I

Size: px
Start display at page:

Download "I"

Transcription

1 I 2008

2 I

3 i Riemann Crofton Poincaré Steiner Hotelling Blaschke Euclid Euclid Euclid Crofton Euclid Poincaré Steiner Hotelling Crofton

4 1 1 3 Riemann Riemann V V R V V V R f, g V r (f + g)(v) f(v) + g(v), (rf)(v) rf(v) (v V ) f + g rf f + g, rf V V δj i { δj i 1, i j 0, i j V {u 1,..., u n } f i (u j ) δ i j V {f i } V dim V dim V {f i } {u j } v V v(f) f(v) (f V ) v : V R v (V ) (V ) V (V ) V U, V, W f : U V W f v V U W ; u f(u, v)

5 2 1 u U V W ; v f(u, v) V V V R ; (f, v) f(v) V f : V V R f(v 1, v 2 ) f(v 2, v 1 ) (v 1, v 2 V ) v 0 f(v, v) > 0 f V R 3 (x 1, x 2, x 3 ) (y 1, y 2, y 3 ) (x 2 y 3 x 3 y 2, x 3 y 1 x 1 y 3, x 1 y 2 x 2 y 1 ). R 3 R 3 R 3 R A n R n R n x x t x f A : R n R n R ; (x, y) t xay f A (x, x) x A f A R n R n A f A

6 V 1,..., V k, W f : V 1 V k W f R n n M n (R) R n n det : n {}}{ R n R n M n (R) R V 1,..., V k v v k k j1 V j k V j j1 (v 1,..., v k ) k j1 V j k V j ; v v k (v 1,..., v k ) j1 V j (j N) j N V j V j j N V j V j j N V j j N V j ; j N v j (v j ) V j V j j N j N v j j 0 {}}{ V V V p V p p V p

7 4 1 p V R φ, ψ p V r (φ + ψ)(g 1,..., g p ) φ(g 1,..., g p ) + ψ(g 1,..., g p ), (rφ)(g 1,..., g p ) rφ(g 1,..., g p ) (g 1,..., g p V ) φ + ψ rφ φ + ψ, rφ p V p V V R + V + 2 V + V 1 V (V ) V 0 V R V i V p V i0 p V A q V B (A B)(g 1,..., g p+q ) A(g 1,..., g p ) B(g p+1,..., g p+q ) (g 1,..., g p+q V ) A B : p+q {}}{ V V R A B V p + q A B A B V u 1,..., u p (u 1 u p )(f 1,..., f p ) f 1 (u 1 ) f p (u p ) (f 1,..., f p V ) u 1 u p : p {}}{ V V R u 1 u p V p V p V q V p+q V (A, B) A B V V V ( ) ( ) A p B q A p B q (A p p V, B q q V ) p q p,q

8 V p {}}{ V V p V (u 1,..., u p ) u 1 u p A B A B u 1 u p u i V n u 1,..., u n V ( ) u i1 u ip (1 i 1,..., i p n) p V p V n p u 1,..., u n f 1,..., f n ( ) n a i 1 i p u i1 u ip 0 (a i 1 i p R) i 1,...,i p1 1 k 1,..., k p n k 1,..., k p (f k 1,..., f kp ) a k 1 k p 0 ( ) ( ) p V p V A V n g g g(u i )f i g 1,..., g p V i1 A(g 1,..., g p ) n A g 1 (u i1 )f i 1,..., A i 1 1 n i 1,...,i p1 n i 1,...,i p1 n i 1,...,i p1 n g p (u ip )f ip i p1 g 1 (u i1 ) g p (u ip )A(f i 1,..., f ip ) A(f i 1,..., f ip )(u i1 u ip )(g 1,..., g p ). A(f i 1,..., f ip )u i1 u ip ( ) p V ( ) p V ( ) p V n p

9 p V A A n i 1,...,i p1 A(f i 1,..., f ip )u i1 u ip A A(f i 1,..., f ip ) A V W φ : p {}}{ V V W Φ(v 1 v p ) φ(v 1,..., v p ) (v i V ) Φ : p V W u 1,..., u n V f 1,..., f n u i1 u ip (1 i 1,..., i p n) p V Φ(u 1 u p ) φ(u 1,..., u p ) Φ p V v i V n n Φ(v 1 v p ) Φ f i 1 (v 1 )u i1 f ip (v p )u ip i 1 1 n i 1,...,i p1 n i 1,...,i p1 i p1 f i 1 (v 1 ) f ip (v p )Φ(u i1 u ip ) f i 1 (v 1 ) f ip (v p )φ(u i1,..., u ip ) n φ f i 1 (v 1 )u i1,..., i 1 1 φ(v 1,..., v p ) n f ip (v p )u ip Φ Φ p V Φ i p1

10 V W F : V W p F : p V p W v 1,..., v p V p F (v 1 v p ) F (v 1 ) F (v p ) p V A p F (A)(f 1,..., f p ) A(f 1 F,..., f p F ) (f 1,..., f p W ) p F (A) p W p F f 1,..., f p W p F (v 1 v p )(f 1,..., f p ) (v 1 v p )(f 1 F,..., f p F ) (f 1 F )(v 1 ) (f p F )(v p ) (F (v 1 ) F (v p ))(f 1,..., f p ) p F (v 1 v p ) F (v 1 ) F (v p ) p V p F V p V A 1 i < j p i (t i,j A)(f 1,..., f p ) A(f 1,..., f j,..., f i,..., f p ) (f 1,..., f p V ) t i,j : p V p V p V {A p V t i,j A A (1 i < j p)} j V R + V + 2 V + V {1,..., p} S p p V A q V B (A B)(g 1,..., g p+q ) 1 sgn(σ)(a B)(g σ(1),..., g σ(p+q) ) p!q! σ S p+q (g 1,..., g p+q V )

11 8 1 A B p+q V A B p+q V A B A B v 1,..., v p V v 1 v p p V i j t i,j (v 1 v p ) v 1 v j v j i v p V r T T (g 1,..., g r ) σ Sr sgn(σ)t (g σ(1),..., g σ(r) ) (g 1,..., g r V ) T r V T r V A B p+q V p V q V p+q V (A, B) A B C r V (A B) C A (B C) V V u 1,..., u p u 1 u p σ S p sgn(σ)u σ(1) u σ(p) p u i u 1 u p i1 T r V 1 i < j r i j τ S r (t i,j T )(g 1,..., g r ) T (g 1,..., g j,..., g i,..., g r ) i T (g τ(1),..., g τ(r) ) j σ S r sgn(σ)t (g τσ(1),..., g τσ(r) ) sgn(τ) σ S r sgn(τσ)t (g τσ(1),..., g τσ(r) ) σ S r sgn(σ)t (g σ(1),..., g σ(r) ) T (g 1,..., g r ). t i,j T T T r V

12 A p V B q V A B p+q V A B p+q V p V q V p+q V (A, B) A B (A, B) A B ( ) T T A p V, B q V, C r V (A B) C A (B C) S p+q {τ S p+q+r τ(i) i (p + q + 1 i p + q + r)} ((A B) C)(g 1,..., g p+q+r ) 1 sgn(σ)(a B)(g σ(1),..., g σ(p+q) ) C(g σ(p+q+1),..., g σ(p+q+r) )) (p + q)!r! σ S p+q+r 1 sgn(σ) (p + q)!r! σ S p+q+r 1 sgn(τ)a(g στ(1),..., g στ(p) ) B(g στ(p+1),..., g στ(p+q) ) p!q! τ S p+q C(g σ(p+q+1),..., g σ(p+q+r) ) 1 1 sgn(στ) p!q!r! (p + q)! τ S p+q σ S p+q+r (A(g στ(1),..., g στ(p) ) B(g στ(p+1),..., g στ(p+q) )) C(g στ(p+q+1),..., g στ(p+q+r) ) 1 sgn(σ) p!q!r! σ S p+q+r (A(g σ(1),..., g σ(p) ) B(g σ(p+1),..., g σ(p+q) )) C(g σ(p+q+1),..., g σ(p+q+r) ). (A (B C))(g 1,..., g p+q+r ) 1 sgn(σ) p!q!r! σ S p+q+r A(g σ(1),..., g σ(p) ) (B(g σ(p+1),..., g σ(p+q) ) C(g σ(p+q+1),..., g σ(p+q+r) ))

13 10 1 (A B) C A (B C) σ S p sgn(σ 1 ) sgn(σ) V u 1,..., u p (u 1 u p )(g 1,..., g p ) σ S p sgn(σ)u 1 (g σ(1) ) u p (g σ(p) ) σ S p sgn(σ)u σ 1 (1)(g 1 ) u σ 1 (p)(g p ) σ S p sgn(σ 1 )u σ 1 (1)(g 1 ) u σ 1 (p)(g p ) σ S p sgn(σ)u σ(1) (g 1 ) u σ(p) (g p ) σ S p sgn(σ)(u σ(1) u σ(p) )(g 1,..., g p ). u 1 u p σ S p sgn(σ)u σ(1) u σ(p) V p {}}{ V V p V (u 1,..., u p ) u 1 u p u 1,..., u p V 1 i < j p u 1 i j u j u i u p u 1 u p p A (A i j) v j p A i ju i i1 v 1 v p (det A)u 1 u p

14 (u 1,..., u p ) u 1 u p u 1,..., u p V 1 i < j p u 1 i j u j u i u p u 1 u p i j τ S p u 1 u τ(1) u τ(p) i j u j u i u p σ S p sgn(σ)u τσ(1) u τσ(p) sgn(τ) σ S p sgn(τσ)u τσ(1) u τσ(p) σ S p sgn(σ)u σ(1) u σ(p) u 1 u p. u 1 i j u j u i u p u 1 u p u 1,..., u p u 1 u p 0 i j u i u j u 1 u p u i u j 1 u i u j u 1 u p 1 0 σ u σ(1) u σ(p) sgn(σ)u 1 u p S p σ S p p A (A i j)

15 12 1 v j p A i ju i i1 v 1 v p ( p ) A i 1 1 u i1 i 1 1 p A ip p u ip i p1 σ S p A σ(1) 1 u σ(1) A σ(p) p u σ(p) ( 0 ) sgn(σ)a σ(1) 1 A σ(p) u 1 u p σ S p (det A)u 1 u p. p u 1,..., u n V ( ) u i1 u ip (1 i 1 < < i p n) ( ) n p V dim( p V ) p u 1,..., u n f 1,..., f n ( ) a i1 ip u i1 u ip 0 (a i1 ip R) i 1 < <i p 1 k 1 < < k p n k 1,..., k p (f k 1,..., f kp ) a k1 k p 0 u i1 u ip ( ) p V p V A g 1,..., g p V A(g 1,..., g p ) n A g 1 (u j1 )f j 1,..., j 1 1 n j 1,...,j p1 n j 1,...,j p1 j 1 < <j p j 1 < <j p n g p (u jp )f jp j p1 g 1 (u j1 ) g p (u jp )A(f j 1,..., f jp ) A(f j 1,..., f jp )(u j1 u jp )(g 1,..., g p ) A(f jσ(1),..., f jσ(p) )(u jσ(1) u jσ(p) )(g 1,..., g p ) σ S p sgn(σ)a(f j1,..., f jp )(u jσ(1) u jσ(p) )(g 1,..., g p ) σ S p j 1 < <j p A(f j1,..., f jp )(u j1 u jp )(g 1,..., g p ).

16 A u i1 u ip j 1 < <j p A(f j1,..., f jp )u j1 u jp p V ( ) p V ( ) p V ( ) n p V W F : V W p F : p V p W p F ( p V ) p W p F : p V p W t V i,j : p V p V, t W i,j : p W p W p F p F t V i,j t W i,j p F p F p F ( p V ) p W p F : p V p W V V A V V α A(x, y) (α(x))(y) (x, y V ) V 2 V V V Hom(V, V ) α Hom(V, V ) 2 V A 0 x V (α(x))(x) > 0 A V α Hom(V, V ) A(x, y) (α(x))(y) (x, y V ) A 2 V A 2 V α Hom(V, V ) 2 V Hom(V, V ) A 0 x V (α(x))(x) > 0 A(x, x) > 0 A V V,, Hom(V, V ) α p V ( p V ) α : V V p α : p V p V ( p V ) 2 ( p V ) p V

17 14 1 p V ( p V ) p V φ ( p V ) Φ φ(v 1,..., v p ) Φ(v 1 v p ) (v 1,..., v p V ) p α 2 ( p V ) A V u 1,..., u p v 1,..., v p A(u 1 u p, v 1 v p ) ( p α(u 1 u p ))(v 1 v p ) (α(u 1 ) α(u p ))(v 1 v p ) (α(u 1 ) α(u p ))(v 1,..., v p ) σ S p sgn(σ)(α(u σ(1) ) α(u σ(p) ))(v 1,..., v p ) σ S p sgn(σ)(α(u σ(1) ))(v 1 ) (α(u σ(p) ))(v p ) σ S p sgn(σ) u σ(1), v 1 u σ(p), v p det( u i, v j ) 1 i,j p. u 1,..., u n V u i1 u ip (1 i 1 < < i p n) p V 1 i 1 < < i p n 1 j 1 < < j p n A(u i1 u ip, u j1 u jp ) δ i1 j 1 δ ipj p A p V 1.3.3, V p V A A, u u, u V u 1,..., u p v 1,..., v p u 1 u p, v 1 v p det[ u i, v j ] 1 i,j p V e 1,..., e n p V e i1 e ip (1 i 1 < < i p n)

18 V u 1, u 2 u 1 u 2 2 u 1, u 1 u 1, u 2 u 1 u 2, u 1 u 2 u 2, u 1 u 2, u 2 u 1 2 u 2 2 u 1, u 2 2 u 1 u 2 θ u 1 u 2 u 1 2 u 2 2 sin 2 θ u 1 2 u 2 2 (1 cos 2 θ) u 1 2 u 2 2 u 1, u 2 2 u 1 u 2 2 u 1 u 2 u 1 u 2 2 V V R n u u m n R n u 1,..., u m, v 1,..., v m u i [u ij ], v i [v ij ] u 11 u 1n.. v 11 v m1.. u 1. [v 1 v m] [u i v j ] [ u i, v j ]. u m1 u mn v 1n v mn u m m u 11 u 1n v 11 v m1 det.... det[ u i, v j ] u m1 u mn v 1n v mn u 1 u m, v 1 v m. R n e 1,..., e n u i [u i1... u in ] n u ij e j. j1 ( 1.2.4) ( n ) ( n ) u 1 u m u 1j1 e j1 u mjm e jm j 1 1 #{j 1,...,j m}m j 1 < <j m j m1 u 1j1 u mjm e j1 e jm u 1j1 u 1jm.. u mj1 u mjm e j1 e jm

19 16 1 v 1 v m j 1 < <j m v 1j1 v 1jm.. v mj1 v mjm e j1 e jm u 1 u m, v 1 v m j 1 < <j m u 1j1 u 1jm.. u mj1 u mjm v 1j1 v 1jm.. v mj1 v mjm det u 11 u 1n.. v 11 v m1.. j 1 < <j m j 1 < <j m u m1 u mn u 1j1 u 1jm.. u mj1 u mjm u 1j1 u 1jm.. u mj1 u mjm v 1n v mn v 1j1 v 1jm.. v mj1 v mjm v 1j1 v mj1.. v 1jm v mjm m n V, V u 1,..., u p p u 1 u p u i u 1,..., u p i1 u i v i w i v 1 0, w 1 u 1 v i 1, w i 1 v i w i u i v i + w i, v i span{u 1,..., u i 1 }, w i span{u 1,..., u i 1 } v i w i w i 2 u i 2 u 1 u i w 1 w i (1 i p)

20 u 1 u p w 1 w p u 1 u p 2 w 1 w p 2 w 1 w p, w 1 w p det( w i, w j ) w 1, w det w p, w p p p p w i, w i u i, u i u i 2. i1 u 1 u p i1 p u i i w i, w i u i, u i v i 0 u 1,..., u p V W m n (m n) F : V W JF sup{ F (u 1 ) F (u n ) u 1,..., u n V } F JF 0 F (ker F ) v 1,..., v n i1 i1 JF n F (v 1 v n ) v 1 v n F (v 1) F (v n ) v 1 v n F dim(imf ) < n V u 1,..., u n F (u 1 ),..., F (u n ) F (u 1 ) F (u n ) 0 JF 0

21 18 1 F (ker F ) v 1,..., v n (ker F ) u 1,..., u n (a ij ) n v j a ij u i i1 v 1 v n det(a ij )u 1 u n, n F (v 1 v n ) det(a ij ) n F (u 1 u n ). n F (v 1 v n ) v 1 v n det(a ij) n F (u 1 u n ) det(a ij ) u 1 u n n F (u 1 u n ) u 1 u n n F (u 1 u n ) u 1 u n 1 JF n F (u 1 u n ) n F (v 1 v n ). v 1 v n V w 1..., w n w i w 1 i + w 2 i, w 1 i (ker F ), w 2 i ker F w 1 i w i 1 n F (w 1 w n ) F (w 1 ) F (w n ) F (w 1 1) F (w 1 n) n F (w 1 1 w 1 n). w 1 1,..., w 1 n n F (w 1 1 w 1 n) 0 (ker F ) n F (w 1 1 w 1 n) w 1 1 w 1 n n F (u 1 u n ) n F (w 1 w n ) n F (w1 1 wn) 1 w1 1 wn 1 n F (u 1 u n ) w1 1 wn 1 n F (u 1 u n ) n F (u 1 u n ).

