という呼び方を用います

More information

DVIOUT-SS_Ma

DVIOUT-SS_Ma 第 章 微分方程式 ニュートンはリンゴが落ちるのを見て万有引力を発見した という有名な逸話があります 無重力の宇宙船の中ではリンゴは落ちないで静止していることを考えると 重力が働くと始め静止しているものが動き出して そのスピードはどんどん大きくなる つまり速度の変化が現れることがわかります 速度は一般に時間と共に変化します 速度の瞬間的変化の割合を加速度といい で定義しましょう 速度が変化する, つまり加速度がでなくなるためにはその原因があり

More information

数学 ⅡB < 公理 > 公理を論拠に定義を用いて定理を証明する 1 大小関係の公理 順序 (a > b, a = b, a > b 1 つ成立 a > b, b > c a > c 成立 ) 順序と演算 (a > b a + c > b + c (a > b, c > 0 ac > bc) 2 図

数学 ⅡB < 公理 > 公理を論拠に定義を用いて定理を証明する 1 大小関係の公理 順序 (a > b, a = b, a > b 1 つ成立 a > b, b > c a > c 成立 ) 順序と演算 (a > b a + c > b + c (a > b, c > 0 ac > bc) 2 図 数学 Ⅱ < 公理 > 公理を論拠に定義を用いて定理を証明する 大小関係の公理 順序 >, =, > つ成立 >, > > 成立 順序と演算 > + > + >, > > 図形の公理 平行線の性質 錯角 同位角 三角形の合同条件 三角形の合同相似 量の公理 角の大きさ 線分の長さ < 空間における座漂とベクトル > ベクトルの演算 和 差 実数倍については 文字の計算と同様 ベクトルの成分表示 平面ベクトル

More information

例 e 指数関数的に減衰する信号を h( a < + a a すると, それらのラプラス変換は, H ( ) { e } e インパルス応答が h( a < ( ただし a >, U( ) { } となるシステムにステップ信号 ( y( のラプラス変換 Y () は, Y ( ) H ( ) X (

例 e 指数関数的に減衰する信号を h( a < + a a すると, それらのラプラス変換は, H ( ) { e } e インパルス応答が h( a < ( ただし a >, U( ) { } となるシステムにステップ信号 ( y( のラプラス変換 Y () は, Y ( ) H ( ) X ( 第 週ラプラス変換 教科書 p.34~ 目標ラプラス変換の定義と意味を理解する フーリエ変換や Z 変換と並ぶ 信号解析やシステム設計における重要なツール ラプラス変換は波動現象や電気回路など様々な分野で 微分方程式を解くために利用されてきた ラプラス変換を用いることで微分方程式は代数方程式に変換される また 工学上使われる主要な関数のラプラス変換は簡単な形の関数で表されるので これを ラプラス変換表

More information

Microsoft Word - 1B2011.doc

Microsoft Word - 1B2011.doc 第 14 回モールの定理 ( 単純梁の場合 ) ( モールの定理とは何か?p.11) 例題 下記に示す単純梁の C 点のたわみ角 θ C と, たわみ δ C を求めよ ただし, 部材の曲げ 剛性は材軸に沿って一様で とする C D kn B 1.5m 0.5m 1.0m 解答 1 曲げモーメント図を描く,B 点の反力を求める kn kn 4 kn 曲げモーメント図を描く knm 先に得られた曲げモーメントの値を

More information

p tn tn したがって, 点 の 座標は p p tn tn tn また, 直線 l と直線 p の交点 の 座標は p p tn p tn よって, 点 の座標 (, ) は p p, tn tn と表され p 4p p 4p 4p tn tn tn より, 点 は放物線 4 p 上を動くこと

p tn tn したがって, 点 の 座標は p p tn tn tn また, 直線 l と直線 p の交点 の 座標は p p tn p tn よって, 点 の座標 (, ) は p p, tn tn と表され p 4p p 4p 4p tn tn tn より, 点 は放物線 4 p 上を動くこと 567_ 次曲線の三角関数による媒介変数表示 次曲線の三角関数による媒介変数表示 次曲線 ( 放物線 楕円 双曲線 ) の標準形の, についての方程式と, 三角関数による媒介変数表示は次のように対応している.. 放物線 () 4 p (, ) ( ptn, ptn ) (). 楕円. 双曲線 () () (, p p ), tn tn (, ) ( cos, sin ) (, ), tn cos (,

More information

以下 変数の上のドットは時間に関する微分を表わしている (ex. 2 dx d x x, x 2 dt dt ) 付録 E 非線形微分方程式の平衡点の安定性解析 E-1) 非線形方程式の線形近似特に言及してこなかったが これまでは線形微分方程式 ( x や x, x などがすべて 1 次で なおかつ

以下 変数の上のドットは時間に関する微分を表わしている (ex. 2 dx d x x, x 2 dt dt ) 付録 E 非線形微分方程式の平衡点の安定性解析 E-1) 非線形方程式の線形近似特に言及してこなかったが これまでは線形微分方程式 ( x や x, x などがすべて 1 次で なおかつ 以下 変数の上のドットは時間に関する微分を表わしている (e. d d, dt dt ) 付録 E 非線形微分方程式の平衡点の安定性解析 E-) 非線形方程式の線形近似特に言及してこなかったが これまでは線形微分方程式 ( や, などがすべて 次で なおかつそれらの係数が定数であるような微分方程式 ) に対して安定性の解析を行ってきた しかしながら 実際には非線形の微分方程式で記述される現象も多く存在する

More information

スライド 1

スライド 1 (5-2) 2017.5.17 電気通信大学大学院情報理工学研究科末廣尚士 6. 座標系の連鎖 何をしたいか 座標系を使って対象物の位置 姿勢を管理する 対象物の属性 アプローチ点 把持点など 形状 質量 慣性モーメント 物と物との関係 何のために 作業プログラムの記述 オフラインプログラミング 複数腕での作業 カメラ 移動台車などとの連携 2 - 座標系を用いた表現 table 上の place_a

More information

Chap2

Chap2 逆三角関数の微分 Arcsin の導関数を計算する Arcsin I. 初等関数の微積分 sin [, ], [π/, π/] cos sin / (Arcsin ) 計算力の体力をつけよう π/ π/ E. II- 次の関数の導関数を計算せよ () Arccos () Arctan E. I- の解答 不定積分あれこれ () Arccos n log C C (n ) n e e C log (log

More information

1 対 1 対応の演習例題を解いてみた 微分法とその応用 例題 1 極限 微分係数の定義 (2) 関数 f ( x) は任意の実数 x について微分可能なのは明らか f ( 1, f ( 1) ) と ( 1 + h, f ( 1 + h)

