sp3.dvi

Size: px
Start display at page:

Download "sp3.dvi"

Transcription

1

2 (Matlab ) Daubechies ( )

3 1 1.1 x(t) (non-stationary process) (time variant process) x(t) t t t [t T/2, t + T/2] T T t ±ω x(t) =sin(ω t) t = x(t) [ T/2, T/2] x T/2 (t) x(t) 1, T P T/2 (t) = 2 t T 2, others x T/2 (t) =x(t)p T/2 (t) F x T/2 (t) =x(t)p T/2 (t) (1.1) X T/2 (ω) =F[x T/2 (t)] = F[x(t)] F[P T/2 (t)] P T/2 (t) F[P T/2 (t)] = T sinc(tω/2) = (2/ω)sin(Tω/2) x(t) F[x(t)] ±ω (δ(ω ω )+δ(ω + ω )) X T/2 (ω) X T/2 (ω) = F[x(t)] F[P T/2 (t)] = (δ(ω ω )+δ(ω + ω )) T sinc(tω/2) = T sinc(t (ω ω )/2) + T sinc(t (ω + ω )/2) (1.2) sinc sinc T T 2

4 5 T=2 T=4 T=1 Power spectrum Power spectrum Power spectrum Frequency [Hz] Frequency [Hz] Frequency [Hz] 1.1:.1[Hz] T 1.1[Hz] T = 2, 4, 1[sec] X T/2 (ω) 2 1[Hz] T 1.1.1[Hz].1[Hz] T (Matlab ex1.m) x(t) T sinc X(ω) =F[x(t)] T ω ω 1 ω ω 1 T T T 1a.1[Hz].12[Hz] T = 2, 4, 1[sec] X T/2 (ω) 2 2 1[Hz] T 1.2 T 2 2 T = 4, 1 (Matlab ex1a.m) 3

5 Power spectrum T=2 Power spectrum T=4 Power spectrum T= Frequency [Hz] Frequency [Hz] Frequency [Hz] 1.2:.1[Hz].12[Hz] T 1.2 P T/2 (t) t = h(t) x(t) X(t, ω) = x(t )h(t t)e iωt dt (1.3) (Short term Fourier transform) X(t, ω) (Short term Fourier spectrum) (Spectrogram) t ω X(t, ω) t t (Time-Frequency Analysis) 2 P T/2 (t) h(t) t ω h(t) h(t) H(ω) =F[h(t)] h(t) t 2 H(ω) ω 2 t 2 = ω 2 = t 2 h(t) 2 dt h(t) 2 dt ω 2 H(ω) 2 dω H(ω) 2 dω (1.4) (1.5) 4

6 t ω 1 2 (1.6) 1/2 h(t) h(t) =ae bt2 (1.7) H(ω) π ω2 H(ω) =a e 4b (1.8) b h(t) G(t, ω) = x(t )ae b(t t) 2 e iωt dt (1.9) (Gabor transform) g ω,t (t) e b(t t ) 2 ω 2 1.1[Hz].4[Hz].3[Hz].1[Hz] 1[Hz] h(t) T T =32, 64, 128[sec] 1.3 T =32, 64, 128[sec] (Matlab ex2.m) 1.3 x(t) x(t) R(t, τ) =E[x(t + τ/2)x (t τ/2)] (1.1) τ t x(t) E[ ] x(t) 5

7 Rectangle T=32[sec] Rectangle T=64[sec] Rectangle T=128[sec] Frequency [Hz] Frequency [Hz] Frequency [Hz] Time [sec] Blackman T=32[sec] Time [sec] Blackman T=64[sec] Time [sec] Blackman T=128[sec] Frequency [Hz] Frequency [Hz] Frequency [Hz] Time [sec] Time [sec] Time [sec] 1.3:.1[Hz].4[Hz].3[Hz].1[Hz] T =32, 64, 128[sec] x(t) t 1 T/2 R(τ) = lim x(t + τ/2)x (t τ/2) dt (1.11) T T T/2 t 1 (1.1) x(t + τ/2)x (t τ/2) (1.12) τ t ω W (t, ω) = x(t + τ/2)x (t τ/2)e iωτ dτ (1.13) W (t, ω) (Wigner distribution) 1 6

8 1 T/2 1 lim W (t, ω) dt = lim T T T/2 T T { = = T/2 lim T T/2 T/2 1 T T/2 R(τ) e iωτ dτ x(t + τ/2)x (t τ/2)e iωτ dτ dt } x(t + τ/2)x (t τ/2)dt e iωτ dτ = X(ω) 2 (1.14) x(t) x(t) ω W (t, ω) dω = = = x(t + τ/2)x (t τ/2)e iωτ dτ dω { } e iωτ dω x(t + τ/2)x (t τ/2)dτ δ(τ)x(t + τ/2)x (t τ/2)dτ = x(t) 2 (1.15) W (t, ω) x(t) ω 1,ω 2 2 ω 1,ω 2 t 1,t 2 t 1,t 2 3.1[Hz].4[Hz] 1 1[Hz].1[Hz].4[Hz].1[Hz].4[Hz] 1 W (t, ω) 1.4(a).3[Hz].1[Hz] W (t, ω) (b) (Matlab ex3.m) 7

9 .5 (a).5 (b) Frequency [Hz].1.1 Frequency [Hz] Time [sec] Time [sec] 1.4: (a).1[hz].4[hz] (b).1[hz].4[hz].3[hz].1[hz] 1.4 x(t) W (t, ω) 2 Φ(t, ω) 2 C(t, ω) =W (t, ω) Φ(t, ω) = W (t,ω )Φ(t t,ω ω ) dt dω (1.16) (Cohen s class) 2 Φ(t, ω) W (t, ω) Φ(t, ω) =δ(t)δ(ω) (1.16) C(t, ω), W(t, ω), Φ(t, ω) 2 M(θ, τ) = 1 2π A(θ, τ) = 1 2π φ(θ, τ) = 1 2π (1.16) C(t, ω)e iθt e iωτ dt dω (1.17) W (t, ω)e iθt e iωτ dt dω (1.18) Φ(t, ω)e iθt e iωτ dt dω (1.19) M(θ, τ) =A(θ, τ)φ(θ, τ) (1.2) A(θ, τ) x(t) W (t, ω) 2 (1.13) A(θ, τ) = x(t + τ/2)x (t τ/2)e iθt dt (1.21) 8

10 A(θ, τ) x(t) A(θ, τ) 2 φ(θ, τ) 2 C(t, ω) = A(θ, τ)φ(θ, τ)e iθt e iωτ dθ dτ (1.22) h(t) x(t )h(t t) R(t, τ) = x(t + τ/2)h(t t + τ/2)x (t τ/2)h (t t τ/2)dt (1.23) x(t) x(t )h(t t) (1.23) x(t )h(t t) X(t, ω) 2 X(t, ω) 2 (1.23) R(t, τ) X(t, ω) 2 = R(t, τ)e iωτ dτ (1.24) h(t) Φ( t, ω) C(t, ω) C(t, ω) 2 Φ(t, ω) φ(θ, τ) - (Chui - Williams distribution) φ(θ, τ) ( (2π) 2 θ 2 τ 2 ) φ(θ, τ) =exp, σ > (1.25) σ t 1 t 2 ω 1 ω 2 x(t) A(θ, τ) (θ, τ) (ω 1 ω 2,t 1 t 2 ) (ω 2 ω 1,t 2 t 1 ) C(t, ω) A(θ, τ) φ(θ, τ) 2 φ(θ, τ) =1 - (1.25) θ τ φ(θ, τ) 4 T = 124/8[msec] 9

11 (a) Rectangle window (b) Blackman window Frequency [Hz] Frequency [Hz] Time [sec] Time [sec] 1.5: 1[sec] ( 8[kHz]) 1.4 (a) (b) 1[Hz] 2[Hz] 15[Hz] 3[Hz] 1

12 1.5 (Matlab ) 1 Matlab function ex1 % 1 set(, DefaultAxesFontName, TimesNewRoman ); set(, DefaultAxesFontSize,8); set(, DefaultTextFontSize,8); LL=[2 4 1]; for k=1:3 subplot(1,3,k) sub1(ll(k)) title([ T= num2str(ll(k))]) end set(gcf, PaperUnits, centimeters ) set(gcf, PaperPosition,[ ]) print -depsc ex1.eps function sub1(l) N=2^14; x=zeros(1,n); y=sin((1:l)*(2*pi*.1)); x(1:length(y))=y; xx=fftshift(fft(x)); px=abs(xx).^2/l; f=[-n/2:n/2-1]/n; plot(f,px, Linewidth,.2) axesresize([1.8]) xlim([.8.12]); ylim([ max(px)]); xlabel( Frequency [Hz] ); ylabel( Power spectrum ); function ex1a % 1a set(, DefaultAxesFontName, TimesNewRoman ); set(, DefaultAxesFontSize,8); set(, DefaultTextFontSize,8); LL=[2 4 1]; for k=1:3 subplot(1,3,k) sub1(ll(k)) title([ T= num2str(ll(k))]) end set(gcf, PaperUnits, centimeters ) set(gcf, PaperPosition,[ ]) print -depsc ex1a.eps function sub1(l) N=2^14; x=zeros(1,n); y=sin((1:l)*(2*pi*.1))+sin((1:l)*(2*pi*.12)); x(1:length(y))=y; xx=fftshift(fft(x)); 11

