Size: px
Start display at page:

Download ""

Transcription

1 HP 2 Quantum Physics

2 i

3 N! Z Z Z ii

4 E N iii

5 A Legendre 106 B 107 iv

6 1 1.1 (equilibrium value) 2.8 (fluctuation) = (1.1) = 2 1 I, II 2 1

7 (asymptotic theory) (limit) lim f(x) = 1 (1.2) x x f(x) 1 x f(x) 1 ϵ ϵ X ϵ x > X ϵ x f(x) 1 < ϵ X ϵ (1.2) f(x) x 1 f(x) 1 1/10 ( ϵ) x 10 2 ( X ϵ ) f(x) 1 1/100 ( ϵ) x 10 3 ( X ϵ ) 1/1000 x 10 4 ϵ 3 4 ϵ ϵ 1/x x x 0 lim 1/x = 0 x 4 5 2

8 S B S T V V lim V S B V S T V = 0. (1.3) V S B /V S T /V 1/100 V 1m 3 1/1000 V 10m 3 V V 6 V V a n = a n, n=1 n =1 a n = a n, n=1 n =1 1 f(x)dx = f(x )dx. (1.4) a 1 + a 2 + a 3 + ( ) 2 ( ) ( ) a n = a n a n = n=1 n=1 n=1 a 2 n n=1 ( 1 2 ( 1 f(x)dx) = 0 0 ) ( 1 ) f(x)dx f(x)dx = n=1 m=1 b n,m = m=1 0 a n n=1 m=1 f(x)dx 1 0 a m = n=1 b n,m = n,m (n 1,m 1) f(y)dy = n=1 m=1 a n a m. (1.5) f(x)f(y)dxdy. (1.6) b n,m. (1.7) n 1, m 1 n, m g(x, y)dxdy = 1 0 [ 1 0 ] g(x, y)dx dy = 1 0 [ 1 0 ] g(x, y)dy dx = g(x, y)ds. (1.8) 0 x 1,0 y 1 0 x 1, 0 y 1 2 ds V

9 x Θ(x) x x f(x) (mean value) (expectation value) 10 x = x f(x) = x xθ(x), (1.9) f(x)θ(x). (1.10) x 2 = x x 2 Θ(x) x (variance) (x x ) 2 = x (x x ) 2 Θ(x) = x 2 x 2. (1.11) (standard deviation) a < b f(a) f(b) f(x) = a < b f(a) f(b) f(x) a < b f(a) < f(b) a < b f(a) > f(b) : : : > = : a a,b a a,b ( ) n : n C k k exp(x) : e x ln x : log e x b 3 a = 1, 2, 3 a=1 10 x f(x) 4

10 : x x 0 lim x x 0 f(x)/g(x) = 1 f(x) g(x) f(x) = 5x 2 4x + 3 x f(x)/(5x 2 ) 1 f(x) 5x 2 x 0 f(x)/3 1 f(x) 3 f(x) g(x) f(x) g(x) f(x) g(x) 0 : o : x x 0 lim x x 0 f(x)/g(x) = 0 f(x) = o(g(x)) f(x) = x x f(x) = o(x) f(x) = o(x 2 ) x f(x) = o(x) lim f(x) = 0 lim f(x) = x x 0 f(x)/x o(x)/x = o(1) x 0 f(x) = o(x 2 ) x 0 f(x) x 2 x 2 0 f(x) 0 f(x) x 2 x f(x) = o(x 2 ) x f(x) x 2 x 2 f(x) x 2 O : x x 0 x x 0 f(x)/g(x) f(x) = O(g(x)) 2x2 1 + x x f(x) = O(x). f(x) = O(x2 ) f(x) = O(x 3 ) f(x) = O(x) x 0 f(x) = O(x 2 ) f(x) = O(x) f(x) = O(x 2 ) f(x) = x 2 (2 + sin x) + x cos x x f(x) = O(x 2 ). f(x) = O(x 3 ) f(x) = O(x 4 ) f(x) = O(x 2 ) x 0 f(x) = O(x). f(x) = O(1) f(x) = O(x) f(x) x f(x) = O(ln x) (ln x)/ x 0 f(x)/ x 0 O : O 2x2 1 + x x f(x) = O(x) f(x) = O(x2 ) f(x) = O(x 3 ) x 0 f(x) = O(x 2 ) f(x) = O(x) f(x) = x 2 (2 + sin x) + x cos x x f(x) = O(x 2 ) f(x) = O(x 3 ) f(x) = O(x 4 ) x 0 f(x) = O(x) f(x) = O(1) Z k B T ln Z O(V ) F F = O(V ) k B T ln Z = F + o(v ) 5

11 O o(v ) O(V ) O

12 2 [1] UV N 2.1 [1] 7.1 E U E (thermal equilibrium state) (equilibrium state) (nonequilibrium state) (transition) 1 (a) V (b) E N (c) P (d) S T (equilibrium value) 1 7

13 (isolated system) (open system) (subsystem) (composite system) (internal constraint) 3 (simple system) (external field) (simple system) i = 1, 2, X i X (i) X = i X (i) (2.1) X (additive) (additive variable) V N 4.1 S 2.9 E i X X (i) V (i) X (i) = KV (i) for (2.2) K X (extensive) (extensive variable) T P µ (intensive variable) V (mean value) (fluctuation) 2 I [10] 3 8

14 1.3.2 V V, (2.3) = o(v ) (2.4) = V, (2.5) = o(1) (2.6) V o(v )/V = o(1) 0 o(v ) o(1) 4 5 N T 2 (uniform) 3.4 (a), (b) 6 4 O o V 5 6 9

15 2.1.5 (fundamental relation) S E V N S = S(E, V, N). (2.7) E E = E(S, V, N) (2.8) S = S(E, V, N) E = E(S, V, N) S A 11 Helmholtz F = F (T, V, N) (2.9) E = E(S, V, N) S = S(E, V, N) F = F (T, V, N) V Gibbs G = G(T, P, N) (2.10) E T, V, N E = E(T, V, N) E = (3/2)RNT E = E(S, V, N) S(E, V, N), E(S, V, N), F (T, V, N), G(T, P, N), E = E(S, V, N) S, V, N (natural variables) S E, V, N (fundamental relation) S E X 1,, X t S = S(E, X 1,, X t ). (2.11) E, X 1,, X t (natural variables of entropy) t + 1 f 1 1 E, X 1,, X t E, X 1,, X t ( ) (2.12) E, X 1,, X t E, X 1,, X t (thermodynamical state space) (2.11) E E = E(S, X 1,, X t ). (2.13) 10

16 S = S(E, X 1,, X t ) S = S(E, X 1,, X t ) (entropy representation) E = E(S, X 1,, X t ) (energy representation) (natural variables of energy) UV N SV N S(E, X 1,, X t ) E(S, X 1,, X t ) S F (T, X 1,, X t ) E = X 0 II-(iii) S = S(X 0, X 1,, X t ) Π 0, Π 1,, Π t Π k S(X 0, X 1, ) X k (k = 0, 1,, t). (2.14) X k (conjugate) X 1 = V Π 1 V Π V X k Π k X k Π k X 0 = E Π 0 (inverse temperature) B B S(E, X 1, ) E (k = 0, 1,, t). (2.15) (2.13) P k E(X 0, X 1, ) X k (2.16) X k (conjugate) S, X 1, E = X 0 S = X 0 X 1 = V P 1 V P V X 0 = S P 0 (temperature) T T E(S, X 1, ). (2.17) S T S, X 1, T (S, X 1, ) S V P V (pressure) P P P V = E(S, V, ). (2.18) V N P N (chemical potential) µ µ P N = E(S, V, N, ). (2.19) N B = 1/T, (2.20) Π k = P k /T (k = 1, 2, ). (2.21) 11

17 Π V = P V /T = P/T, (2.22) Π N = P N /T = µ/t. (2.23) [1] I (i) [ ] (equilibrium state) (ii) [ ] II (i) [ ] (entropy) S (ii) [ ] S E E, X 1,..., X t S = S(E, X 1,, X t ) ( ). (2.24) (fundamental relation) E, X 1,, X t (natural variables of entropy) t + 1 (iii) [ ] (2.24) E E 0 (iv) [ ] (v) [ ] i (= 1, 2, ) S (i) = S (i) (E (i), X (i) 1,, X(i) t i ) Ŝ i S (i) (E (i), X (i) 1,, X(i) t i ) (2.25) Ŝ

18 3 3.1 (microstates) m e m e 1 t = 0 3 x, y, z 3 v x, v y, v z x, y, z, v x, v y, v z 6 x, y, z, v x, v y, v z 1 3 p x, p y, p z 6 x, y, z, p x, p y, p z (canonical variables) t = 0 t = 0 x(0), y(0), z(0), p x (0), p y (0), p z (0) t t x(t), y(t), z(t), p x (t), p y (t), p z (t) N 6 k (k = 1, 2,, N) (k) x (1), y (1), z (1),, x (N), y (N), z (N), p (1) x, p (1) y, p (1) z,, p (N) x, p (N) y, p (N) z (3.1) 6N N (single-particle state) N (many-particle state) 13

19 3N q 1, q 2,, q 3N q 1 = x (1), q 2 = y (1),, q 3N = z (N) p 1, p 2,, p 3N p 2 = p (1) y q 1, p 1, q 2, p 2,, q 3N, p 3N (3.2) 3N q i, p i (i = 1, 2,, 3N) 3N ( (degrees of freedom) f q 1, q 2,, q f q p 1, p 2,, p f p q q 1, q 2,, q f, (3.3) p p 1, p 2,, p f. (3.4) f 2f q, p q, p q 1, q 2,, q f, p 1, p 2,, p f 2f 2f (phase space) 1 Γ E, X 1,, X t (t + 1) t t f f (thermodynamical state space) r(0), v(0) r(t), v(t) r(t), v(t) v(t) v(t) 2 v(t) r(0), v(0) r(t), v(t) v(t) = v(0) + v(0)t + v(0)t 2 /2 + + v (n) (0)t n /n! + o(t n ) (3.5) v(t) v r r r(0) r(t), v(t) q i q i p i q i p i 4.5 q i, p i 3.2 q, p q(t), p(t) (q, p) 1 topological space 14

20 (q, p) dq i dt dp i dt = H(q, p) p i (i = 1, 2,, f), (3.6) = H(q, p) q i (i = 1, 2,, f). (3.7) H(q, p) q, p (Hamiltonian) H(q, p) = H(q 1, q 2,, q f, p 1, p 2,, p f ) (3.8) 2f (3.6), (3.7) t = 0 q, p q(0), p(0) q(t), p(t) 2 (3.6), (3.7) d H(q, p) = 0 (3.9) dt 3.1 q, p H(q, p) E q(t), p(t) H(q, p) = E =. (3.10) H(q(0), p(0)) = E = H(q(t), p(t)) (3.11) H t = 0 E t E (3.10) (q, p) (3.10) S(E) S S Γ dim Γ dim Γ = 2f (3.12) S(E) (3.10) dim S(E) dim Γ = (3.10) (=1 ) dim S(E) = dim Γ 1 = 2f 1 (3.13) 3 S(E) 3.1 (3.9) 3.3 q, p (3.6), (3.7) q, p (linear) 2 [11] x 2 + y 2 + z 2 = = 2 15

21 f = H(q, p) H(q, p) = 1 2m p2 + mω2 2 q2. (3.14) m ω k ω 2 = k/m dq dt dp dt = H(q, p) = p p m, (3.15) = H(q, p) = mω 2 q, q (3.16) q, p p m d2 q dt 2 = mω2 q d2 q dt 2 + ω2 q = 0 (3.17) q, p A, θ q(t) = A sin(ωt + θ), (3.18) p(t) = Amω cos(ωt + θ). (3.19) q, p ω (harmonic oscillation) q p S(E) H(q, p) = 1 2m p2 + mω2 2 q2 = E (3.20) q p S(E) S(E) E S(E) S(E) E f 2 f t = 0 q, p q(0), p(0) q(t), p(t) H(q 1, q 2, p 1, p 2 ) = 1 2m p2 1 + mω2 2 q m p2 2 + mω2 2 q2 2 + mω2 2 (q 2 q 1 ) 2. (3.21) 1 Ω K Ω 2 = K/m 16

22 dq 1 dt dp 1 dt dq 2 dt dp 2 dt = H p 1 = p 1 m, (3.22) = H q 1 = mω 2 q 1 + mω 2 (q 2 q 1 ), (3.23) = H p 2 = p 2 m, (3.24) = H q 2 = mω 2 q 2 mω 2 (q 2 q 1 ). (3.25) 1 (3.23) 1 q 2 2 (3.25) q 1 1,2 1 Q 1, P 1, Q 2, P 2 1 Q 1, Q 2 (normal coordinate) Q 1 = (q 1 + q 2 )/ 2, (3.26) Q 2 = (q 1 q 2 )/ 2 (3.27) P 1, P 2 P 1 = (p 1 + p 2 )/ 2, (3.28) P 2 = (p 1 p 2 )/ 2 (3.29) 4 ( H(Q 1, Q 2, P 1, P 2 ) = H 1 (Q 1, P 1 ) + H 2 (Q 2, P 2 ), (3.30) H 1 (Q 1, P 1 ) 1 2m P mω2 2 Q2 1, (3.31) H 2 (Q 2, P 2 ) 1 2m P m(ω2 + 2Ω 2 ) Q (3.32) Q 1, P 1 H 1 Q 2, P 2 H 2 dq 1 dt dp 1 dt dq 2 dt dp 2 dt = H P 1 = H 1 P 1 = P 1 m, (3.33) = H Q 1 = H 1 Q 1 = mω 2 Q 1, (3.34) = H P 2 = H 2 P 2 = P 2 m, (3.35) = H Q 2 = H 2 Q 2 = m(ω 2 + 2Ω 2 )Q 2. (3.36) Q 1, P 1 Q 2, P 2 Q 1, P 1 Q 2, P 2 1 (3.15), (3.16) Q 1, P 1 ω Q 2, P 2 ω 2 + 2Ω H H(Q 1, Q 2, P 1, P 2 ) = E =, (3.37) H 1, H 2 H 1 (Q 1, P 1 ) = E 1 =, (3.38) H 2 (Q 2, P 2 ) = E 2 =, (3.39) 4 q 1, p 1, q 2, p 2 Q 1, P 1, Q 2, P 2 17