1 対 1 対応の演習例題を解いてみた   微分法とその応用 例題 1 極限 微分係数の定義 (2) 関数 f ( x) は任意の実数 x について微分可能なのは明らか f ( 1, f ( 1) ) と ( 1 + h, f ( 1 + h) 微分法とその応用 例題 1 極限 微分係数の定義 () 関数 ( x) は任意の実数 x について微分可能なのは明らか ( 1, ( 1) ) と ( 1 + h, ( 1 + h) ) の傾き= ( 1 + h ) - ( 1 ) ( 1 + ) - ( 1) = ( 1 + h) - 1 h ( 1) = lim h ( 1 + h) - ( 1) h ( 1, ( 1) ) と ( 1 - h,

More information

構造力学Ⅰ第12回

構造力学Ⅰ第12回 第 回材の座屈 (0 章 ) p.5~ ( 復習 ) モールの定理 ( 手順 ) 座屈とは 荷重により梁に生じた曲げモーメントをで除して仮想荷重と考える 座屈荷重 偏心荷重 ( 曲げと軸力 ) 断面の核 この仮想荷重に対するある点でのせん断力 たわみ角に相当する曲げモーメント たわみに相当する ( 例 ) 単純梁の支点のたわみ角 : は 図 を仮想荷重と考えたときの 点の支点反力 B は 図 を仮想荷重と考えたときのB

More information

喨微勃挹稉弑

喨微勃挹稉弑 == 全微分方程式 == 全微分とは 変数の関数 z=f(, ) について,, の増分を Δ, Δ とするとき, z の増分 Δz は Δz z Δ+ z Δ で表されます. この式において, Δ 0, Δ 0 となる極限を形式的に dz= z d+ z d (1) で表し, dz を z の全微分といいます. z は z の に関する偏導関数で, を定数と見なし て, で微分したものを表し, 方向の傾きに対応します.

More information

2 図微小要素の流体の流入出 方向の断面の流体の流入出の収支断面 Ⅰ から微小要素に流入出する流体の流量 Q 断面 Ⅰ は 以下のように定式化できる Q 断面 Ⅰ 流量 密度 流速 断面 Ⅰ の面積 微小要素の断面 Ⅰ から だけ移動した断面 Ⅱ を流入出する流体の流量 Q 断面 Ⅱ は以下のように

2 図微小要素の流体の流入出 方向の断面の流体の流入出の収支断面 Ⅰ から微小要素に流入出する流体の流量 Q 断面 Ⅰ は 以下のように定式化できる Q 断面 Ⅰ 流量 密度 流速 断面 Ⅰ の面積 微小要素の断面 Ⅰ から だけ移動した断面 Ⅱ を流入出する流体の流量 Q 断面 Ⅱ は以下のように 3 章 Web に Link 解説 連続式 微分表示 の誘導.64 *4. 連続式連続式は ある領域の内部にある流体の質量の収支が その表面からの流入出の合計と等しくなることを定式化したものであり 流体における質量保存則を示したものである 2. 連続式 微分表示 の誘導図のような微小要素 コントロールボリューム の領域内の流体の増減と外部からの流体の流入出を考えることで定式化できる 微小要素 流入

More information

Microsoft PowerPoint - 10.pptx

Microsoft PowerPoint - 10.pptx m u. 固有値とその応用 8/7/( 水 ). 固有値とその応用 固有値と固有ベクトル 行列による写像から固有ベクトルへ m m 行列 によって線形写像 f : R R が表せることを見てきた ここでは 次元平面の行列による写像を調べる とし 写像 f : を考える R R まず 単位ベクトルの像 u y y f : R R u u, u この事から 線形写像の性質を用いると 次の格子上の点全ての写像先が求まる

More information

学習指導要領

学習指導要領 (1) いろいろな式 学習指導要領紅葉川高校学力スタンダードア式と証明展開の公式を用いて 3 乗に関わる式を展開すること ( ア ) 整式の乗法 除法 分数式の計算ができるようにする 三次の乗法公式及び因数分解の公式を理解し そ 3 次の因数分解の公式を理解し それらを用いて因数れらを用いて式の展開や因数分解をすること また 分解することができるようにする 整式の除法や分数式の四則計算について理解し

More information

Microsoft Word - thesis.doc

Microsoft Word - thesis.doc 剛体の基礎理論 -. 剛体の基礎理論初めに本論文で大域的に使用する記号を定義する. 使用する記号トルク撃力力角運動量角速度姿勢対角化された慣性テンソル慣性テンソル運動量速度位置質量時間 J W f F P p .. 質点の並進運動 質点は位置 と速度 P を用いる. ニュートンの運動方程式 という状態を持つ. 但し ここでは速度ではなく運動量 F P F.... より質点の運動は既に明らかであり 質点の状態ベクトル

More information

Chap3.key

Chap3.key 区分求積法. 面積 ( )/ f () > n + n, S 長方形の和集合で近似 n f (n ) リーマン和 f (n ) 区分求積法 リーマン和 S S n n / n n f ()d リーマン積分 ( + ) + S (, f ( )) 微分の心 Zoom In して局所的な性質を調べる 積分の心 Zoom Ou して大域的な性質を調べる 曲線の長さ 領域の面積や体積 ある領域に含まれる物質の質量

More information

ÿþŸb8bn0irt

ÿþŸb8bn0irt 折戸の物理 スペシャル補習 http://oritobuturi.co/ NO.5(009..16) 今日の目的 : 1 物理と微分 積分について 微分方程式について学ぶ 3 近似を学ぶ 10. 以下の文を読み,[ ア ]~[ ク ] の空欄に適当な式をいれよ 物体物体に一定の大きさの力を加えたときの, 物体の運動について考え よう 右図のように, なめらかな水平面上で質量 の物体に水平に一定の大きさ

More information

Microsoft Word - kogi10ex_main.docx

Microsoft Word - kogi10ex_main.docx 機能創造理工学 Ⅱ 期末試験 追試験問題 ( 病欠等による ) 途中の計算を必ず書こう 答えのみでは採点できない 問. 二次元面内を運動する調和振動子のラグランジアン L ( ) ( ) を 極座標, に変換し 極座標でのオイラーラグランジュ方程式を書こう ( 解く必要はない ) 但し, は定数であり また 極座標の定義は cos, sin である 問. 前問において極座標, に共役な一般化運動量,

More information

<4D F736F F D EBF97CD8A B7982D189898F4B A95748E9197BF4E6F31312E646F63>

<4D F736F F D EBF97CD8A B7982D189898F4B A95748E9197BF4E6F31312E646F63> 土質力学 Ⅰ 及び演習 (B 班 : 小高担当 ) 配付資料 N.11 (6.1.1) モールの応力円 (1) モールの応力円を使う上での3つの約束 1 垂直応力は圧縮を正とし, 軸の右側を正の方向とする 反時計まわりのモーメントを起こさせるせん断応力 の組を正とする 3 物体内で着目する面が,θ だけ回転すると, モールの応力円上では θ 回転する 1とは物理的な実際の作用面とモールの応力円上との回転の方向を一致させるために都合の良い約束である