22 JF n F (u 1 u n ) n F (v 1 v n ). v 1 v n JF n F (v 1 v n ) v 1 v n JF n F (v 1 v n ) v 1 v n JF V V 0, V 1 v 0, v 1 V 0 V 1 F JF v 0, v 1 x V 0 x (x x, v 1 v 1 ) + x, v 1 v 1, (x x, v 1 v 1 V 1, x, v 1 v 1 V 1 ) F (x) x x, v 1 v 1 (x V 0 ) V 0 V 1 dim(v 0 V 1 ) dim V 0 1 dim V 1 1 V 0 V 1 F (x) x v 1 ±v 0 JF 1 v 0, v 1. dim(v 0 V 1 ) dim V 0 1 dim V 1 1 V 0 V 1 u 1,..., u p 1 u 1,..., u p V 0 { u i (1 i p 1), F (u i ) u p u p, v 1 v 1 (i p) [ F (u i ), F (u j ) ] u p, v 1 2.

23 20 1 JF 2 F (u 1 ) F (u p ) 2 det[ F (u i ), F (u j ) ] 1 u p, v 1 2. (V 0 V 1 ) 2u p, v 0 (V 0 V 1 ) v 1 (V 0 V 1 ) u p, v 0 v 1 u p, v 1 u p + v 0, v 1 v 0. 1 u p, v v 0, v 1 2 JF 2 v 0, v m n F 0 : V 0 V V 0 V J(F F 0 ) JF JF 0 F F F J(F F 0 ) 0 JF JF 0 F V 0 v 1,..., v n J(F F 0 ) F F 0(v 1 ) F F 0 (v n ) v 1 v n F F 0(v 1 ) F F 0 (v n ) F 0(v 1 ) F 0 (v n ) F 0 (v 1 ) F 0 (v n ) v 1 v n JF JF V, n V e 1,..., e n e 1 e n n V e 1,..., e n e 1 e n V n V Re 1 e n 0 k n ξ k V η n k V ξ η n V ξ η B(ξ, η) R ξ η B(ξ, η)e 1 e n dim k V B : k V n k V R ( ) ( ) n n dim n k V k n k {1,..., n} k I {i 1,..., i k } (i 1 < i 2 < < i k )

24 e I e i1 e ik k V {1,..., n} I I c e I c n k V e I e I c ±e 1 e n B(e I, e I c) ±1 (I {1,..., n}, #I k) B : k V n k V R ξ, ξ B(ξ, ξ ) (ξ, ξ k V ) : k V n k V ξ, ξ k V ξ, ξ e 1 e n B(ξ, ξ )e 1 e n ξ ξ V, n e 1,..., e n V 1 i 1 < < i k n {i 1,..., i k } c {j 1,..., j n k } 1 j 1 < < j n k n ( ) n (e i1 e ik ) sgn e j1 e jn k i 1... i k j 1... j n k : k V n k V ξ, η k V (1) ξ η ξ, η e 1 e n, (2) ( ξ) ( 1) k(n k) ξ (1) ( ) n e i1 e ik e j1 e jn k sgn e 1 e n i 1... i k j 1... j n k 1 l 1 < < l n k n e i1 e ik e l1 e ln k (1) ( ) n (e i1 e ik ) sgn e j1 e jn k i 1... i k j 1... j n k ( (e i1 e ik )) ( ) n sgn (e j1 e jn k ) i 1... i k j 1... j ( n k ) ( ) n n sgn sgn e i1 e ik. i 1... i k j 1... j n k j 1... j n k i 1... i k

25 22 1 ( ) ( ) n n sgn sgn i 1... i k j 1... j n k j 1... j n k i 1... i ( ) ( k ) i1... i k j 1... j n k n sgn sgn n j 1... j n k i 1... i ( ) k i1... i k j 1... j n k sgn ( 1) k(n k) j 1... j n k i 1... i k ( (e i1 e ik )) ( 1) k(n k) e i1 e ik ξ k V ( ξ) ( 1) k(n k) ξ V, 2 e 1, e 2 V ( ) ( ) e 1 sgn e 2 e 2, e 2 sgn e 1 e : V V π/ V, 3 e 1, e 2, e 3 V ( ) (e 1 e 2 ) sgn e 3 e 3, ( ) (e 2 e 3 ) sgn e 1 e 1, ( ) (e 3 e 1 ) sgn e 2 e V V V ; (u, v) (u v) 3

26 X U {U α } α A X X x x V {α A V U α } U X U {U α } α A X U α X α A U X U {U α } α A V {V i } i I X i I α A V i U α V U X U {U α } α A X X K {α A K U α } {U α } α A X x K x V x {α A V x U α }

27 24 2 {V x } x K K K x 1,..., x k K {V xi 1 i k} K { } k k {α A V xi U α } α A V xi U α i1 i1 K k V xi i1 {α A K U α } Hausdorff X X Hausdorff X Hausdorff U {U α } α A X X A {α 1,..., α N } A U {U αi 1 i N} X U U U U U X X (1) X X (2) B {B α } α A X X O x x B α O B α B X X X (3) X X σ (4) X X Lindelöf

28 R n R n Lindelöf X {U α } α A X α A V α U α X {V α } α A X p O p Ōp {U α } α A X α A p U α O p Ōp U α {O p } p X X p X α A Ōp U α Ōp X {O p } p X {W i } i I α A I α I α {i I Wi U α } V α i I α W i V α X {V α } α A X {W i } i I X p 0 X i 0 I p 0 W i0 {W i } i I {O p } p X W i0 q X W i0 O q {O p } p M α 0 A Ōq U α0 p 0 W i0 W i V α0 i I α0 {V α } α A X α A V α U α p V α {W i } i I p O ( ) {i I O W i } ( ) {i 1,..., i k } p V α N O p N N i I α W i. {i 1,..., i k } i I α N W i O W i

29 26 2 k N j1 W ij k k p W ij j1 j1 W ij U α V α U α X K K V V x K x C x C x U x U x x U x C x U x {U x x K} K K x 1,..., x N K {U xi 1 i N} K N V V K i1 U xi N N V U xi i1 V Hausdorff σ X Hausdorff σ X X {K i } i N X {K i } i N N X X N N X V 1 V 2 V K 1 V 1 V 1 K 2 V 1 K 2 V 1 V 2 V 2 K j+1 V j V j+1 V j+1 V j j i j K i V j {V j } j N X j N V j V j+1 i1 C xi

30 {V j } j N X {O j } j N {F j } j N O 1 V 2, O 2 V 3 j 3 O j V j+1 V j 2 F 1 V 1 j 2 F j V j V j 1 O j F j F 1 V 1 V 2 O 1, F 2 V 2 V 1 V 2 V 3 O 2, F j V j V j 1 V j+1 V j 2 O j (j 3) j N F j O j j F i V j F i V i X {O j } j N X i N i N O i i j 3 O i O j X X U {U α } α A i N x F i x U α F i O i x U x,i U x,i U α O i {U x,i x F i } F i F i x 1,i,..., x ai,i F i {U xk,i,i 1 k a i } F i i N U xk,i,i B {U xk,i,i i N, 1 k a i } B X U xk,i,i α U xk,i,i U α B U i N U xk,i,i O i i j 3 O i O j U xk,i,i U xl,j,j i1 {B B B U xk,i,i } {U xl,j,j i j 2} U xk,i,i B B X X X Y X X O X Y O Y {O Y O O X } X O X B X B Y {B Y B B X }

31 28 2 O Y O Y O O X O Y x O Y x O x B O B B X x B Y O Y B Y O Y O X O Y Y R n Q Q n {(q 1,..., q n ) q i Q} R n Q n Q n Q n x (x 1,..., x n ) R n r > 0 B(x; r) {y R n y x < r} B(x; r) B(x; r) R n B {B(q; 1/m) q Q n, m N} R n B B B R n O R n x O O r > 0 B(x; r) O 1/m < r/2 m N Q n R n q Q n q B(x; 1/m) x B(q; 1/m) B(x; 2/m) B(x; r) O B R n R n R n R n Lindelöf X X B {B i } i N N X {U α } α A x U α

32 x X, α A x B i U α B i i N i(x, α) N {i(x, α) x X, α A, x U α } N i(x, α) {B i } i N X i N B i U α α A α A α(i) B i U α(i) {U α(i) } i N X X Lindelöf Lindelöf σ X Lindelöf x X x C x C x U x U x x U x C x U x {U x } x X X X Lindelöf N X {U x } x N X X {U x } x N X σ X (1) X (2) X Lindelöf (3) X σ (4) X X R n (1) (2) (2) (3) Lindelöf σ (3) (1) X σ {K i } i N X {K i } i N K i R n K i {U j } U j R n {U j } X U j U j X X (1) (2) (3) (1) (3) (4)

33 30 2 (1), (3) (4) σ {B i } i I X {O j } j J X O j X x O j x B i(j) O j i(j) I j, k J j k O j O k B i(j) B i(k) i(j) i(k) i : J I J I X (4) (3) X X x X x C x C x U x {U x } x X X X {U x } x X {V α } α A α A x X V α U x V α C x V α {V α } α A X X α A V α V α A X σ A α 0 A A 1 {α A {α s } t s0 A V αs V αs+1, α t α} A 2 A A 1 X 1 α A 1 V α, X 2 α A 2 V α X 1 X 2 X A A 1 A 2 X X 1 X 2 X 1 X 2 X 1 X 2 X 1 X 2 β 1 A 1, β 2 A 2 V β1 V β2 β 1 A 1 V β1 V β2 β 2 A 1 β 2 X 1 X 2 V α0 X 1 X 1 X X 2 X X 1 A A 1 A {α A {α s } t s0 A V αs V αs+1, α t α} α A n(α) min{t 0 {α s } t s0 A V αs V αs+1, α t α}

34 A t 0 {α A n(α) t} t0 {α A n(α) t} t {α A n(α) 0} {α 0 } {α A n(α) t} {α A n(α) t + 1} α A A α {β A V β V α } V α {β A V β V α } A α {α A n(α) t} {α A n(α) t} {β 1,..., β k } {α A n(α) t + 1} A βj {α A n(α) t + 1} t 0 {α A n(α) t} A {α A n(α) t} t0 k j1 A βj 2.2 C C

35 X f suppf {x X f(x) 0} M {U α } α A M C {f α } α A (1) (3) {f α } α A {U α } α A (1) α A 0 f α 1, (2) α A suppf α U α, (3) p M α A f α (p) (3) {U α } α A p M V {α A V U α } {α 1,..., α k } α A suppf α U α V 0 f α p p V f α (x) α A k f αi (x) (x V ) i M {U α } α A M α A Ūα {U α } α A {f α } α A {U α } α A M {O i } i I i I Ōi M {O i } i I {U α } α A α A i I U α O i Ūα Ōi Ōi Ūα 2.2.4

36 (1) R(t) t lim t +0 R(t)e 1/t 0 (2) a(t) a(t) { 0 (t 0) e 1/t (t > 0) a(t) C (3) 0 < u < v t v v t b(t) 0, v < t < u u < t < v 0 < b(t) < 1, u t u b(t) 1 C b(t) (1) t > 0 s 1/t R(t)e 1/t R(t) e 1/t R(1/s) e s R(1/s) s P (s)/q(s) R(1/s) (P (s), Q(s) s ) P (s), Q(s) m, n e s k0 k 0 < s e s > s k /k! N > max{m, n} 0 R(1/s) e s P (s) P (s) Q(s)e s (N n)! Q(s) s (N P (s)/s m N n n)!sm s N Q(s)/s n. P (s)/s m Q(s)/s n s k k! s m P (s)/s m lim s + s N Q(s)/s n 0 lim R(1/s) e s 0 s + lim t +0 R(t)e 1/t 0

37 34 2 (2) 0 n t R n (t) ( n) d n a dt n (t) { 0 (t 0) R n (t)e 1/t (t > 0) n a C R 0 (t) 1 ( 0) a ( n) ( n + 1) d n a t 0 0 ( n) dtn lim t 0 lim t +0 1 d n a t dt (t) 0 n 1 d n a (t) lim t dtn t +0 1 t R n(t)e 1/t 0. ((1) ) dn a 0 0 ( n) dtn d n+1 a dt (t) d d n a (t) 0 (t < 0), n+1 dt dtn d n+1 a dt (t) d d n a n+1 dt dt (t) n ( d dt R n(t) + R n (t) 1 t 2 R n+1 (t) d dt R n(t) + R n (t) 1 t 2 ) e 1/t (t > 0) R n+1 (t) t ( n+1) (3) (2) a(t) a(t)a(1 t) 0 (t 0), > 0 (0 < t < 1), 0 (1 t) t / 1 a 1 (t) a(s)a(1 s)ds a(s)a(1 s)ds 0 0 ( ) t + v a 1 ( v u) v t v 0 v u u 1 a 1 v u

38 u 1 u v v 0 ( ) ( ) t + v v t b(t) a 1 a 1 v u v u b(t) M K K U M C f M 0 f 1 K f > 0 U f 0 p K V p V p V p U V p (x 1,..., x n ) x i (p) 0 (1 i n) [ v, v] x i (V p ) (1 i n) v > 0 W p {x V p x i (x) < v (1 i n)} p W p W p V p U 0 < u < v u u, v (3) C b(t) { b(x 1 (q))b(x 2 (q)) b(x n (q)) (q V p ), f p (q) 0 (q / V p ) f p M C {q M f p (q) 0} W p 0 b(x i (q)) 1 0 f p 1 {W p } p K K K K p 1,..., p k K W p1 W p2 W pk f 1 k (f p 1 + f p2 + + f pk ) f 0 f 1 M C {q M f(q) 0} W p1 W p2 W pk U. K f > 0 U f 0

39 α A W α U α M {W α } α A V α W α M {V α } α A Ūα V α M C g α M 0 g α 1 V α g α > 0 W α g α 0 suppg α W α U α. {U α } α A p M p U {α A U U α } α A g α U 0 g(p) α A g α (p) (p M) g g M C α A g α 0 V α g α > 0 {V α } α A M M g > 0 f α g α /g {f α } α A {U α } α A