23 E = E 1 + E 2 (3.37) S(E) (3.38), (3.39) S 1 (E 1 ), S 2 (E 2 ) (3.37), (3.38), (3.39) 2 f q, p (integrable system) (3.13) 2f 1 dim[ ] = dim Γ f = 2f f = f (3.40) f 2f 1 q 1, q 2 (3.26), (3.27) q 1 = (Q 1 + Q 2 )/ 2, (3.41) q 2 = (Q 1 Q 2 )/ 2 (3.42) Q 1, Q 2 Q 1, Q 2 q 1, q 2 f = 2 f Q 1, P 1,, Q f, P f f H(Q 1, Q 2, P 1, P 2 ) sin cos sin cos f f (integrable system) i p 2 i K 1 i p 2 i, K 2 i p 4 i,, K f i p 2f i (3.43) 6 K 1 /N N K 1 K 2 K 1, K 2,, K f K 1, K 2,, K f 5 6 i p2f+2 i, i p2f+4 i, (3.43) p 2 i f K 1, K 2,, K f p 2 1, p2 2,, p2 f i p2f+2 i, i p2f+4 i, i p i, i p3 i, p i i p i, i p i 3, 18

24 I K 1, K 2,, K f 7 f K 1, K 2, K 3 K 1, K 2, K 3 K 4, K 5,, K f 2.2 t = 0 f K 1, K 2,, K f f = 1 1 f 1 sin cos (3.14) λ H(q, p) = 1 2m p2 + mω2 2 q2 + λ 4 q4. (3.44) S(E) q dq dt dp dt = p m, (3.45) = mω 2 q λq 3. (3.46) (λ = 0) q(t), p(t) S(E) 7 K 1 E = (1/2m) i p2 i E 19

25 S(E) S(E) S(E) S(E) 20

26 4 (2.12) (2.11) II-(ii) (microstates) 100% 21

27 1 E, X 1,, X t (microcanonical ensemble) ens(e, X 1,, X t ) W (E, X 1,, X t ) E, X 1,, X t 3 A 0 : ens(e, X 1,, X t ) ens(e, X 1,, X t ) E, X 1,, X t V V E, V, N, E/V, N/V, V 4 E, X 1,, X t (thermodynamic limit) V A 0 100% ens(e, X 1,, X t ) V 0 ens(e, X 1,, X t ) E, X 1,, X t 0 W (E, X 1,, X t ) as V (E/V, X 1 /V,, X t /V ). (4.1) ens(e, X 1,, X t ) 5 1 microstate microcanonical micro micro 2 (measure) V 5 self-consistent 22

28 n n n/n = 1/ n n n (2.12) = ( ) E, X 1,, X t ens(e, X 1,, X t ) = ( ) (4.2) 1.1 = ens(e, X 1,, X t ) (4.3) P P = P ens(e, X 1,, X t ) (4.4) 4.6 ens(e, X 1,, X t ) ens(e, X 1,, X t ) 6 : ens(e, X 1,, X t ) (microcanonical distribution) (E, X 1,, X t ) = (4.5) S(E) ens(e, X 1,, X t ) ens(e, X 1,, X t ) E, X 1,, X ens(e, X 1,, X t ) ens(e, X 1,, X t ) A A A : E, X 1,, X t A 0 A A (mixed state) 23

29 (principle of equal weights) A 0 A A 0 B A 0 A 0 8 V (a family 9 of states of systems of different sizes) S = S(E, V, N) s = s(u, v) ens(e, X 1,, X t ) A 0 = ens(e, X 1,, X t ) (4.6) ens(e, X 1,, X t ) ens(e, X 1,, X t ) ens(e, X 1,, X t ) 6.2 ens(e, X 1,, X t ) ens(e, X 1,, X t ) 8 A 9 family 24

30 equal a priori probability postulate A λ 10 λ Ψ λ Ψ λ Ψ λ 11 ens(e, X 1,, X t ) W (E, X 1,, X t ) = 1 (4.7) λ s.t. Ψ λ ens(e,x 1,,X t) Ψ λ ens(e, X 1,, X t ) λ s.t. such that Ψ λ Θ(λ) 1 (normalization) Θ(λ) = 1 (4.8) λ ens(e, X 1,, X t ) Θ(λ) 1 when Ψ λ ens(e, X 1,, X t ), Θ(λ) = W (E, X 1,, X t ) 0 otherwise (4.9) A (E, X 1,, X t ) Ψ λ A 12 Ψ λ A A λ A A (1.10) A = λ A λ Θ(λ) (4.10) = 1 W (E, X 1,, X t ) λ s.t. Ψ λ ens(e,x 1,,X t ) A λ (4.11) Ψ λ A λ λ 25

31 4.5 (q, p) (q 1, q 2,, q f, p 1, p 2,, p f ) (2πħ) f ħ h ( Js) 2π ħ h/2π Js. (4.12) dq 1 dq f dp 1 dp f ( dqdp ) (4.13) dqdp (2πħ) f (4.14) ens(e, X 1,, X t ) W (E, X 1,, X t ) = (q,p) ens(e,x 1,,X t) dqdp (2πħ) f (4.15) dq 1 dp 1 (q,p) ens(e,x 1,,X t ) 2πħ dq f dp f 2πħ (4.16) (q, p) ens(e, X 1,, X t ) 2f (4.15) (4.7) λ 1/(2πħ) f λ dqdp (2πħ) f (4.17) dqdp 1/(2πħ) f dqdp/(2πħ) f 1 (4.16) dq j dp j /2πħ) (q, p) dqdp [q 1, q 1 + dq 1 ),, [q f, q f + dq f ), [p 1, p 1 + dp 1 ),, [p f, p f + dp f ) (4.18) [q, q + dq), [p, p + dp) dqdp/(2πħ) f Θ([q, q + dq), [p, p + dp)) 14 (measure) 26

32 (4.9) ens(e, X 1,, X t ) 1/W (E, X 1,, X t ) 1 dqdp Θ([q, q + dq), [p, p + dp)) = W (E, X 1,, X t ) (2πħ) f when (q, p) ens(e, X 1,, X t ), 0 otherwise. (4.19) A (E, X 1,, X t ) [q, q+dq), [p, p+dp) (distribution function) θ(q, p) 15 Θ([q, q + dq), [p, p + dp)) = θ(q, p) dqdp (2πħ) f. (4.20) A q, p A(q, p) A A (1.10), (4.17), (4.20) A = A(q, p)θ(q, p) dqdp (2πħ) f (4.21) A(q, p) = 1 1 (normalization) θ(q, p) dqdp = 1. (4.22) (2πħ) f (4.19) (4.20) 1 when (q, p) ens(e, X 1,, X t ), θ(q, p) = W (E, X 1,, X t ) 0 otherwise. (4.23) (4.21) 1 A = A(q, p) dqdp W (E, X 1,, X t ) (2πħ) f. (4.24) (q,p) ens(e,v,n) 4.1 m K f j=1 p 2 j 2m (4.25) (4.24) K = 1 W (E, X 1,, X t ) (q,p) ens(e,v,n) 9.1 f j=1 p 2 j 2m dqdp (2πħ) f. (4.26) f = 1 2πħ πħ 1 15 (2πħ) f 16 27

33 4.2 f δq j δp j ħ/2 (j = 1, 2,, f) (4.27) κ 1 (κħ) f 1 (2πħ) f 1 (2π/κ) f dqdp/(κħ) f κ κ 4.1 κ = 2π (4.14) (dynamical variable) S T (nonmechanical variable) (genuine thermodynamic variable) 18 (4.3) A A B E (4.28) (4.34) (1), (2) A E = E (1) + E (2) E E (1), E (2) (4.7) 1, 2 V (1), V (2) W (1) (E (1) ), W (2) (E (2) ) i o(v (i) ) W (E) = W (1) (E (1) )W (2) (E E (1) ) (4.28) E (1) 2.9 B 19 E (1) Θ (1) (E (1) ) Θ (1) (E (1) ) = W (1) (E (1) )W (2) (E E (1) ) W (E) (4.29) 17 Bohr-Zommerfelt 18 II 19 B 28

34 Θ (1) (E (1) ) E E (1) E (1) W (1), W (2), W ln Θ (1) (E (1) ) = ln W (1) (E (1) ) + ln W (2) (E E (1) ) ln W (E) (4.30) E (1) 20 E (1) ln Θ(1) (E (1) ) = E (1) ln W (1) (E (1) ) + E (1) ln W (2) (E E (1) ) (4.31) E ln W (2) (E E (1) ) = (1) E ln W (2) (E (2) ) (2) E ln W (1) (E (1) ) = (1) E ln W (2) (E (2) ) (4.32) (2) E (1) V (1), V (2) 21 Θ (1) (E (1) ) E (1) E (1) (4.32) E (1) 8.2 E (1) B(= 1/T ) E (1) S(1) (E (1) ) = E (2) S(2) (E (2) ) (4.33) B (1) (E (1) ) = B (2) (E (2) ) (4.34) 2 E, X 1, X 2, E E X k (k = 1, 2, ) (4.32), (4.33) X (1) k X (1) k ln W (1) (X (1) k ) = X (2) k S (1) (X (1) k ) = X (2) k ln W (2) (X (2) k ), (4.35) S (2) (X (2) k ) (4.36) X k X k (4.32) (4.33) (4.35) (4.36) ln W S S (i) = ln W (i) + (i = 1, 2) (4.37) k B J/K (4.38) 22 (4.37) 6 (4.37) (i) S = k B ln W (4.39) V (i) E/V, N/V V V E (1) E (1) 22 SI k B = 1 29

35 o(v ) B B : E, X 1,, X t k B ln W (E, X 1,, X t ) S(E, X 1,, X t ) S(E, X 1,, X t ) = k B ln W (E, X 1,, X t ) + o(v ). (4.40) (2.11) o(v ) 4.7 B o(v ) E, V, N S TD k B ln W S SM B o(v ) S SM (E, V, N) k B ln W (E, V, N) (4.41) S TD (E, V, N) = S SM (E, V, N) + o(v ). (4.42) 4.3 S TD (E, V, N) s(e/v, N/V ) S TD (E, V, N) = V s(e/v, N/V ) (4.43) V s(e/v, N/V ) + o(v ) (4.44) E/V, N/V V o(v ) O(V ) S TD (E, V, N) (4.42) B S SM (E, V, N) S SM (E, V, N) S TD (E, V, N) S SM (E, V, N) S TD (E, V, N) for (4.45) B S SM S TD O(V ) O(V ) u, n u E/V, n N/V (4.46) S SM (V u, V, V n) s(u, n) = lim V V (4.47) (4.43) V V S TD (E, V, N) = V S SM (V u, V, V n) lim V V. (u = E/V, n = N/V ) (4.48) u, n, V (thermodynamic limit) 30

36 O(V ) o(v ) E/V, N/V V E, V, N O(V ) O(N) O(E) o(v ) o(n) o(e) E N E N u, n s(u, n) u, n s(u, n) S TD (E, V, N) = V s(u, n) (E = V u, N = V n) (4.49) E, N 5.7 S SM (E, V, N) O(V ) S TD (E, V, N) S SM (E, V, N) E, N W (E, V, N) Z(T, V, N) O(V ) W (E, V, N), Z(T, V, N) V V V c ϵ, V ϵ, 1/c < ϵ for V > V V V/γ 23 γ ϵ (0, ϵ, 2ϵ, ) E j n j ϵ (n j = 0, 1, 2, ) n j n n 1, n 2,, n V/γ (4.50) 24 toy model V V 24 n V/γ N P µ γ 31

37 V/γ 1, E/ϵ 1 (4.51) V, E γ, ϵ E, V E, V, N N E, V 4.3 V/γ E = n j ϵ (4.52) j=1 W (E, V ) = (E/ϵ + V/γ 1)! (E/ϵ)!(V/γ 1)! (4.53) O(V ) (Stirling s formula) N! 2π N N+1/2 e N as N. (4.54) o(n) ln(n!) = N ln N N + o(n). (4.55) ln W (E, V ) = ( E ϵ + V ) ( E ln γ ϵ + V ) E γ ϵ ln E ϵ V γ ln V γ + o(v ). (4.56) S(E, V ) = k B [( E ϵ + V γ ) ( E ln ϵ + V ) E γ ϵ ln E ϵ V γ ln V ]. (4.57) γ (4.48) 4.4 V B = k ( B ϵ ln 1 + ϵv ), (4.58) γe Π V = k ( B γ ln 1 + γe ). (4.59) ϵv P, V, N, T (equation of state) ( ) ( ) e ϵ/kbt 1 e γp/kbt 1 = 1. (4.60) N P, V, T V (4.37) 4.3 (4.53) 4.4 (4.48) S TD (E, V ) = V S SM (V u, V ) lim V V. (u = E/V ) (4.61) S TD (E, V ) (4.57) 32

38 A, B A  ˆρ Â, ˆρ A (4.62) Tr[ˆρÂ] Tr[( )( )] 26 entanglement entanglement ˆρ ˆρ entanglement (4.63) entanglement S S (4.62) entanglement ˆρ (4.63) S (4.64) S 27 Gibbs von Neumann Shannon Shannon Gibbs von Neumann Gibbs von Neumann W (E) E 33

39 S Gibbs von Neumann (4.64) S von Neumann von Neumann S von Neumann S Gibbs von Neumann (4.64) (4.64) S (4.64) S 34

40 5 W S = k B ln W S W 5.1 ens(e, V, N) E E l, E u (> 0) V, N [E E l, E + E u ] (5.1) ens(e, V, N) W (E, V, N) E l, E u ens(e, V, N) W (E, V, N) S(E, V, N) E l, E u E l, E u S(E, V, N) V, N E Ω(E, V, N) W (E, V, N) = Ω(E + E u, V, N) Ω(E E l, V, N). (5.2) E = O(V ) E l, E u V E l = o(v ), E u = o(v ) (5.3) (5.2) E 1 W (E, V, N) = Ω(E, V, N) ( E l + E u ) (5.4) E Ω Ω E (density of states) B Ω E [ ] Ω S(E, V, N) = k B ln E ( E l + E u ) + o(v ) (5.5) E l, E u E l, E u k B ln [ Ω E ( E l + E u) ] + o(v ) 1 ( E k B ln l + E u ) + o(v ). (5.6) E l + E u E l,, E u o(v ) V o(v ) E l, E u E l, E u S(E, V, N) 1 o(v ) o(v ) o(v ) = 0 V 1/2 V 1/3 o(v ) o(v ) 35