More information

微分方程式による現象記述と解きかた

微分方程式による現象記述と解きかた 微分方程式による現象記述と解きかた 土木工学 : 公共諸施設 構造物の有用目的にむけた合理的な実現をはかる方法 ( 技術 ) に関する学 橋梁 トンネル ダム 道路 港湾 治水利水施設 安全化 利便化 快適化 合法則的 経済的 自然および人口素材によって作られた 質量保存則 構造物の自然的な性質 作用 ( 外力による応答 ) エネルギー則 の解明 社会的諸現象のうち マスとしての移動 流通 運動量則

More information

線積分.indd

線積分.indd 線積分 線積分 ( n, n, n ) (ξ n, η n, ζ n ) ( n-, n-, n- ) (ξ k, η k, ζ k ) ( k, k, k ) ( k-, k-, k- ) 物体に力 を作用させて位置ベクトル A の点 A から位置ベクトル の点 まで曲線 に沿って物体を移動させたときの仕事 W は 次式で計算された A, A, W : d 6 d+ d+ d@,,, d+ d+

More information

数値計算で学ぶ物理学 4 放物運動と惑星運動 地上のように下向きに重力がはたらいているような場においては 物体を投げると放物運動をする 一方 中心星のまわりの重力場中では 惑星は 円 だ円 放物線または双曲線を描きながら運動する ここでは 放物運動と惑星運動を 運動方程式を導出したうえで 数値シミュ

数値計算で学ぶ物理学 4 放物運動と惑星運動 地上のように下向きに重力がはたらいているような場においては 物体を投げると放物運動をする 一方 中心星のまわりの重力場中では 惑星は 円 だ円 放物線または双曲線を描きながら運動する ここでは 放物運動と惑星運動を 運動方程式を導出したうえで 数値シミュ 数値計算で学ぶ物理学 4 放物運動と惑星運動 地上のように下向きに重力がはたらいているような場においては 物体を投げると放物運動をする 一方 中心星のまわりの重力場中では 惑星は 円 だ円 放物線または双曲線を描きながら運動する ここでは 放物運動と惑星運動を 運動方程式を導出したうえで 数値シミュレーションによって計算してみる 4.1 放物運動一様な重力場における放物運動を考える 一般に質量の物体に作用する力をとすると運動方程式は

More information

<4D F736F F D2094F795AA8C608EAE8E478B4C92A08250>

<4D F736F F D2094F795AA8C608EAE8E478B4C92A08250> 微分形式雑記帳 1 ベクトルの内積と外積 次元ベクトルを A a, a, a, B b, b, b とする A a, a, a の長さを A a a a と定義する AB A B cos を A と B の内積とよぶ ただ し はベクトル A と B がなす角度である e1 1, 0, 0, e 0,1, 0, e 0, 0,1 は互いに直交しているので e 1 e 0, e 1 e 0 であり e

More information

Chap2.key

Chap2.key . f( ) V (V V ) V e + V e V V V V ( ) V V ( ) E. - () V (0 ) () V (0 ) () V (0 ) (4) V ( ) E. - () V (0 ) () V (0 ) O r θ ( ) ( ) : (r θ) : { r cos θ r sn θ { r + () V (0 ) (4) V ( ) θ θ arg( ) : π π

More information

Microsoft Word - NumericalComputation.docx

Microsoft Word - NumericalComputation.docx 数値計算入門 武尾英哉. 離散数学と数値計算 数学的解法の中には理論計算では求められないものもある. 例えば, 定積分は, まずは積分 ( 被積分関数の原始関数をみつけること できなければ値を得ることはできない. また, ある関数の所定の値における微分値を得るには, まずその関数の微分ができなければならない. さらに代数方程式の解を得るためには, 解析的に代数方程式を解く必要がある. ところが, これらは必ずしも解析的に導けるとは限らない.

More information

"éı”ç·ıå½¢ 微勃挹稉弑

"éı”ç·ıå½¢ 微勃挹稉弑 == 1 階線形微分方程式 == 次の形の常微分方程式を1 階線形常微分方程式といいます. '+P()=Q() (1) 方程式 (1) の右辺 : Q() を 0 とおいてできる同次方程式 ( この同次方程式は, 変数分離形になり比較的容易に解けます ) '+P()=0 () の1つの解を とすると, 方程式 (1) の一般解は =( Q() +C) (3) で求められます. 参考書には 上記の の代わりに,

More information

Microsoft Word - ㅎ㇤ㇺå®ı璃ㆨAIã†®æŁ°ç’ƒ.docx

Microsoft Word - ㅎ㇤ㇺå®ı璃ㆨAIã†®æŁ°ç’ƒ.docx ベイズの定理から AI の数理 ベイズ更新とロジステック曲線について 松本睦郎 ( 札幌啓成高等学校講師 ) Episode ロジステック曲線 菌やウイルスの増殖数や 人口増加等を表現する曲線の一つにロジステック曲線があります 例 シャーレの中で培養された大腸菌の数について考察する シャーレ内に栄養が十分に存在するとき 菌は栄養を吸収しながら 一定時間ごとに細胞分裂をして増 殖する 菌の数 u u(t)

More information

モデリングとは

モデリングとは コンピュータグラフィックス基礎 第 5 回曲線 曲面の表現 ベジェ曲線 金森由博 学習の目標 滑らかな曲線を扱う方法を学習する パラメトリック曲線について理解する 広く一般的に使われているベジェ曲線を理解する 制御点を入力することで ベジェ曲線を描画するアプリケーションの開発を行えるようになる C++ 言語の便利な機能を使えるようになる 要素数が可変な配列としての std::vector の活用 計算機による曲線の表現

More information

09.pptx

09.pptx 講義内容 数値解析 第 9 回 5 年 6 月 7 日 水 理学部物理学科情報理学コース. 非線形方程式の数値解法. はじめに. 分法. 補間法.4 ニュートン法.4. 多変数問題への応用.4. ニュートン法の収束性. 連立 次方程式の解法. 序論と行列計算の基礎. ガウスの消去法. 重対角行列の場合の解法項目を変更しました.4 LU 分解法.5 特異値分解法.6 共役勾配法.7 反復法.7. ヤコビ法.7.

More information

学習指導要領

学習指導要領 (1) 数と式 ア数と集合 ( ア ) 実数数を実数まで拡張する意義を理解し 簡単な無理数の四則計算をすること 自然数 整数 有理数 無理数の包含関係など 実数 の構成を理解する ( 例 ) 次の空欄に適当な言葉をいれて, 数の集合を表しなさい ア イ 無理数 整数 ウ 無理数の加法及び減法 乗法公式などを利用した計 算ができる また 分母だけが二項である無理数の 分母の有理化ができる ( 例 1)

More information

計算機シミュレーション

計算機シミュレーション . 運動方程式の数値解法.. ニュートン方程式の近似速度は, 位置座標 の時間微分で, d と定義されます. これを成分で書くと, d d li li とかけます. 本来は が の極限をとらなければいけませんが, 有限の小さな値とすると 秒後の位置座標は速度を用いて, と近似できます. 同様にして, 加速度は, 速度 の時間微分で, d と定義されます. これを成分で書くと, d d li li とかけます.