13 px=abs(xx).^2/l; f=[-n/2:n/2-1]/n; plot(f,px, Linewidth,.2) axesresize([1.8]) xlim([.8.12]); ylim([ max(px)]); xlabel( Frequency [Hz] ); ylabel( Power spectrum ); function ex2 % 2 set(, DefaultAxesFontName, TimesNewRoman ); set(, DefaultAxesFontSize,8); set(, DefaultTextFontSize,8); t=:999; x=chirp(t,.1,t(end),.4)+chirp(t,.3,t(end),.1); subplot(2,3,1) nfft=32; window=rectwin(nfft); stft(x,nfft,window); title([ Rectangle T= int2str(nfft) [sec] ]); subplot(2,3,2) nfft=64; window=rectwin(nfft); stft(x,nfft,window); title([ Rectangle T= int2str(nfft) [sec] ]); subplot(2,3,3) nfft=128; window=rectwin(nfft); stft(x,nfft,window); title([ Rectangle T= int2str(nfft) [sec] ]); subplot(2,3,4) nfft=32; window=blackman(nfft); stft(x,nfft,window); title([ Blackman T= int2str(nfft) [sec] ]); subplot(2,3,5) nfft=64; window=blackman(nfft); stft(x,nfft,window); title([ Blackman T= int2str(nfft) [sec] ]); subplot(2,3,6) nfft=128; window=blackman(nfft); stft(x,nfft,window); title([ Blackman T= int2str(nfft) [sec] ]); set(gcf, PaperUnits, centimeters ) set(gcf, PaperPosition,[ ]) print -depsc ex2.eps function stft(x,nfft,window) x=[zeros(1,nfft/2) x zeros(1,nfft/2)]; [y,f,t]=specgram(x,nfft,1,window,nfft-1); zz=abs(y); zzmax=max(zz(:)); zzmin=min(zz(:)); pz=fix((zz-zzmin)/(zzmax-zzmin)*256); pz=uint8(255-pz); image(t,f,pz) 12

14 colormap(gray(256)); ylabel( Frequency [Hz] ); xlabel( Time [sec] ); function ex3 % 3 set(, DefaultAxesFontName, TimesNewRoman ); set(, DefaultAxesFontSize,8); set(, DefaultTextFontSize,8); t=:999; subplot(1,2,1) x=chirp(t,.1,t(end),.4); wigner(x); title( (a) ) subplot(1,2,2) x=chirp(t,.1,t(end),.4) + chirp(t,.3,t(end),.1); wigner(x); title( (b) ); set(gcf, PaperUnits, centimeters ) set(gcf, PaperPosition,[ ]) print -depsc2 ex3.eps function wigner(x) n=length(x); maxtau=n/1; % less than n x=[zeros(n,1) ; x(:) ; zeros(n,1)]; z=zeros(n,2*maxtau+1); for t=1:n for tau=-maxtau:maxtau; z(t,tau+maxtau+1) = x(t+n+ceil(tau/2))*x(t+n-ceil(tau/2)); end end zz=abs(fft(z,[],2)); zz=fftshift(zz,2) ; zzmax=max(zz(:)); zzmin=min(zz(:)); pz=fix((zz-zzmin)/(zzmax-zzmin)*256); pz=uint8(pz); f=:size(pz,2)-1; image([ 1],[-.5.5],pz) colormap(hsv(256)); ylabel( Frequency [Hz] ); xlabel( Time [sec] ); function y=shift(x,n) x=x(:) ; y=[x(n:end) x(1:n-1)]; function ex4 % 4 set(, DefaultAxesFontName, TimesNewRoman ); set(, DefaultAxesFontSize,8); set(, DefaultTextFontSize,8); [x,fs,nbits]=wavread( onkai.ume.wav ); subplot(1,2,1) stft(x,124,boxcar(124),fs); title( (a) Rectangle window ) 13

15 subplot(1,2,2) stft(x,124,blackman(124),fs); title( (b) Blackman window ); set(gcf, PaperUnits, centimeters ) set(gcf, PaperPosition,[ ]) print -depsc2 ex4.eps function pz=stft(x,nfft,window,fs) x=x(:); x=[zeros(nfft/2,1) ; x ; zeros(nfft/2,1)]; [y,f,t]=specgram(x,nfft,fs,window,nfft/4*3); zz=abs(y); zzmax=max(zz(:)); zzmin=min(zz(:)); pz=fix(((zz-zzmin)/(zzmax-zzmin)).^.35*255); pz=uint8(255-pz); image(t,f,pz) colormap(gray(256)); xlabel( Time [sec] ); ylabel( Frequency [Hz] ); 14

16 2 2.1 ψ(t) 2 a b a b { ψ a,b (t) a( ),b R }, ψ a,b (t) 1 ( ) t b ψ (2.1) a a R ψ(t) a 1/ a ψ a,b (t) 2 ψ a,b (t) x(t) W (a, b) = ψ a,b (t)x(t) dt (2.2) a, b x(t) ψ(t) (wavelet) (2.2) x(t) W (a, b) (wavelet transform) h(t) W (a, b) x(t) x(t) = W (a, b) ψ a,b (t) da db (2.3) ψ a,b (t) ψ a,b (t) 1 ψ(t) ψ(t) ψ a,b (t) ψ a,b (t) 1 a ψ ( t b a ), a( ),b R (2.4) (inverse wavelet transform) ψ(t) ψ(t) (dual wavelet) ψ(t) 15

17 2 ψ(t) Ψ(f) Ψ(f) 2 C ψ df < (2.5) f (admissible condition) ψ(t) Ψ() = ψ(t)dt = ψ(t) ψ(t) ψ(t) ψ (t) ψ(t) (2.3) x(t) = 1 1 C ψ a 2 W (a, b)ψa,b(t) da db (2.6) 2.2(a) 2.2 a, b a, b 2 L 2 (R) Z {ψ k (t) L 2 (R) k Z} x(t) L 2 (R) 2 <A,B< L 2 (R) (frame) ( ) 2 ψ k (t)x(t)dt k Z A B (2.7) x(t) 2 dt A, B (frame bound) A = B (tight) ψ k (t) (complete) A > x(t) x(t) x(t) L 2 (R) x(t) = ( ) ψ k (t)x(t)dt ψ k (t) (2.8) k Z { ψ k (t) k Z} { ψ k (t) k Z} {ψ k (t) k Z} (dual frame) {ψ k (t) k Z} (Riesz basis) 2.2(b) ψ(t) a, b {ψ i,j (t) i, j Z }, ψ i,j (t) 2 i/2 ψ(2 i t j) (2.9) 16

18 x(t) W i,j = ψ i,j (t)x(t) dt, i, j Z (2.1) (discrete wavelet transform) ψ i,j (t) L 2 (R) (2.8) x(t) = W i,j ψi,j (t) (2.11) i,j Z ψ i,j (t) ψ(t) {ψ i,j (t) i, j Z} L 2 (R) { ψ i,j (t) i, j Z} { ψ i,j (t) ψ 1, i = k and j = l k,l (t) dt = (2.12), others ψ i,j (t) ψ(t) ψ i,j (t) =2 i/2 ψ(2 i t j), i,j Z (2.13) ψi,j (t) = ψ i,j (t) (2.12) { ψ i,j (t)ψk,l(t) 1, i = k and j = l dt =, others (2.14) ψ(t) (orthogonal wavelet) x(t) W i,j = ψ i,j (t)x(t) dt =2 i/2 ψ(2 i t j)x(t) dt, i, j Z (2.15) x(t) = W i,j ψi,j(t) =2 i/2 W i,j ψ (2 i t j) (2.16) i,j Z i,j Z (orthogonal wavelet transform) (inverse orthogonal wavelet transform) 2.2(c) 2.3 (Haar function) 1, t<1/2 ψ(t) = 1, 1/2 t<1, others (2.17) 17

19 i,j i,j i,j i,j i,j 2.1: ψ(t) C m t t k ψ(t) dt =, k m (2.18) Meyer Mayer Daubechies Daubechies 18

20 3 3.1 x(t) ψ(t) x(t) t x(t) 2 L 2 (R) 2 x(t) L 2 (R) 2 j, j Z A 2 j A 2 j [x(t)] 2 j 2 j A 2 j 1. A 2 j V 2 j L 2 (R) A 2 j [x(t)] 2 j A 2 j [A 2 j [x(t)]] A 2 j [x(t)] A 2 j A 2 j = A 2 j V 2 j L 2 (R) 2 j 2. A 2 j V 2 j A 2 j [x(t)] 2 j 2 x(t) y(t) x(t) 2 dt A 2 j [x(t)] x(t) 2 dt, y(t) V 2 j (3.1) 3. x(t) 2 j+1 x(t) 2 j V 2 j V 2 j+1, j Z (3.2) 4. 2 j V 2 j x(t) x(2 k t) 2 j+k V 2 j+k x(t) V 2 j x(2 k t) V 2 j+k, j, k Z (3.3) 19

21 5. A 2 j [x(t)] 2 j V 2 j I 2 (Z) I 6. x(t) L 2 (R) 2 j k 2 j k 2 j A 2 j [x(t 2 j k)] x(t) 2 j 2 j k A 2 j [x(t)] t=t 2 j k 5. A 2 j [x(t 2 j k)] = A 2 j [x(t)] t=t 2 j k, j, k Z (3.4) I[A 2 j [x(t)]] = α i I[A 2 j [x(t 2 j k)]] = α i k, i, j, k Z (3.5) 7. x(t) 2 j x(t) + x(t) + lim V 2 j + j = V 2 j is dense in L 2 (R) j= + (3.6) lim V 2 j j = V 2 j = { } j= A 2 j L 2 (R) 2 j {V 2 j j Z} L 2 (R) (multi-resolution approximation) 3.2 {V 2 j j Z} L 2 (R) { 2 j/2 φ(2 j t n) n Z} (3.7) V 2 j φ(t) V 1 L 2 (R) φ(t) (scaling function) x(t) L 2 (R) 2 j A 2 j [x(t)] A 2 j [x(t)] = 2 j/2 A 2 j x n φ(2 j t n) (3.8) n Z A 2 j x n 2 j/2 φ (2 j t m) t {2 j/2 φ(2 j t n) n Z} A 2 j x n =2 j/2 φ (2 j t n)a 2 j [x(t)] dt, n Z (3.9) 2