41 O(1) ε ε = k B T E l = E u = ε/2 S(E, V, N) = k B ln S(E, V, N) ( ) Ω E ε + o(v ) (5.7) E l o(v ) 5.2 (5.5) E l o(v ) O(V ) o(v ) S(E, V, N) (5.5) E l = o(v ) S = k B ln W + o(v ) E l = O(V ) (5.7) Ω(E, V, N) E E E 0 < E < + (5.8) V o(v ) Ω(E, V, N) O(V ) S E = 1 T > 0 (5.9) T V, N E E 0 T 0 (5.7) 2 Ω / Ω E 2 E = 1 k B T > 0. (5.10) Ω 0 E (E = 0) (5.8) E Ω E > 0, 2 Ω > 0. (5.11) E2 Ω E ε O(1) Ω E ε < Ω < Ω E E (5.12) ( ) Ω ln E ε ( ) Ω < ln Ω < ln E E (5.13) ln(e/ E l ) = o(v ) O(V ) O(V ) (5.5) (5.7) S(E, V, N) = k B ln Ω + o(v ) (5.14) Ω(E, V, N) E l = E E u = 0 W (E, V, N) E u o(v ) W (E, V, N) Ω(E, V, N) + Ω E E u ln Ω o(v ) W (E, V, N) S(E, V, N) E l, E u S(E, V, N) 36

42 S(E, V, N) E l, E u 0 E l E, 0 E u o(v ), E l + E u [ O(1) ] (5.15) (5.14) E E Ω Ω Ω E E S(E, V, N) ens(e, V, N) E l, E u W (E, V ) Ω(E, V ) (5.14) V E 5.1 Ω(E, V ) = (E/ϵ + V/γ)! (E/ϵ)!(V/γ)! (5.16) O(V ) (4.57) (5.14) 5.1 (5.16) (5.14) 5.3 SI k B S k B = 1 (5.14) S S(E, V, N) = ln Ω(E, V, N) + o(n) (5.17) S(E, V, N) = Ns(E/N, V/N) (5.18) s 4.1 N s 1 ln Ω(E, V, N) ln Ω(E, V, N) = Ns(E/N, V/N) + o(n) (5.19) 3 Ω(E, V, N) ln Ω(E, V, N) (1/N) ln Ω(E, V, N) 2 s(u, v) (u E/N, v V/N) (5.9) 5.2 s(u, v) > 0 (5.20) u 4.3 s(u, v) 2 s(u, v) 0 (5.21) u Ω (5.19), (5.20), (5.21) 37

43 16 S(U, V, N) C 1 s(u, v) C 1 2 (5.19) Ω(E, V, N) = exp [Ns(E/N, V/N) + o(n)] (5.22) s N ( Ω(E, V, N) u (= E/N) s(u, v) Ω = exp[ns(u, v)] s(u, v) = 1 u ( )u s s(( )u, v) = Ω = e Ns N = e ( )N e N = e 10 6N = e 1018 (5.23) 3 Ω(E, V, N) E % W (E, V, N) = Ω(E + E u, V, N) Ω(E E l, V, N) ( (5.2)) Ω(E, V, N) (5.24) O(V ) (5.7), (5.14) Ω(E, V, N) (5.22) s rate function B A B 5.4 E l, E u (5.11), (5.19)-(5.22) [7] 38

44 5 5 39

45 6 ( (free particles) (ideal gas) N N = 2 (a) (b) (a) (b) 6.5 ens(e, V, N) N = 2 (a) (b) W (E, V, N) Ω(E, V, N) 2 N N! 3.1 q 1, p 1, q 2, p 2,, q 3N, p 3N H = 3N j=1 (4.15) Ω(E, V, N) N! Ω(E, V, N) = 1 dqdp N! q V, H E (2πħ) 3N (6.2) 1 = N!(2πħ) 3N dq 1 dq 3N dp 1 dp 3N. (6.3) 1 q V 2m j p2 j E 1 V V N Ω(E, V, N) = N!(2πħ) 3N dp 1 dp 3N (6.4) 1 2m j p2 j E = V N (2mE) 3N/2 N!(2πħ) 3N dx 1 dx 3N. (6.5) j x2 j 1 p 2 j 2m (6.1) 40

46 x j p i / 2mE (6.6) 3N j=1 x 2 j 1 (6.7) 3N 1 3N n C n C n = π n/2 Γ(n/2 + 1) (6.8) Γ(x) 2 Γ(1) = 1, (6.9) Γ(1/2) = π, (6.10) Γ(x + 1) = xγ(x), (6.11) Γ(x + 1) 2πe x x x+1/2 as x. (6.12) x n (6.11) Γ(n + 1) = nγ(n) = n(n 1)Γ(n 1) = Γ(1) (6.9) Γ(n + 1) = n! (6.13) Γ(x + 1) n! x (6.12) (4.54) x (Stirling s formula) o(x) ln Γ(x + 1) x ln x x + o(x) as x. (6.14) (6.8) 3 C 3 = π3/2 Γ ( ) = π3/ Γ ( 1 = 2) 4π 3 2 (6.5) (6.8) Ω(E, V, N) = V N (2πmE) 3N/2 N!(2πħ) 3N Γ(3N/2 + 1) O(V ) [ ( S(E, V, N) = k B N ln V E 3/2 /N 5/2) ] + (6.15) (6.16) (6.17) m, ħ 3 3 E 0, V 0, N 0 S 0 S(E 0, V 0, N 0 ) [ ( S = N ) 3/2 ( ) ( ) ] 5/2 E V N0 S 0 + k B N ln. (6.18) N 0 N n 1 n x 2 j = 1 2 j=1 2 E 0 V 0 41

47 5.4 k B R ( 8.31J/K mol) R = N A k B (6.19) N A ( mol 1 ) N mol ( ) (N/N A )mol 4.6 (4.37) k B 6.1 (6.18) E = 3 2 k BNT, (6.20) P V = k B NT. (6.21) k B 5.2 r n C n r n ϵ (1 ϵ)r C n [(1 ϵ)r] n ϵr C n r n C n [(1 ϵ)r] n C n r n C n [(1 ϵ)r] n 1 C n [(1 ϵ)r] n = 1. (6.22) (1 ϵ) n ϵr n 1 n = 3N ϵ 1 1 (6.4) N N 5.2 S E E Ω E E E Ω 6.2 n (6.1) H = 3N j=1 p 2 j 2m k,l (k l) u(r k r l ) (6.23) u(r k r l ) k l I u

48 u u(r k r l ) r k r l 3 [1 u ] k B T (6.24) u k B ln W u = 0 u u = S(E, V, N) E, V, N W (E, V, N) ( 6.5 N! N!

49 9.2 (a) (b) p A r A p B r B (a) (b) N! ( (a) (b) N! N! N 2N, 3N, 4N, M N M (6.25) M N M!/N!(M N)! U, V, N N! M!/N!(M N)! (6.26) N M M N ln 44

50 (7.1) A (A.8) E, V, N 12 (entropy representation) E, V, N S = S(E, V, N) E, V, N E U UV N (energy representation) S, V, N E = E(S, V, N) S, V, N SV N (Legendre transform) A 11 E, V, N S, V, N S T T, V, N T V N E(S, V, N) S E/ S = T (2.17) F (T, V, N) [ E(S, V, N) ST ] (T, V, N). (7.1) F (T, V, N) (Helmholtz) T, V, N F = F (T, V, N) T, V, N T, V, N T, V, N E, V, N 45

51 T, V, N F = F (T, V, N) F (T, V, N) T (inverse Legendre transform) E(S, V, N) SV N S = S(E, V, N) E = E(S, V, N) (7.2) F = F (T, V, N) F (T, V, N) E(S, V, N) S(E, V, N) S(E, V, N) S(E, V, N) (fundamental relation) T V N (heat bath) UV N T V N T F i F (i) (T, X (i) 1, X(i) 2,, X(i) t i ) (7.3) F F = min F (T, {X (i) {X (i) 1,X(i) 2, } 1, X(i) 2, } i). (7.4) i T T V N F (T, V, N) F = P V V E(S, V, N) S V (Gibbs) G(T, P, N) [ F (T, V, N) + V P ] (T, P, N) (7.5) = [ E(S, V, N) ST + V P ] (T, P, N) (7.6) G = G(T, P, N) T P N G(T, P, N) E(S, V, N) S(E, V, N) 46

52 E, V, N S, V, N E, V, N S(E, V, N) E(S, V, N) EV N SV N 7.2 E, V, N V, N V, N λ = 1, 2, 3, λ V, N, λ E V,N,λ E V,N,λ [V, N, λ ]. (7.7) E V,N,λ E λ λ E V,N,λ = E V,N,λ λ, λ E E b + A A A 1 E E V, N E V,N,λ E λ + E t E t = E + E b (7.8) A λ Θ λ Θ λ = W b(e t E λ ) W t (E t ) (7.9) Θ λ λ λ Θ λ W b (E t E λ ) (7.10) 1 47

53 S b = k B ln W b + o(v b ) o(v b ) Θ λ exp [S b (E t E λ )/k B ]. (7.11) E t E λ S b (E t E λ ) E λ 2 S b (E t E λ ) = S b (E t ) S b(e t )E λ S b (E t )E 2 λ + (7.12) E t E b E b T b = T ( S b(e t ) S b(e b ) = 1 T b = 1 T. (7.13) E t E b E b T b S b (E t ) S b (E b ) = 1 = 0. (7.14) E b T b (7.12) + S b (E t E λ ) = S b (E t ) E λ /T (7.11) λ Θ λ e E λ/k BT = e βe λ (7.15) β 1/k B T (7.16) B (inverse temperature) Θ λ Z λ e βe λ (7.17) Θ λ λ Θ λ = 1 Θ λ = 1 Z e βe λ (7.18) (canonical distribution) T Z β T E λ V, N E λ E V,N,λ Z T, V, N Z(T, V, N) Z (partition function) Θ λ T, V, N Θ λ (T, V, N) 4.5 Z = e βh(q,p) dqdp (2πħ) f (7.19) q V V, N V q N f = 3N V, N Θ λ (canonical ensemble) Θ λ T T, V, N ens(t, V, N) T T, V, N ens(t, V, N) E, X 1,, X t X 1,, X t X 2 S b (E t E λ, V b, N b ) = V b s b (E t/v b E λ /V b, N b /V b ) s b E λ /V b V b /V 48

54 E, X X X 1,, X t E X λ E X,λ [X, λ ] (7.20) (partition function) Z(T, X) λ exp ( βe X,λ ) (β 1/k B T ) (7.21) X λ Θ λ (T, X) = 1 Z(T, X) exp ( βe X,λ) (7.22) (canonical ensemble) (canonical distribution) ens(t, X) T T, X ens(t, X) A + T, X 7.3 Θ λ e βe λ E λ (E E, E] Θ(E E, E] Ω E Θ(E E, E] = 1 Ω e βe E (7.23) Z E Ω E E E e βe Θ(E E, E] E ( E ) S = k B ln ( Ω E E) Θ(E E, E] = 1 Z e βe e S/k B = 1 Z exp [ 1 k B T = 1 Z exp [ V k B T ] {E T S(E, V, )} )}] { E V T s ( E V, (7.24) (7.25) (7.25) { } E ( E ) E/V E /V { } V (V/k B T ){ } 3 exp[ (V/k B T ){ }] Θ(E E, E] E/V = E /V 3 V V N 49

55 V V E/V E/V E /V E = E + o(1) as V. (7.26) V V E = E + o(v ) as V. (7.27) E = E (7.28) E E E E E E V T s ( E V, ) E S E {E T S(E, V, )} = 0 E 1 T E = 0 E S E = 1 T E E T E T T E, V, T (E, V, ) (7.29) T (E, V, ) = T (E, V, ) (7.30) T (E, V, ) E E = E (7.31) 7.7 T (E, V, ) E = [E ] E Z Z = λ = = = e βe λ βe Ω e E de 1 e βe e S/kB de E 1 exp E [ 1 {E T S(E, V, )} k B T ] de (7.32) exp[ { }/k B T ] { } { } E T S(E, V, ) E T S(E, V, ) 5 E {E T S(E, V, )} E=E = 0 (7.33) 4 5 S(E, V, ) E T S(E, V, ) T, V, N E E E 50

56 (E E ) 1 E T S(E, V, ) = E T S(E, V, ) 1 2! T 2 E 2 S(E, V, ) E=E (E E ) 2 + (7.34) 2 2 E 2 S(E, V, ) E=E = E 1 T (E, V, ) E=E 1 = T (E, V, ) 2 1 = T (E, V, ) 2 C V (E, V, ) E T (E, V, ) E=E (7.35) C V = [ E T (E, V, )] 1 C V O(V ) 13.1 C V O(V ) T O(1) (7.35) O(1/V ) (7.34) 2 O(1/V ) (E E ) 2 (7.32) V 2 E E O( V ) (7.36) n 1 n S(E, V, ) = En V n (E/V ) n V s(e/v, ) = 1 n V n 1 u n s(u, ) = O(1/V n 1 ) (7.37) (7.36) E n = O(1/V n 1 ) O(V n/2 ) = O(1/V n/2 1 ) (7.38) n 3 2 [ ] [ ] 1 Z = exp k B T {E 1 1 T S(E, V, )} exp E 2k B T 2 (E E ) 2 de (7.39) C V E E e ax2 dx = π a (a > 0) (7.40) [ ] 1 Z = exp k B T {E T T S(E, V, )} 2πkB C V. (7.41) E E E ln Z = 1 ( T ) {E T S(E, V, )} + ln 2πkB C V k B T E (7.42) { } F O(V ) o(v ) F = k B T ln Z + o(v ) (7.43) F T, V, N T, X) Z F 51

57 F (T, X) = k B T ln Z(T, X) + o(v ). (7.44) T V N 7.1 F Z Z W Z F Θ λ = e β(e λ F ). (7.45) o(v ) (7.32) (7.41) [ 1 exp k B T = exp ] {E T S(E, V, )} [ 1 k B T {E T S(E, V, )} de (7.46) ] [ o(v ) ] (7.47) (7.46) (7.46) 7.5 Z Z W Z W n 1, n 2,, n N n (7.48) n j n j n 7.2 λ n j j j j = 1, 2,, N 4.8 j V/γ N n E n = ε j (n j ) (7.49) j 6 52