More information

2017年度 千葉大・理系数学

2017年度 千葉大・理系数学 017 千葉大学 ( 理系 ) 前期日程問題 1 解答解説のページへ n を 4 以上の整数とする 座標平面上で正 n 角形 A1A A n は点 O を中心とする半径 1 の円に内接している a = OA 1, b = OA, c = OA 3, d = OA4 とし, k = cos とおく そして, 線分 A1A3 と線分 AA4 との交点 P は線分 A1A3 を n :1に内分するとする

More information

ヤコビ楕円関数とはなにか

ヤコビ楕円関数とはなにか ヤコビ楕円関数とはなにか December 8, 0 Aio Arimoto. 非線形微分方程式ヤコビの楕円関数 n,cn,dn の一番分かりやすい導入は次の微分方程式の解とするもので 3 dx ある 0 として 上での初期値問題 yz dt, dy xz dt, dz xy dt, x0 0, y 0 z0の解の各成分 x t, yt, zt はそれぞれ,, コビの楕円関数と呼ばれる 命題. x

More information

工業数学F2-04(ウェブ用).pptx

工業数学F2-04(ウェブ用).pptx 工業数学 F2 #4 フーリエ級数を極める 京都大学加納学 京都大学大学院情報学研究科システム科学専攻 Human Systems Lab., Dept. of Systems Science Graduate School of Informatics, Kyoto University 復習 1: 複素フーリエ級数 2 周期 2π の周期関数 f(x) の複素フーリエ級数展開 複素フーリエ係数

More information

<4D F736F F D20824F F6490CF95AA82C696CA90CF95AA2E646F63>

<4D F736F F D20824F F6490CF95AA82C696CA90CF95AA2E646F63> 1/15 平成 3 年 3 月 4 日午後 6 時 49 分 5 ベクトルの 重積分と面積分 5 重積分と面積分 Ⅰ. 重積分 と で 回積分することを 重積分 といいます この 重積分は何を意味しているのでしょう? 通常の積分 (1 重積分 ) では C d 図 1a 1 f d (5.1) 1 f d f ( ) は 図形的には図 1a のように面積を表しています つまり 1 f ( ) を高さとしてプロットすると図

More information

学習指導要領

学習指導要領 (1 ) 数と式 ア数と集合 ( ア ) 実数数を実数まで拡張する意義を理解し 簡単な無理数の四則計算をすること 自然数 整数 有理数 無理数の包含関係など 実 数の構成を理解する ( 例 ) 次の空欄に適当な言葉をいれて, 数の集合を表しなさい 実数の絶対値が実数と対応する点と原点との距離で あることを理解する ( 例 ) 次の値を求めよ (1) () 6 置き換えなどを利用して 三項の無理数の乗法の計

More information

Microsoft Word - 断面諸量

Microsoft Word - 断面諸量 応用力学 Ⅱ 講義資料 / 断面諸量 断面諸量 断面 次 次モーメントの定義 図 - に示すような形状を有する横断面を考え その全断面積を とする いま任意に定めた直交座標軸 O-, をとり また図中の斜線部の微小面積要素を d とするとき d, d () で定義される, をそれぞれ与えられた横断面の 軸, 軸に関する断面 次モーメント (geometrcal moment of area) という

More information

第 5 章 構造振動学 棒の振動を縦振動, 捩り振動, 曲げ振動に分けて考える. 5.1 棒の縦振動と捩り振動 まっすぐな棒の縦振動の固有振動数 f[ Hz] f = l 2pL である. ただし, L [ 単位 m] は棒の長さ, [ 2 N / m ] 3 r[ 単位 Kg / m ] E r

第 5 章 構造振動学 棒の振動を縦振動, 捩り振動, 曲げ振動に分けて考える. 5.1 棒の縦振動と捩り振動 まっすぐな棒の縦振動の固有振動数 f[ Hz] f = l 2pL である. ただし, L [ 単位 m] は棒の長さ, [ 2 N / m ] 3 r[ 単位 Kg / m ] E r 第 5 章 構造振動学 棒の振動を縦振動, 捩り振動, 曲げ振動に分けて考える 5 棒の縦振動と捩り振動 まっすぐな棒の縦振動の固有振動数 f[ Hz] f l pl である ただし, L [ 単位 m] は棒の長さ, [ N / m ] [ 単位 Kg / m ] E は (5) E 単位は棒の材料の縦弾性係数 ( ヤング率 ) は棒の材料の単位体積当りの質量である l は境界条件と振動モードによって決まる無

More information

Microsoft PowerPoint - 応用数学8回目.pptx

Microsoft PowerPoint - 応用数学8回目.pptx 8- 次の 標 : 複素関数 ( 正則関数 ) の積分 8- 実関数 : 定積分 講義内容 名城 学理 学部材料機能 学科岩 素顕 複素関数の積分について学ぶ 複素関数の積分 複素積分の性質 周回積分の解法 コーシーの積分定理 コーシーの積分公式 グルサーの公式 - 定義 複素関数の積分 : 線積分 今後の内容 区分的に滑らかな曲線に沿って複素関数の積分を計算する 複素関数の積分の性質に関して議論する

More information

Microsoft PowerPoint - H21生物計算化学2.ppt

Microsoft PowerPoint - H21生物計算化学2.ppt 演算子の行列表現 > L いま 次元ベクトル空間の基底をケットと書くことにする この基底は完全系を成すとすると 空間内の任意のケットベクトルは > > > これより 一度基底を与えてしまえば 任意のベクトルはその基底についての成分で完全に記述することができる これらの成分を列行列の形に書くと M これをベクトル の基底 { >} による行列表現という ところで 行列 A の共役 dont 行列は A

More information

Phys1_03.key

Phys1_03.key 物理学1/物理学A 第3回 速度と加速度 速度 加速度 関数の話 やりたいこと : 物体の運動を調べる 物体の位置と速度を調べる これらを時間の関数として表したい 関数とは? ある された変数に対して, 出 の値が決まる対応関係のこと inpu 関数 ( 函数 ) oupu 例 : y(x)=x 2 x=2 を inpu すると y=4 が得られる 時々刻々と変化していく物体の位置 をその時刻とともに記録する

More information

Microsoft Word - 201hyouka-tangen-1.doc

Microsoft Word - 201hyouka-tangen-1.doc 数学 Ⅰ 評価規準の作成 ( 単元ごと ) 数学 Ⅰ の目標及び図形と計量について理解させ 基礎的な知識の習得と技能の習熟を図り それらを的確に活用する機能を伸ばすとともに 数学的な見方や考え方のよさを認識できるようにする 評価の観点の趣旨 式と不等式 二次関数及び図形と計量における考え方に関 心をもつとともに 数学的な見方や考え方のよさを認識し それらを事象の考察に活用しようとする 式と不等式 二次関数及び図形と計量における数学的な見

