母平均 母分散 母標準偏差は, が連続的な場合も含めて, すべての個体の特性値 のすべての実現値 の平均 分散 標準偏差であると考えてよい 有限母集団で が離散的な場合, まさにその意味になるが, そうでない場合も, このように理解してよい 5 母数 母集団から定まる定数のこと 母平均, 母分散,

Size: px
Start display at page:

Download "母平均 母分散 母標準偏差は, が連続的な場合も含めて, すべての個体の特性値 のすべての実現値 の平均 分散 標準偏差であると考えてよい 有限母集団で が離散的な場合, まさにその意味になるが, そうでない場合も, このように理解してよい 5 母数 母集団から定まる定数のこと 母平均, 母分散,"

Transcription

1 . 無作為標本. 基本的用語 推測統計における基本的な用語を確認する 母集団 調査の対象になる集団のこと 最終的に, 判断の対象になる集団である 母集団の個体 母集団を構成する つ つのもののこと 母集団は個体の集まりである 個体の特性値 個体の特性を表す数値のこと 身長や体重など 特性値は, 変量ともいう 4 有限母集団と無限母集団 個体の個数が有限の母集団を 有限母集団, 個体の個数が無限の母集団を 無限母集団 という 5 標本 サンプル 母集団から取り出した, いくつかの個体の集まりのこと 6 標本抽出 母集団から標本を取り出すこと 7 標本調査 母集団の特徴を推測するために, 標本抽出を行い, 抽出された標本を調べること 8 統計的推測 標本を用いて母集団の性質を推測すること 9 母集団の大きさ サイズ 母集団に含まれる個体の個数のこと これは, 有限母集団に対する用語である 0 標本の大きさ サイズ 標本に含まれる個体の個数のこと 無作為抽出 ランダムサンプリング 母集団の各個体を等しい確率で抽出する方法 無作為標本 ランダムサンプル 無作為抽出によって選ばれた標本 母集団分布 個体の特性値 を確率変数と考えたときの, の確率分布のこと 4 母平均 母分散 母標準偏差 の確率変数 の平均 E, 分散 V, 標準偏差 を, それぞれ, 母平均, 母分散, 母標準偏差という

2 母平均 母分散 母標準偏差は, が連続的な場合も含めて, すべての個体の特性値 のすべての実現値 の平均 分散 標準偏差であると考えてよい 有限母集団で が離散的な場合, まさにその意味になるが, そうでない場合も, このように理解してよい 5 母数 母集団から定まる定数のこと 母平均, 母分散, 母標準偏差などは, 母数である 統計的推測では, 母数を推測する. 大きさ の無作為標本の取り出し方 大きさ の無作為標本の取り出し方 母集団から大きさ の無作為標本を取り出すとは, 母集団から 個の個体を無作為に取 り出すことである これを 試行 と考える 試行 : 母集団 個の個体,,,,, が, 大きさ の つの無作為標本である, この取り出し方には, 以下の 通りの方法がある A 同時に取り出す方法 母集団から無作為に 個の個体を同時に取り出す方法である B 非復元無作為抽出 非復元で個体を 個ずつ無作為に取り出し, 全部で 個の個体を取り出す方法であ る 非復元とは, 母集団から取り出した個体は母集団に戻さずに, 次の個体を取り出 すことである C 復元無作為抽出 復元で個体を 個ずつ無作為に取り出し, 全部で 個の個体を取り出す方法である 復元とは, 母集団から取り出した個体は必ず母集団に戻してから, 次の個体を取り出 すことである 標本から母集団の特徴を推測するのが統計的推測である より良い推測を行うためには, かたよった標本ではなく, 母集団をよく反映するような標本を抽出する必要がある よく言われるように, 標本は 母集団の良い縮図 でなければならない そのために, 無作為抽出が基本になる 無作為抽出にすれば, どの個体の選ばれる確率も等確率になるので, 個の個体を取り出す という行為が, 確率における 試行 になる よって, 確率論が適用できる 無作為抽出にしなければ, その行為は試行にはならず, 確率計算ができない 個の個体の取り出し方には, 通りの方法がある 非復元抽出では, 個体を取り出すた