22 {2 j/2 φ(2 j t n) n Z} V 2 j A 2 j V 2 j (3.9) A 2 j [x(t)] x(t) (3.9) A 2 j x n =2 j/2 φ (2 j t n)x(t) dt, n Z (3.1) x(t) 2 j (3.1) (3.1) 2 j/2 φ (2 j t n) x(t) 2 j (LPF) 2 j/2 φ(2 j t n) 2 j LPF (3.1) x(t) 2 j/2 φ(2 j t) sinc 2 j/2 φ(2 j t)=sin(2 j πt)/(2 j πt) LPF x(t) 2 j A 2 j x n x(t) x(t) x(t) 2 j A 2 j [x(t)] LPF A 2 j x n 2 j 2 =1 A 1 x n =1 x(t) A 1 x n x(t) A 2 j x n,j< x(t) A 2 j x n,j< A 1 x n V 2 V 2 1 V 2 V 2 1 V 2 φ(t) V 2 1 { 2 1/2 φ(2t n) n Z} φ(t) = l ( n)2 1/2 φ(2t n) (3.11) n Z l ( n) n l ( n) { 2 1/2 φ(2t n) n Z} l ( n) = 2 1/2 φ (2t n)φ(t) dt (3.12) (3.11) φ(t) 2 (two scale) φ(t) φ(t)

23 3.1: A 2 j x n A 2 j+1x n ( ) A 2 x n A 2 j x n,j < (3.11) t 2 j t k x(t) (3.1) A 2 j x n = l ( k)a 2 j+1x 2n+k k Z 2n + k = m A 2 j x n = m Z l (2n m)a 2 j+1x m (3.13) (3.13) l (n) FIR L A 2 j x n A 2 j+1x n A 2 j x n A 2 j+1x n FIR L A 1 x n L A 2 j x n,j< j+1 V 2 j+1 2 j V 2 j V 2 j V 2 j+1 V 2 j+1 V 2 j O 2 j V 2 j+1 = V 2 j O 2 j (3.14) L 2 (R) O 2 j D 2 j x(t) L 2 (R) O 2 j D 2 j [x(t)] { 2 j/2 ψ(2 j t n) n Z} (3.15) O 2 j ψ(t) O 1 L 2 (R) (3.15) (2.9) ψ(t) 22

24 D 2 j [x(t)] O 2 j { 2 j/2 ψ(2 j t n) n Z} D 2 j [x(t)] = 2 j/2 n Z D 2 j x n ψ(2 j t n) (3.16) D 2 j x n 2 j/2 ψ(2 j t m) { 2 j/2 ψ(2 j t n) n Z} D 2 j x n =2 j/2 ψ (2 j t n)x(t) dt (3.17) A 2 j+1x n A 2 j x n x(t) 1 A 1 x n J A 2 J x n { D 2 j x n J j 1} V 1 V 1 = O 2 1 O 2 2 O 2 J V 2 J (3.18) V 1 (orthogonal wavelet decomposition) 3.5 ψ(t) O 1 V 2 { 2 1/2 φ(2t n) n Z} ψ(t) = h ( n)2 1/2 φ(2t n) (3.19) n Z h ( n) n h ( n) { 2 1/2 φ(2t n) n Z} h ( n) = 2 1/2 φ (2t n)ψ(t) dt (3.2) (3.19) t 2 j t k x(t) (3.1),(3.17) D 2 j x n = h (2n k)a 2 j+1x k (3.21) k Z (3.21) h (n) FIR H D 2 j x n A 2 j+1x n D 2 j x n A 2 j+1x n FIR H A 1 x n L 2:1 ( j 1) H 2:1 D 2 j x n, j <

25 3.2: D 2 j x n A 2 j+1x n ( ) A 2 x n D 2 j x n,j < 3.6 V 2 = V 1 O 1 φ(2t) V 2 V 1 { φ(t n) n Z} O 1 { ψ(t n) n Z} φ(2t k) =2 1/2 l 1 (k 2n)φ(t n)+2 1/2 h 1 (k 2n)ψ(t n) (3.22) n Z n Z l 1 (k 2n),h 1 (k 2n) l 1 (n),h 1 (n) l 1 (n),h 1 (n) n l 1 (k 2n),h 1 (k 2n) (3.22) 2 1/2 l 1 (k 2n),h 1 (k 2n) {φ(t n),ψ(t n) n Z} l 1 (k 2n) =2 1/2 φ (t n)φ(2t k) dt (3.23) h 1 (k 2n) =2 1/2 ψ (t n)φ(2t k) dt (3.24) (3.22) t 2 j t x(t) (3.1),(3.17) A 2 j+1x n = l 1 (n 2k)A 2 j x k + h 1 (n 2k)D 2 j x k (3.25) k Z k Z x(t) (orthogonal wavelet reconstruction) (3.25) l 1 (n) h 1 (n) FIR L 1,H 1 A 2 j+1x n A 2 j x n D 2 j x n A 2 j+1x n A 2 j x n D 2 j x n 24

26 3.3: A 2 j x n D 2 j x n A 2 j+1x n FIR L 1,H (3.13) (3.21) (3.25) (subband filter) L H L 1 H =1 x(t) φ(t) ψ(t) l (t), l 1 (t), h (t), h 1 (t) 3.7 (3.12) (3.2) (3.23) (3.24) FIR L,H,L 1,H 1 l (n), h (n), l 1 (n), h 1 (n) (3.23) (3.24) n = (3.12) (3.2) l (n) l 1 (n) h (n) h 1 (n) l 1 (n) =l( n) (3.26) h 1 (n) =h ( n) (3.27) V 1 O 1 { φ(t n) n Z} { ψ(t n) n Z} φ (t m)ψ(t)dt =, m Z (3.28) 25

27 3.4: 3 (3.11),(3.19) (3.28) l (n)h (k) n Z k Z φ (t 2m + n)φ(t + k) dt =, m Z (3.29) (3.29) k n 2m k = n 2m l (n)h (n 2m) =, m Z (3.3) n Z (3.3) h (n) =( 1) 1 n l (1 n) (3.31) l 1 (n) h 1 (n) h 1 (n) =( 1) 1 n l 1 (1 n) (3.32) L H L 1 H Daubechies x(t) 26

28 Meyer φ(t) ψ(t) L,L 1,H,H 1 Daubechies Daubechies l (t),l 1 (t),h (t),h 1 (t) Daubechies N {l (n) n Z} N Daubechies l (n) =, n <, n>2n 2N 1 l (n) =2 1/2 k= 2N 1 l(n) 2 (3.33) =1 k= 2N 1 k= l (n)l (n 2m) =, m (3.33) l (n) Daubechies N =1,...,1 3.1 Daubechies (3.33) l (n),n 2 (3.11) φ(x)dx =1 φ(t) φ(x) ψ(x) N 1 Daubechies 5 N Daubechies 27

29 3.1: Daubechies L l (n) N n l (n) N n l (n) 1 2 1/ /

30 4 4.1 x(t) N x(t) = x n (t) (4.1) n=1 x n (t) x(t) x(t) x(t) =x 1 (t) x 2 (t) x N (t) N X(ω) = X n (ω) (4.2) n=1 X(ω) =F[x(t)], X n (ω) = F[x n (t)] (4.2) (cepstrum analysis) (spectrum) spec X(ω) x n (t) X(ω) (Complex Cepstrum) x(t) X(ω) 2 x n (t) X n (ω) 2 X(ω) 2 (Power Cepstrum) (4.2) 2 N X(ω) 2 = X n (ω) 2 (4.3) n=1 2 N log X(ω) = log X n (ω) (4.4) n=1 x pc (t) F 1 [log X(ω) ] = 29 N F 1 [log X n (ω) ] (4.5) n=1

31 t (frequency) fre que (quefrency) x pc (t) X n (ω) 2 (filter) fil (lifter) (high) (low) (long) (short) x(t) y(t) s ay(t) x(t) =y(t)+ay(t s), a < 1 (4.6) y(t) h(τ) =δ(τ)+aδ(τ s) x(t) =h(t) y(t) y(t) x(t) y(t) s x(t) y(t) y(t) y(t s) y(t) x(t), h(t), y(t) X(ω), H(ω), Y(ω) (4.6) ( X(ω) =Y (ω)h(ω) =Y (ω) 1+ae iωs) (4.7) X(ω) 2 = Y (ω) 2 1+ae iωs 2 = Y (ω) 2 (1 + ae iωs )(1 + ae iωs ) = Y (ω) 2( ) 1+a 2 +2acos(ωs) (4.8) ( log X(ω) 2 =log Y (ω) 2 +log(1+a 2 )+log 1+ 2a ) 1+a 2 cos(ωs) (4.9) 2a a < 1 < 1 log(1+x) Taylor 1 <x 1 1+a 2 x x2 2 + x3 3 x4 4 + log X(ω) 2 =log Y (ω) 2 +log(1+a 2 )+ ( 1) n+1 ( ) n 2a n 1+a 2 cos n (ωs) (4.1) 2 t = 3 cos(ωs), cos(2ωs), cos(3ωs),... s x pc (t) x pc (t) =y pc (t)+a δ(t)+ n=1 A n (δ(t ns)+δ(t + ns)) (4.11) n=1 3

32 A n, n Z y(t) Y (ω) 2 X(ω) 2 s x(t) x(t) x(t) x(t) x(t) x(t) x(t) (4.11) 3 (long) a 1 2a/(1 + a 2 ) 1 3 x(t) 6 y(t) =cos (2π 2 ) 21 t e t 8, t =, 1,...,23 1, t = h(t) =.7, t =1, others x(t) =y(t) h(t) x(t) y(t) h(t) x(t) N =64, 128, 256 y(t) 4.1(a) y(t) (b) (c) x(t) (c) (b) x(t) N = 128 (d) (d) (e) (e) (f) y(t) (b) x(t) N =64, 128,

33 1 (a) original signal y(t) 2 (b) power spectrum of y(t) time 5 5 frequency 1 (c) observed signal x(t) 6 (d) power stpectrum of x(t) time 5 5 frequency 1 (e) power cepstrum of x(t) 2 (f) estimated power spectrum of y(t) quefrency 5 5 frequency 4.1: 6 32

34 1 (a) power cepstrum N=64 2 (b) estimated power spectrum N= quefrency 2 2 frequency 1 (c) power cepstrum N=128 2 (d) estimated power spectrum N= quefrency 5 5 frequency 1 (e) power cepstrum N=256 2 (f) estimated power spectrum N= quefrency frequency 4.2: 33