More information

OCW-iダランベールの原理

OCW-iダランベールの原理 講義名連続体力学配布資料 OCW- 第 2 回ダランベールの原理 無機材料工学科准教授安田公一 1 はじめに今回の講義では, まず, 前半でダランベールの原理について説明する これを用いると, 動力学の問題を静力学の問題として解くことができ, さらに, 前回の仮想仕事の原理を適用すると動力学問題も簡単に解くことができるようになる また, 後半では, ダランベールの原理の応用として ラグランジュ方程式の導出を示す

More information

0 21 カラー反射率 slope aspect 図 2.9: 復元結果例 2.4 画像生成技術としての計算フォトグラフィ 3 次元情報を復元することにより, 画像生成 ( レンダリング ) に応用することが可能である. 近年, コンピュータにより, カメラで直接得られない画像を生成する技術分野が生

0 21 カラー反射率 slope aspect 図 2.9: 復元結果例 2.4 画像生成技術としての計算フォトグラフィ 3 次元情報を復元することにより, 画像生成 ( レンダリング ) に応用することが可能である. 近年, コンピュータにより, カメラで直接得られない画像を生成する技術分野が生 0 21 カラー反射率 slope aspect 図 2.9: 復元結果例 2.4 画像生成技術としての計算フォトグラフィ 3 次元情報を復元することにより, 画像生成 ( レンダリング ) に応用することが可能である. 近年, コンピュータにより, カメラで直接得られない画像を生成する技術分野が生まれ, コンピューテーショナルフォトグラフィ ( 計算フォトグラフィ ) と呼ばれている.3 次元画像認識技術の計算フォトグラフィへの応用として,

More information

<4D F736F F D2094F795AA95FB92F68EAE82CC89F082AB95FB E646F63>

<4D F736F F D2094F795AA95FB92F68EAE82CC89F082AB95FB E646F63> 力学 A 金曜 限 : 松田 微分方程式の解き方 微分方程式の解き方のところが分からなかったという声が多いので プリントにまとめます 数学的に厳密な話はしていないので 詳しくは数学の常微分方程式を扱っているテキストを参照してください また os s は既知とします. 微分方程式の分類 常微分方程式とは 独立変数 と その関数 その有限次の導関数 がみたす方程式 F,,, = のことです 次までの導関数を含む方程式を

More information

相対性理論入門 1 Lorentz 変換 光がどのような座標系に対しても同一の速さ c で進むことから導かれる座標の一次変換である. (x, y, z, t ) の座標系が (x, y, z, t) の座標系に対して x 軸方向に w の速度で進んでいる場合, 座標系が一次変換で関係づけられるとする

相対性理論入門 1 Lorentz 変換 光がどのような座標系に対しても同一の速さ c で進むことから導かれる座標の一次変換である. (x, y, z, t ) の座標系が (x, y, z, t) の座標系に対して x 軸方向に w の速度で進んでいる場合, 座標系が一次変換で関係づけられるとする 相対性理論入門 Lorentz 変換 光がどのような座標系に対しても同一の速さ で進むことから導かれる座標の一次変換である. x, y, z, t ) の座標系が x, y, z, t) の座標系に対して x 軸方向に w の速度で進んでいる場合, 座標系が一次変換で関係づけられるとすると, x A x wt) y y z z t Bx + Dt 弨弱弩弨弲弩弨弳弩弨弴弩 が成立する. 図 : 相対速度

More information

中学 1 年数学 ( 東京書籍 ) 単元別コンテンツ一覧 単元ドリル教材解説教材 確認問題ライブラリ (OP) プリント教材 教材数 :8 問題数 : 基本 40, 標準 40, 挑戦 40 正の数 負の数などの問題を収録 解説教材 :3 確認問題 :3 数直線 数の大小と絶対値などの解説 確認問題

中学 1 年数学 ( 東京書籍 ) 単元別コンテンツ一覧 単元ドリル教材解説教材 確認問題ライブラリ (OP) プリント教材 教材数 :8 問題数 : 基本 40, 標準 40, 挑戦 40 正の数 負の数などの問題を収録 解説教材 :3 確認問題 :3 数直線 数の大小と絶対値などの解説 確認問題 教材数 :8 問題数 : 基本 40, 標準 40, 挑戦 40 正の数 負の数などの問題を収録 数直線 数の大小と絶対値などの解説 確認問題 ステープラ教材 :1 電子黒板などでご利用いただく提示用教材オリジナル教材作成も可能 (OP) 中学校プリントパック単元別プリント 4 枚 正負の数正負の数 < 正の数 > < 解説 符号のついた数 > < 正負の数 > < 不等号 数直線と数の大小 / 絶対値

More information

OpenFOAM(R) ソースコード入門 pt1 熱伝導方程式の解法から有限体積法の実装について考える 前編 : 有限体積法の基礎確認 2013/11/17 オープンCAE 富山富山県立大学中川慎二

OpenFOAM(R) ソースコード入門 pt1 熱伝導方程式の解法から有限体積法の実装について考える 前編 : 有限体積法の基礎確認 2013/11/17 オープンCAE 富山富山県立大学中川慎二 OpenFOAM(R) ソースコード入門 pt1 熱伝導方程式の解法から有限体積法の実装について考える 前編 : 有限体積法の基礎確認 2013/11/17 オープンCAE 勉強会 @ 富山富山県立大学中川慎二 * OpenFOAM のソースコードでは, 基礎式を偏微分方程式の形で記述する.OpenFOAM 内部では, 有限体積法を使ってこの微分方程式を解いている. どのようにして, 有限体積法に基づく離散化が実現されているのか,

More information

2018年度 東京大・理系数学

2018年度 東京大・理系数学 08 東京大学 ( 理系 ) 前期日程問題 解答解説のページへ関数 f ( ) = + cos (0 < < ) の増減表をつくり, + 0, 0 のと sin きの極限を調べよ 08 東京大学 ( 理系 ) 前期日程問題 解答解説のページへ n+ 数列 a, a, を, Cn a n = ( n =,, ) で定める n! an qn () n とする を既約分数 an p として表したときの分母

More information

エンマの唇

エンマの唇 第 話トラクトリックス Trcri 追跡曲線 Ercis HoundKurv 問題猟犬曲線問題パリの医師であり解剖学者 フランス王立科学アカデミー会員のクロード ペロ-はズボンのポケットから鎖のついた銀の懐中時計を取り出し テーブルの向こうまで引き出し どんな曲線に対して 各点 での接線と 軸との間が一定の長さ になるだろうか? この問題を提出した (67~676) 当時 フェルマーもこの式を求めることが出来なかった