58 j ε j ε j n j ε j (n j ) (j j n j j Z = e βen (7.50) n = e β[ε1(n1)+ε2(n2)+ +εn(nn)] (7.51) n 1 n 2 n N { } { } { } = e βε1(n1) e βε2(n2) e βεn(nn) (7.52) n 1 n 2 n N 7 z j n j e βεj(nj) (7.53) Z = j z j, ln Z = j ln z j (7.54) z j j j Z z 1 = z 2 = ( z) Z = z N, ln Z = N ln z (7.55) n j n Z M M = N! (7.55) Z = 1 M zn, ln Z = N ln z ln M (7.56) Z 4.8 j z 1 = z 2 = ( z) N = V/γ F (T, V ) = k BT V γ z = n=0 ε j (n j ) = εn j (7.57) e βεn 1 =. (7.58) 1 e βε ln Z = V γ ln 1 1 e βε = V γ ln ( 1 e βε). (7.59) ( ) ln 1 e ε/k BT = k BT V γ ( ) ln e ε/kbt 1 εv γ. (7.60) 4.8 E = E(S, V ) S F (T, V ) n j 4.5 n j 53

59 7.5.3 Z 6.1 S(E, V, N) Z F (T, V, N) j q j, p j j (j = 1, 2,, 3N) ( j = 1, 2,, N) r j p j r j H = N j=1 p 2 j 2m (7.61) M = N! (7.56) Z = 1 N! zn (7.62) ] z = exp [ β p2 d 3 rd 3 p r V 2m (2πħ) 3 (7.63) [ ] [ ] [ ] V = (2πħ) 3 exp β p2 x dp x exp β p2 y dp y exp β p2 z dp z. (7.64) 2m 2m 2m (7.40) z = V (2πħ) 3 ( ) 3 2mπ. (7.65) β F (T, V, N) = k B T (N ln z ln N!) O(N) (7.66) [ = k B T N ln V N + 3 ] 2 ln(2πk BmT ) ln(2πħ). (7.67) T 0, V 0, N 0 F F (T 0, V 0, N 0 ) F 0 [ ( F (T, V, N) = NT T F 0 k B T N ln N 0 T 0 T 0 ) 3/2 ( V V 0 ) ( ) ] N0. (7.68) N 6.1 E = E(S, V, N) S F (T, V, N) E T, V, N F (T ± 0, V, N) S(T ± 0, V, N) = T (7.69) S(T ± 0, V, N) E(T ± 0, V, N) = F (T, V, N) + S(T ± 0, V, N)T (7.70) E(T ± 0, V, N) 8 Z(T, V, N) Z(T, V, N) E = 1 E λ e βe λ (7.71) Z λ 8 T ±

60 Z (7.17) ln Z(β ± 0, V, N) E(T ± 0, V, N) = β (7.72) 9 Z β, V, N ln Z β = 1/k B T 1 E(T ± 0, V, N) S(E, V, N) B = S/ E (= 1/T ) S(E, V, N) E F F F(B, V, N) [S(E, V, N) EB](B, V, N). (7.73) (Massieu function) F(B ± 0, V, N) E(B ± 0, V, N) = B (7.72) B = k B β Z B, V, N (7.74) F(B, V, N) = k B ln Z(B, V, N) (7.75) 7.4 S(E, V, N) = k B ln W (E, V, N) ( k B k B = 1 SI k B β = B F(B, V, N) E F(B, V, N) Z(B, V, N) (2.22) Π V (= P/T ) Π V (B, V, N) = F(B, V, N) V = ln Z(B, V, N). (7.76) V T (E, V, ) E E E (7.31) E T V N T V N UV 9 Z (7.17) λ / β e βe λ 55

61 8 UV N T V N (equivalence of ensembles) E N E b N b + E, N V E, N 7.2 (7.7) E V,N,λ E X,λ E N,λ E, V, N + A A 7.2 N λ Θ N,λ Θ N,λ W b (E t E N,λ, N t N) (8.1) Θ N,λ N, λ N, λ S b = k B ln W b + o(v b ) o(v b ) Θ N,λ exp [S b (E t E N,λ, N t N)/k B ] (8.2) E t E N,λ, N t N S b (E t E N,λ, N t N) E N,λ, N 2 S b (E t E N,λ, N t N) = S b (E t, N t ) S b(e t, N t ) E N,λ S b(e t, N t ) N (8.3) E t N t S b (E t, N t ) S b(e b, N b ) = 1 = 1 E t E b T b T, (8.4) S b (E t, N t ) S b(e b, N b ) = µ b = µ N t N b T b T. (8.5) p

62 T, µ T b µ b 8 S b (E t E N,λ, N t N) S b (E t, N t ) E N,λ T + µn T (8.2) N, λ Θ N,λ e β(e N,λ µn) (8.6) (8.7) Θ N,λ Ξ N,λ e β(e N,λ µn) (8.8) Θ N,λ N,λ Θ N,λ = 1 Θ N,λ = 1 Ξ e β(e N,λ µn) (8.9) (grand canonical distribution) (8.8) Ξ e β(en,λ µn) T, µ E N,λ V E N,λ E V,N,λ Ξ T, V, µ Ξ(T, V, µ) Ξ (grand partition function) Θ N,λ T, V, µ Θ N,λ (T, V, µ) 4.5 Ξ(T, V, µ) N q V e β[h(q,p) µn)] dqdp (2πħ) f. (8.10) V q V Θ N,λ (grand canonical ensemble) Θ N,λ T, µ T, V, µ ens(t, V, µ) T µ T, V, µ ens(t, V, µ) E, V, N, X 3, X t E, N V, X 3,, X t X E, N, X E N, X λ E N,X,λ [N, X, λ ] (8.11) (grand partition function) Ξ(T, µ, X ) exp [ β (E N,X,λ µn)] (β 1/k B T ) (8.12) N,λ X N, λ Θ N,λ (T, µ, X ) = 1 Ξ(T, µ, X ) exp [ β (E N,X,λ µn)] (8.13) (grand canonical ensemble) (grand canonical distribution) ens(t, µ, X ) 57

63 T µ T, µ, X ens(t, µ, X ) E, V, N A T, µ, X Θ N,λ (E E, E] (N N, N] Θ((E E, E], (N N, N]) 7.3 Θ((E E, E], (N N, N]) E, N E, N E, N E, N E, N V E = [E ] N = [N ] E Z 7.4 Ξ 7.4 Ξ (8.8) N dn (8.14) 3 E 7.4 N Ξ = N,λ β(e µn) Ω(E, N) = e dedn E [ ] 1 1 = exp {E T S(E, V, N ) µn} dedn E k B T [ ] 1 = exp k B T {E T S(E, V, N, ) µn } [ o(v ) ] (8.15) e β(e N,λ µn) 2 (7.47) E, N E, N ln Ξ = 1 {E T S(E, V, N ) µn} + o(v ) (8.16) k B T { } E(S, V, N, ) S, N J(T, V, µ, ) [E(S, V, N, ) ST Nµ] (T, V, µ, ) (8.17) J(T, µ, X ) = k B T ln Ξ(T, µ, X ) + o(v ) (8.18) 3 f(, N, ) f(, N, ) N N N = 1 f(, N, ) = N N f(, N, ) N N 4.7 N N N = 1 o(v ) f(, N, ) = N f(, N, )dn 58

64 J T, µ, X (= T, µ, V, ) Ξ J T V µ J Z Ξ Z Ξ j N M = N! ξ j e β(εj(nj) µ) (8.19) n j Ξ Ξ = N 1 N! N ξ j. (8.20) j=1 Ξ J Θ N,λ = e β(en,λ µn J). (8.21) o(v ) Ξ Z Ξ(T, V, µ) = N Z(T, V, N)e βµn. (8.22) 8.1 J(T, V, µ) J(T, V, µ) F (T, V, N), U(S, V, N) N 8.3 UV N T V N T V µ S = S(E, V, N) = k B ln W (E, V, N) : E = E(S, V, N) F = F (T, V, N) = k B T ln Z(T, V, N) : (8.23) J = J(T, V, µ) = k B T ln Ξ(T, V, µ) : (equivalence of ensembles) 7.6 B = S/ E 59

65 (= 1/T ), Π N = S/ N (= µ/t ) S(E, V, N) F (7.73) F(B, V, N) J J(B, V, Π N ) [F(B, V, N) NΠ N ](B, V, Π N ) (8.24) S = S(E, V, N) = k B ln W (E, V, N) : F = F(B, V, N) = k B ln Z(B, V, N) : (8.25) J = J(B, V, Π N ) = k B ln Ξ(B, V, Π N ) : 8.2 F, Θ λ e βe λ Θ λ,n e β(e λ,n µn) βe = (1/k B )BE B E βµn = (1/k B )(µ/t )N = (1/k B )Π N N Π N N N X k Π k Θ exp 1 k B Π k X k (8.26) k E, V Θ λ,v e 1 k B (BE λ,v +Π V V ) = e β(e λ,v +P V ) (8.27) T -P Z Ξ Λ exp 1 k B k Π k X k (8.28) 60

66 k B T ln Λ = T S + T Π k X k (8.29) k T S S V (maximal canonical 61

67 9 9.1 N f = 3N (6.23) H(q, p) = f j=1 p 2 j 2m j + U(q) (9.1) U(q) q 1,, q f j m 1 = m 2 = m 3, m 4 = m 5 = m 6, [7] j p2 j /2m j 8.3 T j p2 j /2m j g(p) 6.1 M g(p) = 1 Z 1 g(p)e βh(q,p) dqdp M q V (2πħ) 3N 1 g(p)e β j p2 j /2mj e βu(q) dqdp M q V (2πħ) 3N = 1 e β j p2 j /2mj e βu(q) dqdp M q V (2πħ) 3N g(p)e β j p2 j /2mj dp e βu(q) dq q V = e β j p2 j /2m j dp e βu(q) dq q V g(p)e β j p2 j /2mj dp = e β. (9.2) j p2 j /2mj dp M g(p) U(q) g(p) g(p) U(q) = 0 62

68 g(p) = j p2 j /2m j j p 2 j 2m j = = = p 2 j e β j p2 j /2m j dp 1 dp f 2m j j e β j p2 j /2mj dp 1 dp f p 2 1 e βp 2 1 /2m 1 dp 1 e β f j=2 p2 j /2m j dp 2 dp f 2m 1 e βp2 1 /2m1 dp 1 e β + [1 2 ] + f j=2 p2 j /2mj dp 2 dp f p 2 1 e βp 2 1 /2m 1 p 2 2 dp 1 e βp 2 2 /2m 2 dp 2 2m 1 2m (9.3) e βp2 1 /2m 1 dp 1 e βp2 2 /2m 2 dp 2 (7.40) (7.40) a x 2 e ax2 dx = 1 π 2a a (a > 0) (9.4) j p 2 j 2m j = j f 1 2β = f 2 k BT. (9.5) 1 = 1 2 k BT. (9.6) S E U(q) = 0 E E E p 2 j E = = 3N 2m j 2 k BT. (9.7) j C V C V = ( ) E = 3 T V,N 2 k BN. (9.8) 63

69 c V c V = C V N/N A = 3 2 k BN A = 3 2 R (9.9) c V 3 T +0 c V T +0 c V 0 c V f 9.3 p (= p 1,, p f ) θ(p) θ(p)dp θ(p 1,, p f )dp 1 dp f p [p 1, p 1 + dp 1 ),, [p f, p f + dp f ) (9.10) (9.2) g(p) p p θ(p) = e β j p2 j /2mj e β = β e βp 2 j /2m j (9.11) j p2 j /2m j 2πm dp j j p j β θ j (p j ) = e βp 2 j /2m j 1 = 2πm j 2πmj k B T e p2 j /2m jk B T (9.12) v j = p j /m j θ v j (v j) θ v j (v j)dv j = θ j (p j )dp j θj v (v j ) = θ j (m j v j )m j mj = 2πk B T e m jv 2 j /2k BT (9.13) m j j v x, v y, v z 3 θ v (v) θ v (v)dv x dv y dv z v [v x, v x + dv x ), [v y, v y + dv y ), [v z, v z + dv z ) (9.14) θ v (v) = = m 2 2πk B T e mv x m /2kBT 2 2πk B T e mv y m /2kBT 2 2πk B T e mv z /2k BT ( ) 3/2 m e 1 2 m v 2 /k B T. (9.15) 2πk B T J. C. Maxwell 64

70 9.4 ) (9.15) (9.15) f[v, v + dv) N k=1 ( ) Θ v (k) [v, v + dv) (9.16) Θ ( v (k) [v, v + dv) ) k v (k) [v, v+dv) ( [v x, v x +dv x ), [v y, v y +dv y ), [v z, v z + dv z )) 1 0 f[v, v + dv) v f[v, v + dv) v, dv Θ ( v (k) [v, v + dv) ) k f[v, v + dv) f[v, v + dv) f[v, v + dv) f[v, v + dv) θ v (v)dv x dv y dv z 1 1 (9.15) 65

71 (9.1) U(q) (= U(q 1,, q f )) U int (q) U wall (q) U(q) = U int (q) + U wall (q). (9.17) q (= q 1,, q f ) p (= p 1,, p f ) (virial) V V(t) (3.6), (3.7) d dt V = j = j f q j (t)p j (t). (9.18) j=1 q j p j + j p j m j p j j q j ṗ j (9.19) q j U q j (9.20) (9.17) d dt V = 2 j p 2 j 2m j j q j U int q j j q j U wall q j (9.21) f(t) (long-time average) 1 τ f lim f(t)dt (9.22) τ τ 0 f (9.21) d dt V = lim 1 τ τ τ 0 dv dt dt (9.21) V(τ) V(0) = lim τ τ = 0 ( V ) (9.23) 2 j p 2 j 2m j = j q j U int q j + j q j U wall q j (9.24) (virial theorem) V V = (9.25)

72 (9.24) 2 j p 2 j 2m j = j q j U int q j + j q j U wall q j. (9.26) k r (k) r (1) = (q 1, q 2, q 3 ) N k=1 r (k) U wall r (k) = N k=1 r (k) f (k) wall (9.27) f (k) wall U wall r (k) (9.28) k V k ( V ) (9.27) = k ( V ) r (k) f (k) wall (9.29) V r da da da (9.29) r (k) r = r df k ( da) k ( da) f (k) wall f (k) wall = r df (9.30) (9.31) df da P df = P da (9.32) P r df (9.30) = P r da. (9.33) (9.29) da (9.29) = P V r da (9.34) 3 3 r = 3 P r da = P ( r)d 3 r = 3P d 3 r = 3P V (9.36) V (9.27) V V (9.26) = 3P V (9.37) 3 a(r) V a(r) da = ( a(r))d 3 r (9.35) V 67