35 4.2 x(t) x x(t) log(x) log x + i arg(x) (4.12) x cc (t) F 1 [log F[x(t)]] = F 1 [log X(ω) + i arg(x(ω))] (4.13) arg(x(ω)) ( π, π) arg(x) x pc (t) x cc (t) x(t) x pc (t) x pc (t)=f 1 [log X(ω) 2 ] = F 1 [log(x(ω)x (ω))] = F 1 [log X(ω)+logX (ω)] (4.14) X (ω) =X( ω) x(t) x pc (t) x pc (t) =x cc (t)+x cc ( t) (4.15) 2 x(t) =y(t)+ay(t s), a < 1 x(t) 2 Taylor ( log X(ω) =logy (ω)+log 1+ae iωs) (4.16) log X(ω) =logy (ω)+ a n ( 1) n+1 e inωs (4.17) n! n=1 34

36 x(t) x cc (t) x cc (t)=f 1 [log X(ω)] a n ( 1) n+1 = y cc (t)+ δ(t ns) (4.18) n! n=1 s s y(t) Y (ω) X(ω) Y (ω) y(t) 7 y(t) =cos (2π 2 ) 21 t e t 8, t =, 1,...,23 1, t = h(t) =.7, t =1, others x(t) =y(t) h(t) x(t) y(t) h(t) x(t) N =64 4.3(a) y(t) (b) (c) x(t) (c) (a) x(t) N =64 (d) (d) (e) (e) (f) (g) (a) 4.3 ( ) (4.9) (4.16) a > 1 (4.16) ( ) log X(ω) =logy (ω)+log ae iωs (1 + a 1 e iωs ) (4.19) a 1 < 1 Taylor Taylor a n ( 1) n+1 log X(ω) =logy (ω)+loga iωs + e inωs (4.2) n! x cc (t) =y cc (t)+δ(t)loga + F 1 a n ( 1) n+1 [ iωs]+ δ(t + ns) (4.21) n! n=1 n=1 35

37 1 (a) original signal y(t) 5 (b) power spectrum of y(t) time frequency 1 (c) observed signal x(t) 1 (d) power spectrum of x(t) time frequency 1 (e) complex cepstrum of x(t) 5 (f) estimated power spectrum of y(t) quefrency frequency 1 (g) estimated y(t) time 4.3: 7 36

38 (4.18) a > 1 2,3 3 x(t) x(t) z X(z) X(z) = n a n b Az r (1 a i z 1 ) (1 b i z) i=1 n c i=1 n d (1 c i z 1 ) (1 d i z) i=1 i=1 (4.22) a i, b i, c i, d i < 1 i a i,c i z b i,d i z A z r r < r> (4.22) n a n b log X(z)=logA + r log z + log(1 a i z 1 )+ log(1 b i z) i=1 i=1 n d n c log(1 c i z 1 ) log(1 d i z) (4.23) i=1 i=1 log(1 + x) Taylor log(1 + x) = ( 1) n=1 n+1 xn n for x < 1 (4.24) n a log X(z)=logA + r log z n c + i=1 n=1 ( )= n=1 n a log X(z)=logA + r log z n c + i=1 n= c n i n z n + n= i=1 n=1 n d where, u(n) = i=1 n= c n i n z n u(n 1) + i=1 n=1 a n i n z n n b i=1 n=1 b n i n zn d n i n zn (4.25) ( )u(n 1) (4.26) { 1, n, n < a n i n z n u(n 1) n d i=1 n= n b i=1 n= b n i n zn u(n 1) d n i n zn u(n 1) (4.27) 37

39 4,6 n n log X(z)=logA + r log z + n c n= i=1 n a n= i=1 c n i n u(n 1)z n a n i n u(n 1)z n + n d n= i=1 n b n= i=1 b n u( n 1)z n in d n in u( n 1)z n (4.28) z z (4.22) x(n) x cc (n)=δ(n)loga + r( 1)n n n c + i=1 c n nd i n u(n 1) n a {u(n 1) + u( n 1)} i=1 i=1 a n nb i n u(n 1) + i=1 b n u( n 1) in d n u( n 1) (4.29) in n r( 1) n n b b n nd i + n n d n i for n< n i=1 i=1 x cc (n) = log A for n = r( 1) n n a a n nc i n n + c n i for n> n i=1 i=1 (4.3) (4.3) a i,b i,c i,d i r( 1)n n ω 2 (4.3) x cc (n) x(n) n < n > x pc (n), for n> x cc (n) =.5x pc (n), for n (4.31), for n<, for n> x cc (n) =.5x pc (n), for n (4.32) x pc (n), for n< (exponential window) w(t) = { α n, <α<1 for t N 1, others (4.33) 38

40 x(t) w(t) z z X(α 1 z) a s aα s α y(t) =cos (2π 2 ) 21 t e t 8, t =, 1,...,23 1, t = h(t) = 2, t =1, others x(t) =y(t) h(t) x(t) y(t) h(t) x(t) N =64 h(t) x(t) 4.4(a) y(t) (b) (c) x(t) (c) (a) x(t) N =64 (d) (d) (e) (e) (f) (g) (a) h(t) 1 7 h(t) 4.3(e), 1, 2, 3, (e), 1, 2, 3,... (e) 4.4 x(t) X(ω) ˆX(ω) = isgn(ω)x(ω) (4.34) X(ω) (Hilbert transform) 1, x > sgn(x) =, x = 1, x < x(t) ˆx(t) ˆX(ω) isgn(ω) 1/πt ˆx(t)=F 1 [ ˆX(ω)] = F 1 [ isgn(ω)x(ω)] 39

41 1 (a) original signal y(t) 5 (b) power spectrum of y(t) time frequency 5 (c) observed signal x(t) 2 (d) power spectrum of x(t) time frequency 1 (e) complex cepstrum of x(t) 1 (f) estimated power spectrum of y(t) quefrency frequency 2 (g) estimated y(t) time 4.4: 8 4

42 4.1: x(t) ˆx(t) ŷ(t) y(t) y(t)e iωt iy(t)e iωt y(t)cos(ωt) y(t)sin(ωt) y(t)sin(ωt) y(t)cos(ωt) = 1 π = F 1 [ isgn(ω)] F 1 [X(ω)] = 1 πt x(t) x(τ) dτ (4.35) t τ 4.1 X(ω) ˆX(ω) x(t) ˆx(t) x(t) ˆx(t) x(t) ˆx (t) dt = = 1 2π = = = F 1 [X(ω) ˆX ( ω)] dt = i X(ω ω ) ˆX ( ω )dω e iωt dω dt x(t)e iω t dt ˆX ( ω )dω X( ω ) ˆX ( ω )dω ( i)sgn(ω )X( ω )X ( ω )dω sgn(ω) X(ω) 2 dω = (4.36) 4.5 x(t) ˆx(t) x(t) ˆx(t) x + (t)=x(t)+iˆx(t) (4.37) x (t)=x(t) iˆx(t) (4.38) x + (t) x (t) x + (t) x + (t), x (t) X + (ω),x (ω) X + (ω)=x(ω)+i( isgn(ω))x(ω) =X(ω)+sgn(ω)X(ω) (4.39) X (ω)=x(ω) i( isgn(ω))x(ω) =X(ω) sgn(ω)x(ω) (4.4) 41

43 X + (ω) = X (ω) = 2X(ω), ω > X(ω), ω =, ω <, ω > X(ω), ω = 2X(ω), ω < (4.41) (4.42) x + (t) x (t) e ±iωt e ±iωt =cos(ωt) ± i sin(ωt) (4.43) x + (t) X + (ω) X + (t) 2πx + ( ω) X + (t) F[X + (t)] = 2πx + ( ω) = 2π(x( ω)+iˆx( ω)) = 2π(x(ω) iˆx(ω)) (4.44) X + (t) (4.41) t < X + (t) h(t) t< x(t) x + (t) x(t) X(ω) (4.41) X + (ω) x(t) N 2X(ω), ω {1, 2,...,N/2 1} X + (ω) = X(ω), ω {,N/2}, ω {N/2+1,...,N 1} x(t) N 2X(ω), ω {1, 2,...,(N 1)/2} X + (ω) = X(ω), ω =, ω {(N 1)/2+1,...,N 1} cos(ωt) m(t) (Amplitude Modulation) x(t) =m(t)cos(ωt) m(t) x(t) x(t) m(t) x(t) 4.1 ˆx(t) =m(t)sin(ωt) 42

44 x(t) x ± (t) = m(t)cos(ωt) ± im(t)sin(ωt) = m(t)e ±iωt (4.45) x ± (t) = m(t) m(t), t x(t) m(t), t x(t) x + (t) =x(t)+iˆx(t) 1 ˆx(t) φ m (t) tan x(t) (4.46) ω m (t) d dt φ m(t) (4.47) 9 sin(ω c t), ω c =2π.2 m(t) =.3sin(ω m t)+.5, ω m =2π.4 t t =, 1,..., (a) m(t) (b) x(t) (c) x(t) m(t) (d) 43

45 1 (a) carrier wave 1 (b) signal m(t) time time (c) Amplitude modulated signal x(t) and the Hilbert transform (d) Demodulated signal time time 4.5: 9 44

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63> 通信方式第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/072662 このサンプルページの内容は, 第 2 版発行当時のものです. i 2 2 2 2012 5 ii,.,,,,,,.,.,,,,,.,,.,,..,,,,.,,.,.,,.,,.. 1990 5 iii 1 1

More information

[1] 1.1 x(t) t x(t + n ) = x(t) (n = 1,, 3, ) { x(t) : : 1 [ /, /] 1 x(t) = a + a 1 cos πt + a cos 4πt + + a n cos nπt + + b 1 sin πt + b sin 4πt = a

[1] 1.1 x(t) t x(t + n ) = x(t) (n = 1,, 3, ) { x(t) : : 1 [ /, /] 1 x(t) = a + a 1 cos πt + a cos 4πt + + a n cos nπt + + b 1 sin πt + b sin 4πt = a 13/7/1 II ( / A: ) (1) 1 [] (, ) ( ) ( ) ( ) etc. etc. 1. 1 [1] 1.1 x(t) t x(t + n ) = x(t) (n = 1,, 3, ) { x(t) : : 1 [ /, /] 1 x(t) = a + a 1 cos πt + a cos 4πt + + a n cos nπt + + b 1 sin πt + b sin

More information

<4D F736F F D B B BB2D834A836F815B82D082C88C602E646F63>

<4D F736F F D B B BB2D834A836F815B82D082C88C602E646F63> 信号処理の基礎 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/081051 このサンプルページの内容は, 初版 1 刷発行時のものです. i AI ii z / 2 3 4 5 6 7 7 z 8 8 iii 2013 3 iv 1 1 1.1... 1 1.2... 2 2 4 2.1...