More information

NumericalProg09

NumericalProg09 数値解析および プログラミング演習 [08 第 9 回目 ] の解法 - 4. Ruge-Kua( ルンゲ クッタ 法 Ruge-Kua-Gill( ルンゲ クッタ ジル / ギル 法 5. 多段解法 解法の対象 常微分方程式 d( d 初期値条件 (, の変化に応じて変化する の値を求める. ( 0 ( 0 と 0 は,give 0 常微分方程式の初期値問題 と言う. 3 Ruge-Kua 法の導出

More information

<4D F736F F F696E74202D AD482DC82C682DF2E B8CDD8AB B83685D>

<4D F736F F F696E74202D AD482DC82C682DF2E B8CDD8AB B83685D> 力のつり合い反力 ( 集中荷重 ) V 8 V 4 X H Y V V V 8 トラス部材に生じる力 トラスの解法 4k Y 4k 4k 4k ' 4k X ' 30 E ' 30 H' 節点を引張る力節点を押す力部材に生じる力を表す矢印の向きに注意 V 0k 反力の算定 V' 0k 力のつり合いによる解法 リッターの切断法 部材 の軸力を求める k k k 引張側に仮定 3 X cos30 Y 04

More information

断面の諸量

断面の諸量 断面の諸量 建設システム工学科高谷富也 断面 次モーメント 定義 G d G d 座標軸の平行移動 断面 次モーメント 軸に平行な X Y 軸に関する断面 次モーメント G X G Y を求める X G d d d Y 0 0 G 0 G d d d 0 0 G 0 重心 軸に関する断面 次モーメントを G G とし 軸に平行な座標軸 X Y の原点が断面の重心に一致するものとする G G, G G

More information

Math-Aquarium 例題 図形と計量 図形と計量 1 直角三角形と三角比 P 木の先端を P, 根元を Q とする A 地点の目の位置 A' から 木の先端への仰角が 30,A から 7m 離れた AQB=90 と なる B 地点の目の位置 B' から木の先端への仰角が 45 であ るとき,

Math-Aquarium 例題 図形と計量 図形と計量 1 直角三角形と三角比 P 木の先端を P, 根元を Q とする A 地点の目の位置 A' から 木の先端への仰角が 30,A から 7m 離れた AQB=90 と なる B 地点の目の位置 B' から木の先端への仰角が 45 であ るとき, 図形と計量 直角三角形と三角比 P 木の先端を P, 根元を Q とする 地点の目の位置 ' から 木の先端への仰角が 0, から 7m 離れた Q=90 と なる 地点の目の位置 ' から木の先端への仰角が であ るとき, 木の高さを求めよ ただし, 目の高さを.m とし, Q' を右の図のように定める ' 0 Q' '.m Q 7m 要点 PQ PQ PQ' =x とおき,' Q',' Q' を

More information

学習指導要領

学習指導要領 (1) 数と式 ア数と集合 ( ア ) 実数数を実数まで拡張する意義を理解し 簡単な無理数の四則計算をすること 絶対値の意味を理解し適切な処理することができる 例題 1-3 の絶対値をはずせ 展開公式 ( a + b ) ( a - b ) = a 2 - b 2 を利用して根号を含む分数の分母を有理化することができる 例題 5 5 + 2 の分母を有理化せよ 実数の整数部分と小数部分の表し方を理解している

More information

数 IB( 植松 ) 2006 年夏学期解答 ( 兼ノート ) (2007 年のは課題プリでやってしまったので ) 1 (a) 補完公式を使う問題です 補完公式とは n+1 個の点を通る n 次の多項式を求める公式のことです 例 n=3 x y y0 y1 y2 y3 このデータを補

数 IB( 植松 ) 2006 年夏学期解答 ( 兼ノート ) (2007 年のは課題プリでやってしまったので ) 1 (a) 補完公式を使う問題です 補完公式とは n+1 個の点を通る n 次の多項式を求める公式のことです 例 n=3 x y y0 y1 y2 y3 このデータを補 数 IB( 植松 ) 26 年夏学期解答 ( 兼ノート ) (27 年のは課題プリでやってしまったので ) (a) 補完公式を使う問題です 補完公式とは n+ 個の点を通る n 次の多項式を求める公式のことです 例 n=3 x 2 3 y y y y2 y3 このデータを補完して得られる多項式を y=ax 3 +Bx 2 +Cx+D と置きます データより y = D y = A + B + C +

More information

学習指導要領

学習指導要領 (1) 数と式 学習指導要領ア数と集合 ( ア ) 実数数を実数まで拡張する意義を理解し 簡単な無理数の四則計算をすること 千早高校学力スタンダード 自然数 整数 有理数 無理数の用語の意味を理解す る ( 例 ) 次の数の中から自然数 整数 有理 数 無理数に分類せよ 3 3,, 0.7, 3,,-, 4 (1) 自然数 () 整数 (3) 有理数 (4) 無理数 自然数 整数 有理数 無理数の包含関係など

More information

Microsoft Word - 非線形計画法 原稿

Microsoft Word - 非線形計画法 原稿 非線形計画法条件付き最適化問題は目的関数と制約条件で示すが この中に一つでも 次式でないものが含まれる問題を総称して非線形計画法いう 非線形計画問題は 多くの分野で研究されているが 複雑性により十分汎用的なものは確立されておらず 限定的なものに限り幾つかの提案がなされている ここでは簡単な解法について紹介する. 制約なし極値問題 単純問題の解法 変数で表される関数 の極値は を解くことによって求められる

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション 工業数学 Ⅰ 第 7 章多変数関数の微分 2. 実多変数の実数値関数 千葉大学工学部機械工学科担当者武居昌宏 教科書 工科系の数学 (4) [ 単行本 ] マイベルク ファヘンアウア著 及川正行訳 出版社 : サイエンス社 (1996/12) ISBN-10: 4781907814 第 7 章多変数関数の微分 2. 実多変数の実数値関数 2.1 基礎 多変数の実数値関数変数が2つ以上の n 変数関数定義域がn

More information

技術者のための構造力学 2014/06/11 1. はじめに 資料 2 節点座標系による傾斜支持節点節点の処理 三好崇夫加藤久人 従来, マトリックス変位法に基づく骨組解析を紹介する教科書においては, 全体座標系に対して傾斜 した斜面上の支持条件を考慮する処理方法として, 一旦, 傾斜支持を無視した

技術者のための構造力学 2014/06/11 1. はじめに 資料 2 節点座標系による傾斜支持節点節点の処理 三好崇夫加藤久人 従来, マトリックス変位法に基づく骨組解析を紹介する教科書においては, 全体座標系に対して傾斜 した斜面上の支持条件を考慮する処理方法として, 一旦, 傾斜支持を無視した . はじめに 資料 節点座標系による傾斜支持節点節点の処理 三好崇夫加藤久人 従来, マトリックス変位法に基づく骨組解析を紹介する教科書においては, 全体座標系に対して傾斜 した斜面上の支持条件を考慮する処理方法として, 一旦, 傾斜支持を無視した全体座標系に関する構造 全体の剛性マトリックスを組み立てた後に, 傾斜支持する節点に関して対応する剛性成分を座標変換に よって傾斜方向に回転処理し, その後は通常の全体座標系に対して傾斜していない支持点に対するのと