73 (9.26) 3Nk B T (9.26) P V = Nk B T 1 U int q j 3 q j j (9.38) (virial theorem) U wall L U wall O(L 2 ) = o(v ) U wall q j O(L) O(L) O(L 2 ) = O(V ) 3P V df da (9.32) df i = σ ix da x + σ iy da y + σ iz da z (i = x, y, z) (9.39) 3 3 σ ii df da 2 (stress tensor) (9.32) σ ii σ ii = P δ ii (9.38) U int = 0 P V = Nk B T U int 0 P V = Nk B T U int 0 (9.38) P, T U int (q) l λ U int (λq 1,, λq f ) = λ l U int (q 1,, q f ) (9.41) q 1,, q f U int r (k) r (k ) l (9.42) k,k 4 l = l 5 d l < d (9.43) l l l < d l = l 68

74 6 (9.43) 12.5 j q j U int q j = lu int (9.44) (9.38) 7 E = j P V = Nk B T l 3 U int. (9.45) p 2 j 2m j P V = Nk B T l 3 + U int = 3 2 Nk BT + U int (9.46) ( E 3 ) 2 Nk BT. (9.47) P, V, N, T, E E (E (3/2)Nk B T ) ψ(r, t) ϕ(r, t) H int H int = H int (r, t)d 3 r (9.48) H int (r, t) (r, t) ψ, ϕ ψ ϕ ( U(q) = U int (q)+u wall (q) 2 q 1 U(q) q1, 0, qf 0 Q j q j qj 0 (9.49) 6 7 E U wall o(v ) q j U wall O(V ) 69

75 U U U 0 U = Q 1,, Q f 2 + U 0 (9.50) U(q) Q 1 = = Q f = 0 q 1 = q 0 1,, q f = q 0 f U 0 U U Q 1,, Q f 2 q 0 1,, q 0 f U wall (q) U int (q) 2 (9.26) l = 2 (9.43) (9.26) = q j Q j U U q j = Q j + U qj 0 (9.51) q j j Q j j Q j j U 1 U Q j 2 2 U 2 Q j q j (Q j = 0) 8 j U q j = 2 U. (9.52) q j (9.26) p 2 j U = = 3N 2m j 2 k BT. (9.53) j E = 3Nk B T. (9.54) 2 (9.53) (9.43) U(q) 2 U(q) 2 (9.54) V E 3Nk B T c V c V = N ( ) A (3NkB T ) = 3k B N A = 3R (9.55) N T 2 (Dulong-Petit law) c V 70

76 10 (classical statistical mechanics) 9 (quantum statistical mechanics) z 1, z 2, z 1 i 2 z i (10.1)... ψ n ψ, ψ φ 1, φ 2 1, 2 i 2 1 = 0, 2 = 1 + i.. (10.2) 3 φ φ φ (10.3) 1 71

77 1 2 ψ 2 2 φ, φ H 1 φ 1, φ 2,, φ d H H H H (dimension) dim H d dim H 3 ( ) ( i 0 ) = ( 0 i ) (10.4) ;  ˆB ; (Hamiltonian) Ĥ   = a (a ) (10.5) a   a Ĥ V (single-particle state) (many-particle state) H 1 H many 4 dim H many dim H 1 H 1 H many dim H overcomplete 4 72

78 k 1 r z (ħ/2)σ z (σ z = ±1) 1 k (r, σ z ) ν ψ ν ( H 1 ) ν = 0, 1, 2, ν (r, σ z ) ψ 0 (10.7) ψ 0 ψ 0 ψ 0 ) ψ 1 ψ 0 ψ 1 ψ 2 ψ 0, ψ 1, ψ 2, ψ 0, ψ 1, H 1 dim H 1 ψ 0, ψ 1, { ψ ν } H 1 ψ { ψ ν } ψ = ν c ν ψ ν (10.6) c ν ψ { ψ ν } ψ(x) x x x { x } ψ = ψ(x) x dx. (10.7) ψ(x) ψ ψ ψ(x) ψ(x) ψ(x) dim H 1 V dim H 1 V. (10.8) O(1) dim H 1 V ( 10.1 L x L y L z O(1) V = L x L y L z ψ ν n ν n ν (= 0, 1, 2, ) ψ ν ν (10.9) n ν ψ ν n 0, n 1, n 2, n n n = (n 0, n 1, n 2, ) (10.10) n = (9, 7, 4, 1, 0, 0, ) n 0, n 1, n 2, ψ 0, ψ 1, ψ 2, n 0, n 1, n 2, 73

79 n 0, n 1, n 2, N = ν n ν (10.11) 9, 7, 4, 1, 0, 0, N = = 21 n 0 = 9, n 1 = 7, n 0, n 1, n 2, n 0, n 1, n 2, n 0 = n 0, n 1 = n 1, n 2 = n 2, 5 n 0, n 1, n 2, n 0, n 1, n 2, 1 0, 0, 0, N N = 0 0, 0, 0, n 0, n 1, n 2, { n 0, n 1, n 2, } { n } { n } H many Ψ { n } Ψ = c n n = c n0n 1n 2 n 0, n 1, n 2, (10.12) n n 0,n 1,n 2, c n (= c n0,n 1,n 2, ) Ψ { n } 6 n 0, n 1, n 2, H many dim H many dim H many = [n 0 ] [n 1 ] [n 2 ] = [ n ν ] dim H1. (10.13) n ν 2 V dim H 1 V dim H many exp( V ) (10.14) dim H many V 7 (10.12) N ν n ν c n0 n 1 n 2 n 0, n 1, n 2, N = 1 1, 0, 0, H 1 ψ 0 H many H 1 H many H 1 H many H many N ν n ν N n 0, n 1, n 2, H many H 1 H many dim H many H 1 H many n H many 5 n 0 n 0 n 0, n 1, n 2, n 0, n 1, n 2, n H many 1, 1, 0, 0, 0, [ψ 0 (r 1 )ψ 1 (r 2 ) ψ 0 (r 2 )ψ 1 (r 1 )] / 2 Slater determinant 7 n ν V O(V ) 74

80 n ν n ν n ν = 0, 1 1 (10.15) n ν = 0, 1, 2, (10.16) ħ 1/2 n ν = 0, 1 (fermion) n ν = 0, 1, 2, (boson) ħ/2 ħ 1 (n ν = 1) (n ν = 0) 2 (n ν 2) 8 ψ ν (free particles) Ĥ 8 ψ ν 2 75

81 ψ ν ε ν ν = 0 ε 0 ε ν ψ ν n E n E n = ν ε ν n ν (10.17) W Z Ξ Ξ 8.1 N λ E N,λ n N (= ν n ν) n n 8.1 (N, λ) λ,n = N λ = (10.18) n 0 n 2 Ξ n Ξ = n n 1 e β(e n µn) (10.19) E n (10.17) 8.1 Ξ (10.17), (10.18) Ξ = n 0 = e β(ε0 µ)n0 e β(ε1 µ)n1 n 1 ( ) ( ) e β(ε0 µ)n0 e β(ε1 µ)n1 (10.20) n 0 n 1 ξ ν n ν e β(εν µ)nν = 1 + e β(ε ν µ) (fermion) 1 1 e β(ε ν µ) (boson) (10.21) Ξ = ν ξ ν (10.22) ε ν ξ ν (10.21) (10.22) Ξ ψ ν n ν n ν 9 n ν Ξ T, V, µ, n ν n ν ε ν 9 n ν

82 n 0 (10.20) n 0 = 1 n 0 e β(e n µn) Ξ n ( ) ( ) 1 = n 0 e β(ε0 µ)n0 e β(ε1 µ)n1 ν ξ ν n 0 = 1 n 0 e β(ε0 µ)n0 ξ 0 = n 0 n n 1 + e β(ε 0 e β(ε 0 µ)n 0 0 µ) n 0 =0 (1 ) e β(ε 0 µ) n 0 e β(ε 0 µ)n 0 n 0 =0 (fermion) (boson) (10.23) 2 3 (10.20) e xn 1 = 1 e x (10.24) n=0 x 10 ν 0 n ν ν n ν = 1 e β(ε ν µ) ± 1 (+: fermion, : boson). (10.25) 1 n ν = e β(εν µ) (10.26) e β(ε ν µ) 1 (free fermions) (free bosons) n ν = 0, 1 0 n ν 1 e β(ε ν µ) n ν 0 n ν 0 ε ν µ e β(ε ν µ) 1 n ν ε ν µ ε ν < µ n ν < 0 n ν 0 ε ν µ 0 for all ν µ µ ε 0 (= min ν ε ν ) (10.27) µ (10.25) E N n ν E N = n ν 10 77

83 E E = (10.17) E n = ν ε ν n ν = ν ε ν e β(ε ν µ) ± 1 (+: fermion, : boson) (10.28) N N = (10.11) N = n ν ν = ν 1 e β(ε ν µ) ± 1 (+: fermion, : boson) (10.29) N T, V, µ V ε ν µ N T, V T, V, µ T, V, N µ T, V, N e β(ε ν µ) 1 for all ν (10.30) n ν 1 for all ν (10.31) n ν n ν e β(ε ν µ) (10.32) (10.30) 10.4 N V ( ) 3/2 mkb T (10.33) N /V T 6.1 ħ n ν = f(ε ν ) (10.34) f(ε) = 1 e β(ε µ) + 1 T, µ ε (10.35) 0 f(ε) 1 (10.36) n ν 1 78

84 N /V T f(ε) T µ T +0 ε F lim µ (10.37) T +0 ε F (Fermi level) (Fermi energy) 11 βε (= ε/k B T ) /k B (10.38) ε F ε 0 βε = ε T (10.39) T F (ε F ε 0 )/k B (10.40) (degenerate temperature) T F 10 4 K n T F K T +0 lim f(ε) = T +0 lim β + 1 e β(ε ε F ) + 1 = 1 (ε < ε F ) 1/2 (ε = ε F ) 0 (ε > ε F ) (10.41) (step function) 0 n ν 1 n ν = 1 1 n ν = 1 n ν = 0 1 n ν = 0 n ν = 1 for ε ν < ε F, n ν = 0 for ε ν > ε F Ψ = 1, 1,, 1, 0, 0, 1 0 ε ν ε F (10.42) W = 1 W = O(1) S = [k B ln W O(V ) ] = 0 12 T 0 E 1 E 0 = exp[ β(e 1 E 0 )] 0 as T +0 (10.43) O(exp[ N]) lim lim T 0 N 10.2 (10.42) S N 0 (10.44) T T T F ( ) 2 T µ = ε F [O(1) ] (10.45) T F 11 µ 12 W = 2 S k B ln W O(V ) S = 0 W = O(V ) S = 0 S W 79

85 T T F µ ε F ε ε F k B T (Fermi degeneracy) T +0 S 0 T F T F µ T µ T T T F µ ε 0 µ k B T (10.30) T T F T T F T 300K T F 10 4 K n T F K 13 T 1K n ν = f (ε ν ) (10.46) f (ε) = 1 e β(ε µ) 1 (10.47) T, µ ε µ ε 0 f (ε) 0 N /V T f (ε) µ T ε 0 (10.33) µ e β(εν µ) 1 for all ν f (ε) µ ε 0 ε 0 µ k B T/2 n 0 = f (ε 0 ) 1/( e 1) f (ε) 1.5 n ν O(1) for all ν µ ε 0 µ ε 0 µ = o(1) e β(ε0 µ) 1 + β(ε 0 µ) = 1 + o(1) n 0 = 1/o(1) n 0 n 0 V N (10.48) ψ 0 (Bose-Einstein condensation) 13 80

86 T +0 n 0 N lim n 0 = N. (10.49) T +0 S = k B ln W = Ĥ = f i=1 ˆp 2 i 2m (f = 3N). (10.50) Ĥ1 Ĥ Ĥ 1 = 1 2m (ˆp2 x + ˆp 2 y + ˆp 2 z) (10.51) 4.3 Ĥ1 ( ) Ĥ 1 = ħ2 2 2m x y z 2 (10.52) ( ) ħ2 2 2m x y z 2 ψ(r) = εψ(r) (10.53) ε, ψ(r) ε, ψ(r) O(V ) L ψ(r + (L, 0, 0)) = ψ(r + (0, L, 0)) = ψ(r + (0, 0, L)) = ψ(r) for all r. (10.54) 14 k (σ = ±1) k,σ D(ε) 2 81

87 ε, ψ(r) ψ(r) ν = k ψ k (r) k = 2π L (n x, n y, n z ) (n x, n y, n z ) (10.55) ψ k (r) = 1 V e ik r (V = L 3 ) (10.56) L dx L dy L ε dz ψ k (r)ψ k (r) = δ k,k (10.57) ε k = ħ2 k 2 2m (k = k ) (10.58) ε k k ε k ε k ε 0 ε 0 = ε k=0 = N N (10.29) f(ε) N = k f(ε k ). (10.59) D(ε) D(ε)dε [ε ε + dε ] + o(v ). (10.60) D(ε) o(v ) (10.59) 1 N = D(ε) (10.55), (10.58) 0 f(ε)d(ε)dε. (10.61) D(ε) = (m)3/2 V 2 π2 ħ 3 ε (10.62) ( 5.2 Ω E D(ε) Ω E (5.22) N/V V D(ε) V N 10.3 (10.62) T +0 f µ ε F N = εf 0 D(ε)dε. (10.63) (10.62) ε N = 2 2m 3/2 3 ε V F D(ε F ) = 3 π 2 ħ 3 ε 3/2 F. (10.64) ε F (= lim T 0 µ) V, N 82