More information

main.dvi

main.dvi 3 Discrete Fourie Transform: DFT DFT 3.1 3.1.1 x(n) X(e jω ) X(e jω )= x(n)e jωnt (3.1) n= X(e jω ) N X(k) ωt f 2π f s N X(k) =X(e j2πk/n )= x(n)e j2πnk/n, k N 1 (3.2) n= X(k) δ X(e jω )= X(k)δ(ωT 2πk

More information

画像工学特論

画像工学特論 .? (x i, y i )? (x(t), y(t))? (x(t)) (X(ω)) Wiener-Khintchine 35/97 . : x(t) = X(ω)e jωt dω () π X(ω) = x(t)e jωt dt () X(ω) S(ω) = lim (3) ω S(ω)dω X(ω) : F of x : [X] [ = ] [x t] Power spectral density

More information

SFGÇÃÉXÉyÉNÉgÉãå`.pdf

SFGÇÃÉXÉyÉNÉgÉãå`.pdf SFG 1 SFG SFG I SFG (ω) χ SFG (ω). SFG χ χ SFG (ω) = χ NR e iϕ +. ω ω + iγ SFG φ = ±π/, χ φ = ±π 3 χ SFG χ SFG = χ NR + χ (ω ω ) + Γ + χ NR χ (ω ω ) (ω ω ) + Γ cosϕ χ NR χ Γ (ω ω ) + Γ sinϕ. 3 (θ) 180

More information

23 7 28 i i 1 1 1.1................................... 2 1.2............................... 3 1.2.1.................................... 3 1.2.2............................... 4 1.2.3 SI..............................

More information

chap1.dvi

chap1.dvi 1 1 007 1 e iθ = cos θ + isin θ 1) θ = π e iπ + 1 = 0 1 ) 3 11 f 0 r 1 1 ) k f k = 1 + r) k f 0 f k k = 01) f k+1 = 1 + r)f k ) f k+1 f k = rf k 3) 1 ) ) ) 1+r/)f 0 1 1 + r/) f 0 = 1 + r + r /4)f 0 1 f

More information

数値計算:フーリエ変換

数値計算:フーリエ変換 ( ) 1 / 72 1 8 2 3 4 ( ) 2 / 72 ( ) 3 / 72 ( ) 4 / 72 ( ) 5 / 72 sample.m Fs = 1000; T = 1/Fs; L = 1000; t = (0:L-1)*T; % Sampling frequency % Sample time % Length of signal % Time vector y=1+0.7*sin(2*pi*50*t)+sin(2*pi*120*t)+2*randn(size(t));

More information

春期講座 ~ 極限 1 1, 1 2, 1 3, 1 4,, 1 n, n n {a n } n a n α {a n } α {a n } α lim n an = α n a n α α {a n } {a n } {a n } 1. a n = 2 n {a n } 2, 4, 8, 16,

春期講座 ~ 極限 1 1, 1 2, 1 3, 1 4,, 1 n, n n {a n } n a n α {a n } α {a n } α lim n an = α n a n α α {a n } {a n } {a n } 1. a n = 2 n {a n } 2, 4, 8, 16, 春期講座 ~ 極限 1 1, 1 2, 1 3, 1 4,, 1 n, n n {a n } n a n α {a n } α {a n } α lim an = α n a n α α {a n } {a n } {a n } 1. a n = 2 n {a n } 2, 4, 8, 16, 32, n a n {a n } {a n } 2. a n = 10n + 1 {a n } lim an

More information

Microsoft Word - 信号処理3.doc

Microsoft Word - 信号処理3.doc Junji OHTSUBO 2012 FFT FFT SN sin cos x v ψ(x,t) = f (x vt) (1.1) t=0 (1.1) ψ(x,t) = A 0 cos{k(x vt) + φ} = A 0 cos(kx ωt + φ) (1.2) A 0 v=ω/k φ ω k 1.3 (1.2) (1.2) (1.2) (1.1) 1.1 c c = a + ib, a = Re[c],

More information

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2 II No.1 [n/] [1]H n x) H n x) = 1) r n! r!n r)! x)n r r= []H n x) n,, H n x) = 1) n H n x) [3] H n x) = 1) n dn x e dx n e x [4] H n+1 x) = xh n x) nh n 1 x) ) d dx x H n x) = H n+1 x) d dx H nx) = nh

More information

QMI_09.dvi

QMI_09.dvi 25 3 19 Erwin Schrödinger 1925 3.1 3.1.1 3.1.2 σ τ 2 2 ux, t) = ux, t) 3.1) 2 x2 ux, t) σ τ 2 u/ 2 m p E E = p2 3.2) E ν ω E = hν = hω. 3.3) k p k = p h. 3.4) 26 3 hω = E = p2 = h2 k 2 ψkx ωt) ψ 3.5) h

More information

QMI_10.dvi

QMI_10.dvi 25 3 19 Erwin Schrödinger 1925 3.1 3.1.1 σ τ x u u x t ux, t) u 3.1 t x P ux, t) Q θ P Q Δx x + Δx Q P ux + Δx, t) Q θ P u+δu x u x σ τ P x) Q x+δx) P Q x 3.1: θ P θ Q P Q equation of motion P τ Q τ σδx

More information

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 0 < t < τ I II 0 No.2 2 C x y x y > 0 x 0 x > b a dx

More information

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt S I. x yx y y, y,. F x, y, y, y,, y n http://ayapin.film.s.dendai.ac.jp/~matuda n /TeX/lecture.html PDF PS yx.................................... 3.3.................... 9.4................5..............

More information

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d S I.. http://ayapin.film.s.dendai.ac.jp/~matuda /TeX/lecture.html PDF PS.................................... 3.3.................... 9.4................5.............. 3 5. Laplace................. 5....

More information

(1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10)

(1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10) 2017 12 9 4 1 30 4 10 3 1 30 3 30 2 1 30 2 50 1 1 30 2 10 (1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10) (1) i 23 c 23 0 1 2 3 4 5 6 7 8 9 a b d e f g h i (2) 23 23 (3) 23 ( 23 ) 23 x 1 x 2 23 x

More information

main.dvi

main.dvi 5 IIR IIR z 5.1 5.1.1 1. 2. IIR(Infinite Impulse Response) FIR(Finite Impulse Response) 3. 4. 5. 5.1.2 IIR FIR 5.1 5.1 5.2 104 5. IIR 5.1 IIR FIR IIR FIR H(z) = a 0 +a 1 z 1 +a 2 z 2 1+b 1 z 1 +b 2 z 2

More information

2014 3 10 5 1 5 1.1..................................... 5 2 6 2.1.................................... 6 2.2 Z........................................ 6 2.3.................................. 6 2.3.1..................

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x [ ] IC. f(x) = e x () f(x) f (x) () lim f(x) lim f(x) x + x (3) lim f(x) lim f(x) x + x (4) y = f(x) ( ) ( s46). < a < () a () lim a log xdx a log xdx ( ) n (3) lim log k log n n n k=.3 z = log(x + y ),

More information

Sample function Re random process Flutter, Galloping, etc. ensemble (mean value) N 1 µ = lim xk( t1) N k = 1 N autocorrelation function N 1 R( t1, t1

Sample function Re random process Flutter, Galloping, etc. ensemble (mean value) N 1 µ = lim xk( t1) N k = 1 N autocorrelation function N 1 R( t1, t1 Sample function Re random process Flutter, Galloping, etc. ensemble (mean value) µ = lim xk( k = autocorrelation function R( t, t + τ) = lim ( ) ( + τ) xk t xk t k = V p o o R p o, o V S M R realization

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

ds2.dvi

ds2.dvi 1 Fourier 2 : Fourier s(t) Fourier S(!) = s(t) = 1 s(t)e j!t dt (1) S(!)e j!t d! (2) 1 1 s(t) S(!) S(!) =S Λ (!) Λ js T (!)j 2 P (!) = lim T!1 T S T (!) = T=2 T=2 (3) s(t)e j!t dt (4) T P (!) Fourier P

More information

A (1) = 4 A( 1, 4) 1 A 4 () = tan A(0, 0) π A π

A (1) = 4 A( 1, 4) 1 A 4 () = tan A(0, 0) π A π 4 4.1 4.1.1 A = f() = f() = a f (a) = f() (a, f(a)) = f() (a, f(a)) f(a) = f 0 (a)( a) 4.1 (4, ) = f() = f () = 1 = f (4) = 1 4 4 (4, ) = 1 ( 4) 4 = 1 4 + 1 17 18 4 4.1 A (1) = 4 A( 1, 4) 1 A 4 () = tan

More information

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10% 1 2006.4.17. A 3-312 tel: 092-726-4774, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office hours: B A I ɛ-δ ɛ-δ 1. 2. A 1. 1. 2. 3. 4. 5. 2. ɛ-δ 1. ɛ-n

More information

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google I4 - : April, 4 Version :. Kwhir, Tomoki TA (Kondo, Hirotk) Google http://www.mth.ngoy-u.c.jp/~kwhir/courses/4s-biseki.html pdf 4 4 4 4 8 e 5 5 9 etc. 5 6 6 6 9 n etc. 6 6 6 3 6 3 7 7 etc 7 4 7 7 8 5 59

More information

9 5 ( α+ ) = (α + ) α (log ) = α d = α C d = log + C C 5. () d = 4 d = C = C = 3 + C 3 () d = d = C = C = 3 + C 3 =