More information

学習指導要領

学習指導要領 (1) 数と式 学習指導要領 数と式 (1) 式の計算二次の乗法公式及び因数分解の公式の理解を深め 式を多面的にみたり目的に応じて式を適切に変形したりすること 東京都立町田高等学校学力スタンダード 整式の加法 減法 乗法展開の公式を利用できる 式を1 つの文字におき換えることによって, 式の計算を簡略化することができる 式の形の特徴に着目して変形し, 展開の公式が適用できるようにすることができる 因数分解因数分解の公式を利用できる

More information

平成 年 月 7 日 ( 土 第 75 回数学教育実践研究会アスティ 45 ビル F セミナールーム A 札幌医科大学 年 P ab, を正の定数とする 平面上において ( a, を中心とする円 Q 4 C と (, b を中心とする円 C が 原点 O で外接している また P を円 C 上の点と

平成 年 月 7 日 ( 土 第 75 回数学教育実践研究会アスティ 45 ビル F セミナールーム A 札幌医科大学 年 P ab, を正の定数とする 平面上において ( a, を中心とする円 Q 4 C と (, b を中心とする円 C が 原点 O で外接している また P を円 C 上の点と 平成 年 月 7 日 ( 土 第 75 回数学教育実践研究会アスティ 45 ビル F セミナールーム 微分積分の拡張 変数関数問題へのアプローチ 予選決勝優勝法からラグランジュ未定乗数法 松本睦郎 ( 札幌北高等学校 変数関数の最大値 最小値に関する問題には多様なアプローチ法がある 文字を固定した 予選決勝優勝法, 計算のみで解法する 文字消去法, 微分積分を利用した ラグランジュ未定乗数法 がある

More information

学習指導要領

学習指導要領 (1) 数と式 ア整式 ( ア ) 式の展開と因数分解二次の乗法公式及び因数分解の公式の理解を深め 式を多面的にみたり目的に応じて式を適切に変形したりすること (ax b)(cx d) acx (ad bc)x bd などの基本的な公式を活用して 二次式の展開や因数分解ができる また 式の置き換えや一文字に着目するなどして 展開 因数分解ができる ( 例 ) 次の問に答えよ (1) (3x a)(4x

More information

FEM原理講座 (サンプルテキスト)

FEM原理講座 (サンプルテキスト) サンプルテキスト FEM 原理講座 サイバネットシステム株式会社 8 年 月 9 日作成 サンプルテキストについて 各講師が 講義の内容が伝わりやすいページ を選びました テキストのページは必ずしも連続していません 一部を抜粋しています 幾何光学講座については 実物のテキストではなくガイダンスを掲載いたします 対象とする構造系 物理モデル 連続体 固体 弾性体 / 弾塑性体 / 粘弾性体 / 固体

More information

2016年度 筑波大・理系数学

2016年度 筑波大・理系数学 06 筑波大学 ( 理系 ) 前期日程問題 解答解説のページへ k を実数とする y 平面の曲線 C : y とC : y- + k+ -k が異なる共 有点 P, Q をもつとする ただし点 P, Q の 座標は正であるとする また, 原点を O とする () k のとりうる値の範囲を求めよ () k が () の範囲を動くとき, OPQ の重心 G の軌跡を求めよ () OPQ の面積を S とするとき,

More information

1 P2 P P3P4 P5P8 P9P10 P11 P12

1 P2 P P3P4 P5P8 P9P10 P11 P12 1 P2 P14 2 3 4 5 1 P3P4 P5P8 P9P10 P11 P12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 & 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 1! 3 2 3! 4 4 3 5 6 I 7 8 P7 P7I P5 9 P5! 10 4!! 11 5 03-5220-8520

More information

逐次近似法の基礎と各種補正方法

逐次近似法の基礎と各種補正方法 逐次近似法の基礎と各種補正方法 横浜創英大学橋本雄幸 画像再構成における逐次近似法の歴史は長く,X 線 CT においても解析的方法が見つかる前は, 逐次近似法を用いて画像を再構成していた. 解析的方法が見つかってからは, 計算時間の長さから逐次近似法はあまり使われなくなった. しかし, コンピュータの発展に伴い, 繰り返しても計算時間がそれほどかからなくなったこともあり, 解析的方法が確立できない

More information

20~22.prt

20~22.prt [ 三クリア W] 辺が等しいことの証明 ( 円周角と弦の関係利用 ) の の二等分線がこの三角形の外接円と交わる点をそれぞれ とするとき 60 ならば であることを証明せよ 60 + + 0 + 0 80-60 60 から ゆえに 等しい長さの弧に対する弦の長さは等しいから [ 三クリア ] 方べきの定理 接線と弦のなす角と円周角を利用 線分 を直径とする円 があり 右の図のように の延長上の点

More information

1/10 平成 29 年 3 月 24 日午後 1 時 37 分第 5 章ローレンツ変換と回転 第 5 章ローレンツ変換と回転 Ⅰ. 回転 第 3 章光速度不変の原理とローレンツ変換 では 時間の遅れをローレンツ変換 ct 移動 v相対 v相対 ct - x x - ct = c, x c 2 移動

1/10 平成 29 年 3 月 24 日午後 1 時 37 分第 5 章ローレンツ変換と回転 第 5 章ローレンツ変換と回転 Ⅰ. 回転 第 3 章光速度不変の原理とローレンツ変換 では 時間の遅れをローレンツ変換 ct 移動 v相対 v相対 ct - x x - ct = c, x c 2 移動 / 平成 9 年 3 月 4 日午後 時 37 分第 5 章ローレンツ変換と回転 第 5 章ローレンツ変換と回転 Ⅰ. 回転 第 3 章光速度不変の原理とローレンツ変換 では 時間の遅れをローレンツ変換 t t - x x - t, x 静止静止静止静止 を導いた これを 図の場合に当てはめると t - x x - t t, x t + x x + t t, x (5.) (5.) (5.3) を得る

More information

数学 Ⅲ 微分法の応用 大学入試問題 ( 教科書程度 ) 1 問 1 (1) 次の各問に答えよ (ⅰ) 極限 を求めよ 年会津大学 ( 前期 ) (ⅱ) 極限値 を求めよ 年愛媛大学 ( 前期 ) (ⅲ) 無限等比級数 が収束するような実数 の範囲と そのときの和を求めよ 年広島市立大学 ( 前期