40 Riemann Riesz ( 3.1.7) Riemann Riemann X 2 X [0, ] µ µ X (1) µ( ) 0 (2) X {A i } A i1 A i A 2 X µ(a) µ(a i ). i µ X X A µ(t ) µ(t A) + µ(t A) T 2 X A X µ f µ X S [, ] µ(x S) 0 [, ] O f 1 (O) X µ f µ R n Lebesgue Lebesgue Fubini X σ Borel µ X X Borel µ A X Borel B A B µ(a) µ(b) µ Borel

41 X Hausdorff X Borel µ K X µ(k) < µ Radon (Riesz ) X Hausdorff X K(X) K(X) L : K(X) R (1) f 0 f K(X) L(f) 0 (2) K X sup{l(f) f K(X), f 1, suppf K} < Radon µ X L(f) fdµ (f K(X)) X C Riesz Riemann Riemann M x M M x T x M g x M (U; x 1,..., x n ) ( ) U x g x, x i x j 1 i, j n C g (g x ) x M M Riemann Riemann (M, g) Riemann Euclid R n x M T x R n R n T x M Riemann R n Riemann Riemann

42 3.1. Riemann Riemann M M p V p V p V p {V p } p M M M {V p } p M M {U α } α A V p U α V p Ūα {U α } α A {f α } α A U α x 1,..., x n (g α ) x ( x i, ) δ i,j (x U α ) x j x U α T x M (g α ) x { f α (x)(g α ) x (x U α ), (h α ) x 0 (x / U α ) h α ((h α ) x ) x M α A h α A h α x M x α A x (U; x 1,..., x n ) ( ) U x h x, x i x j 1 i, j n C h M Riemann ( ) U R n R n U x 1,..., x n y 1,..., y n U f ( ) f(x)dx 1 dx n f(y) det xi dy 1 dy n. y j U U (M, g) Riemann M (U; x 1,..., x n ) x U n T x (M) Riemann suppf U f K(M) L(f) f(x 1,..., x n ) x 1 x n dx 1 dx n U

43 40 3 L(f) Euclid Lebesgue Riemann L(f) K(M) L : K(M) R L Radon µ M L(f) fdµ (f K(M)) M µ M Riemann Riemann Riemann µ µ (M,g) Riemann µ M vol(m) µ M (M) vol(m) M M 1 L(M) M 2 A(M) M 3 V (M) suppf U f K(M) L(f) U y 1,..., y n y l n k1 det y 1 y n x k y l ( xi y j x k ) x 1 x n f(x) x U 1 x n dx 1 dx n f(y) ( ) x U 1 x n det xi dy 1 dy n y j ( ) f(y) det xi y U j x 1 x n dy 1 dy n f(y) y 1 y n dy 1 dy n U L(f)

44 3.1. Riemann 41 K(M) L x M Ūx x U x {U x } x M M M {U x } x M {V α } α A Ūx V α {V α } α A {f α } α A f K(M) f V α f α f V α 0 α f α f 0 ( ) f 1 f f α f f α f α A α f α f V α U x L(f α f) L(f) α A L(f α f) L(f) L {W β } β B M W β M {g β } β B {W β } β B α A f α f β B g β f α f L Euclid L(f α f) β B L(g β f α f) α A L(f α f) α A L(g β f α f). β B L(f α g β f). β B L(g β f) β B α A α A L(f α f) β B L(g β f) L L Riesz Euclid

45 n n Riemann M Riemann (U; x 1,..., x n ) M U µ M φ µ M φ 0 φdµ M φ(x 1,..., x n ) x 1 x n dx 1 dx n U U 3.2 Fenchel f : M N M N C x M df x : T x (M) T f(x) (N) x f M y N f(x) y f x y f N (Sard ) U R n f : U R p C f C R p Lebesgue µ µ(f(c)) 0 Sard f : M N Riemann M Riemann N C f C µ N (f(c)) 0 M N M N {U i } {V i } i (1) U i M (2) V i N (3) f(u i ) V i

46 C i C U i V i N (V i ; x 1,..., x p ) V i R p R p Lebesgue µ µ(f(c i )) 0 x 1 x p V i V i ( V i ) A sup V i µ N (f(c i )) 0 x 1 x p 0 µ N (f(c i )) Aµ(f(C i )) 0 0 µ N (f(c)) i µ N (f(c i )) 0, µ N (f(c)) m n f : M N m Riemann M n Riemann N C x M J Jf(x) Jdf x ( ) m n f : M N m Riemann M n Riemann N C φ M µ M N y φ(x)dµ f 1 (y)(x) N f 1 (y) µ N φjf M µ M φ 0 ( ) φ(x)dµ f 1 (y)(x) dµ N (y) φ(x)jf(x)dµ M (x) f 1 (y) M N x M Vx n (M) T x (M) n Stiefel V n (M) Vx n (M) x M V n (M) V n (M) M Stiefel V n (M) V n (M) R ; (u 1,..., u n ) df(u 1 ) df(u n )

47 44 3 Jf(x) sup{ df(u 1 ) df(u n ) (u 1,..., u n ) V n x (M)} M R O {x M Jf(x) 0} M O µ M φ(x)jf(x)dµ M (x) φ(x)jf(x)dµ M (x) M x O x U x f(u x ) f(x) f : U x f(u x ) Euclid f Euclid N R n F R m n M N F f : M N F N; (y, t) y y 1,..., y n N R n x 1,..., x m M N F R m y i f x i (1 i n) x n+1,..., x m F φ M φ(y, t) x n+1 x m M y 1 y n f N M Fubini y φ(y, t) x F n+1 x m M y 1 y n fdx n+1 dx m (t) N ( φ(y, t) ) x F n+1 x m dx n+1 dx m (t) M y 1 y n ( ) φ(x)dµ f 1 (y)(x) f 1 (y) y 1 y n N φ(y, t) x M n+1 x m M y 1 y n fdx 1 dx m N ( ) φ(x)dµ f 1 (y)(x) N f 1 (y) y 1 y n dy 1 dy n (y) N ( ) φ(x)dµ f 1 (y)(x) dµ N (y) f 1 (y) N O N N

48 i n M N F F x i ( ) ( ) + x i x i x i ( ) (( ) df df x i x i F F F. ). y 1 y n ( ) N ( ) N df df x 1 x n (( ) ) (( ) df df x 1 x n F,..., F x n+1 x m x 1 x m ( ) M ( ) x 1 F x n ( ) ( ) x 1 F x n F F M F ) N x n+1 x m M x n+1 x m. M φ(y, t) x M n+1 x m M y 1 y n fdx 1 dx m N (( ) ) (( ) df x 1 df F φ(x) x n )F ( ( N dµ M (x) M x 1 )F x n )F M φjfdµ M M ( ) φ(x)dµ f 1 (y)(x) dµ N (y) f 1 (y) N M. φjfdµ M

49 46 3 f Euclid x O x U x f(u x ) f(x) f : U x f(u x ) Euclid O {U x } x O O M O O {U x } x O {U k } {U k } O {U k } {ψ k } f U k f k : U k V k f(u k ) ψ k φ y (ψ k φ)(x)dµ f 1 (y)(x) (y) k V k f 1 k f 1 k V k µ N ( ) (ψ k φ)(x)dµ f 1 (y)(x) dµ Vk (y) ψ k φjfdµ Uk. (y) k U k y k f 1 k (ψ k φ)(x)dµ f 1 (y)(x) (y) k N µ N y {ψ k f 1 (y)} f 1 (y) (ψ k φ)(x)dµ f 1 (y)(x) φ(x)dµ f f 1 k (y) k f 1 (y)(x) 1 (y) k y f 1 (y) φ(x)dµ f 1 (y)(x) N µ N φjf M µ M Lebesgue φ 0 Lebesgue M φjfdµ M k k N N ψ k φjfdµ Uk U k ( ) (ψ k φ)(x)dµ f 1 (y)(x) dµ Vk (y) V f 1 k k (y) k ( ) (ψ k φ)(x)dµ f 1 (y)(x) dµ N (y) k f 1 k (y) k ( ) φ(x)dµ f 1 (y)(x) dµ N (y) f 1 (y)

50 M φjfdµ M N ( ) φ(x)dµ f 1 (y)(x) dµ N (y) f 1 (y) m n N y N µ N φ(x) dµ N (y) φ(x)jf(x)dµ M (x) N x f 1 (y) M x f 1 (y) φ(x) M φjfdµ M M (U; x 1,..., x n ) U φjfdµ M ( ) ( ) φ df df dx 1 dx n. x 1 x n M N e 1,..., e n x U f(x) F (x) [ ( ) ( )] df df [e 1 e n ]F (x) x 1 x n ( ) ( ) df df det F (x) x 1 x n φjfdµ M φ(x) det F (x) dx 1 dx n. U (Archimedes) r > 0 S k (r) {x R k+1 x r} f : S 1 (r) ( r, r) S 2 (r) ; (r cos θ, r sin θ, t) ( r 2 t 2 cos θ, r 2 t 2 sin θ, t)

51 n ( ) R 3 e 1, e 2, e 3 f S 1 (r) /θ ( r, r) /t S 1 (r) ( r, r) θ t (r cos θ, r sin θ, t) ( r sin θ, r cos θ, 0), θ (r cos θ, r sin θ, t) (0, 0, 1). t θ t θ t r df ( ) df f θ θ ( r 2 t 2 sin θ, r 2 t 2 cos θ, 0), ( ) df f t t ( (r2 t 2 ) 1/2 t cos θ, (r 2 t 2 ) 1/2 t sin θ, 1) ( ) ( ) 2 ( ) df df 2 ( ) θ t df 2 θ df t ( ) t (r 2 t 2 2 ) r 2 t + 1 r 2 2 Jf ( df ) ( θ df ) t θ t r r 1 f f A(S 2 (r)) 1dµ 1dµ 2πr 2r 4πr 2 S 2 (r) S 1 (r) ( r,r) 2 S 2 (r)

52 r > 0 D k (r) {x R k x < r} f : S 1 (r) D n 1 (r) S n (r) ; (r cos θ, r sin θ, x) ( r 2 x 2 cos θ, r 2 x 2 sin θ, x) n S 1 (r) D n 1 (r) S n (r) R n+1 R n+1 SO(2) SO(n 1) SO(2) SO(n 1) R n+1 S 1 (r) D n 1 (r) S n (r) SO(2) SO(n 1) Jf S 1 (r) D n 1 (r) SO(2) SO(n 1) (r, 0, s, 0,..., 0) (0 s < r) Jf R n+1 e 1,..., e n+1 f S 1 (r) /θ θ0 D n 1 (r) e 3,..., e n+1 S 1 (r) D n 1 (r) θ θ0 θ (r cos θ, r sin θ, s, 0,..., 0) (0, r, 0,..., 0) θ0 e 3,..., e n θ e 3 e n+1 r e 3 e n+1 r θ0 df ( ) df θ f θ0 θ (0, r 2 s 2, 0,..., 0) r 2 s 2 e 2, θ0 df(e 3 ) f t ( r 2 (s + t) 2, 0, s + t, 0,..., 0) t0 ( (r 2 s 2 ) 1/2 s, 0, 1, 0,..., 0) (r 2 s 2 ) 1/2 se 1 + e 3 4 i n + 1 df(e i ) df dt ( i r 2 (s 2 + t 2 ), 0, s, 0,..., t,..., 0) e i. t0

53 ( ) df θ df(e 3 ) df(e n+1 ) θ0 ( ) df 2 θ df(e 3 ) 2 df(e n+1 ) 2 θ0 ( ) s (r 2 s 2 2 ) r 2 s + 1 r 2 2 ( df ) θ Jf θ0 df(e3 ) df(e n+1 ) θ0 e 3 e n+1 r r 1 f ω n vol(s n 1 (1)), κ n vol(d n (1)) θ 2 vol(s n 1 (r)) ω n r n 1, vol(d n (r)) κ n r n n 2 f : D n (1) [0, 1] ; x x ( 3.2.5) Jf 1 κ n vol(d n (1)) vol(d n (1)) vol(s n 1 (r))dr 0 vol(s n 1 (r))dr 1 0 ω n r n 1 dr [ ωn n rn ] 1 0 ω n+1 vol(s n (1)) vol(s 1 (1))vol(D n 1 (1)) 2πκ n 1. ω 1 vol(s 0 (1)) 2, κ 1 vol(d 1 (1)) 2, ω 2 vol(s 1 (1)) 2π, κ 2 vol(d 2 (1)) π ω n κ n S n 1 + {u S n 1 (1) 0 u 1 } u 1 dµ(u) vol(d n 1 (1)) κ n 1. S n 1 + ω n n.

54 f : S+ n 1 D n 1 (1) R n {0} R n 1 R n 1 P S+ n 1 f f P f P S+ n 1 e {0} R n 1 e Jf e, e 1 u 1 f : S+ n 1 D n 1 (1) S+ n 1 1 ( 3.2.6) S n 1 + u 1 dµ(u) S n 1 + Jfdµ(u) vol(d n 1 (1)) R 2 C R 2 c : I R 2 t 0 I t s(t) dc dt dt t 0 I s(t) s(t) c c(t 0 ) c(t) t ds dt dc dt > 0 s(t) t t(s) t(s) C c(s) c(t(s)) s s d c ds dc dt dt ds dc / ds dt dt dc / dc dt dt 1 s c(s) c(s) (x(s), y(s)) e(s) c (s) (x (s), y (s)) e(s) π/2 c (s) 1 n(s) ( y (s), x (s)) c (s), c (s) 1

55 52 3 s 2 c (s), c (s) 0 c (s) c (s) e(s) c (s) n(s) κ(s) c (s) κ(s)n(s) κ(s) c(s) (x (s), y (s)) c (s) κ(s)n(s) κ(s)( y (s), x (s)) n (s) ( y (s), x (s)) ( κ(s)x (s), κ(s)y (s)) κ(s)e(s). e (s) κ(s)n(s), n (s) κ(s)e(s) (Fenchel) c c s κ(s) 2π κ(s) ds c R P 1 (R) P 1 (R) {(x, y) R 2 x cos θ + y sin θ 0} θ θ P 1 (R) dθ dθ P 1 (R) Riemann L(P 1 (R)) π c c(s) c(s) R 2 g g : c P 1 (R) C c 1 g ( 3.2.6) #(g 1 (l))dµ P 1 (R)(l) Jgdµ c P 1 (R) #X X n(s) n(s) (cos θ(s), sin θ(s)) g(s) θ(s) Jg dθ ds d (cos θ(s), sin θ(s)) ds n (s) κ(s) c

56 P 1 (R) #(g 1 (l))dµ P 1 (R)(l) κ(s) ds. l P 1 (R) c l #(g 1 (l)) 2 κ(s) ds 2vol(P 1 (R)) 2π. c Euclid Morse Chern-Lashof c

57 54 4 R 2 L(R 2 ) L(R 2 ) Riemann Riemann L(R 2 ) R 2 L(R 2 ) (r, θ) L(R 2 ) l(r, θ) l(r, θ) {(x, y) R 2 x cos θ + y sin θ r} l : R 2 L(R 2 ) ; (r, θ) l(r, θ) (1) (3) (1) l (2) L(R 2 ) l Hausdorff (3) t R O t {(r, θ) R 2 r R, t < θ < t + π} U t l(o t ) φ t : U t R 2 ; l(r, θ) (r, θ) ((r, θ) O t ) (L(R 2 ), {(U 0, φ 0 ), (U π/2, φ π/2 )}) 2 (1) R 2 x cos θ + y sin θ r Hesse l (2) l l(r, θ) l(r, θ ) r r, θ θ + 2πZ r r, θ θ + π + 2πZ L(R 2 ) l 1 l 2