88 0 < T T F f(ε) O((T/T F ) 2 ) (10.77) g(ε) D(ε) k B = 1 N µ 0 D(ε)dε + π2 6 D (µ)t 2. (10.65) N, V (10.63) εf µ = ε F δ δ ( δ ε F ) µ D(ε)dε π2 6 D (µ)t 2. (10.66) µ ε F [ D(ε F )δ π2 6 D (ε F )T 2. (10.67) δ π2 D ( ) 2 (ε F ) 6D(ε F ) T 2 = π2 T 12 ε F. (10.68) ε F ( 1 π2 T 12 T F ) 2 ] when N/V = constant. (10.69) (10.45) δ ε F µ (10.61) 0 g(ε)f(ε)dε. (10.70) g(ε) f(ε) ε = µ f(ε) ε = µ 1 0 ε µ g(ε)f(ε)dε µ 0 0 g(ε)dε (10.71) f(ε) ε = µ [0, ) [0, µ] [µ, ) g(ε)f(ε)dε µ 0 0 g(ε)dε = = µ µ g(ε)f(ε)dε µ 0 g(ε) e β(ε µ) + 1 dε g(ε)(1 f(ε))dε µ 0 g(ε) dε (10.72) e β(ε µ) f(ε) = 1/[e β(ε µ) +1] x β(ε µ), x β(ε µ) k B = 1 T 0 g(µ + T x) βµ e x + 1 dx T 0 g(µ T x) e x dx. (10.73) + 1 T T F 2 βµ T F /T 1 1/(e x + 1) 1 for x 1 T 0 g(µ + T x) g(µ T x) e x dx. (10.74)

89 g(µ ± T x) x = 0 x = 0 (10.74) g(µ ± T x) = g(µ) ± g (µ)t x + g (µ) (T x) 2 ±. (10.75) 2 2g (µ)t 2 0 x e x + 1 dx + O(T 3 ). (10.76) π 2 /12 (10.71) 0 g(ε)f(ε)dε = µ 0 g(ε)dε + π2 6 g (µ)t 2 + O(T 3 ) (10.77) T 2 (k B T ) E E (10.28) f(ε) E = k ε k f(ε k ) (10.78) D(ε) 1 E = 0 εf(ε)d(ε)dε. (10.79) T +0 E E 0 T +0 f µ ε F E 0 = εf 0 εd(ε)dε. (10.80) D(ε) (10.62) 2(m) 3/2 V E 0 = 5 π 2 ħ 3 ε 5/2 F. (10.81) < T T F N (10.77) g(ε) = εd(ε) (10.79) N, V E E 0 + T 2 when N, V = constant. (10.82) E T c V = N ( ) A E T (10.83) N T T T 0 c V 0 0 < T T F N,V µ k B T ε µ + k B T (10.84) ε < µ k B T T (Fermi degeneracy) c V 84

90

91 E, V, N N V E A ens(e, V, N) E, V, N 1 S = ln W (E, V, N) W (E, V, N) ens(e, V, N) H H pot H kin H(q, p) = H pot (q) + H kin (p). (11.1) W (E, V, N) E H(q, p) H pot (q) H kin (p) E H(q, p) E E = [ ] + [ ] F = E T Ising H = J σ r σ r+eα hµ σ r. (11.3) r α=x,y,z r 1 86

92 J (> 0) σ r = ±1 r e x, e y, e z x, y, z h N m = 1 N µ σ r (11.4) r m = 1 N µ r σ r (11.5) H σ r, σ r+eα σ r = m /µ + δσ r (11.6) σ r+eα = m /µ + δσ r+eα (11.7) δσ r δσ r+eα H J [ ( m ) 2 ( ) ( ) ] m m + δσ r + δσ r+eα hµ σ r (11.8) µ µ µ r α=x,y,z r = 6J m σ r hµ ( ) 2 m σ r + 3J N. (11.9) µ µ r r z 6 z, 3 z/2 Z(T, N, h) [ ( Z(T, N, h) = exp β 6J m ) ( ) 2 m µ + hµ σ r 3βJ N] (11.10) µ possible states r { [ ( = exp β 6J m ) ( ) ]} 2 N m µ + hµ σ 3βJ (11.11) µ σ=±1 [ ( ) ] 2 { [ ( m = exp 3βJN 2 cosh β 6J m )]} N µ µ + hµ. (11.12) ( ) 2 { [( m F = 3JN k B T N ln 2 cosh 6J m ) ]} µ µ + hµ /k B T m h h N m [( m = µ tanh 6J m ) ] µ + hµ /k B T (11.13)

93 E, X 1,, X t H H staggered magnetization E, X 1,, X t E, X 1,, X t 1 DC ens(e, X 1,, X 1 88

94 Ĥ e βĥ/z  A  Ĥ Tr [Z 1 e βĥâ] (13.1)    Ĥ (13.2) A T = β2 β T T = β β (13.3) β A β = β  Ĥ = Ĥ Ĥ Ĥ Ĥ  Ĥ = Ĥ  Ĥ (13.4) N ( ) S C V,N T T ( ) E = T T A T = T T  Ĥ = 1 T Ĥ  Ĥ (13.5) T T Ĥ = 1 T Ĥ Ĥ (13.6) V,N V,N (13.7) = T Ĥ Ĥ = 1 T 2 ( Ĥ)2 Ĥ (13.8) 13.2 C V,N (13.7) (13.8) N C P,N C P,N T ( ) S T P,N ( ) E T P,N (13.9) 89

Maxwell

Maxwell I 2018 12 13 0 4 1 6 1.1............................ 6 1.2 Maxwell......................... 8 1.3.......................... 9 1.4..................... 11 1.5..................... 12 2 13 2.1...................

More information

30

30 3 ............................................2 2...........................................2....................................2.2...................................2.3..............................

More information

all.dvi

all.dvi I 1 Density Matrix 1.1 ( (Observable) Ô :ensemble ensemble average) Ô en =Tr ˆρ en Ô ˆρ en Tr  n, n =, 1,, Tr  = n n  n Tr  I w j j ( j =, 1,, ) ˆρ en j w j j ˆρ en = j w j j j Ô en = j w j j Ô j emsemble

More information

5 5.1 E 1, E 2 N 1, N 2 E tot N tot E tot = E 1 + E 2, N tot = N 1 + N 2 S 1 (E 1, N 1 ), S 2 (E 2, N 2 ) E 1, E 2 S tot = S 1 + S 2 2 S 1 E 1 = S 2 E

5 5.1 E 1, E 2 N 1, N 2 E tot N tot E tot = E 1 + E 2, N tot = N 1 + N 2 S 1 (E 1, N 1 ), S 2 (E 2, N 2 ) E 1, E 2 S tot = S 1 + S 2 2 S 1 E 1 = S 2 E 5 5.1 E 1, E 2 N 1, N 2 E tot N tot E tot = E 1 + E 2, N tot = N 1 + N 2 S 1 (E 1, N 1 ), S 2 (E 2, N 2 ) E 1, E 2 S tot = S 1 + S 2 2 S 1 E 1 = S 2 E 2, S 1 N 1 = S 2 N 2 2 (chemical potential) µ S N

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

master.dvi

master.dvi 4 Maxwell- Boltzmann N 1 4.1 T R R 5 R (Heat Reservor) S E R 20 E 4.2 E E R E t = E + E R E R Ω R (E R ) S R (E R ) Ω R (E R ) = exp[s R (E R )/k] E, E E, E E t E E t E exps R (E t E) exp S R (E t E )

More information

2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n

2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n . X {x, x 2, x 3,... x n } X X {, 2, 3, 4, 5, 6} X x i P i. 0 P i 2. n P i = 3. P (i ω) = i ω P i P 3 {x, x 2, x 3,... x n } ω P i = 6 X f(x) f(x) X n n f(x i )P i n x n i P i X n 2 G(k) e ikx = (ik) n

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H 199 1 1 199 1 1. Vx) m e V cos x π x π Vx) = x < π, x > π V i) x = Vx) V 1 x /)) n n d f dξ ξ d f dξ + n f = H n ξ) ii) H n ξ) = 1) n expξ ) dn dξ n exp ξ )) H n ξ)h m ξ) exp ξ )dξ = π n n!δ n,m x = Vx)

More information

Note.tex 2008/09/19( )

Note.tex 2008/09/19( ) 1 20 9 19 2 1 5 1.1........................ 5 1.2............................. 8 2 9 2.1............................. 9 2.2.............................. 10 3 13 3.1.............................. 13 3.2..................................

More information

[ ] (Ising model) 2 i S i S i = 1 (up spin : ) = 1 (down spin : ) (4.38) s z = ±1 4 H 0 = J zn/2 i,j S i S j (4.39) i, j z 5 2 z = 4 z = 6 3

[ ] (Ising model) 2 i S i S i = 1 (up spin : ) = 1 (down spin : ) (4.38) s z = ±1 4 H 0 = J zn/2 i,j S i S j (4.39) i, j z 5 2 z = 4 z = 6 3 4.2 4.2.1 [ ] (Ising model) 2 i S i S i = 1 (up spin : ) = 1 (down spin : ) (4.38) s z = ±1 4 H 0 = J zn/2 S i S j (4.39) i, j z 5 2 z = 4 z = 6 3 z = 6 z = 8 zn/2 1 2 N i z nearest neighbors of i j=1

More information

2019 1 5 0 3 1 4 1.1.................... 4 1.1.1......................... 4 1.1.2........................ 5 1.1.3................... 5 1.1.4........................ 6 1.1.5......................... 6 1.2..........................

More information

n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................

More information

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence Hanbury-Brown Twiss (ver. 2.) 25 4 4 1 2 2 2 2.1 van Cittert - Zernike..................................... 2 2.2 mutual coherence................................. 4 3 Hanbury-Brown Twiss ( ) 5 3.1............................................

More information

70 5. (isolated system) ( ) E N (closed system) N T (open system) (homogeneous) (heterogeneous) (phase) (phase boundary) (grain) (grain boundary) 5. 1

70 5. (isolated system) ( ) E N (closed system) N T (open system) (homogeneous) (heterogeneous) (phase) (phase boundary) (grain) (grain boundary) 5. 1 5 0 1 2 3 (Carnot) (Clausius) 2 5. 1 ( ) ( ) ( ) ( ) 5. 1. 1 (system) 1) 70 5. (isolated system) ( ) E N (closed system) N T (open system) (homogeneous) (heterogeneous) (phase) (phase boundary) (grain)

More information

iBookBob:Users:bob:Documents:CurrentData:flMŠÍ…e…L…X…g:Statistics.dvi

iBookBob:Users:bob:Documents:CurrentData:flMŠÍ…e…L…X…g:Statistics.dvi 4 4 9............................................... 3.3......................... 4.4................. 5.5............................ 7 9..................... 9.............................3................................4..........................5.............................6...........................

More information

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4 1. k λ ν ω T v p v g k = π λ ω = πν = π T v p = λν = ω k v g = dω dk 1) ) 3) 4). p = hk = h λ 5) E = hν = hω 6) h = h π 7) h =6.6618 1 34 J sec) hc=197.3 MeV fm = 197.3 kev pm= 197.3 ev nm = 1.97 1 3 ev

More information

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google I4 - : April, 4 Version :. Kwhir, Tomoki TA (Kondo, Hirotk) Google http://www.mth.ngoy-u.c.jp/~kwhir/courses/4s-biseki.html pdf 4 4 4 4 8 e 5 5 9 etc. 5 6 6 6 9 n etc. 6 6 6 3 6 3 7 7 etc 7 4 7 7 8 5 59

More information

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co 16 I ( ) (1) I-1 I-2 I-3 (2) I-1 ( ) (100 ) 2l x x = 0 y t y(x, t) y(±l, t) = 0 m T g y(x, t) l y(x, t) c = 2 y(x, t) c 2 2 y(x, t) = g (A) t 2 x 2 T/m (1) y 0 (x) y 0 (x) = g c 2 (l2 x 2 ) (B) (2) (1)

More information

1 9 v.0.1 c (2016/10/07) Minoru Suzuki T µ 1 (7.108) f(e ) = 1 e β(e µ) 1 E 1 f(e ) (Bose-Einstein distribution function) *1 (8.1) (9.1)

1 9 v.0.1 c (2016/10/07) Minoru Suzuki T µ 1 (7.108) f(e ) = 1 e β(e µ) 1 E 1 f(e ) (Bose-Einstein distribution function) *1 (8.1) (9.1) 1 9 v..1 c (216/1/7) Minoru Suzuki 1 1 9.1 9.1.1 T µ 1 (7.18) f(e ) = 1 e β(e µ) 1 E 1 f(e ) (Bose-Einstein distribution function) *1 (8.1) (9.1) E E µ = E f(e ) E µ (9.1) µ (9.2) µ 1 e β(e µ) 1 f(e )

More information

B ver B

B ver B B ver. 2017.02.24 B Contents 1 11 1.1....................... 11 1.1.1............. 11 1.1.2.......................... 12 1.2............................. 14 1.2.1................ 14 1.2.2.......................

More information

006 11 8 0 3 1 5 1.1..................... 5 1......................... 6 1.3.................... 6 1.4.................. 8 1.5................... 8 1.6................... 10 1.6.1......................

More information

2011de.dvi

2011de.dvi 211 ( 4 2 1. 3 1.1............................... 3 1.2 1- -......................... 13 1.3 2-1 -................... 19 1.4 3- -......................... 29 2. 37 2.1................................ 37

More information

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y [ ] 7 0.1 2 2 + y = t sin t IC ( 9) ( s090101) 0.2 y = d2 y 2, y = x 3 y + y 2 = 0 (2) y + 2y 3y = e 2x 0.3 1 ( y ) = f x C u = y x ( 15) ( s150102) [ ] y/x du x = Cexp f(u) u (2) x y = xey/x ( 16) ( s160101)

More information

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x [ ] IC. f(x) = e x () f(x) f (x) () lim f(x) lim f(x) x + x (3) lim f(x) lim f(x) x + x (4) y = f(x) ( ) ( s46). < a < () a () lim a log xdx a log xdx ( ) n (3) lim log k log n n n k=.3 z = log(x + y ),

More information

25 7 18 1 1 1.1 v.s............................. 1 1.1.1.................................. 1 1.1.2................................. 1 1.1.3.................................. 3 1.2................... 3

More information

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 2 ), ϕ(t) = B 1 cos(ω 1 t + α 1 ) + B 2 cos(ω 2 t

More information

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT I (008 4 0 de Broglie (de Broglie p λ k h Planck ( 6.63 0 34 Js p = h λ = k ( h π : Dirac k B Boltzmann (.38 0 3 J/K T U = 3 k BT ( = λ m k B T h m = 0.067m 0 m 0 = 9. 0 3 kg GaAs( a T = 300 K 3 fg 07345

More information

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes ) ( 3 7 4 ) 2 2 ) 8 2 954 2) 955 3) 5) J = σe 2 6) 955 7) 9) 955 Statistical-Mechanical Theory of Irreversible Processes 957 ) 3 4 2 A B H (t) = Ae iωt B(t) = B(ω)e iωt B(ω) = [ Φ R (ω) Φ R () ] iω Φ R (t)

More information

C : q i (t) C : q i (t) q i (t) q i(t) q i(t) q i (t)+δq i (t) (2) δq i (t) δq i (t) C, C δq i (t 0 )0, δq i (t 1 ) 0 (3) δs S[C ] S[C] t1 t 0 t1 t 0

C : q i (t) C : q i (t) q i (t) q i(t) q i(t) q i (t)+δq i (t) (2) δq i (t) δq i (t) C, C δq i (t 0 )0, δq i (t 1 ) 0 (3) δs S[C ] S[C] t1 t 0 t1 t 0 1 2003 4 24 ( ) 1 1.1 q i (i 1,,N) N [ ] t t 0 q i (t 0 )q 0 i t 1 q i (t 1 )q 1 i t 0 t t 1 t t 0 q 0 i t 1 q 1 i S[q(t)] t1 t 0 L(q(t), q(t),t)dt (1) S[q(t)] L(q(t), q(t),t) q 1.,q N q 1,, q N t C :

More information

IA hara@math.kyushu-u.ac.jp Last updated: January,......................................................................................................................................................................................