数学 Ⅲ 微分法の応用 大学入試問題 ( 教科書程度 ) 1 問 1 (1) 次の各問に答えよ (ⅰ) 極限 を求めよ 年会津大学 ( 前期 ) (ⅱ) 極限値 を求めよ 年愛媛大学 ( 前期 ) (ⅲ) 無限等比級数 が収束するような実数 の範囲と そのときの和を求めよ 年広島市立大学 ( 前期 数学 Ⅲ 微分法の応用 大学入試問題 ( 教科書程度 )1 問 1 (1) 次の各問に答えよ (ⅰ) 極限 を求めよ 年会津大学 ( 前期 ) (ⅱ) 極限値 を求めよ 年愛媛大学 ( 前期 ) (ⅲ) 無限等比級数 が収束するような実数 の範囲と そのときの和を求めよ 年広島市立大学 ( 前期 ) (2) 次の関数を微分せよ (ⅰ) を正の定数とする (ⅱ) (ⅳ) (ⅵ) ( 解答 )(1) 年群馬大学

More information

破壊の予測

破壊の予測 本日の講義内容 前提 : 微分積分 線形代数が何をしているかはうろ覚え 材料力学は勉強したけど ちょっと 弾性および塑性学は勉強したことが無い ー > ですので 解らないときは質問してください モールの応力円を理解するとともに 応力を 3 次元的に考える FM( 有限要素法 の概略 内部では何を計算しているのか? 3 物が壊れる条件を考える 特に 変形 ( 塑性変形 が発生する条件としてのミーゼス応力とはどのような応力か?

More information

PowerPoint Presentation

PowerPoint Presentation 付録 2 2 次元アフィン変換 直交変換 たたみ込み 1.2 次元のアフィン変換 座標 (x,y ) を (x,y) に移すことを 2 次元での変換. 特に, 変換が と書けるとき, アフィン変換, アフィン変換は, その 1 次の項による変換 と 0 次の項による変換 アフィン変換 0 次の項は平行移動 1 次の項は座標 (x, y ) をベクトルと考えて とすれば このようなもの 2 次元ベクトルの線形写像

More information

<4D F736F F D E682568FCD CC82B982F192668BAD9378>

<4D F736F F D E682568FCD CC82B982F192668BAD9378> 7. 組み合わせ応力 7.7. 応力の座標変換載荷 ( 要素 の上方右側にずれている位置での載荷を想定 図 ( この場合正 ( この場合負 応力の座標変換の知識は なぜ必要か? 例 土の二つの基本的せん断変形モード : - 三軸圧縮変形 - 単純せん断変形 一面せん断変形両者でのせん断強度の関連を理解するためには 応力の座標変換を理解する必要がある 例 粘着力のない土 ( 代表例 乾燥した砂 のせん断破壊は

More information

Laplace2.rtf

Laplace2.rtf =0 ラプラスの方程式は 階の微分方程式で, 一般的に3つの座標変数をもつ. ここでは, 直角座標系, 円筒座標系, 球座標系におけるラプラスの方程式の解き方を説明しよう. 座標変数ごとに方程式を分離し, それを解いていく方法は変数分離法と呼ばれる. 変数分離解と固有関数展開法. 直角座標系における 3 次元の偏微分方程式 = x + y + z =0 (.) を解くために,x, y, z について互いに独立な関数の積で成り立っていると考え,

More information

<4D F736F F D208D5C91A297CD8A7793FC96E591E631308FCD2E646F63>

<4D F736F F D208D5C91A297CD8A7793FC96E591E631308FCD2E646F63> 第 1 章モールの定理による静定梁のたわみ 1-1 第 1 章モールの定理による静定梁のたわみ ポイント : モールの定理を用いて 静定梁のたわみを求める 断面力の釣合と梁の微分方程式は良く似ている 前章では 梁の微分方程式を直接積分する方法で 静定梁の断面力と変形状態を求めた 本章では 梁の微分方程式と断面力による力の釣合式が類似していることを利用して 微分方程式を直接解析的に解くのではなく 力の釣合より梁のたわみを求める方法を学ぶ

More information

(Microsoft PowerPoint - \221\34613\211\361)

(Microsoft PowerPoint - \221\34613\211\361) 計算力学 ~ 第 回弾性問題の有限要素解析 (Ⅱ)~ 修士 年後期 ( 選択科目 ) 担当 : 岩佐貴史 講義の概要 全 5 講義. 計算力学概論, ガイダンス. 自然現象の数理モデル化. 行列 場とその演算. 数値計算法 (Ⅰ) 5. 数値計算法 (Ⅱ) 6. 初期値 境界値問題 (Ⅰ) 7. 初期値 境界値問題 (Ⅱ) 8. マトリックス変位法による構造解析 9. トラス構造の有限要素解析. 重み付き残差法と古典的近似解法.

More information

2 Hermite-Gaussian モード 2-1 Hermite-Gaussian モード 自由空間を伝搬するレーザ光は次のような Hermite-gaussian Modes を持つ光波として扱う ことができる ここで U lm (x, y, z) U l (x, z)u m (y, z) e

2 Hermite-Gaussian モード 2-1 Hermite-Gaussian モード 自由空間を伝搬するレーザ光は次のような Hermite-gaussian Modes を持つ光波として扱う ことができる ここで U lm (x, y, z) U l (x, z)u m (y, z) e Wavefront Sensor 法による三角共振器のミスアラインメント検出 齊藤高大 新潟大学大学院自然科学研究科電気情報工学専攻博士後期課程 2 年 214 年 8 月 6 日 1 はじめに Input Mode Cleaner(IMC) は Fig.1 に示すような三角共振器である 懸架鏡の共振などにより IMC を構成する各ミラーが角度変化を起こすと 入射光軸と共振器軸との間にずれが生じる

More information

PowerPoint Presentation

PowerPoint Presentation 応用数学 Ⅱ (7) 7 連立微分方程式の立て方と解法. 高階微分方程式による解法. ベクトル微分方程式による解法 3. 演算子による解法 連立微分方程式 未知数が複数個あり, 未知数の数だけ微分方程式が与えられている場合, これらを連立微分方程式という. d d 解法 () 高階微分方程式化による解法 つの方程式から つの未知数を消去して, 未知数が つの方程式に変換 のみの方程式にするために,

More information

スライド 1

スライド 1 5.5.2 画像の間引き 5.1 線形変換 5.2 アフィン変換 5.3 同次座標 5.4 平面射影変換 5.5 再標本化 1. 画素数の減少による表現能力の低下 画像の縮小 変形を行う際 結果画像の 画素数 < 入力画像の 画素数 ( 画素の密度 ) ( 画素の密度 ) になることがある この場合 結果画像の表現力 < 入力画像の表現力 ( 情報量 ) ( 情報量 ) 結果的に 情報の損失が生じる!

More information

SICE東北支部研究集会資料(2007年)

SICE東北支部研究集会資料(2007年) 計測自動制御学会東北支部第 回研究集会 (7..8 資料番号 - 円弧状の足裏足裏を有するする二足歩行二足歩行ロボットロボットを D 表示するソフトウェアの開発 D computer graphcs mode of a bped robot wakng wth arc-shaped feet 濱田修平山野光裕水戸部和久 huhe Hamada, tsuhro Yamano, Kauhsa tobe

More information