58 l 1 l(r 1, θ 1 ), l 2 l(r 2, θ 2 ) r 1, θ 1, r 2, θ 2 θ 0 < θ 1, θ 2 < θ 0 + π θ 0 O R (θ 0, θ 0 + π) O R 2 O Hausdorff (r 1, θ 1 ) V 1 (r 2, θ 2 ) V 2 V 1 V 2 l(v 1 ) l(v 2 ) L(R 2 ) l 1 l 2 l(v 1 ) l(v 2 ) L(R 2 ) Hausdorff (3) U t L(R 2 ) L(R 2 ) {U t } φ t : U t φ t (U t ) φ π/2 φ 1 0 : φ 0 (U 0 U π/2 ) φ π/2 (U 0 U π/2 ) U 0 U π/2 {l(r, θ) 0 < θ < π/2 π/2 < θ < π} φ 0 (U 0 U π/2 ) {(r, θ) 0 < θ < π/2 π/2 < θ < π} φ π/2 (U 0 U π/2 ) {(r, θ) π/2 < θ < π π < θ < 3π/2}. 0 < θ < π/2 φ π/2 φ 1 0 (r, θ) φ π/2 (l(r, θ)) φ π/2 (l( r, θ + π)) ( r, θ + π). π/2 < θ < π φ π/2 φ 1 0 (r, θ) φ π/2 (l(r, θ)) (r, θ). φ π/2 φ 1 0 : φ 0 (U 0 U π/2 ) φ π/2 (U 0 U π/2 ) (U t, φ t ) t R L(R 2 ) (U t ; r t, θ t ) r t, θ t t r, θ L(R 2 ) t R U t g t dr t dr t + dθ t dθ t Riemann L(R 2 ) r t ( 1) m r t, θ t θ t + nπ (m, n ) U t U t g t Riemann g t {(U t, g t )} L(R 2 )

59 56 4 R 2 M(R 2 ) M(R 2 ) [ ] [ ] [ ] [ ] x 1 cos φ sin φ x 1 u 1 T (φ, u 1, u 2 ) : + sin φ cos φ x 2 φ, u 1, u 2 M(R 2 ) M(R 2 ) R 2 Lie T (φ, u 1, u 2 )l(r, θ) l(r + u 1 cos(θ φ) + u 2 sin(θ φ), θ φ) M(R 2 ) R 2 M(R 2 ) L(R 2 ) Lie T (φ, u 1, u 2 ) L(R 2 ) ( ) d(t (φ, u 1, u 2 )) r r, ( ) d(t (φ, u 1, u 2 )) ( u 1 sin(θ φ) + u 2 cos(θ φ)) θ r + θ. d(t (φ, u 1, u 2 )) ( ) ( ) d(t (φ, u 1, u 2 )) d(t (φ, u 1, u 2 )) r θ r θ d(t (φ, u 1, u 2 )) T (φ, u 1, u 2 ) L(R 2 ) R 2 B D(B) {l L(R 2 ) B l } D(B) L(R 2 ) Fubini k D(B) I k (B) I k (B) D(B) [0, ] ; l L(B l) k D(B) L(B l) k dµ(l) x 2 u 2 I 1 (B) ( 4.1.4)

60 R 2 B I 1 (B) πa(b) L(R 2 ) r, θ θ L(B l) r L(B l(r, θ))dr A(B) I 1 (B) L(B l)dµ(l) π D(B) 0 L(B l(r, θ))drdθ πa(b) ( ) R 2 c B 4πA(B) L(c) 2 c c R 2 Riemann (0, π) R Riemann M c (0, π) Riemann 2 Riemann p : M L(R 2 ) p(c(s), φ) c(s) dc B φ ds M R ; (c(s), φ) L(B p(c(s), φ)) M 2 M M (s 1, φ 1, s 2, φ 2 ) I (L(B p(c(s 1 ), φ 1 )) sin φ 2 L(B p(c(s 2 ), φ 2 )) sin φ 1 ) 2 dµ M 2 0 M 2 I L(B p(c(s 1 ), φ 1 )) 2 sin 2 φ 2 dµ M 2 M 2 2 L(B p(c(s 1 ), φ 1 )) sin φ 1 L(B p(c(s 2 ), φ 2 )) sin φ 2 dµ M 2 M 2 + L(B p(c(s 2 ), φ 2 )) 2 sin 2 φ 1 dµ M 2 M 2 L(B p(c(s 1 ), φ 1 )) 2 dµ M sin 2 φ 2 dµ M M M 2 L(B p(c(s 1 ), φ 1 )) sin φ 1 dµ M L(B p(c(s 2 ), φ 2 )) sin φ 2 dµ M M M + L(B p(c(s 2 ), φ 2 )) 2 dµ M sin 2 φ 1 dµ M. M M

61 58 4 L(B p(c(s), φ)) 2 dµ M M x 2 π 0 x 0 L(c) π 0 0 L(B p(c(s), φ)) 2 dφds 2rdr L(B p(c(s), φ)) 2 dφ π L(B p(c(s),φ)) 0 0 L(B p(c(s), φ)) 2 dµ M 2L(c)A(B) M 2rdrdφ 2A(B) sin 2 φdµ M L(c) π M 0 0 sin 2 φdφds π π 0 sin 2 φdφ 1 (1 cos 2φ)dφ π sin 2 φdµ M π 2 L(c) L(B p(c(s), φ)) sin φdµ M M M M L(B p(c(s), φ)) p : M L(R 2 ) L(B p(c(s), φ))jpdµ M L(B p(x))dµ L(R 2 )(l) M L(R 2 ) x p 1 (l) #(p 1 (l))l(b l)dµ L(R 2 )(l). D(B) l D(B) #(p 1 (l)) L(B p(c(s), φ))jpdµ M 2πA(B). M Jp dc ds (cos ψ(s), sin ψ(s))

62 p(c(s), φ) ( l 0, ψ(s) + φ π ) + c(s) 2( T (0, c 1 (s), c 2 (s))l 0, ψ(s) + φ π ) ( ( 2 l c 1 (s) cos ψ(s) + φ π ) + c 2 (s) sin 2 ξ ψ(s) + φ π 2 ( ψ(s) + φ π ), ψ(s) + φ π ) 2 2 ( ) dp s ( ) dp φ { dc1 ds cos ξ + dc 2 ds sin ξ c 1(s) sin ξ dψ ds + c 2(s) cos ξ dψ } ds r + dψ ds θ, { c 1 (s) sin ξ + c 2 (s) cos ξ} r + θ. r, θ L(R2 ) ( ) ( dp dp s φ) det dc 1 ds cos ξ + dc 2 ds sin ξ cos ψ(s) cos cos sin φ sin φ. dc 1 ds cos ξ + dc 2 ds sin ξ c 1 sin ξ dψ ( φ π 2 ) ( ψ(s) + φ π 2 ) dψ ds ds + c 2 cos ξ dψ ds ( + sin ψ(s) sin ψ(s) + φ π ) 2 c 1 sin ξ + c 2 cos ξ 1 L(B p(c(s), φ))jpdµ M L(B p(c(s), φ)) sin φdµ M. M M L(B p(c(s), φ)) sin φdµ M 2πA(B) M

63 60 4 I 2 2L(c)A(B) π 2 L(c) 2(2πA(B))2 2πA(B){L(c) 2 4πA(B)} L(c) 2 4πA(B) 0. I 0 M 2 L(B p(c(s 1 ), φ 1 )) sin φ 2 L(B p(c(s 2 ), φ 2 )) sin φ 1 0 L(B p(c(s), φ))/ sin φ M r(φ) r(φ) sin φ C (C : ) r(φ) C sin φ ( C (C sin φ cos φ, C sin 2 φ) 2 sin 2φ, C 2 (2 sin2 φ 1) + C ) 2 ( C 2 sin 2φ, C 2 cos 2φ + C ) 2 (0, C/2) C/2 4.2 Crofton L(R 2 ) 2 Crofton I(R 2 L(R 2 )) {(x, l) R 2 L(R 2 ) x l} I(R 2 L(R 2 )) R 2 L(R 2 ) 3 i : R 2 P 1 (R) I(R 2 L(R 2 )) ; (x, l) (x, l + x) i i R 2 x 1, x 2 L(R 2 ) r, θ x 1, x 2, r, θ R 2 L(R 2 ) R 2 L(R 2 ) I(R 2 L(R 2 )) x 1 cos θ + x 2 sin θ r

64 4.2. Crofton 61 F (x 1, x 2, r, θ) x 1 cos θ + x 2 sin θ r [ F x 1 F x 2 F r ] F [cos θ sin θ 1 x 1 sin θ + x 2 cos θ] θ 1 I(R 2 L(R 2 )) R 2 L(R 2 ) 3 i i(u 1, u 2, l(0, θ)) (u 1, u 2, T (0, u 1, u 2 )l(0, θ)) (u 1, u 2, l(u 1 cos θ + u 2 sin θ, θ)) i R 2 L(R 2 ) C i I(R 2 L(R 2 )) C i i i di (u1,u 2,l(0,θ)) di (u1,u 2,l(0,θ)) di (u1,u 2,l(0,θ)) ( ) x ( 1 ) x ( 2 ) θ + cos θ x 1 r + sin θ x 2 r R 2 P 1 (R) x 1, ( u 1 sin θ + u 2 cos θ) r + θ,, x 1 x 2 θ R2 L(R 2 ), x 2 r, i di θ cos θ sin θ u 1 sin θ + u 2 cos θ i (Crofton ) R 2 c #(c l)dµ(l) 2L(c) L(R 2 )

65 62 4 c Crofton c c c [0, L(c)] {0} R 2 c 1 l(r, θ) c r, θ Crofton π/2 θ π/2 θ r 0 r L(c) cos θ π/2 L(c) cos θ π/2 0 1drdθ π/2 π/2 L(c) cos θdθ 2L(c). c x Crofton x L(R 2 ) Crofton c c 1,..., c k ( k ) k #(c l)dµ(l) # c i l dµ(l) #(c i l)dµ(l) L(R 2 ) L(R 2 ) k i1 L(R 2 ) i1 ( k ) # c i l i1 #(c i l)dµ(l) L(R 2 ) i1 k 2L(c i ) 2L(c). i1 k #(c i l) l c i l c i c i l 1 L(R 2 ) 0 ( k ) k # c i l dµ(l) #(c i l)dµ(l) L(R 2 ) i1 i1 L(R 2 ) i1 c c i d i lim L(d i ) L(c) l i #(d 2 i l) #(d 2 i+1) #(c l)

66 4.2. Crofton 63 c l #(d 2 i l) #(c l) c l L(R 2 ) 0 Lebesgue #(c l)dµ(l) lim #(d 2 i l)dµ(l) lim 2L(d 2 i) 2L(c) L(R 2 ) i L(R 2 ) i I(c) {(x, l) I(R 2 L(R 2 )) x c} i i 1 (I(c)) c P 1 (R) R 2 P 1 (R) 2 I(c) I(R 2 L(R 2 )) 2 π L : I(c) L(R 2 ) ; (x, l) l π L π L I(c) R 2 L(R 2 ) R 2 L(R 2 ) L(R 2 ) C I(c) 1 π L #(π 1 L (l))dµ(l) Jπ L dµ L(R 2 ) I(c) π 1 L (l) {(x, l) x l, x c} (c l) {l} #(π 1 L (l)) #(c l) #(c l)dµ(l) L(R 2 ) I(c) Jπ L dµ. π L dπ L c s P 1 (R) l(0, θ) θ s, θ c P 1 (R) i c P 1 (R) s dc 1 + dc 2 ds x 1 ds x 2

67 64 4 ( ) di s ( ) di θ dc 1 ds + dc 2 x 1 ds ( dc1 + x 2 ds cos θ + dc ) 2 ds sin θ r ( c 1 (s) sin θ + c 2 (s) cos θ) r + θ I(c) ( ) ( dc1 dπ L di s ds cos θ + dc ) 2 ds sin θ r ( ) dπ L di ( c 1 (s) sin θ + c 2 (s) cos θ) θ r + θ. r, θ L(R2 ) ( ) ( ) dπ Ldi dπ L di s θ dc 1 det ds cos θ + dc 2 ds sin θ c 1(s) sin θ + c 2 (s) cos θ 0 1 dc 1 ds cos θ + dc 2 ds sin θ I(c) Jπ L dµ dc ds c dc ds π 0 dc 1 ds cos θ + dc 2 ds sin θ dθds. (cos ϕ, sin ϕ) ϕ π dc 1 ds cos θ + dc 2 ds sin θ π dθ cos ϕ cos θ + sin ϕ sin θ dθ 0 0 π 0 cos(θ ϕ) dθ 2 ( s ). Fubini Jπ L dµ 2ds 2L(c) I(c) c

68 #(c l)dµ(l) 2L(c) L(R 2 ) c R 2 c (cos θ, sin θ) d c (θ) c c B I 0 (B) π 0 d c (θ)dθ L(c) c d L(c) πd c D(B) {l L(R 2 ) B l } D(B) L(R 2 ) D(B) c 2 c c L(R 2 ) π L(c) dµ drdθ d c (θ)dθ D(B) D(B) I 0 (B) c d L(c) πd R 2 M(R 2 ) M(R 2 ) [ ] [ ] [ ] [ ] x 1 cos φ sin φ x 1 u 1 T (φ, u 1, u 2 ) : + sin φ cos φ x 2 φ, u 1, u 2 M(R 2 ) [ ] T (ψ, v 1, v 2 )T (φ, u 1, u 2 ) ([ cos φ T (ψ, v 1, v 2 ) sin φ x 1 x 2 ] [ sin φ cos φ x 1 x 2 ] [ + u 1 u 2 ]) x 2 u 2

69 66 4 [ [ [ cos ψ sin ψ ] ([ ] [ ] [ ]) [ sin ψ cos φ sin φ x 1 u 1 v cos ψ sin φ cos φ x 2 u 2 v 2 ] [ ] [ ] [ ] x 1 cos ψ sin ψ u 1 + x 2 sin ψ cos ψ u 2 ] [ ] [ x 1 u 1 cos ψ u 2 sin ψ + v 1 + x 2 u 1 sin ψ + u 2 cos ψ + v 2 cos(ψ + φ) sin(ψ + φ) sin(ψ + φ) cos(ψ + φ) cos(ψ + φ) sin(ψ + φ) sin(ψ + φ) cos(ψ + φ) ] + ]. [ v 1 v 2 ] M(R 2 ) R 2 x 1 cos φ sin φ u 1 T (φ, u 1, u 2 ) x 2 sin φ cos φ u x 1 x 2 1. T (ψ, v 1, v 2 )T (φ, u 1, u 2 ) cos ψ sin ψ v 1 sin ψ cos ψ v cos φ sin φ u 1 sin φ cos φ u cos(ψ + φ) sin(ψ + φ) u 1 cos ψ u 2 sin ψ + v 1 sin(ψ + φ) cos(ψ + φ) u 1 sin ψ + u 2 cos ψ + v T (ψ + φ, u 1 cos ψ u 2 sin ψ + v 1, u 1 sin ψ + u 2 cos ψ + v 2 ). M(R 2 ) R 2 Lie SO(2) R 2 M(R 2 ) ; (T (φ, 0), u 1, u 2 ) T (φ, u 1, u 2 ) φ, u 1, u 2 M(R 2 ) φ SO(2) Riemann R 2 Riemann M(R 2 ) φ, u 1, M(R 2 ) M(R 2 ) M(R 2 ) 1 φ, u 1, u 2 φ, u 1, u 2 u 2