More information

3.2 [ ]< 86, 87 > ( ) T = U V,N,, du = TdS PdV + µdn +, (3) P = U V S,N,, µ = U N. (4) S,V,, ( ) ds = 1 T du + P T dv µ dn +, (5) T 1 T = P U V,N,, T

3.2 [ ]< 86, 87 > ( ) T = U V,N,, du = TdS PdV + µdn +, (3) P = U V S,N,, µ = U N. (4) S,V,, ( ) ds = 1 T du + P T dv µ dn +, (5) T 1 T = P U V,N,, T 3 3.1 [ ]< 85, 86 > ( ) ds > 0. (1) dt ds dt =0, S = S max. (2) ( δq 1 = TdS 1 =0) (δw 1 < 0) (du 1 < 0) (δq 2 > 0) (ds = ds 2 = TδQ 2 > 0) 39 3.2 [ ]< 86, 87 > ( ) T = U V,N,, du = TdS PdV + µdn +, (3)

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2 II No.1 [n/] [1]H n x) H n x) = 1) r n! r!n r)! x)n r r= []H n x) n,, H n x) = 1) n H n x) [3] H n x) = 1) n dn x e dx n e x [4] H n+1 x) = xh n x) nh n 1 x) ) d dx x H n x) = H n+1 x) d dx H nx) = nh

More information

201711grade1ouyou.pdf

201711grade1ouyou.pdf 2017 11 26 1 2 52 3 12 13 22 23 32 33 42 3 5 3 4 90 5 6 A 1 2 Web Web 3 4 1 2... 5 6 7 7 44 8 9 1 2 3 1 p p >2 2 A 1 2 0.6 0.4 0.52... (a) 0.6 0.4...... B 1 2 0.8-0.2 0.52..... (b) 0.6 0.52.... 1 A B 2

More information

5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1

5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1 4 1 1.1 ( ) 5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1 da n i n da n i n + 3 A ni n n=1 3 n=1

More information

80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t = 0 i r 0 t(> 0) j r 0 + r < δ(r 0 x i (0))δ(r 0 + r x j (t)) > (4.2) r r 0 G i j (r, t) dr 0

80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t = 0 i r 0 t(> 0) j r 0 + r < δ(r 0 x i (0))δ(r 0 + r x j (t)) > (4.2) r r 0 G i j (r, t) dr 0 79 4 4.1 4.1.1 x i (t) x j (t) O O r 0 + r r r 0 x i (0) r 0 x i (0) 4.1 L. van. Hove 1954 space-time correlation function V N 4.1 ρ 0 = N/V i t 80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t

More information

基礎数学I

基礎数学I I & II ii ii........... 22................. 25 12............... 28.................. 28.................... 31............. 32.................. 34 3 1 9.................... 1....................... 1............

More information

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

I A A441 : April 15, 2013 Version : 1.1 I   Kawahira, Tomoki TA (Shigehiro, Yoshida ) I013 00-1 : April 15, 013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida) http://www.math.nagoya-u.ac.jp/~kawahira/courses/13s-tenbou.html pdf * 4 15 4 5 13 e πi = 1 5 0 5 7 3 4 6 3 6 10 6 17

More information

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d S I.. http://ayapin.film.s.dendai.ac.jp/~matuda /TeX/lecture.html PDF PS.................................... 3.3.................... 9.4................5.............. 3 5. Laplace................. 5....

More information

pdf

pdf http://www.ns.kogakuin.ac.jp/~ft13389/lecture/physics1a2b/ pdf I 1 1 1.1 ( ) 1. 30 m µm 2. 20 cm km 3. 10 m 2 cm 2 4. 5 cm 3 km 3 5. 1 6. 1 7. 1 1.2 ( ) 1. 1 m + 10 cm 2. 1 hr + 6400 sec 3. 3.0 10 5 kg

More information

meiji_resume_1.PDF

meiji_resume_1.PDF β β β (q 1,q,..., q n ; p 1, p,..., p n ) H(q 1,q,..., q n ; p 1, p,..., p n ) Hψ = εψ ε k = k +1/ ε k = k(k 1) (x, y, z; p x, p y, p z ) (r; p r ), (θ; p θ ), (ϕ; p ϕ ) ε k = 1/ k p i dq i E total = E

More information

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s ... x, y z = x + iy x z y z x = Rez, y = Imz z = x + iy x iy z z () z + z = (z + z )() z z = (z z )(3) z z = ( z z )(4)z z = z z = x + y z = x + iy ()Rez = (z + z), Imz = (z z) i () z z z + z z + z.. z

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

nm (T = K, p = kP a (1atm( )), 1bar = 10 5 P a = atm) 1 ( ) m / m

nm (T = K, p = kP a (1atm( )), 1bar = 10 5 P a = atm) 1 ( ) m / m .1 1nm (T = 73.15K, p = 101.35kP a (1atm( )), 1bar = 10 5 P a = 0.9863atm) 1 ( ).413968 10 3 m 3 1 37. 1/3 3.34.414 10 3 m 3 6.0 10 3 = 3.7 (109 ) 3 (nm) 3 10 6 = 3.7 10 1 (nm) 3 = (3.34nm) 3 ( P = nrt,

More information

C el = 3 2 Nk B (2.14) c el = 3k B C el = 3 2 Nk B

C el = 3 2 Nk B (2.14) c el = 3k B C el = 3 2 Nk B I ino@hiroshima-u.ac.jp 217 11 14 4 4.1 2 2.4 C el = 3 2 Nk B (2.14) c el = 3k B 2 3 3.15 C el = 3 2 Nk B 3.15 39 2 1925 (Wolfgang Pauli) (Pauli exclusion principle) T E = p2 2m p T N 4 Pauli Sommerfeld

More information

量子力学 問題

量子力学 問題 3 : 203 : 0. H = 0 0 2 6 0 () = 6, 2 = 2, 3 = 3 3 H 6 2 3 ϵ,2,3 (2) ψ = (, 2, 3 ) ψ Hψ H (3) P i = i i P P 2 = P 2 P 3 = P 3 P = O, P 2 i = P i (4) P + P 2 + P 3 = E 3 (5) i ϵ ip i H 0 0 (6) R = 0 0 [H,

More information

f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f

f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f 22 A 3,4 No.3 () (2) (3) (4), (5) (6) (7) (8) () n x = (x,, x n ), = (,, n ), x = ( (x i i ) 2 ) /2 f(x) R n f(x) = f() + i α i (x ) i + o( x ) α,, α n g(x) = o( x )) lim x g(x) x = y = f() + i α i(x )

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2 No.2 1 2 2 δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i δx j (5) δs 2 = δx i δx i + 2 u i δx i δx j = δs 2 + 2s ij δx i δx j

More information

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ = 1 1.1 ( ). z = + bi,, b R 0, b 0 2 + b 2 0 z = + bi = ( ) 2 + b 2 2 + b + b 2 2 + b i 2 r = 2 + b 2 θ cos θ = 2 + b 2, sin θ = b 2 + b 2 2π z = r(cos θ + i sin θ) 1.2 (, ). 1. < 2. > 3. ±,, 1.3 ( ). A

More information

I ( ) 2019

I ( ) 2019 I ( ) 2019 i 1 I,, III,, 1,,,, III,,,, (1 ) (,,, ), :...,, : NHK... NHK, (YouTube ),!!, manaba http://pen.envr.tsukuba.ac.jp/lec/physics/,, Richard Feynman Lectures on Physics Addison-Wesley,,,, x χ,

More information

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T NHK 204 2 0 203 2 24 ( ) 7 00 7 50 203 2 25 ( ) 7 00 7 50 203 2 26 ( ) 7 00 7 50 203 2 27 ( ) 7 00 7 50 I. ( ν R n 2 ) m 2 n m, R = e 2 8πε 0 hca B =.09737 0 7 m ( ν = ) λ a B = 4πε 0ħ 2 m e e 2 = 5.2977

More information

0201

0201 2018 10 17 2019 9 19 SI J cal 1mL 1ºC 1999 cal nutrition facts label calories cal kcal 1 cal = 4.184 J heat capacity 1 K 1 J K 1 mol molar heat capacity J K mol (specific heat specific heat capacity) 1

More information

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt S I. x yx y y, y,. F x, y, y, y,, y n http://ayapin.film.s.dendai.ac.jp/~matuda n /TeX/lecture.html PDF PS yx.................................... 3.3.................... 9.4................5..............

More information

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 24 I 1.1.. ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 1 (t), x 2 (t),, x n (t)) ( ) ( ), γ : (i) x 1 (t),

More information

December 28, 2018

December 28, 2018 e-mail : kigami@i.kyoto-u.ac.jp December 28, 28 Contents 2............................. 3.2......................... 7.3..................... 9.4................ 4.5............. 2.6.... 22 2 36 2..........................

More information

30 (11/04 )

30 (11/04 ) 30 (11/04 ) i, 1,, II I?,,,,,,,,, ( ),,, ϵ δ,,,,, (, ),,,,,, 5 : (1) ( ) () (,, ) (3) ( ) (4) (5) ( ) (1),, (),,, () (3), (),, (4), (1), (3), ( ), (5),,,,,,,, ii,,,,,,,, Richard P. Feynman, The best teaching

More information

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a =

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a = [ ] 9 IC. dx = 3x 4y dt dy dt = x y u xt = expλt u yt λ u u t = u u u + u = xt yt 6 3. u = x, y, z = x + y + z u u 9 s9 grad u ux, y, z = c c : grad u = u x i + u y j + u k i, j, k z x, y, z grad u v =

More information

I

I I 6 4 10 1 1 1.1............... 1 1................ 1 1.3.................... 1.4............... 1.4.1.............. 1.4................. 1.4.3........... 3 1.4.4.. 3 1.5.......... 3 1.5.1..............

More information

2000年度『数学展望 I』講義録

2000年度『数学展望 I』講義録 2000 I I IV I II 2000 I I IV I-IV. i ii 3.10 (http://www.math.nagoya-u.ac.jp/ kanai/) 2000 A....1 B....4 C....10 D....13 E....17 Brouwer A....21 B....26 C....33 D....39 E. Sperner...45 F....48 A....53

More information

M3 x y f(x, y) (= x) (= y) x + y f(x, y) = x + y + *. f(x, y) π y f(x, y) x f(x + x, y) f(x, y) lim x x () f(x,y) x 3 -

M3 x y f(x, y) (= x) (= y) x + y f(x, y) = x + y + *. f(x, y) π y f(x, y) x f(x + x, y) f(x, y) lim x x () f(x,y) x 3 - M3............................................................................................ 3.3................................................... 3 6........................................... 6..........................................

More information

i Γ

i Γ 018 4 10 i 1 1.1.............................. 1.......................... 3 1.3............................ 6 1.4............................ 7 8.1 Γ.................................... 8.......................

More information

1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N m 1.

1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N m 1. 1.1 1. 1.3.1..3.4 3.1 3. 3.3 4.1 4. 4.3 5.1 5. 5.3 6.1 6. 6.3 7.1 7. 7.3 1 1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N

More information

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5. A 1. Boltzmann Planck u(ν, T )dν = 8πh ν 3 c 3 kt 1 dν h 6.63 10 34 J s Planck k 1.38 10 23 J K 1 Boltzmann u(ν, T ) T ν e hν c = 3 10 8 m s 1 2. Planck λ = c/ν Rayleigh-Jeans u(ν, T )dν = 8πν2 kt dν c

More information

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n 003...............................3 Debye................. 3.4................ 3 3 3 3. Larmor Cyclotron... 3 3................ 4 3.3.......... 4 3.3............ 4 3.3...... 4 3.3.3............ 5 3.4.........

More information

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z I 1 m 2 l k 2 x = 0 x 1 x 1 2 x 2 g x x 2 x 1 m k m 1-1. L x 1, x 2, ẋ 1, ẋ 2 ẋ 1 x = 0 1-2. 2 Q = x 1 + x 2 2 q = x 2 x 1 l L Q, q, Q, q M = 2m µ = m 2 1-3. Q q 1-4. 2 x 2 = h 1 x 1 t = 0 2 1 t x 1 (t)

More information

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 0 < t < τ I II 0 No.2 2 C x y x y > 0 x 0 x > b a dx

More information

数学の基礎訓練I

数学の基礎訓練I I 9 6 13 1 1 1.1............... 1 1................ 1 1.3.................... 1.4............... 1.4.1.............. 1.4................. 3 1.4.3........... 3 1.4.4.. 3 1.5.......... 3 1.5.1..............