9 5 ( α+ ) = (α + ) α (log ) = α d = α C d = log + C C 5. () d = 4 d = C = C = 3 + C 3 () d = d = C = C = 3 + C 3 = 5 5. 5.. A II f() f() F () f() F () = f() C (F () + C) = F () = f() F () + C f() F () G() f() G () = F () 39 G() = F () + C C f() F () f() F () + C C f() f() d f() f() C f() f() F () = f() f() f() d =

More information

振動と波動

振動と波動 Report JS0.5 J Simplicity February 4, 2012 1 J Simplicity HOME http://www.jsimplicity.com/ Preface 2 Report 2 Contents I 5 1 6 1.1..................................... 6 1.2 1 1:................ 7 1.3

More information

2009 IA 5 I 22, 23, 24, 25, 26, (1) Arcsin 1 ( 2 (4) Arccos 1 ) 2 3 (2) Arcsin( 1) (3) Arccos 2 (5) Arctan 1 (6) Arctan ( 3 ) 3 2. n (1) ta

2009 IA 5 I 22, 23, 24, 25, 26, (1) Arcsin 1 ( 2 (4) Arccos 1 ) 2 3 (2) Arcsin( 1) (3) Arccos 2 (5) Arctan 1 (6) Arctan ( 3 ) 3 2. n (1) ta 009 IA 5 I, 3, 4, 5, 6, 7 6 3. () Arcsin ( (4) Arccos ) 3 () Arcsin( ) (3) Arccos (5) Arctan (6) Arctan ( 3 ) 3. n () tan x (nπ π/, nπ + π/) f n (x) f n (x) fn (x) Arctan x () sin x [nπ π/, nπ +π/] g n

More information

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y [ ] 7 0.1 2 2 + y = t sin t IC ( 9) ( s090101) 0.2 y = d2 y 2, y = x 3 y + y 2 = 0 (2) y + 2y 3y = e 2x 0.3 1 ( y ) = f x C u = y x ( 15) ( s150102) [ ] y/x du x = Cexp f(u) u (2) x y = xey/x ( 16) ( s160101)

More information

n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

, x R, f (x),, df dx : R R,, f : R R, f(x) ( ).,, f (a) d f dx (a), f (a) d3 f dx 3 (a),, f (n) (a) dn f dx n (a), f d f dx, f d3 f dx 3,, f (n) dn f

, x R, f (x),, df dx : R R,, f : R R, f(x) ( ).,, f (a) d f dx (a), f (a) d3 f dx 3 (a),, f (n) (a) dn f dx n (a), f d f dx, f d3 f dx 3,, f (n) dn f ,,,,.,,,. R f : R R R a R, f(a + ) f(a) lim 0 (), df dx (a) f (a), f(x) x a, f (a), f(x) x a ( ). y f(a + ) y f(x) f(a+) f(a) f(a + ) f(a) f(a) x a 0 a a + x 0 a a + x y y f(x) 0 : 0, f(a+) f(a)., f(x)

More information

http://www.ike-dyn.ritsumei.ac.jp/ hyoo/wave.html 1 1, 5 3 1.1 1..................................... 3 1.2 5.1................................... 4 1.3.......................... 5 1.4 5.2, 5.3....................

More information

2009 IA I 22, 23, 24, 25, 26, a h f(x) x x a h

2009 IA I 22, 23, 24, 25, 26, a h f(x) x x a h 009 IA I, 3, 4, 5, 6, 7 7 7 4 5 h fx) x x h 4 5 4 5 1 3 1.1........................... 3 1........................... 4 1.3..................................... 6 1.4.............................. 8 1.4.1..............................

More information

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes ) ( 3 7 4 ) 2 2 ) 8 2 954 2) 955 3) 5) J = σe 2 6) 955 7) 9) 955 Statistical-Mechanical Theory of Irreversible Processes 957 ) 3 4 2 A B H (t) = Ae iωt B(t) = B(ω)e iωt B(ω) = [ Φ R (ω) Φ R () ] iω Φ R (t)

More information

x i [, b], (i 0, 1, 2,, n),, [, b], [, b] [x 0, x 1 ] [x 1, x 2 ] [x n 1, x n ] ( 2 ). x 0 x 1 x 2 x 3 x n 1 x n b 2: [, b].,, (1) x 0, x 1, x 2,, x n

x i [, b], (i 0, 1, 2,, n),, [, b], [, b] [x 0, x 1 ] [x 1, x 2 ] [x n 1, x n ] ( 2 ). x 0 x 1 x 2 x 3 x n 1 x n b 2: [, b].,, (1) x 0, x 1, x 2,, x n 1, R f : R R,.,, b R < b, f(x) [, b] f(x)dx,, [, b] f(x) x ( ) ( 1 ). y y f(x) f(x)dx b x 1: f(x)dx, [, b] f(x) x ( ).,,,,,., f(x)dx,,,, f(x)dx. 1.1 Riemnn,, [, b] f(x) x., x 0 < x 1 < x 2 < < x n 1

More information

II 2 II

II 2 II II 2 II 2005 yugami@cc.utsunomiya-u.ac.jp 2005 4 1 1 2 5 2.1.................................... 5 2.2................................. 6 2.3............................. 6 2.4.................................

More information

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT I (008 4 0 de Broglie (de Broglie p λ k h Planck ( 6.63 0 34 Js p = h λ = k ( h π : Dirac k B Boltzmann (.38 0 3 J/K T U = 3 k BT ( = λ m k B T h m = 0.067m 0 m 0 = 9. 0 3 kg GaAs( a T = 300 K 3 fg 07345

More information

. (.8.). t + t m ü(t + t) + c u(t + t) + k u(t + t) = f(t + t) () m ü f. () c u k u t + t u Taylor t 3 u(t + t) = u(t) + t! u(t) + ( t)! = u(t) + t u(

. (.8.). t + t m ü(t + t) + c u(t + t) + k u(t + t) = f(t + t) () m ü f. () c u k u t + t u Taylor t 3 u(t + t) = u(t) + t! u(t) + ( t)! = u(t) + t u( 3 8. (.8.)............................................................................................3.............................................4 Nermark β..........................................

More information

f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f

f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f 22 A 3,4 No.3 () (2) (3) (4), (5) (6) (7) (8) () n x = (x,, x n ), = (,, n ), x = ( (x i i ) 2 ) /2 f(x) R n f(x) = f() + i α i (x ) i + o( x ) α,, α n g(x) = o( x )) lim x g(x) x = y = f() + i α i(x )

More information

m dv = mg + kv2 dt m dv dt = mg k v v m dv dt = mg + kv2 α = mg k v = α 1 e rt 1 + e rt m dv dt = mg + kv2 dv mg + kv 2 = dt m dv α 2 + v 2 = k m dt d

m dv = mg + kv2 dt m dv dt = mg k v v m dv dt = mg + kv2 α = mg k v = α 1 e rt 1 + e rt m dv dt = mg + kv2 dv mg + kv 2 = dt m dv α 2 + v 2 = k m dt d m v = mg + kv m v = mg k v v m v = mg + kv α = mg k v = α e rt + e rt m v = mg + kv v mg + kv = m v α + v = k m v (v α (v + α = k m ˆ ( v α ˆ αk v = m v + α ln v α v + α = αk m t + C v α v + α = e αk m

More information

構造と連続体の力学基礎

構造と連続体の力学基礎 II 37 Wabash Avenue Bridge, Illinois 州 Winnipeg にある歩道橋 Esplanade Riel 橋6 6 斜張橋である必要は多分無いと思われる すぐ横に道路用桁橋有り しかも塔基部のレストランは 8 年には営業していなかった 9 9. 9.. () 97 [3] [5] k 9. m w(t) f (t) = f (t) + mg k w(t) Newton

More information

,,,17,,, ( ),, E Q [S T F t ] < S t, t [, T ],,,,,,,,

,,,17,,, ( ),, E Q [S T F t ] < S t, t [, T ],,,,,,,, 14 5 1 ,,,17,,,194 1 4 ( ),, E Q [S T F t ] < S t, t [, T ],,,,,,,, 1 4 1.1........................................ 4 5.1........................................ 5.........................................

More information

Note.tex 2008/09/19( )

Note.tex 2008/09/19( ) 1 20 9 19 2 1 5 1.1........................ 5 1.2............................. 8 2 9 2.1............................. 9 2.2.............................. 10 3 13 3.1.............................. 13 3.2..................................

More information

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ = 1 1.1 ( ). z = + bi,, b R 0, b 0 2 + b 2 0 z = + bi = ( ) 2 + b 2 2 + b + b 2 2 + b i 2 r = 2 + b 2 θ cos θ = 2 + b 2, sin θ = b 2 + b 2 2π z = r(cos θ + i sin θ) 1.2 (, ). 1. < 2. > 3. ±,, 1.3 ( ). A

More information

power.tex

power.tex Contents ii 1... 1... 1... 7... 7 3 (DFFT).................................... 8 4 (CIFT) DFFT................................ 10 5... 13 6... 16 3... 0 4... 0 5... 0 6... 0 i 1987 SN1987A 0.5 X SN1987A

More information

(5 B m e i 2π T mt m m B m e i 2π T mt m m B m e i 2π T mt B m (m < 0 C m m (6 (7 (5 g(t C 0 + m C m e i 2π T mt (7 C m e i 2π T mt + m m C m e i 2π T

(5 B m e i 2π T mt m m B m e i 2π T mt m m B m e i 2π T mt B m (m < 0 C m m (6 (7 (5 g(t C 0 + m C m e i 2π T mt (7 C m e i 2π T mt + m m C m e i 2π T 2.6 FFT(Fast Fourier Transform 2.6. T g(t g(t 2 a 0 + { a m b m 2 T T 0 2 T T 0 (a m cos( 2π T mt + b m sin( 2π mt ( T m 2π g(t cos( T mtdt m 0,, 2,... 2π g(t sin( T mtdt m, 2, 3... (2 g(t T 0 < t < T