70 M(R 2 ) Riemann M(R 2 ) g L g (x) gx (x M(R 2 )) L g g T (ψ, v 1, v 2 ) L g (T (φ, u 1, u 2 )) T (ψ + φ, u 1 cos ψ u 2 sin ψ + v 1, u 1 sin ψ + u 2 cos ψ + v 2 ) ( ) (dl g ) e φ e ( ) (dl g ) e u 1 e ( ) (dl g ) e u 2 e φ g cos ψ u 1 + sin ψ g u 2 g sin ψ u 1 + cos ψ g u 2 g (dl g ) e : T e (M(R 2 )) T g (M(R 2 )) L g L g M(R 2 ) g R g (x) xg (x M(R 2 )) R g g T (ψ, v 1, v 2 ) R g (T (φ, u 1, u 2 )) T (φ + ψ, v 1 cos φ v 2 sin φ + u 1, v 1 sin φ + v 2 cos φ + u 2 ) ( ) (dr g ) e φ e φ + ( v 1 sin φ v 2 cos φ) g ( ) (dr g ) e u 1 e u 1 g ( ) (dr g ) e u 2 e u 2 g u 1 + (v 1 cos φ v 2 sin φ) g u 2 g (dr g ) e : T e (M(R 2 )) T g (M(R 2 )) ( ) ( ) ( ) (dr g ) e φ (dr g ) e e u 1 (dr g ) e e u 2 e φ g u 1 g u R g R g M(R 2 ) g

71 Poincaré c 0, c 1 c 1 M(R 2 ) g #(c 0 cg 1 ) M(R 2 ) 4L(c 0 )L(c 1 ) Poincaré I((R 2 ) 2 M(R 2 )) {(x, y, g) (R 2 ) 2 M(R 2 ) x g(y)} I((R 2 ) 2 M(R 2 )) (R 2 ) 2 M(R 2 ) 5 i : (R 2 ) 2 SO(2) I((R 2 ) 2 M(R 2 )) ; (x, y, T (φ, 0)) (x, y, T (0, x)t (φ, 0)T (0, y)) i i (R 2 ) 2 x 1, x 2 y 1, y 2 M(R 2 ) φ, u 1, u 2 x 1, x 2, y 1, y 2 φ, u 1, u 2 (R 2 ) 2 M(R 2 ) (R 2 ) 2 M(R 2 ) I((R 2 ) 2 M(R 2 )) [ ] [ ] [ ] [ ] x 1 cos φ sin φ y 1 u 1 + sin φ cos φ x 2 y 2 u 2 x 1 y 1 cos φ y 2 sin φ + u 1 x 2 y 1 sin φ + y 2 cos φ + u 2 F (x 1, x 2, y 1, y 2, φ, u 1, u 2 ) (y 1 cos φ y 2 sin φ + u 1 x 1, y 1 sin φ + y 2 cos φ + u 2 x 2 ) [ F1 x 1 F 1 x 2 F 1 y 1 F 1 y 2 F 1 φ F 2 F 2 F 2 F 2 F 2 x 1 x 2 y 1 y 2 φ [ F 1 F 1 u 1 u 2 F 2 F 2 u 1 u cos φ sin φ y 1 sin φ + y 2 cos φ sin φ cos φ y 1 cos φ y 2 sin φ 0 1 ] ]

72 4.4. Poincaré 69 2 I((R 2 ) 2 M(R 2 )) (R 2 ) 2 M(R 2 ) 5 i T (0, x 1, x 2 )T (φ, 0, 0)T (0, y 1, y 2 ) 1 0 x 1 cos φ sin φ x 2 sin φ cos φ cos φ sin φ x 1 sin φ cos φ x y y cos φ sin φ y 1 cos φ + y 2 sin φ + x 1 sin φ cos φ y 1 sin φ y 2 cos φ + x y y T (φ, y 1 cos φ + y 2 sin φ + x 1, y 1 sin φ y 2 cos φ + x 2 ) i(x 1, x 2, y 1, y 2, T (φ, 0)) (x 1, x 2, y 1, y 2, T (φ, y 1 cos φ + y 2 sin φ + x 1, y 1 sin φ y 2 cos φ + x 2 )) i (R 2 ) 2 M(R 2 ) C i I((R 2 ) 2 M(R 2 )) C i i i di (x1,x 2,y 1,y 2,φ) di (x1,x 2,y 1,y 2,φ) di (x1,x 2,y 1,y 2,φ) di (x1,x 2,y 1,y 2,φ) di (x1,x 2,y 1,y 2,φ) ( ) x ( 1 ) x ( 2 ) y ( 1 ) y ( 2 ) φ +, x 1 u 1 +, x 2 u 2 y 1 cos φ u 1 sin φ u 2, y 2 + sin φ u 1 cos φ u 2, φ + (y 1 sin φ + y 2 cos φ) u 1 +( y 1 cos φ + y 2 sin φ) u 2 (R 2 ) 2 SO(2),,, x 1 x 2 y 1 M(R 2 ) x 1, x 2, y 1, y 2, φ,, u 1, y 2 φ (R2 ) 2 i u 2

73 70 4 di cos φ sin φ y 1 sin φ + y 2 cos φ 0 1 sin φ cos φ y 1 cos φ + y 2 sin φ 5 i (Poincaré ) R 2 c 0, c 1 #(c 0 gc 1 )dµ(g) 4L(c 0 )L(c 1 ) M(R 2 ) I(c 0, c 1 ) {(x, y, g) I((R 2 ) 2 M(R 2 )) x c 0, y c 1 } i i 1 (I(c 0, c 1 )) c 0 c 1 SO(2) SO(2) (R 2 ) 2 3 I(c 0, c 1 ) I((R 2 ) 2 M(R 2 )) 3 π M : I(c 0, c 1 ) M(R 2 ) ; (x, y, g) g π M π M I(c 0, c 1 ) (R 2 ) 2 M(R 2 ) (R 2 ) 2 M(R 2 ) M(R 2 ) C π M #(π 1 M (g))dµ(g) Jπ M dµ M(R 2 ) I(c 0,c 1 ) π 1 M (g) {(g(y), y, g)) g(y) c 0 gc 1 } #(π 1 M (g)) #(c 0 gc 1 ) #(c 0 gc 1 )dµ(g) M(R 2 ) I(c 0,c 1 ) Jπ M dµ.

74 4.4. Poincaré 71 π M dπ M c 0 s c 1 t SO(2) T (φ, 0) φ s, t, φ c 0 c 1 SO(2) i c 0 c 1 SO(2) I(c 0, c 1 ) ( ) ( ) ( ) di, di, di s t φ I(c 0, c 1 ) dπ M Jπ M di ( ) ( d(c0 (s)) 1 dπ M di dπ M di + d(c ) 0(s)) 2 s ds x 1 ds x 2 d(c 0(s)) 1 + d(c 0(s)) 2, ds u 1 ds u ( ) ( 2 d(c1 (t)) 1 dπ M di dπ M di + d(c ) 1(t)) 2 t dt y 1 dt y ( 2 d(c 1(t)) 1 cos φ + d(c ) 1(t)) 2 sin φ dt dt u ( 1 + d(c 1(t)) 1 sin φ d(c ) 1(t)) 2 cos φ, dt dt u ( ) 2 dπ M di ((c 1 (t)) 1 sin φ + (c 1 (t)) 2 cos φ) φ u 1 +( (c 1 (t)) 1 cos φ + (c 1 (t)) 2 sin φ) + u 2 φ ( ) ( ) ( dπ Mdi dπ M di dπ M di s t φ) d(c 0 (s)) 1 d(c 1(t)) 1 cos φ + d(c 1(t)) 2 sin φ (c ds dt dt 1 (t)) 1 sin φ + (c 1 (t)) 2 cos φ d(c det 0 (s)) 2 d(c 1(t)) 1 sin φ d(c 1(t)) 2 cos φ (c ds dt ds 1 (t)) 1 cos φ + (c 1 (t)) 2 sin φ ( d(c 0 (s)) 1 d(c 1(t)) 1 sin φ d(c ) 1(t)) 2 cos φ ds dt dt d(c ( 0(s)) 2 d(c 1(t)) 1 cos φ + d(c 1(t)) 2 sin φ). ds dt dt ( d(c0 (s)) 1, d(c ) 0(s)) 2 (cos α, sin α), ds ds ( d(c1 (t)) 1 dt, d(c ) 1(t)) 2 (cos β, sin β) dt

75 72 4 cos α( cos β sin φ sin β cos φ) sin α( cos β cos φ + sin β sin φ) cos α sin(φ + β) + sin α cos(φ + β) sin(φ + β α) L(c0 ) L(c1 ) 2π Jπ M dµ sin(φ + β α) dφdtds I(c 0,c 1 ) ( φ α, β ) L(c0 ) L(c1 ) 2π 0 0 L(c0 ) L(c1 ) 0 0 4L(c 0 )L(c 1 ). 0 4dtds sin φ dφdtds M(R 2 ) #(c 0 gc 1 )dµ(g) 4L(c 0 )L(c 1 ) R 2 x r S(x; r) R 2 c R 2 #(c S(x; r))dµ(x) 4rL(c) c 0 c c 1 S(0; r) #(c gs(0; r))dµ(g) 4 L(c)2πr M(R 2 ) #(c gs(0; r))dµ(g) #(c S(g0; r))dµ(g) M(R 2 ) M(R 2 ) 2π #(c S(x; r))dµ(x). R 2 #(c S(x; r))dµ(x) 4rL(c) R 2

76 4.4. Poincaré R 2 c 0, c 1 g M(R 2 ) c 0 gc 1 c 0 gc 1 θ i c 0 gc 1 θ i 0 θ i π c 0 gc 1 θ i dµ(g) 2πL(c 0 )L(c 1 ). M(R 2 ) c 0 gc I(c 0, c 1 ) (x, y, g) c 0 gc 1 θ(x, y, g) I(c 0, c 1 ) θ θ π M : I(c 0, c 1 ) M(R 2 ) θdµ(g) θjπ M dµ M(R 2 ) π 1 M (g) I(c 0,c 1 ) M(R 2 ) c 0 gc 1 θ i dµ(g) θjπ M dµ I(c 0,c 1 ) L(c0 ) L(c1 ) φ+β απ 0 0 φ+β α π φ + β α sin(φ + β α) dφdtds ( φ α, β ) L(c0 ) L(c1 ) π π π 0 0 π π φ sin φ dφ 2 0 φ sin φ dφdtds. π φ sin φdφ 2 2[ φ cos φ] π π. 0 π 0 φ( cos φ) dφ cos φdφ θjπ M dµ 2πL(c 0 )L(c 1 ) I(c 0,c 1 ) M(R 2 ) c 0 gc 1 θ i dµ(g) 2πL(c 0 )L(c 1 )

77 Steiner Hotelling R 2 1 P 1 (R) Riemann dθ dθ l P 1 (R) R 2 l P l : R 2 l I [0, 1] R 1 R 2 L(P l (I))dµ(l) 2. P 1 (R) 0 θ π l(θ) {(x, y) R 2 x cos θ + y sin θ 0} P 1 (R) L(P l(θ) (I)) sin θ L(P l (I))dµ(l) P 1 (R) π 0 sin θdθ R 2 K W1 2 (K) W1 2 (K) 1 L(P l (K))dµ(l) W 2 1 (I) 1 P 1 (R) L(P l (K)) l K Barbier (Barbier ) R 2 K L(P l (K))dµ(l) 2W1 2 (K) L(K). P 1 (R) l P 1 (R) f (P l ) K : K l ( 3.2.5) K y int(p l (K)) #(f 1 (y)) 2 ( 3.2.5) Jfdµ #(f 1 (y))dµ(y) 2L(P l (K)) K P l (K) df K l K e l u Jf e, u e, u dµ 2L(P l (K)). K

78 4.5. Steiner Hotelling 75 L(P l (I))dµ(l) 1 ( ) e, u dµ dµ(l) P 1 (R) 2 P 1 (R) K 1 ( ) e, u dµ(l) dµ 2 K P 1 (R) ( ) 1 2dµ L(K). 2 K (Steiner ) R 2 K ρ K ρ A(K ρ ) A(K) + L(K)ρ + πρ 2. r 0 l P 1 (R) P l (K r ) l P l (K) r L(P l (K r )) L(P l (K)) + 2r l P 1 (R) L(P l (K r ))dµ(l) L(P l (K))dµ(l) + 2πr. P 1 (R) P 1 (R) Barbier ( 4.5.4) L(K r ) L(K) + 2πr A(K ρ ) A(K) + ρ 0 L(K r )dr A(K) + A(K) + L(K)ρ + πρ 2. ρ 0 (L(K) + 2πr)dr (Steiner ) R 2 K ρ K ρ ρ A(K ρ ) A(K) + L(K)ρ + πρ 2. K s K K u K e K κ(s) Frenet-Serret du ds κe, de ds κu. ρ 0 f : K [0, ρ] K ρ intk ; (x, t) x te

79 76 4 f ( ) df f s s u tde ds (1 + κt)u, df ( ) f t t e ( ) ( ) ( ( Jf df df s t s) df t) df 1 + κt. ρ f Jf 1 + κt ( 3.2.5) 2π A(K ρ intk) Jfdµ (1 + κt)dµ K [0,ρ] K [0,ρ] ρ L(K)ρ + κds tdt L(K)ρ + 2π 1 2 ρ2 K L(K)ρ + πρ 2. A(K ρ ) A(K) + L(K)ρ + πρ 2. 0 ( 4.1.4) x R 2 r 0 B(x; r) {y R 2 x y r} M i (r) {x R 2 B(x; r) B} M e (r) {x R 2 B B(x; r)} M i (r) M e (r) r r M i (r) M i (r ), M e (r) M e (r ) I i {r R r 0, M i (r) } I e {r R r 0, M e (r) } I i I e r I i M i (r), r I e M e (r)

80 4.5. Steiner Hotelling 77 r i sup I i, r e inf I e M i (r i ) r I i M i (r), M e (r e ) I i [0, r i ], I e [r e, ) r I e M e (r) r i r r e r c R 2 #(c S(x; r))dµ(x) 4rL(c) x #(c S(x; r)) µ R 2 D k {x R 2 #(c S(x; r)) k} D k µ R 2 c c A(D 2k 1 ) A(D ) 0. Lebesgue R 2 #(c S(x; r))dµ(x) 2kA(D 2k ). k1 ka(d 2k ) 2rL(c). k1 r B r {x R 2 c S(x; r) } A(D 2k ) A(B r ) k1 2rL(c) A(B r ) (k 1)A(D 2k ). k1

81 A(B r ) A(B) + rl(c) + πr 2 2rL(c) A(B r ) 2rL(c) (A(B) + rl(c) + πr 2 ) r ( ) 2 ( ) L(c) L(c) 2 2rL(c) A(B r ) π 2π r + 4π A(B). 2rL(c) A(B r ) L(c) 2 4π ( ) 2 L(c) A(B) π 2π r + (k 1)A(D 2k ) 0 k1 4πA(B) L(c) 2 L(c) 2π r 0 r r i r r e L(c) 2π r i r e c (Bonnesen ) R 2 c B B r i B r e L(c) 2 4πA(B) π 2 (r e r i ) 2 r i r r e r L(c) 2 4π ( ) 2 L(c) A(B) π 2π r. ( ) L(c) 2 2 L(c) 4π A(B) π 2π r i ( L(c) 2 4π A(B) π L(c) ) 2 2π + r e.