More information

Z: Q: R: C: sin 6 5 ζ a, b

Z: Q: R: C: sin 6 5 ζ a, b Z: Q: R: C: 3 3 7 4 sin 6 5 ζ 9 6 6............................... 6............................... 6.3......................... 4 7 6 8 8 9 3 33 a, b a bc c b a a b 5 3 5 3 5 5 3 a a a a p > p p p, 3,

More information

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2 1 6 6.1 (??) (P = ρ rad /3) ρ rad T 4 d(ρv ) + PdV = 0 (6.1) dρ rad ρ rad + 4 da a = 0 (6.2) dt T + da a = 0 T 1 a (6.3) ( ) n ρ m = n (m + 12 ) m v2 = n (m + 32 ) T, P = nt (6.4) (6.1) d [(nm + 32 ] )a

More information

( ) ,

( ) , II 2007 4 0. 0 1 0 2 ( ) 0 3 1 2 3 4, - 5 6 7 1 1 1 1 1) 2) 3) 4) ( ) () H 2.79 10 10 He 2.72 10 9 C 1.01 10 7 N 3.13 10 6 O 2.38 10 7 Ne 3.44 10 6 Mg 1.076 10 6 Si 1 10 6 S 5.15 10 5 Ar 1.01 10 5 Fe 9.00

More information

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1)

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1) 1. 1.1...,. 1.1.1 V, V x, y, x y x + y x + y V,, V x α, αx αx V,, (i) (viii) : x, y, z V, α, β C, (i) x + y = y + x. (ii) (x + y) + z = x + (y + z). 1 (iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y

More information

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 第 2 版 1 刷発行時のものです. 医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/009192 このサンプルページの内容は, 第 2 版 1 刷発行時のものです. i 2 t 1. 2. 3 2 3. 6 4. 7 5. n 2 ν 6. 2 7. 2003 ii 2 2013 10 iii 1987

More information

IA

IA IA 31 4 11 1 1 4 1.1 Planck.............................. 4 1. Bohr.................................... 5 1.3..................................... 6 8.1................................... 8....................................

More information

, 1 ( f n (x))dx d dx ( f n (x)) 1 f n (x)dx d dx f n(x) lim f n (x) = [, 1] x f n (x) = n x x 1 f n (x) = x f n (x) = x 1 x n n f n(x) = [, 1] f n (x

, 1 ( f n (x))dx d dx ( f n (x)) 1 f n (x)dx d dx f n(x) lim f n (x) = [, 1] x f n (x) = n x x 1 f n (x) = x f n (x) = x 1 x n n f n(x) = [, 1] f n (x 1 1.1 4n 2 x, x 1 2n f n (x) = 4n 2 ( 1 x), 1 x 1 n 2n n, 1 x n n 1 1 f n (x)dx = 1, n = 1, 2,.. 1 lim 1 lim 1 f n (x)dx = 1 lim f n(x) = ( lim f n (x))dx = f n (x)dx 1 ( lim f n (x))dx d dx ( lim f d

More information

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8)

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8) 4 4 ) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8) a b a b = 6i j 4 b c b c 9) a b = 4 a b) c = 7

More information

chap9.dvi

chap9.dvi 9 AR (i) (ii) MA (iii) (iv) (v) 9.1 2 1 AR 1 9.1.1 S S y j = (α i + β i j) D ij + η j, η j = ρ S η j S + ε j (j =1,,T) (1) i=1 {ε j } i.i.d(,σ 2 ) η j (j ) D ij j i S 1 S =1 D ij =1 S>1 S =4 (1) y j =

More information

tokei01.dvi

tokei01.dvi 2. :,,,. :.... Apr. - Jul., 26FY Dept. of Mechanical Engineering, Saga Univ., JAPAN 4 3. (probability),, 1. : : n, α A, A a/n. :, p, p Apr. - Jul., 26FY Dept. of Mechanical Engineering, Saga Univ., JAPAN

More information

i 18 2H 2 + O 2 2H 2 + ( ) 3K

i 18 2H 2 + O 2 2H 2 + ( ) 3K i 18 2H 2 + O 2 2H 2 + ( ) 3K ii 1 1 1.1.................................. 1 1.2........................................ 3 1.3......................................... 3 1.4....................................

More information

( ) ) AGD 2) 7) 1

( ) ) AGD 2) 7) 1 ( 9 5 6 ) ) AGD ) 7) S. ψ (r, t) ψ(r, t) (r, t) Ĥ ψ(r, t) = e iĥt/ħ ψ(r, )e iĥt/ħ ˆn(r, t) = ψ (r, t)ψ(r, t) () : ψ(r, t)ψ (r, t) ψ (r, t)ψ(r, t) = δ(r r ) () ψ(r, t)ψ(r, t) ψ(r, t)ψ(r, t) = (3) ψ (r,

More information

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t 6 6.1 6.1 (1 Z ( X = e Z, Y = Im Z ( Z = X + iy, i = 1 (2 Z E[ e Z ] < E[ Im Z ] < Z E[Z] = E[e Z] + ie[im Z] 6.2 Z E[Z] E[ Z ] : E[ Z ] < e Z Z, Im Z Z E[Z] α = E[Z], Z = Z Z 1 {Z } E[Z] = α = α [ α ]

More information

( )

( ) 7..-8..8.......................................................................... 4.................................... 3...................................... 3..3.................................. 4.3....................................

More information

p = mv p x > h/4π λ = h p m v Ψ 2 Ψ

p = mv p x > h/4π λ = h p m v Ψ 2 Ψ II p = mv p x > h/4π λ = h p m v Ψ 2 Ψ Ψ Ψ 2 0 x P'(x) m d 2 x = mω 2 x = kx = F(x) dt 2 x = cos(ωt + φ) mω 2 = k ω = m k v = dx = -ωsin(ωt + φ) dt = d 2 x dt 2 0 y v θ P(x,y) θ = ωt + φ ν = ω [Hz] 2π

More information

1. 1 A : l l : (1) l m (m 3) (2) m (3) n (n 3) (4) A α, β γ α β + γ = 2 m l lm n nα nα = lm. α = lm n. m lm 2β 2β = lm β = lm 2. γ l 2. 3

1. 1 A : l l : (1) l m (m 3) (2) m (3) n (n 3) (4) A α, β γ α β + γ = 2 m l lm n nα nα = lm. α = lm n. m lm 2β 2β = lm β = lm 2. γ l 2. 3 1. 1 A : l l : (1) l m (m 3) (2) m (3) n (n 3) (4) A 2 1 2 1 2 3 α, β γ α β + γ = 2 m l lm n nα nα = lm. α = lm n. m lm 2β 2β = lm β = lm 2. γ l 2. 3 4 P, Q R n = {(x 1, x 2,, x n ) ; x 1, x 2,, x n R}

More information

The Physics of Atmospheres CAPTER :

The Physics of Atmospheres CAPTER : The Physics of Atmospheres CAPTER 4 1 4 2 41 : 2 42 14 43 17 44 25 45 27 46 3 47 31 48 32 49 34 41 35 411 36 maintex 23/11/28 The Physics of Atmospheres CAPTER 4 2 4 41 : 2 1 σ 2 (21) (22) k I = I exp(

More information

( ) s n (n = 0, 1,...) n n = δ nn n n = I n=0 ψ = n C n n (1) C n = n ψ α = e 1 2 α 2 n=0 α, β α n n! n (2) β α = e 1 2 α 2 1

( ) s n (n = 0, 1,...) n n = δ nn n n = I n=0 ψ = n C n n (1) C n = n ψ α = e 1 2 α 2 n=0 α, β α n n! n (2) β α = e 1 2 α 2 1 (3.5 3.8) 03032s 2006.7.0 n (n = 0,,...) n n = δ nn n n = I n=0 ψ = n C n n () C n = n ψ α = e 2 α 2 n=0 α, β α n n (2) β α = e 2 α 2 2 β 2 n=0 =0 = e 2 α 2 β n α 2 β 2 n=0 = e 2 α 2 2 β 2 +β α β n α!

More information

(Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fou

(Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fou (Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fourier) (Fourier Bessel).. V ρ(x, y, z) V = 4πGρ G :.

More information

untitled

untitled 2 : n =1, 2,, 10000 0.5125 0.51 0.5075 0.505 0.5025 0.5 0.4975 0.495 0 2000 4000 6000 8000 10000 2 weak law of large numbers 1. X 1,X 2,,X n 2. µ = E(X i ),i=1, 2,,n 3. σi 2 = V (X i ) σ 2,i=1, 2,,n ɛ>0

More information

r 1 m A r/m i) t ii) m i) t B(t; m) ( B(t; m) = A 1 + r ) mt m ii) B(t; m) ( B(t; m) = A 1 + r ) mt m { ( = A 1 + r ) m } rt r m n = m r m n B

r 1 m A r/m i) t ii) m i) t B(t; m) ( B(t; m) = A 1 + r ) mt m ii) B(t; m) ( B(t; m) = A 1 + r ) mt m { ( = A 1 + r ) m } rt r m n = m r m n B 1 1.1 1 r 1 m A r/m i) t ii) m i) t Bt; m) Bt; m) = A 1 + r ) mt m ii) Bt; m) Bt; m) = A 1 + r ) mt m { = A 1 + r ) m } rt r m n = m r m n Bt; m) Aert e lim 1 + 1 n 1.1) n!1 n) e a 1, a 2, a 3,... {a n

More information

20 4 20 i 1 1 1.1............................ 1 1.2............................ 4 2 11 2.1................... 11 2.2......................... 11 2.3....................... 19 3 25 3.1.............................

More information

5 H Boltzmann Einstein Brown 5.1 Onsager [ ] Tr Tr Tr = dγ (5.1) A(p, q) Â 0 = Tr Âe βĥ0 Tr e βĥ0 = dγ e βh 0(p,q) A(p, q) dγ e βh 0(p,q) (5.2) e βĥ0

5 H Boltzmann Einstein Brown 5.1 Onsager [ ] Tr Tr Tr = dγ (5.1) A(p, q) Â 0 = Tr Âe βĥ0 Tr e βĥ0 = dγ e βh 0(p,q) A(p, q) dγ e βh 0(p,q) (5.2) e βĥ0 5 H Boltzmann Einstein Brown 5.1 Onsager [ ] Tr Tr Tr = dγ (5.1) A(p, q) Â = Tr Âe βĥ Tr e βĥ = dγ e βh (p,q) A(p, q) dγ e βh (p,q) (5.2) e βĥ A(p, q) p q Â(t) = Tr Â(t)e βĥ Tr e βĥ = dγ() e βĥ(p(),q())

More information

08 p Boltzmann I P ( ) principle of equal probability P ( ) g ( )g ( 0 ) (4 89) (4 88) eq II 0 g ( 0 ) 0 eq Taylor eq (4 90) g P ( ) g ( ) g ( 0

08 p Boltzmann I P ( ) principle of equal probability P ( ) g ( )g ( 0 ) (4 89) (4 88) eq II 0 g ( 0 ) 0 eq Taylor eq (4 90) g P ( ) g ( ) g ( 0 08 p. 8 4 k B log g() S() k B : Boltzmann T T S k B g g heat bath, thermal reservoir... 4. I II II System I System II II I I 0 + 0 const. (4 85) g( 0 ) g ( )g ( ) g ( )g ( 0 ) (4 86) g ( )g ( 0 ) 0 (4

More information

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2 2005 9/8-11 2 2.2 ( 2-5) γ ( ) γ cos θ 2πr πρhr 2 g h = 2γ cos θ ρgr (2.1) γ = ρgrh (2.2) 2 cos θ θ cos θ = 1 (2.2) γ = 1 ρgrh (2.) 2 2. p p ρgh p ( ) p p = p ρgh (2.) h p p = 2γ r 1 1 (Berry,1975) 2-6

More information

磁性物理学 - 遷移金属化合物磁性のスピンゆらぎ理論

磁性物理学 - 遷移金属化合物磁性のスピンゆらぎ理論 email: takahash@sci.u-hyogo.ac.jp May 14, 2009 Outline 1. 2. 3. 4. 5. 6. 2 / 262 Today s Lecture: Mode-mode Coupling Theory 100 / 262 Part I Effects of Non-linear Mode-Mode Coupling Effects of Non-linear

More information

I 1

I 1 I 1 1 1.1 1. 3 m = 3 1 7 µm. cm = 1 4 km 3. 1 m = 1 1 5 cm 4. 5 cm 3 = 5 1 15 km 3 5. 1 = 36 6. 1 = 8.64 1 4 7. 1 = 3.15 1 7 1 =3 1 7 1 3 π 1. 1. 1 m + 1 cm = 1.1 m. 1 hr + 64 sec = 1 4 sec 3. 3. 1 5 kg

More information

II 2 II

II 2 II II 2 II 2005 yugami@cc.utsunomiya-u.ac.jp 2005 4 1 1 2 5 2.1.................................... 5 2.2................................. 6 2.3............................. 6 2.4.................................

More information

KENZOU

KENZOU KENZOU 2008 8 2 3 2 3 2 2 4 2 4............................................... 2 4.2............................... 3 4.2........................................... 4 4.3..............................

More information

2.1: n = N/V ( ) k F = ( 3π 2 N ) 1/3 = ( 3π 2 n ) 1/3 V (2.5) [ ] a = h2 2m k2 F h2 2ma (1 27 ) (1 8 ) erg, (2.6) /k B 1 11 / K

2.1: n = N/V ( ) k F = ( 3π 2 N ) 1/3 = ( 3π 2 n ) 1/3 V (2.5) [ ] a = h2 2m k2 F h2 2ma (1 27 ) (1 8 ) erg, (2.6) /k B 1 11 / K 2 2.1? [ ] L 1 ε(p) = 1 ( p 2 2m x + p 2 y + pz) 2 = h2 ( k 2 2m x + ky 2 + kz) 2 n x, n y, n z (2.1) (2.2) p = hk = h 2π L (n x, n y, n z ) (2.3) n k p 1 i (ε i ε i+1 )1 1 g = 2S + 1 2 1/2 g = 2 ( p F

More information

2 1 x 2 x 2 = RT 3πηaN A t (1.2) R/N A N A N A = N A m n(z) = n exp ( ) m gz k B T (1.3) z n z = m = m ρgv k B = erg K 1 R =

2 1 x 2 x 2 = RT 3πηaN A t (1.2) R/N A N A N A = N A m n(z) = n exp ( ) m gz k B T (1.3) z n z = m = m ρgv k B = erg K 1 R = 1 1 1.1 1827 *1 195 *2 x 2 t x 2 = 2Dt D RT D = RT N A 1 6πaη (1.1) D N A a η 198 *3 ( a =.212µ) *1 Robert Brown (1773-1858. *2 Albert Einstein (1879-1955 *3 Jean Baptiste Perrin (187-1942 2 1 x 2 x 2

More information