More information

I 1

I 1 I 1 1 1.1 1. 3 m = 3 1 7 µm. cm = 1 4 km 3. 1 m = 1 1 5 cm 4. 5 cm 3 = 5 1 15 km 3 5. 1 = 36 6. 1 = 8.64 1 4 7. 1 = 3.15 1 7 1 =3 1 7 1 3 π 1. 1. 1 m + 1 cm = 1.1 m. 1 hr + 64 sec = 1 4 sec 3. 3. 1 5 kg

More information

( ) 2.1. C. (1) x 4 dx = 1 5 x5 + C 1 (2) x dx = x 2 dx = x 1 + C = 1 2 x + C xdx (3) = x dx = 3 x C (4) (x + 1) 3 dx = (x 3 + 3x 2 + 3x +

( ) 2.1. C. (1) x 4 dx = 1 5 x5 + C 1 (2) x dx = x 2 dx = x 1 + C = 1 2 x + C xdx (3) = x dx = 3 x C (4) (x + 1) 3 dx = (x 3 + 3x 2 + 3x + (.. C. ( d 5 5 + C ( d d + C + C d ( d + C ( ( + d ( + + + d + + + + C (5 9 + d + d tan + C cos (sin (6 sin d d log sin + C sin + (7 + + d ( + + + + d log( + + + C ( (8 d 7 6 d + 6 + C ( (9 ( d 6 + 8 d

More information

X G P G (X) G BG [X, BG] S 2 2 2 S 2 2 S 2 = { (x 1, x 2, x 3 ) R 3 x 2 1 + x 2 2 + x 2 3 = 1 } R 3 S 2 S 2 v x S 2 x x v(x) T x S 2 T x S 2 S 2 x T x S 2 = { ξ R 3 x ξ } R 3 T x S 2 S 2 x x T x S 2

More information

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy z fz fz x, y, u, v, r, θ r > z = x + iy, f = u + iv γ D fz fz D fz fz z, Rm z, z. z = x + iy = re iθ = r cos θ + i sin θ z = x iy = re iθ = r cos θ i sin θ x = z + z = Re z, y = z z = Im z i r = z = z

More information

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4 1. k λ ν ω T v p v g k = π λ ω = πν = π T v p = λν = ω k v g = dω dk 1) ) 3) 4). p = hk = h λ 5) E = hν = hω 6) h = h π 7) h =6.6618 1 34 J sec) hc=197.3 MeV fm = 197.3 kev pm= 197.3 ev nm = 1.97 1 3 ev

More information

CDMA (high-compaciton multicarrier codedivision multiple access: HC/MC-CDMA),., HC/MC-CDMA,., 32.,, 64. HC/MC-CDMA, HC-MCM, i

CDMA (high-compaciton multicarrier codedivision multiple access: HC/MC-CDMA),., HC/MC-CDMA,., 32.,, 64. HC/MC-CDMA, HC-MCM, i 24 Investigation on HC/MC-CDMA Signals with Non-Uniform Frequency Intervals 1130401 2013 3 1 CDMA (high-compaciton multicarrier codedivision multiple access: HC/MC-CDMA),., HC/MC-CDMA,., 32.,, 64. HC/MC-CDMA,

More information

-- Blackman-Tukey FFT MEM Blackman-Tukey MEM MEM MEM MEM Singular Spectrum Analysis Multi-Taper Method (Matlab pmtm) 3... y(t) (Fourier transform) t=

-- Blackman-Tukey FFT MEM Blackman-Tukey MEM MEM MEM MEM Singular Spectrum Analysis Multi-Taper Method (Matlab pmtm) 3... y(t) (Fourier transform) t= --... 3..... 3...... 3...... 3..3....3 3..4....4 3..5....5 3.....6 3......6 3......7 3..3....0 3..4. Matlab... 3.3....3 3.3.....3 3.3.....4 3.3.3....4 3.3.4....5 3.3.5....5 3.4. MEM...8 3.4.. MEM...8 3.4..

More information

dx dt = f x,t ( ) t

dx dt = f x,t ( ) t MATLAB 1. 2. Runge-Kutta 3. 1. 2. 3. dx dt = f x,t ( ) t dx( t) dt = lim Δt x( t + Δt) x( t) Δt t = nδt n = 0,1,2,3,4,5, x = x( nδt) n Δt dx ( ) dt = f x,t x n +1 x n Δt = f ( x,nδt) n 1 x n = x 0 n =

More information

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g(

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g( 06 5.. ( y = x x y 5 y 5 = (x y = x + ( y = x + y = x y.. ( Y = C + I = 50 + 0.5Y + 50 r r = 00 0.5Y ( L = M Y r = 00 r = 0.5Y 50 (3 00 0.5Y = 0.5Y 50 Y = 50, r = 5 .3. (x, x = (, u = = 4 (, x x = 4 x,

More information

1. 1 BASIC PC BASIC BASIC BASIC Fortran WS PC (1.3) 1 + x 1 x = x = (1.1) 1 + x = (1.2) 1 + x 1 = (1.

1. 1 BASIC PC BASIC BASIC BASIC Fortran WS PC (1.3) 1 + x 1 x = x = (1.1) 1 + x = (1.2) 1 + x 1 = (1. Section Title Pages Id 1 3 7239 2 4 7239 3 10 7239 4 8 7244 5 13 7276 6 14 7338 7 8 7338 8 7 7445 9 11 7580 10 10 7590 11 8 7580 12 6 7395 13 z 11 7746 14 13 7753 15 7 7859 16 8 7942 17 8 Id URL http://km.int.oyo.co.jp/showdocumentdetailspage.jsp?documentid=

More information

2 1 (10 5 ) 1 (10 5 ) () (1) (2) (3) (4) (1) 2 T T T T T T T T? *

2 1 (10 5 ) 1 (10 5 ) () (1) (2) (3) (4) (1) 2 T T T T T T T T? * 1 2011 2012 1 30 1 (10 5 ) 2 2 6 2.1 (10 12 )..................... 6 2.2 (FP) (10 19 ).............. 14 2.3 2 (10 26 )...................... 26 2.4 (2. )(11 2 )..... 35 3 40 3.1 (11 9 )..........................

More information

(9 30 ) (10 7 ) (FP) (10 14 ) (10 21 ) (2

(9 30 ) (10 7 ) (FP) (10 14 ) (10 21 ) (2 1 2009 2010 1 18 1 (9 30 ) 2 2 7 2.1 (10 7 )...................... 7 2.2 (FP) (10 14 ).............. 14 2.3 2 (10 21 )...................... 26 2.4 (2. )(10 28 ).......... 35 3 42 3.1 (11 4 )..........................

More information

DVIOUT

DVIOUT A. A. A-- [ ] f(x) x = f 00 (x) f 0 () =0 f 00 () > 0= f(x) x = f 00 () < 0= f(x) x = A--2 [ ] f(x) D f 00 (x) > 0= y = f(x) f 00 (x) < 0= y = f(x) P (, f()) f 00 () =0 A--3 [ ] y = f(x) [, b] x = f (y)

More information

[ ] 0.1 lim x 0 e 3x 1 x IC ( 11) ( s114901) 0.2 (1) y = e 2x (x 2 + 1) (2) y = x/(x 2 + 1) 0.3 dx (1) 1 4x 2 (2) e x sin 2xdx (3) sin 2 xdx ( 11) ( s

[ ] 0.1 lim x 0 e 3x 1 x IC ( 11) ( s114901) 0.2 (1) y = e 2x (x 2 + 1) (2) y = x/(x 2 + 1) 0.3 dx (1) 1 4x 2 (2) e x sin 2xdx (3) sin 2 xdx ( 11) ( s [ ]. lim e 3 IC ) s49). y = e + ) ) y = / + ).3 d 4 ) e sin d 3) sin d ) s49) s493).4 z = y z z y s494).5 + y = 4 =.6 s495) dy = 3e ) d dy d = y s496).7 lim ) lim e s49).8 y = e sin ) y = sin e 3) y =

More information

Chap11.dvi

Chap11.dvi . () x 3 + dx () (x )(x ) dx + sin x sin x( + cos x) dx () x 3 3 x + + 3 x + 3 x x + x 3 + dx 3 x + dx 6 x x x + dx + 3 log x + 6 log x x + + 3 rctn ( ) dx x + 3 4 ( x 3 ) + C x () t x t tn x dx x. t x

More information

2011 8 26 3 I 5 1 7 1.1 Markov................................ 7 2 Gau 13 2.1.................................. 13 2.2............................... 18 2.3............................ 23 3 Gau (Le vy

More information

2011de.dvi

2011de.dvi 211 ( 4 2 1. 3 1.1............................... 3 1.2 1- -......................... 13 1.3 2-1 -................... 19 1.4 3- -......................... 29 2. 37 2.1................................ 37

More information

II 1 3 2 5 3 7 4 8 5 11 6 13 7 16 8 18 2 1 1. x 2 + xy x y (1 lim (x,y (1,1 x 1 x 3 + y 3 (2 lim (x,y (, x 2 + y 2 x 2 (3 lim (x,y (, x 2 + y 2 xy (4 lim (x,y (, x 2 + y 2 x y (5 lim (x,y (, x + y x 3y

More information

Z: Q: R: C: sin 6 5 ζ a, b

Z: Q: R: C: sin 6 5 ζ a, b Z: Q: R: C: 3 3 7 4 sin 6 5 ζ 9 6 6............................... 6............................... 6.3......................... 4 7 6 8 8 9 3 33 a, b a bc c b a a b 5 3 5 3 5 5 3 a a a a p > p p p, 3,

More information

DVIOUT-講

DVIOUT-講 005-10-14 1 1 [1] [] [3] [4] (a + b) = a +ab + b [5] (a + b) 3 a 3 +a b + ab + a b +ab + b 3 a 3 +3a b +3ab + b 3 [6] (a + b) 4 (a + b) 5 [7] technology expand((a+b) n n =?) [8] technology n =6, 7, 8,

More information

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2 No.2 1 2 2 δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i δx j (5) δs 2 = δx i δx i + 2 u i δx i δx j = δs 2 + 2s ij δx i δx j