82 4.5. Steiner Hotelling (u2 + v 2 ) ( u + v 2 ) 2 ( ) L(c) 2 2 4π A(B) π re r i. 2 L(c) 2 4πA(B) π 2 (r e r i ) (Hotelling ) R 2 c ρ c ρ ρ A(c ρ ) L(c)L( D 1 (ρ)) 2L(c)ρ c s c u u π/2 e c κ(s) Frenet- Serret du ds κe, de ds κu. ρ 0 f : c [ ρ, ρ] c ρ ; (x, t) x te f ( ) df f s s u tde ds (1 + κt)u, df ( ) f t t e ( ) ( ) ( ( Jf df df s t s) df t) df 1 + κt. ρ f Jf 1 + κt ( 3.2.5) ρ A(c ρ ) Jfdµ (1 + κt)dµ 1dµ + κ(s)ds tdt c [ ρ,ρ] c [ ρ,ρ] c [ ρ,ρ] c ρ L(c)L([ ρ, ρ]) L(c)L( D 1 (ρ)) 2L(c)ρ. A(c ρ ) L(c)L( D 1 (ρ)) 2L(c)ρ.

83 Blaschke (Blaschke ) R 2 c 0, c 1 D 0, D 1 R 2 D χ(d) χ(d 0 gd 1 )dµ(g) 2π(A(D 0 ) + A(D 1 )) + L(c 0 )L(c 1 ). M(R 2 ) 2π 2π D 0 gd 1 (D 0 gd 1 ) κ((d 0 gd 1 )) θ i ((D 0 gd 1 )) θ i ((D 0 gd 1 )) 0 κ((d 0 gd 1 ))ds + θ i ((D 0 gd 1 )) 2πχ(D 0 gd 1 ) (D 0 gd 1 ) i g M(R 2 ) θ i ((D 0 gd 1 )) g M(R 2 ) θ i ((D 0 gd 1 ))dµ(g) M(R 2 ) i i M(R 2 ) c 0 gc 1 θ i dµ(g) 2πL(c 0 )L(c 1 ). (D 0 gd 1 ) c 0 gd 1 gc 1 D 0 ( ) κ((d 0 gd 1 ))ds dµ(g) M(R 2 ) (D 0 gd 1 ) c 0 gd 1 I(c 0, D 1 ) {(x, y, g) c 0 D 1 M(R 2 ) x gy} I(c 0, D 1 ) I((R 2 ) 2 M(R 2 )) i : (R 2 ) 2 SO(2) I((R 2 ) 2 M(R 2 )) i 1 (I(c 0, D 1 )) c 0 D 1 SO(2) (R 2 ) 2 SO(2) 4 π M (x, y, g) g ((x, y, g) I(c 0, D 1 ))

84 4.6. Blaschke 81 π M : I(c 0, D 1 ) M(R 2 ) c 0 κ 0 c 0 D 1 SO(2) κ 0 f π M i ( 3.2.5) ( ) ( ) κ 0 dµ dµ(g) κ 0 Jfdµ M(R 2 ) f 1 (g) c 0 D 1 SO(2) g SO(2) g 0 f 1 (g) {(x, y, g 0 ) x c 0, y D 1, x gy} c 0 gd 1 2 κ 0 dµ 2 κ 0 (s)ds f 1 (g) c 0 gd 1 ( ) ( ) 2 κ 0 (s)ds dµ(g) M(R 2 ) c 0 gd 1 ( ) Jf s d(c 0(s)) 1 ds + d(c 0(s)) 2 x 1 ds x 2, y 1, y 2, c 0 D 1 SO(2) df Jf di ( ) ( d(c0 (s)) 1 df dπ M di + d(c ) 0(s)) 2 s ds x 1 ds x 2 d(c 0(s)) 1 + d(c 0(s)) 2, ds u 1 ds u ( ) 2 df cos φ sin φ, y 1 u 1 u 2 ( ) df y ( 2 ) df φ sin φ u 1 cos φ u 2, φ (y 1 sin φ + y 2 cos φ) u 1 + ( y 1 cos φ + y 2 sin φ) u 2 + φ df [ ] df s y 1 y 2 φ [ u 1 u 2 ] (c 0 (s)) 1 cos φ sin φ y ds 1 sin φ + y 2 cos φ (c 0 (s)) 2 sin φ cos φ y φ ds 1 cos φ + y 2 sin φ

85 82 4 df 3 1 [ [ (c 0 (s)) 1 ds cos ψ, cos ψ cos φ sin φ sin ψ sin φ cos φ (c 0 (s)) 2 ds sin ψ ] 1 cos(ψ φ) sin(ψ φ) cos ψ cos φ cos(ψ φ) + sin φ sin(ψ φ) sin ψ sin φ cos(ψ φ) cos φ sin(ψ φ) ( ker df R + cos(ψ φ) + sin(ψ φ) ). s y 1 y 2 (ker df) span R { cos ψ s cos φ y 1 + sin φ y 2, sin ψ s sin φ y 1 cos φ y 2, ] [ 0 0 ] }. φ (ker df) df Jf ( df cos ψ s cos φ + sin φ ) y 1 y 2 [ ] (c 0 (s)) 1 cos ψ cos φ sin φ y ds 1 sin φ + y 2 cos φ (c 0 (s)) 2 cos φ sin φ cos φ y u 1 u 2 φ ds 1 cos φ + y 2 sin φ sin φ [ u 1 u 2 [ u 1 u 2 ] cos 2 ψ + cos 2 φ + sin 2 φ cos ψ sin ψ + sin φ cos φ cos φ sin φ φ 0 ] cos 2 ψ + 1 cos ψ sin ψ φ 0 (cos 2 ψ + 1) + cos ψ sin ψ, u 1 u ( 2 df sin ψ s sin φ cos φ ) y 1 y 2 [ u 1 u 2 φ ] (c 0 (s)) 1 cos φ sin φ y ds 1 sin φ + y 2 cos φ (c 0 (s)) 2 sin φ cos φ y ds 1 cos φ + y 2 sin φ sin ψ sin φ cos φ 0

86 4.6. Blaschke 83 [ u 1 u 2 [ u 1 u 2 ] cos ψ sin ψ + cos φ sin φ sin φ cos φ sin 2 ψ + sin 2 φ + cos 2 φ φ 0 ] cos ψ sin ψ sin 2 ψ + 1 φ 0 cos ψ sin ψ + (sin 2 ψ + 1), u 1 u ( ) 2 df φ (y 1 sin φ + y 2 cos φ) u 1 + ( y 1 cos φ + y 2 sin φ) u 2 + φ. ( cos ψ s cos φ + sin φ ) ( sin ψ y 1 y 2 s sin φ cos φ ) y 1 y 2 φ ( cos ψ s cos φ + sin φ ) ( sin ψ y 1 y 2 s sin φ cos φ ) y 1 y 2 ( cos ψ sin φ + cos φ sin ψ) s + ( cos ψ cos φ sin φ sin ψ) y 1 s y 2 +(cos 2 φ + sin 2 φ) y 1 y 2 sin(ψ φ) s cos(ψ φ) y 1 s + y 2 y 1 y 2 sin(ψ φ) 2 + cos(ψ φ) , ( df cos ψ s cos φ + sin φ ) df y 1 y ( 2 df φ) { (cos 2 ψ + 1) + cos ψ sin ψ } u 1 u { 2 (y 1 sin φ + y 2 cos φ) + ( y 1 cos φ + y 2 sin φ) + u 1 u 2 φ} cos 2 ψ + 1 cos ψ sin ψ y 1 sin φ + y 2 cos φ det cos ψ sin ψ sin 2 ψ + 1 y 1 cos φ + y 2 sin φ (cos 2 ψ + 1)(sin 2 ψ + 1) cos 2 ψ sin 2 ψ ( sin ψ s sin φ cos φ ) y 1 y 2 { cos ψ sin ψ + (sin 2 ψ + 1) } u 1 u 2

87 84 4 cos 2 ψ + sin 2 ψ Jf ( ) 2 κ 0 dµ 2 κ 0 (s)ds A(D 1 ) 2π c 0 D 1 SO(2) c 0 2(2π) 2 A(D 1 ). ( ) κ 0 (s)ds dµ(g) (2π) 2 A(D 1 ). M(R 2 ) c 0 gd 1 gc 1 D 0 ( ) ( ) κ 1 (s)ds dµ(g) κ 1 (s)ds dµ(g) M(R 2 ) D 0 gc 1 M(R 2 ) c 1 g 1 D ( 0 ) κ 1 (s)ds dµ(g) M(R 2 ) c 1 gd 0 (2π) 2 A(D 0 ). ( ) κ((d 0 gd 1 ))ds dµ(g) (2π) 2 (A(D 0 ) + A(D 1 )) M(R 2 ) (D 0 gd 1 ) 2π χ(d 0 gd 1 )dµ(g) M(R 2 ) ( κ((d 0 gd 1 ))ds + M(R 2 ) (D 0 gd 1 ) i (2π) 2 (A(D 0 ) + A(D 1 )) + 2πL(c 0 )L(c 1 ) θ i ((D 0 gd 1 )) ) dµ(g) χ(d 0 gd 1 )dµ(g) 2π(A(D 0 ) + A(D 1 )) + L(c 0 )L(c 1 ). M(R 2 )

88 85 5 Euclid 5.1 Euclid R n L n 1 (R n ) (r, u) R S n 1 (1) L n 1 (R n ) l(r, u) l(r, u) {x R n x, u r} l : R S n 1 (1) L n 1 (R n ) ; (r, u) l(r, u) (1) (3) (1) l (2) L n 1 (R n ) l Hausdorff (3) v S n 1 (1) O v {(r, u) R S n 1 (1) r R, 0 < u, v } U v l(o v ) φ v : U v R n ; l(r, u) (r, u u, v v) ((r, u) O v ) (L n 1 (R n ), {(U v, φ v ) v S n 1 (1)}) n (1) R n u r x, u r l (2) l l(r, u) l(r, u ) r r, u u r r, u u L n 1 (R n ) l 1 l 2 l 1 l(r 1, u 1 ), l 2 l(r 2, u 2 ) r 1, u 1, r 2, u 2 0 < u 1, u 0, u 2, u 0 u 0 O u0 R S n 1 (1) O u0

89 86 5 Euclid Hausdorff (r 1, u 1 ) V 1 (r 2, u 2 ) V 2 V 1 V 2 l(v 1 ) l(v 2 ) L n 1 (R n ) l 1 l 2 l(v 1 ) l(v 2 ) L n 1 (R n ) Hausdorff (3) U v L n 1 (R n ) L n 1 (R n ) {U v } φ v : U v φ v (U v ) φ v φ 1 v : φ v (U v U v ) φ v (U v U v ) (U v, φ v ) v S n 1 L n 1 (R n ) (U v ; r v, u v ) r v, u v v r, u l : R S n 1 (1) L n 1 (R n ) ɛ(r, u) ( r, u) ((r, u) R S n 1 (1)) R S n 1 (1) Riemann R S n 1 (1) ɛ R S n 1 (1) R S n 1 (1) Riemann l : R S n 1 (1) L n 1 (R n ) L n 1 (R n ) Riemann v S n 1 (1) U v Riemann g v dr v dr v + g S n 1 (1) R n M(R n ) M(R n ) n Φ SO(n) U R n T (Φ, U) : X ΦX + U M(R n ) SO(n) R n M(R n ) R n Lie l(r, u) L n 1 (R n ) T (Φ, U)x, Φu Φx, Φu + U, Φu x, u + U, Φu r + U, Φu T (Φ, U)l(r, u) l(r + U, Φu, Φu) M(R n ) R n M(R n ) L n 1 (R n ) Lie T (Φ, u) L n 1 (R n ) u S n 1 (1) e 1,..., e n 1 l : R S n 1 (1) L n 1 (R n ) dl R S n 1 (1) L n 1 (R n ) ( ) dl, dl(e 1 ),..., dl(e n 1 ) r

I II Morse 1998

I II Morse 1998 I II Morse 1998 1 Morse 1 1.1.............................. 1 1.2......................... 8 1.3......................... 16 1.4 Morse................................. 20 1.5........................................

More information

Morse ( ) 2014

Morse ( ) 2014 Morse ( ) 2014 1 1 Morse 1 1.1 Morse................................ 1 1.2 Morse.............................. 7 2 12 2.1....................... 12 2.2.................. 13 2.3 Smale..............................

More information

K E N Z OU

K E N Z OU K E N Z OU 11 1 1 1.1..................................... 1.1.1............................ 1.1..................................................................................... 4 1.........................................

More information

A 2 3. m S m = {x R m+1 x = 1} U + k = {x S m x k > 0}, U k = {x S m x k < 0}, ϕ ± k (x) = (x 0,..., ˆx k,... x m ) 1. {(U ± k, ϕ± k ) 0 k m} S m 1.2.

A 2 3. m S m = {x R m+1 x = 1} U + k = {x S m x k > 0}, U k = {x S m x k < 0}, ϕ ± k (x) = (x 0,..., ˆx k,... x m ) 1. {(U ± k, ϕ± k ) 0 k m} S m 1.2. A A 1 A 5 A 6 1 2 3 4 5 6 7 1 1.1 1.1 (). Hausdorff M R m M M {U α } U α R m E α ϕ α : U α E α U α U β = ϕ α (ϕ β ϕβ (U α U β )) 1 : ϕ β (U α U β ) ϕ α (U α U β ) C M a m dim M a U α ϕ α {x i, 1 i m} {U,

More information

II I Riemann 2003

II I Riemann 2003 II I Remann 2003 Dfferental Geometry II Dfferental Geometry II I Dfferental Geometry I 1 1 1.1.............................. 1 1.2................................. 10 1.3.......................... 16 1.4.........................

More information

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 24 I 1.1.. ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 1 (t), x 2 (t),, x n (t)) ( ) ( ), γ : (i) x 1 (t),

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) =

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) = 1 1 1.1 I R 1.1.1 c : I R 2 (i) c C (ii) t I c (t) (0, 0) c (t) c(i) c c(t) 1.1.2 (1) (2) (3) (1) r > 0 c : R R 2 : t (r cos t, r sin t) (2) C f : I R c : I R 2 : t (t, f(t)) (3) y = x c : R R 2 : t (t,

More information

2011de.dvi

2011de.dvi 211 ( 4 2 1. 3 1.1............................... 3 1.2 1- -......................... 13 1.3 2-1 -................... 19 1.4 3- -......................... 29 2. 37 2.1................................ 37

More information

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d S I.. http://ayapin.film.s.dendai.ac.jp/~matuda /TeX/lecture.html PDF PS.................................... 3.3.................... 9.4................5.............. 3 5. Laplace................. 5....

More information

20 9 19 1 3 11 1 3 111 3 112 1 4 12 6 121 6 122 7 13 7 131 8 132 10 133 10 134 12 14 13 141 13 142 13 143 15 144 16 145 17 15 19 151 1 19 152 20 2 21 21 21 211 21 212 1 23 213 1 23 214 25 215 31 22 33

More information

II 1 II 2012 II Gauss-Bonnet II

II 1 II 2012 II Gauss-Bonnet II II 1 II 212 II Gauss-Bonnet II 1 1 1.1......................................... 1 1.2............................................ 2 1.3.................................. 3 1.4.............................................

More information

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt S I. x yx y y, y,. F x, y, y, y,, y n http://ayapin.film.s.dendai.ac.jp/~matuda n /TeX/lecture.html PDF PS yx.................................... 3.3.................... 9.4................5..............

More information

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F F 1 F 2 F, (3) F λ F λ F λ F. 3., A λ λ A λ. B λ λ

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

( ) ( )

( ) ( ) 20 21 2 8 1 2 2 3 21 3 22 3 23 4 24 5 25 5 26 6 27 8 28 ( ) 9 3 10 31 10 32 ( ) 12 4 13 41 0 13 42 14 43 0 15 44 17 5 18 6 18 1 1 2 2 1 2 1 0 2 0 3 0 4 0 2 2 21 t (x(t) y(t)) 2 x(t) y(t) γ(t) (x(t) y(t))

More information

数学Ⅱ演習(足助・09夏)

数学Ⅱ演習(足助・09夏) II I 9/4/4 9/4/2 z C z z z z, z 2 z, w C zw z w 3 z, w C z + w z + w 4 t R t C t t t t t z z z 2 z C re z z + z z z, im z 2 2 3 z C e z + z + 2 z2 + 3! z3 + z!, I 4 x R e x cos x + sin x 2 z, w C e z+w

More information

20 6 4 1 4 1.1 1.................................... 4 1.1.1.................................... 4 1.1.2 1................................ 5 1.2................................... 7 1.2.1....................................

More information

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi) 0. A A = 4 IC () det A () A () x + y + z = x y z X Y Z = A x y z ( 5) ( s5590) 0. a + b + c b c () a a + b + c c a b a + b + c 0 a b c () a 0 c b b c 0 a c b a 0 0. A A = 7 5 4 5 0 ( 5) ( s5590) () A ()

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 3.............................. 3.............................. 4.3 4................... 5.4........................ 6.5........................ 8.6...........................7

More information

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2 No.2 1 2 2 δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i δx j (5) δs 2 = δx i δx i + 2 u i δx i δx j = δs 2 + 2s ij δx i δx j

More information

9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x

9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x 2009 9 6 16 7 1 7.1 1 1 1 9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x(cos y y sin y) y dy 1 sin

More information

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x (

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x ( II (1 4 ) 1. p.13 1 (x, y) (a, b) ε(x, y; a, b) f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a x a A = f x (a, b) y x 3 3y 3 (x, y) (, ) f (x, y) = x + y (x, y) = (, )

More information

f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f

f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f 22 A 3,4 No.3 () (2) (3) (4), (5) (6) (7) (8) () n x = (x,, x n ), = (,, n ), x = ( (x i i ) 2 ) /2 f(x) R n f(x) = f() + i α i (x ) i + o( x ) α,, α n g(x) = o( x )) lim x g(x) x = y = f() + i α i(x )

More information

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google I4 - : April, 4 Version :. Kwhir, Tomoki TA (Kondo, Hirotk) Google http://www.mth.ngoy-u.c.jp/~kwhir/courses/4s-biseki.html pdf 4 4 4 4 8 e 5 5 9 etc. 5 6 6 6 9 n etc. 6 6 6 3 6 3 7 7 etc 7 4 7 7 8 5 59

More information

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4 35-8585 7 8 1 I I 1 1.1 6kg 1m P σ σ P 1 l l λ λ l 1.m 1 6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m

More information

1 nakayama/print/ Def (Definition ) Thm (Theorem ) Prop (Proposition ) Lem (Lemma ) Cor (Corollary ) 1. (1) A, B (2) ABC

1   nakayama/print/ Def (Definition ) Thm (Theorem ) Prop (Proposition ) Lem (Lemma ) Cor (Corollary ) 1. (1) A, B (2) ABC 1 http://www.gem.aoyama.ac.jp/ nakayama/print/ Def (Definition ) Thm (Theorem ) Prop (Proposition ) Lem (Lemma ) Cor (Corollary ) 1. (1) A, B (2) ABC r 1 A B B C C A (1),(2),, (8) A, B, C A,B,C 2 1 ABC

More information

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2) 3 215 4 27 1 1 u u(x, t) u tt a 2 u xx, a > (1) D : {(x, t) : x, t } u (, t), u (, t), t (2) u(x, ) f(x), u(x, ) t 2, x (3) u(x, t) X(x)T (t) u (1) 1 T (t) a 2 T (t) X (x) X(x) α (2) T (t) αa 2 T (t) (4)

More information

i 18 2H 2 + O 2 2H 2 + ( ) 3K

i 18 2H 2 + O 2 2H 2 + ( ) 3K i 18 2H 2 + O 2 2H 2 + ( ) 3K ii 1 1 1.1.................................. 1 1.2........................................ 3 1.3......................................... 3 1.4....................................

More information

D 24 D D D

D 24 D D D 5 Paper I.R. 2001 5 Paper HP Paper 5 3 5.1................................................... 3 5.2.................................................... 4 5.3.......................................... 6

More information

,,,17,,, ( ),, E Q [S T F t ] < S t, t [, T ],,,,,,,,

,,,17,,, ( ),, E Q [S T F t ] < S t, t [, T ],,,,,,,, 14 5 1 ,,,17,,,194 1 4 ( ),, E Q [S T F t ] < S t, t [, T ],,,,,,,, 1 4 1.1........................................ 4 5.1........................................ 5.........................................

More information

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2 2005 9/8-11 2 2.2 ( 2-5) γ ( ) γ cos θ 2πr πρhr 2 g h = 2γ cos θ ρgr (2.1) γ = ρgrh (2.2) 2 cos θ θ cos θ = 1 (2.2) γ = 1 ρgrh (2.) 2 2. p p ρgh p ( ) p p = p ρgh (2.) h p p = 2γ r 1 1 (Berry,1975) 2-6

More information

d ϕ i) t d )t0 d ϕi) ϕ i) t x j t d ) ϕ t0 t α dx j d ) ϕ i) t dx t0 j x j d ϕ i) ) t x j dx t0 j f i x j ξ j dx i + ξ i x j dx j f i ξ i x j dx j d )

d ϕ i) t d )t0 d ϕi) ϕ i) t x j t d ) ϕ t0 t α dx j d ) ϕ i) t dx t0 j x j d ϕ i) ) t x j dx t0 j f i x j ξ j dx i + ξ i x j dx j f i ξ i x j dx j d ) 23 M R M ϕ : R M M ϕt, x) ϕ t x) ϕ s ϕ t ϕ s+t, ϕ 0 id M M ϕ t M ξ ξ ϕ t d ϕ tx) ξϕ t x)) U, x 1,...,x n )) ϕ t x) ϕ 1) t x),...,ϕ n) t x)), ξx) ξ i x) d ϕi) t x) ξ i ϕ t x)) M f ϕ t f)x) f ϕ t )x) fϕ

More information

No.004 [1] J. ( ) ( ) (1968) [2] Morse (1997) [3] (1988) 1

No.004 [1] J. ( ) ( ) (1968) [2] Morse (1997) [3] (1988) 1 No.004 [1] J. ( ) ( ) (1968) [2] Morse (1997) [3] (1988) 1 1 (1) 1.1 X Y f, g : X Y { F (x, 0) = f(x) F (x, 1) = g(x) F : X I Y f g f g F f g 1.2 X Y X Y gf id X, fg id Y f : X Y, g : Y X X Y X Y (2) 1.3

More information

2019 1 5 0 3 1 4 1.1.................... 4 1.1.1......................... 4 1.1.2........................ 5 1.1.3................... 5 1.1.4........................ 6 1.1.5......................... 6 1.2..........................

More information

n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................

More information

5. [1 ] 1 [], u(x, t) t c u(x, t) x (5.3) ξ x + ct, η x ct (5.4),u(x, t) ξ, η u(ξ, η), ξ t,, ( u(ξ,η) ξ η u(x, t) t ) u(x, t) { ( u(ξ, η) c t ξ ξ { (

5. [1 ] 1 [], u(x, t) t c u(x, t) x (5.3) ξ x + ct, η x ct (5.4),u(x, t) ξ, η u(ξ, η), ξ t,, ( u(ξ,η) ξ η u(x, t) t ) u(x, t) { ( u(ξ, η) c t ξ ξ { ( 5 5.1 [ ] ) d f(t) + a d f(t) + bf(t) : f(t) 1 dt dt ) u(x, t) c u(x, t) : u(x, t) t x : ( ) ) 1 : y + ay, : y + ay + by : ( ) 1 ) : y + ay, : yy + ay 3 ( ): ( ) ) : y + ay, : y + ay b [],,, [ ] au xx

More information

Fubini

Fubini 3............................... 3................................ 5.3 Fubini........................... 7.4.............................5..........................6.............................. 3.7..............................

More information

December 28, 2018

December 28, 2018 e-mail : kigami@i.kyoto-u.ac.jp December 28, 28 Contents 2............................. 3.2......................... 7.3..................... 9.4................ 4.5............. 2.6.... 22 2 36 2..........................

More information

20 4 20 i 1 1 1.1............................ 1 1.2............................ 4 2 11 2.1................... 11 2.2......................... 11 2.3....................... 19 3 25 3.1.............................

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

X G P G (X) G BG [X, BG] S 2 2 2 S 2 2 S 2 = { (x 1, x 2, x 3 ) R 3 x 2 1 + x 2 2 + x 2 3 = 1 } R 3 S 2 S 2 v x S 2 x x v(x) T x S 2 T x S 2 S 2 x T x S 2 = { ξ R 3 x ξ } R 3 T x S 2 S 2 x x T x S 2

More information

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8)

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8) 4 4 ) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8) a b a b = 6i j 4 b c b c 9) a b = 4 a b) c = 7

More information

untitled

untitled 0. =. =. (999). 3(983). (980). (985). (966). 3. := :=. A A. A A. := := 4 5 A B A B A B. A = B A B A B B A. A B A B, A B, B. AP { A, P } = { : A, P } = { A P }. A = {0, }, A, {0, }, {0}, {}, A {0}, {}.

More information

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4 1. k λ ν ω T v p v g k = π λ ω = πν = π T v p = λν = ω k v g = dω dk 1) ) 3) 4). p = hk = h λ 5) E = hν = hω 6) h = h π 7) h =6.6618 1 34 J sec) hc=197.3 MeV fm = 197.3 kev pm= 197.3 ev nm = 1.97 1 3 ev

More information

1W II K =25 A (1) office(a439) (2) A4 etc. 12:00-13:30 Cafe David 1 2 TA appointment Cafe D

1W II K =25 A (1) office(a439) (2) A4 etc. 12:00-13:30 Cafe David 1 2 TA  appointment Cafe D 1W II K200 : October 6, 2004 Version : 1.2, kawahira@math.nagoa-u.ac.jp, http://www.math.nagoa-u.ac.jp/~kawahira/courses.htm TA M1, m0418c@math.nagoa-u.ac.jp TA Talor Jacobian 4 45 25 30 20 K2-1W04-00

More information

i

i 009 I 1 8 5 i 0 1 0.1..................................... 1 0.................................................. 1 0.3................................. 0.4........................................... 3

More information

構造と連続体の力学基礎

構造と連続体の力学基礎 II 37 Wabash Avenue Bridge, Illinois 州 Winnipeg にある歩道橋 Esplanade Riel 橋6 6 斜張橋である必要は多分無いと思われる すぐ横に道路用桁橋有り しかも塔基部のレストランは 8 年には営業していなかった 9 9. 9.. () 97 [3] [5] k 9. m w(t) f (t) = f (t) + mg k w(t) Newton

More information

30

30 3 ............................................2 2...........................................2....................................2.2...................................2.3..............................

More information

http://www.ike-dyn.ritsumei.ac.jp/ hyoo/wave.html 1 1, 5 3 1.1 1..................................... 3 1.2 5.1................................... 4 1.3.......................... 5 1.4 5.2, 5.3....................

More information

III III 2010 PART I 1 Definition 1.1 (, σ-),,,, Borel( ),, (σ-) (M, F, µ), (R, B(R)), (C, B(C)) Borel Definition 1.2 (µ-a.e.), (in µ), (in L 1 (µ)). T

III III 2010 PART I 1 Definition 1.1 (, σ-),,,, Borel( ),, (σ-) (M, F, µ), (R, B(R)), (C, B(C)) Borel Definition 1.2 (µ-a.e.), (in µ), (in L 1 (µ)). T III III 2010 PART I 1 Definition 1.1 (, σ-),,,, Borel( ),, (σ-) (M, F, µ), (R, B(R)), (C, B(C)) Borel Definition 1.2 (µ-a.e.), (in µ), (in L 1 (µ)). Theorem 1.3 (Lebesgue ) lim n f n = f µ-a.e. g L 1 (µ)

More information

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x [ ] IC. f(x) = e x () f(x) f (x) () lim f(x) lim f(x) x + x (3) lim f(x) lim f(x) x + x (4) y = f(x) ( ) ( s46). < a < () a () lim a log xdx a log xdx ( ) n (3) lim log k log n n n k=.3 z = log(x + y ),

More information

dynamics-solution2.dvi

dynamics-solution2.dvi 1 1. (1) a + b = i +3i + k () a b =5i 5j +3k (3) a b =1 (4) a b = 7i j +1k. a = 14 l =/ 14, m=1/ 14, n=3/ 14 3. 4. 5. df (t) d [a(t)e(t)] =ti +9t j +4k, = d a(t) d[a(t)e(t)] e(t)+ da(t) d f (t) =i +18tj

More information

4................................. 4................................. 4 6................................. 6................................. 9.................................................... 3..3..........................

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

2 7 V 7 {fx fx 3 } 8 P 3 {fx fx 3 } 9 V 9 {fx fx f x 2fx } V {fx fx f x 2fx + } V {{a n } {a n } a n+2 a n+ + a n n } 2 V 2 {{a n } {a n } a n+2 a n+

2 7 V 7 {fx fx 3 } 8 P 3 {fx fx 3 } 9 V 9 {fx fx f x 2fx } V {fx fx f x 2fx + } V {{a n } {a n } a n+2 a n+ + a n n } 2 V 2 {{a n } {a n } a n+2 a n+ R 3 R n C n V??,?? k, l K x, y, z K n, i x + y + z x + y + z iv x V, x + x o x V v kx + y kx + ky vi k + lx kx + lx vii klx klx viii x x ii x + y y + x, V iii o K n, x K n, x + o x iv x K n, x + x o x

More information

IA hara@math.kyushu-u.ac.jp Last updated: January,......................................................................................................................................................................................

More information

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z I 1 m 2 l k 2 x = 0 x 1 x 1 2 x 2 g x x 2 x 1 m k m 1-1. L x 1, x 2, ẋ 1, ẋ 2 ẋ 1 x = 0 1-2. 2 Q = x 1 + x 2 2 q = x 2 x 1 l L Q, q, Q, q M = 2m µ = m 2 1-3. Q q 1-4. 2 x 2 = h 1 x 1 t = 0 2 1 t x 1 (t)

More information

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2 II No.1 [n/] [1]H n x) H n x) = 1) r n! r!n r)! x)n r r= []H n x) n,, H n x) = 1) n H n x) [3] H n x) = 1) n dn x e dx n e x [4] H n+1 x) = xh n x) nh n 1 x) ) d dx x H n x) = H n+1 x) d dx H nx) = nh

More information

B ver B

B ver B B ver. 2017.02.24 B Contents 1 11 1.1....................... 11 1.1.1............. 11 1.1.2.......................... 12 1.2............................. 14 1.2.1................ 14 1.2.2.......................

More information

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y [ ] 7 0.1 2 2 + y = t sin t IC ( 9) ( s090101) 0.2 y = d2 y 2, y = x 3 y + y 2 = 0 (2) y + 2y 3y = e 2x 0.3 1 ( y ) = f x C u = y x ( 15) ( s150102) [ ] y/x du x = Cexp f(u) u (2) x y = xey/x ( 16) ( s160101)

More information

Chap11.dvi

Chap11.dvi . () x 3 + dx () (x )(x ) dx + sin x sin x( + cos x) dx () x 3 3 x + + 3 x + 3 x x + x 3 + dx 3 x + dx 6 x x x + dx + 3 log x + 6 log x x + + 3 rctn ( ) dx x + 3 4 ( x 3 ) + C x () t x t tn x dx x. t x

More information

Note.tex 2008/09/19( )

Note.tex 2008/09/19( ) 1 20 9 19 2 1 5 1.1........................ 5 1.2............................. 8 2 9 2.1............................. 9 2.2.............................. 10 3 13 3.1.............................. 13 3.2..................................