More information

201711grade1ouyou.pdf

201711grade1ouyou.pdf 2017 11 26 1 2 52 3 12 13 22 23 32 33 42 3 5 3 4 90 5 6 A 1 2 Web Web 3 4 1 2... 5 6 7 7 44 8 9 1 2 3 1 p p >2 2 A 1 2 0.6 0.4 0.52... (a) 0.6 0.4...... B 1 2 0.8-0.2 0.52..... (b) 0.6 0.52.... 1 A B 2

More information

impulse_response.dvi

impulse_response.dvi 5 Time Time Level Level Frequency Frequency Fig. 5.1: [1] 2004. [2] P. A. Nelson, S. J. Elliott, Active Noise Control, Academic Press, 1992. [3] M. R. Schroeder, Integrated-impulse method measuring sound

More information

i

i 009 I 1 8 5 i 0 1 0.1..................................... 1 0.................................................. 1 0.3................................. 0.4........................................... 3

More information

1. (8) (1) (x + y) + (x + y) = 0 () (x + y ) 5xy = 0 (3) (x y + 3y 3 ) (x 3 + xy ) = 0 (4) x tan y x y + x = 0 (5) x = y + x + y (6) = x + y 1 x y 3 (

1. (8) (1) (x + y) + (x + y) = 0 () (x + y ) 5xy = 0 (3) (x y + 3y 3 ) (x 3 + xy ) = 0 (4) x tan y x y + x = 0 (5) x = y + x + y (6) = x + y 1 x y 3 ( 1 1.1 (1) (1 + x) + (1 + y) = 0 () x + y = 0 (3) xy = x (4) x(y + 3) + y(y + 3) = 0 (5) (a + y ) = x ax a (6) x y 1 + y x 1 = 0 (7) cos x + sin x cos y = 0 (8) = tan y tan x (9) = (y 1) tan x (10) (1 +

More information

20 6 4 1 4 1.1 1.................................... 4 1.1.1.................................... 4 1.1.2 1................................ 5 1.2................................... 7 1.2.1....................................

More information

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8)

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8) 4 4 ) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8) a b a b = 6i j 4 b c b c 9) a b = 4 a b) c = 7

More information

II Karel Švadlenka * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* u = au + bv v = cu + dv v u a, b, c, d R

II Karel Švadlenka * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* u = au + bv v = cu + dv v u a, b, c, d R II Karel Švadlenka 2018 5 26 * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* 5 23 1 u = au + bv v = cu + dv v u a, b, c, d R 1.3 14 14 60% 1.4 5 23 a, b R a 2 4b < 0 λ 2 + aλ + b = 0 λ =

More information

,, 2. Matlab Simulink 2018 PC Matlab Scilab 2

,, 2. Matlab Simulink 2018 PC Matlab Scilab 2 (2018 ) ( -1) TA Email : ohki@i.kyoto-u.ac.jp, ske.ta@bode.amp.i.kyoto-u.ac.jp : 411 : 10 308 1 1 2 2 2.1............................................ 2 2.2..................................................

More information

006 11 8 0 3 1 5 1.1..................... 5 1......................... 6 1.3.................... 6 1.4.................. 8 1.5................... 8 1.6................... 10 1.6.1......................

More information

phs.dvi

phs.dvi 483F 3 6.........3... 6.4... 7 7.... 7.... 9.5 N (... 3.6 N (... 5.7... 5 3 6 3.... 6 3.... 7 3.3... 9 3.4... 3 4 7 4.... 7 4.... 9 4.3... 3 4.4... 34 4.4.... 34 4.4.... 35 4.5... 38 4.6... 39 5 4 5....

More information

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2 2005 9/8-11 2 2.2 ( 2-5) γ ( ) γ cos θ 2πr πρhr 2 g h = 2γ cos θ ρgr (2.1) γ = ρgrh (2.2) 2 cos θ θ cos θ = 1 (2.2) γ = 1 ρgrh (2.) 2 2. p p ρgh p ( ) p p = p ρgh (2.) h p p = 2γ r 1 1 (Berry,1975) 2-6

More information

Z: Q: R: C: 3. Green Cauchy

Z: Q: R: C: 3. Green Cauchy 7 Z: Q: R: C: 3. Green.............................. 3.............................. 5.3................................. 6.4 Cauchy..................... 6.5 Taylor..........................6...............................

More information

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a =

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a = [ ] 9 IC. dx = 3x 4y dt dy dt = x y u xt = expλt u yt λ u u t = u u u + u = xt yt 6 3. u = x, y, z = x + y + z u u 9 s9 grad u ux, y, z = c c : grad u = u x i + u y j + u k i, j, k z x, y, z grad u v =

More information

A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B

A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B 9 7 A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B x x B } B C y C y + x B y C x C C x C y B = A

More information

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2 filename=mathformula58.tex ax + bx + c =, x = b ± b 4ac, (.) a x + x = b a, x x = c a, (.) ax + b x + c =, x = b ± b ac. a (.3). sin(a ± B) = sin A cos B ± cos A sin B, (.) cos(a ± B) = cos A cos B sin

More information

untitled

untitled - k k k = y. k = ky. y du dx = ε ux ( ) ux ( ) = ax+ b x u() = ; u( ) = AE u() = b= u () = a= ; a= d x du ε x = = = dx dx N = σ da = E ε da = EA ε A x A x x - σ x σ x = Eε x N = EAε x = EA = N = EA k =

More information

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi) 0. A A = 4 IC () det A () A () x + y + z = x y z X Y Z = A x y z ( 5) ( s5590) 0. a + b + c b c () a a + b + c c a b a + b + c 0 a b c () a 0 c b b c 0 a c b a 0 0. A A = 7 5 4 5 0 ( 5) ( s5590) () A ()

More information

i

i i 3 4 4 7 5 6 3 ( ).. () 3 () (3) (4) /. 3. 4/3 7. /e 8. a > a, a = /, > a >. () a >, a =, > a > () a > b, a = b, a < b. c c n a n + b n + c n 3c n..... () /3 () + (3) / (4) /4 (5) m > n, a b >, m > n,

More information

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2) 3 215 4 27 1 1 u u(x, t) u tt a 2 u xx, a > (1) D : {(x, t) : x, t } u (, t), u (, t), t (2) u(x, ) f(x), u(x, ) t 2, x (3) u(x, t) X(x)T (t) u (1) 1 T (t) a 2 T (t) X (x) X(x) α (2) T (t) αa 2 T (t) (4)

More information

t θ, τ, α, β S(, 0 P sin(θ P θ S x cos(θ SP = θ P (cos(θ, sin(θ sin(θ P t tan(θ θ 0 cos(θ tan(θ = sin(θ cos(θ ( 0t tan(θ

t θ, τ, α, β S(, 0 P sin(θ P θ S x cos(θ SP = θ P (cos(θ, sin(θ sin(θ P t tan(θ θ 0 cos(θ tan(θ = sin(θ cos(θ ( 0t tan(θ 4 5 ( 5 3 9 4 0 5 ( 4 6 7 7 ( 0 8 3 9 ( 8 t θ, τ, α, β S(, 0 P sin(θ P θ S x cos(θ SP = θ P (cos(θ, sin(θ sin(θ P t tan(θ θ 0 cos(θ tan(θ = sin(θ cos(θ ( 0t tan(θ S θ > 0 θ < 0 ( P S(, 0 θ > 0 ( 60 θ

More information

80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t = 0 i r 0 t(> 0) j r 0 + r < δ(r 0 x i (0))δ(r 0 + r x j (t)) > (4.2) r r 0 G i j (r, t) dr 0

80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t = 0 i r 0 t(> 0) j r 0 + r < δ(r 0 x i (0))δ(r 0 + r x j (t)) > (4.2) r r 0 G i j (r, t) dr 0 79 4 4.1 4.1.1 x i (t) x j (t) O O r 0 + r r r 0 x i (0) r 0 x i (0) 4.1 L. van. Hove 1954 space-time correlation function V N 4.1 ρ 0 = N/V i t 80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t

More information

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s ... x, y z = x + iy x z y z x = Rez, y = Imz z = x + iy x iy z z () z + z = (z + z )() z z = (z z )(3) z z = ( z z )(4)z z = z z = x + y z = x + iy ()Rez = (z + z), Imz = (z z) i () z z z + z z + z.. z

More information

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq 49 2 I II 2.1 3 e e = 1.602 10 19 A s (2.1 50 2 I SI MKSA 2.1.1 r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = 3 10 8 m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq F = k r

More information

Grushin 2MA16039T

Grushin 2MA16039T Grushin 2MA1639T 3 2 2 R d Borel α i k (x, bi (x, 1 i d, 1 k N d N α R d b α = α(x := (αk(x i 1 i d, 1 k N b = b(x := (b i (x 1 i d X = (X t t x R d dx t = α(x t db t + b(x t dt ( 3 u t = Au + V u, u(,

More information

基礎から学ぶトラヒック理論 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

基礎から学ぶトラヒック理論 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 基礎から学ぶトラヒック理論 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/085221 このサンプルページの内容は, 初版 1 刷発行時のものです. i +α 3 1 2 4 5 1 2 ii 3 4 5 6 7 8 9 9.3 2014 6 iii 1 1 2 5 2.1 5 2.2 7

More information

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H 199 1 1 199 1 1. Vx) m e V cos x π x π Vx) = x < π, x > π V i) x = Vx) V 1 x /)) n n d f dξ ξ d f dξ + n f = H n ξ) ii) H n ξ) = 1) n expξ ) dn dξ n exp ξ )) H n ξ)h m ξ) exp ξ )dξ = π n n!δ n,m x = Vx)

More information

v_-3_+2_1.eps

v_-3_+2_1.eps I 9-9 (3) 9 9, x, x (t)+a(t)x (t)+b(t)x(t) = f(t) (9), a(t), b(t), f(t),,, f(t),, a(t), b(t),,, x (t)+ax (t)+bx(t) = (9),, x (t)+ax (t)+bx(t) = f(t) (93), b(t),, b(t) 9 x (t), x (t), x (t)+a(t)x (t)+b(t)x(t)

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information