More information

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A .. Laplace ). A... i),. ω i i ). {ω,..., ω } Ω,. ii) Ω. Ω. A ) r, A P A) P A) r... ).. Ω {,, 3, 4, 5, 6}. i i 6). A {, 4, 6} P A) P A) 3 6. ).. i, j i, j) ) Ω {i, j) i 6, j 6}., 36. A. A {i, j) i j }.

More information

January 27, 2015

January 27, 2015 e-mail : kigami@i.kyoto-u.ac.jp January 27, 205 Contents 2........................ 2.2....................... 3.3....................... 6.4......................... 2 6 2........................... 6

More information

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K II. () 7 F 7 = { 0,, 2, 3, 4, 5, 6 }., F 7 a, b F 7, a b, F 7,. (a) a, b,,. (b) 7., 4 5 = 20 = 2 7 + 6, 4 5 = 6 F 7., F 7,., 0 a F 7, ab = F 7 b F 7. (2) 7, 6 F 6 = { 0,, 2, 3, 4, 5 },,., F 6., 0 0 a F

More information

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT I (008 4 0 de Broglie (de Broglie p λ k h Planck ( 6.63 0 34 Js p = h λ = k ( h π : Dirac k B Boltzmann (.38 0 3 J/K T U = 3 k BT ( = λ m k B T h m = 0.067m 0 m 0 = 9. 0 3 kg GaAs( a T = 300 K 3 fg 07345

More information

29

29 9 .,,, 3 () C k k C k C + C + C + + C 8 + C 9 + C k C + C + C + C 3 + C 4 + C 5 + + 45 + + + 5 + + 9 + 4 + 4 + 5 4 C k k k ( + ) 4 C k k ( k) 3 n( ) n n n ( ) n ( ) n 3 ( ) 3 3 3 n 4 ( ) 4 4 4 ( ) n n

More information

φ s i = m j=1 f x j ξ j s i (1)? φ i = φ s i f j = f x j x ji = ξ j s i (1) φ 1 φ 2. φ n = m j=1 f jx j1 m j=1 f jx j2. m

φ s i = m j=1 f x j ξ j s i (1)? φ i = φ s i f j = f x j x ji = ξ j s i (1) φ 1 φ 2. φ n = m j=1 f jx j1 m j=1 f jx j2. m 2009 10 6 23 7.5 7.5.1 7.2.5 φ s i m j1 x j ξ j s i (1)? φ i φ s i f j x j x ji ξ j s i (1) φ 1 φ 2. φ n m j1 f jx j1 m j1 f jx j2. m j1 f jx jn x 11 x 21 x m1 x 12 x 22 x m2...... m j1 x j1f j m j1 x

More information

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 0 < t < τ I II 0 No.2 2 C x y x y > 0 x 0 x > b a dx

More information

1 Ricci V, V i, W f : V W f f(v ) = Imf W ( ) f : V 1 V k W 1

1 Ricci V, V i, W f : V W f f(v ) = Imf W ( ) f : V 1 V k W 1 1 Ricci V, V i, W f : V W f f(v = Imf W ( f : V 1 V k W 1 {f(v 1,, v k v i V i } W < Imf > < > f W V, V i, W f : U V L(U; V f : V 1 V r W L(V 1,, V r ; W L(V 1,, V r ; W (f + g(v 1,, v r = f(v 1,, v r

More information

ver Web

ver Web ver201723 Web 1 4 11 4 12 5 13 7 2 9 21 9 22 10 23 10 24 11 3 13 31 n 13 32 15 33 21 34 25 35 (1) 27 4 30 41 30 42 32 43 36 44 (2) 38 45 45 46 45 5 46 51 46 52 48 53 49 54 51 55 54 56 58 57 (3) 61 2 3

More information

x,, z v = (, b, c) v v 2 + b 2 + c 2 x,, z 1 i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1) v 1 = ( 1, b 1, c 1 ), v 2 = ( 2, b 2, c 2 ) v

x,, z v = (, b, c) v v 2 + b 2 + c 2 x,, z 1 i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1) v 1 = ( 1, b 1, c 1 ), v 2 = ( 2, b 2, c 2 ) v 12 -- 1 4 2009 9 4-1 4-2 4-3 4-4 4-5 4-6 4-7 4-8 4-9 4-10 c 2011 1/(13) 4--1 2009 9 3 x,, z v = (, b, c) v v 2 + b 2 + c 2 x,, z 1 i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1) v 1 = ( 1, b 1, c 1 ), v 2

More information

untitled

untitled 1 kaiseki1.lec(tex) 19951228 19960131;0204 14;16 26;0329; 0410;0506;22;0603-05;08;20;0707;09;11-22;24-28;30;0807;12-24;27;28; 19970104(σ,F = µ);0212( ); 0429(σ- A n ); 1221( ); 20000529;30(L p ); 20050323(

More information

1/1 lim f(x, y) (x,y) (a,b) ( ) ( ) lim limf(x, y) lim lim f(x, y) x a y b y b x a ( ) ( ) xy x lim lim lim lim x y x y x + y y x x + y x x lim x x 1

1/1 lim f(x, y) (x,y) (a,b) ( ) ( ) lim limf(x, y) lim lim f(x, y) x a y b y b x a ( ) ( ) xy x lim lim lim lim x y x y x + y y x x + y x x lim x x 1 1/5 ( ) Taylor ( 7.1) (x, y) f(x, y) f(x, y) x + y, xy, e x y,... 1 R {(x, y) x, y R} f(x, y) x y,xy e y log x,... R {(x, y, z) (x, y),z f(x, y)} R 3 z 1 (x + y ) z ax + by + c x 1 z ax + by + c y x +

More information

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ = 1 1.1 ( ). z = + bi,, b R 0, b 0 2 + b 2 0 z = + bi = ( ) 2 + b 2 2 + b + b 2 2 + b i 2 r = 2 + b 2 θ cos θ = 2 + b 2, sin θ = b 2 + b 2 2π z = r(cos θ + i sin θ) 1.2 (, ). 1. < 2. > 3. ±,, 1.3 ( ). A

More information

( 12 ( ( ( ( Levi-Civita grad div rot ( ( = 4 : 6 3 1 1.1 f(x n f (n (x, d n f(x (1.1 dxn f (2 (x f (x 1.1 f(x = e x f (n (x = e x d dx (fg = f g + fg (1.2 d dx d 2 dx (fg = f g + 2f g + fg 2... d n n

More information

all.dvi

all.dvi 29 4 Green-Lagrange,,.,,,,,,.,,,,,,,,,, E, σ, ε σ = Eε,,.. 4.1? l, l 1 (l 1 l) ε ε = l 1 l l (4.1) F l l 1 F 30 4 Green-Lagrange Δz Δδ γ = Δδ (4.2) Δz π/2 φ γ = π 2 φ (4.3) γ tan γ γ,sin γ γ ( π ) γ tan

More information

M3 x y f(x, y) (= x) (= y) x + y f(x, y) = x + y + *. f(x, y) π y f(x, y) x f(x + x, y) f(x, y) lim x x () f(x,y) x 3 -

M3 x y f(x, y) (= x) (= y) x + y f(x, y) = x + y + *. f(x, y) π y f(x, y) x f(x + x, y) f(x, y) lim x x () f(x,y) x 3 - M3............................................................................................ 3.3................................................... 3 6........................................... 6..........................................

More information

2 (2016 3Q N) c = o (11) Ax = b A x = c A n I n n n 2n (A I n ) (I n X) A A X A n A A A (1) (2) c 0 c (3) c A A i j n 1 ( 1) i+j A (i, j) A (i, j) ã i

2 (2016 3Q N) c = o (11) Ax = b A x = c A n I n n n 2n (A I n ) (I n X) A A X A n A A A (1) (2) c 0 c (3) c A A i j n 1 ( 1) i+j A (i, j) A (i, j) ã i [ ] (2016 3Q N) a 11 a 1n m n A A = a m1 a mn A a 1 A A = a n (1) A (a i a j, i j ) (2) A (a i ca i, c 0, i ) (3) A (a i a i + ca j, j i, i ) A 1 A 11 0 A 12 0 0 A 1k 0 1 A 22 0 0 A 2k 0 1 0 A 3k 1 A rk

More information

= M + M + M + M M + =.,. f = < ρ, > ρ ρ. ρ f. = ρ = = ± = log 4 = = = ± f = k k ρ. k

= M + M + M + M M + =.,. f = < ρ, > ρ ρ. ρ f. = ρ = = ± = log 4 = = = ± f = k k ρ. k 7 b f n f} d = b f n f d,. 5,. [ ] ɛ >, n ɛ + + n < ɛ. m. n m log + < n m. n lim sin kπ sin kπ } k π sin = n n n. k= 4 f, y = r + s, y = rs f rs = f + r + sf y + rsf yy + f y. f = f =, f = sin. 5 f f =.

More information

30 (11/04 )

30 (11/04 ) 30 (11/04 ) i, 1,, II I?,,,,,,,,, ( ),,, ϵ δ,,,,, (, ),,,,,, 5 : (1) ( ) () (,, ) (3) ( ) (4) (5) ( ) (1),, (),,, () (3), (),, (4), (1), (3), ( ), (5),,,,,,,, ii,,,,,,,, Richard P. Feynman, The best teaching

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

4 5.............................................. 5............................................ 6.............................................. 7......................................... 8.3.................................................4.........................................4..............................................4................................................4.3...............................................

More information

v er.1/ c /(21)

v er.1/ c /(21) 12 -- 1 1 2009 1 17 1-1 1-2 1-3 1-4 2 2 2 1-5 1 1-6 1 1-7 1-1 1-2 1-3 1-4 1-5 1-6 1-7 c 2011 1/(21) 12 -- 1 -- 1 1--1 1--1--1 1 2009 1 n n α { n } α α { n } lim n = α, n α n n ε n > N n α < ε N {1, 1,

More information

meiji_resume_1.PDF

meiji_resume_1.PDF β β β (q 1,q,..., q n ; p 1, p,..., p n ) H(q 1,q,..., q n ; p 1, p,..., p n ) Hψ = εψ ε k = k +1/ ε k = k(k 1) (x, y, z; p x, p y, p z ) (r; p r ), (θ; p θ ), (ϕ; p ϕ ) ε k = 1/ k p i dq i E total = E

More information

( ) ,

( ) , II 2007 4 0. 0 1 0 2 ( ) 0 3 1 2 3 4, - 5 6 7 1 1 1 1 1) 2) 3) 4) ( ) () H 2.79 10 10 He 2.72 10 9 C 1.01 10 7 N 3.13 10 6 O 2.38 10 7 Ne 3.44 10 6 Mg 1.076 10 6 Si 1 10 6 S 5.15 10 5 Ar 1.01 10 5 Fe 9.00

More information

v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i

v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i 1. 1 1.1 1.1.1 1.1.1.1 v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) R ij R ik = δ jk (4) δ ij Kronecker δ ij = { 1 (i = j) 0 (i j) (5) 1 1.1. v1.1 2011/04/10 1. 1 2 v i = R ij v j (6) [

More information

2S III IV K A4 12:00-13:30 Cafe David 1 2 TA 1 appointment Cafe David K2-2S04-00 : C

2S III IV K A4 12:00-13:30 Cafe David 1 2 TA 1  appointment Cafe David K2-2S04-00 : C 2S III IV K200 : April 16, 2004 Version : 1.1 TA M2 TA 1 10 2 n 1 ɛ-δ 5 15 20 20 45 K2-2S04-00 : C 2S III IV K200 60 60 74 75 89 90 1 email 3 4 30 A4 12:00-13:30 Cafe David 1 2 TA 1 email appointment Cafe

More information

F S S S S S S S 32 S S S 32: S S rot F ds = F d l (63) S S S 0 F rot F ds = 0 S (63) S rot F S S S S S rot F F (63)

F S S S S S S S 32 S S S 32: S S rot F ds = F d l (63) S S S 0 F rot F ds = 0 S (63) S rot F S S S S S rot F F (63) 211 12 1 19 2.9 F 32 32: rot F d = F d l (63) F rot F d = 2.9.1 (63) rot F rot F F (63) 12 2 F F F (63) 33 33: (63) rot 2.9.2 (63) I = [, 1] [, 1] 12 3 34: = 1 2 1 2 1 1 = C 1 + C C 2 2 2 = C 2 + ( C )

More information

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c) yoshioka/education-09.html pdf 1

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c)   yoshioka/education-09.html pdf 1 2009 1 ( ) ( 40 )+( 60 ) 1 1. 2. Schrödinger 3. (a) (b) (c) http://goofy.phys.nara-wu.ac.jp/ yoshioka/education-09.html pdf 1 1. ( photon) ν λ = c ν (c = 3.0 108 /m : ) ɛ = hν (1) p = hν/c = h/λ (2) h

More information

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s ... x, y z = x + iy x z y z x = Rez, y = Imz z = x + iy x iy z z () z + z = (z + z )() z z = (z z )(3) z z = ( z z )(4)z z = z z = x + y z = x + iy ()Rez = (z + z), Imz = (z z) i () z z z + z z + z.. z

More information

213 March 25, 213, Rev.1.5 4........................ 4........................ 6 1 8 1.1............................... 8 1.2....................... 9 2 14 2.1..................... 14 2.2............................

More information

,2,4

,2,4 2005 12 2006 1,2,4 iii 1 Hilbert 14 1 1.............................................. 1 2............................................... 2 3............................................... 3 4.............................................

More information

(2016 2Q H) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = ( ) a c b d (a c, b d) P = (a, b) O P ( ) a p = b P = (a, b) p = ( ) a b R 2 {( ) } R 2 x = x, y

(2016 2Q H) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = ( ) a c b d (a c, b d) P = (a, b) O P ( ) a p = b P = (a, b) p = ( ) a b R 2 {( ) } R 2 x = x, y (2016 2Q H) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = a c b d (a c, b d) P = (a, b) O P a p = b P = (a, b) p = a b R 2 { } R 2 x = x, y R y 2 a p =, c q = b d p + a + c q = b + d q p P q a p = c R c b

More information

曲面のパラメタ表示と接線ベクトル

曲面のパラメタ表示と接線ベクトル L11(2011-07-06 Wed) :Time-stamp: 2011-07-06 Wed 13:08 JST hig 1,,. 2. http://hig3.net () (L11) 2011-07-06 Wed 1 / 18 ( ) 1 V = (xy2 ) x + (2y) y = y 2 + 2. 2 V = 4y., D V ds = 2 2 ( ) 4 x 2 4y dy dx =

More information

A

A A 2563 15 4 21 1 3 1.1................................................ 3 1.2............................................. 3 2 3 2.1......................................... 3 2.2............................................

More information

ii p ϕ x, t = C ϕ xe i ħ E t +C ϕ xe i ħ E t ψ x,t ψ x,t p79 やは時間変化しないことに注意 振動 粒子はだいたい このあたりにいる 粒子はだいたい このあたりにいる p35 D.3 Aψ Cϕdx = aψ ψ C Aϕ dx

ii p ϕ x, t = C ϕ xe i ħ E t +C ϕ xe i ħ E t ψ x,t ψ x,t p79 やは時間変化しないことに注意 振動 粒子はだいたい このあたりにいる 粒子はだいたい このあたりにいる p35 D.3 Aψ Cϕdx = aψ ψ C Aϕ dx i B5 7.8. p89 4. ψ x, tψx, t = ψ R x, t iψ I x, t ψ R x, t + iψ I x, t = ψ R x, t + ψ I x, t p 5.8 π π π F e ix + F e ix + F 3 e 3ix F e ix + F e ix + F 3 e 3ix dx πψ x πψx p39 7. AX = X A [ a b c d x

More information

i I II I II II IC IIC I II ii 5 8 5 3 7 8 iii I 3........................... 5......................... 7........................... 4........................ 8.3......................... 33.4...................

More information