3 びに母集団から個体が減っていくので, 毎回の試行は, 試行として独立ではない 一方, 復元抽出では, 毎回, 全く同じ母集団から個体を取り出すことになるので, 毎回の試行は互いに独立である つまり, 独立試行になる 4 現実の標本調査は, 同時に取り出す である 例えば,00 人の意見を調べるために, 0 人を選んでアンケート調査をする この 0 人は, 同時に取り出された人たちである ただし, 以下の A や B は数学的に面倒なので,C の方法を考えていく 推測統計では C を考える 例母集団は 枚のカードからなり, 以下の図のように, カードには数字が書かれている このとき, 大きさ の無作為標本は, 取り出し方によって, 以下のようになる 母集団 標本抽出 大きさ の標本 枚のカード A 試行 : 無作為に 枚のカードを同時に取り出す 大きさ の無作為標本は右の通り 標本の個数 : C 各標本が選ばれる確率 :/ 4 標本は 組み合わせ 大きさ の無作為標本 {, {, {, } } } 標本が選ばれる確率 / / / B 試行 : 大きさ の標本の非復元無作為抽出 大きさ の無作為標本は右の通り 標本の個数 : 6 各標本が選ばれる確率 :/6 4 標本は 順列 大きさ の無作為標本 標本が選ばれる確率 大きさ の無作為標本 標本が選ばれる確率, /6, /6, /6, /6, /6, /6 C 試行 : 大きさ の標本の復元無作為抽出 大きさ の無作為標本は右の通り 標本の個数 : 9 各標本が選ばれる確率 :/9 4 標本は 重複順列 大きさ の無作為標本 標本が選ばれる確率 大きさ の無作為標本 標本が選ばれる確率, /9, /9, /9, /9, /9, /9,,, /9 /9 /9

4 . 大きさ の標本変量 標本変量の定義 母集団 の個体の特性値を で表す この母集団に対して, 次の試行 T を考える 試行 T : 大きさ の標本の復元無作為抽出 大きさ の標本,,, に対して, i 番目に取り出した個体 i の特性値を i で表すと, 標本から特性値の組が定まる i,,, 特性値の組,,, 各は, 試行 T の結果に対して値をとる変数になるので, 確率変数になる 4 この確率変数の組,,, を, 大きさ の標本変量と呼ぶ 5 試行 T の標本空間は, の 個の直積 であり,T の標本点 大きさ の無作為標本 とは, この直積の要素のことである 6 母集団 の大きさが N のときは, 大きさ の無作為標本の個数は N N N N 標本変量の性質大きさ の標本変量,,, について, 以下が成り立つ 確率変数,,, は独立である,,, のいずれの確率分布も, の確率分布 母集団分布 に等しい E E E E 母平均 4 V V V V 母分散 標本変量に関する注意テキストでは, 標本変量,,, るが, 以下では, 標本変量と呼ぶことにする を 大きさ の無作為標本 と呼んでい 上記のすべては自明である 前述したように, 復元無作為抽出は独立試行であるから,,,, が独立になることは, 自明である また, これらの確率分布が母集団分布に一致することも自明である 確率分布が等しいので, E E E E 4

5 V V V V となることも自明である 以下の例題を参照 試行 T は, 大きさ の標本の復元無作為抽出 であるが, これは, の 個の直積から つの要素を無作為に抽出する試行と同じである 母集団 大きさ の標本の復元無作為抽出 大きさ の無作為標本,,, 上と下は同じ試行 つの要素の,,, の 個の直積無作為抽出,,, 大きさ の無作為標本 大きさ の標本変量 個の独立な確率変数 統計学の解説書によっては, 母集団は, 個体の集まりではなく, 個体の特性値の集まりを指している場合も多い 例えば,000 人の学生の身長が調査対象の場合,000 人の学生ではなく,000 個の身長の数値の集まりを母集団とする さらに, 選ばれた 0 人の学生ではなく, 選ばれた 0 人の身長の集まりを標本と呼ぶ これは, 身長という特性値を決めれば, 関心があるのは身長のデータのみだからである このような考え方では, 標本は, 母集団から抽出された特性値 x の集まり x, x,, x を意味する 4 また, 無作為標本という用語は, 厳密には次のように定義される 確率変数,,, が独立であり, すべての i が同じ確率分布に従っているとき,,,, を 大きさ の無作為標本 という テキストは, この本来の定義に従っ て説明しているが, 抽象的であるので, ここでは,,, を標本変量と呼び, 実際 に選ばれた個体の集まりを無作為標本と呼ぶことにする i 例題 母集団 を, 次の数字の集まりとする また, その数字を で表す {,,, 4, 5, 6 } この母集団に対して, 次の試行を行う 試行 T : 大きさ の標本の復元無作為抽出 さらに, この試行から定まる大きさ の標本変量を,,, とする の確率分布を求めよ 5

6 ,,, は独立であることを示せ,,, のいずれの確率分布も, の確率分布 母集団分布 に等しいことを 示せ 4 次が成立することを示せ E E E E V V V V 解説 母集団 {,,, 4, 5, 6 } から 個の個体を無作為に選ぶという試行と, 個のサイコロを 回投げるという試行は同じである さらに, から, 復元で個体を 個ずつ無作為に取り出し, 全部で 個取り出すという試行 T は, 個のサイコロを 回投げるという試行と同じである よって, サイコロ投げで表現すれば, 標本変量,,, における i とは 個のサイコロを 回投げたときの, i 回目に出た目の数のことである 従って,,,, が独立であること, i の確率分布が次のようになることは自明である さらに, これは の確率分布 母集団分布 と一致する i 計 計 P / 6 / 6 / 6 / 6 / 6 / 6 P / 6 / 6 / 6 / 6 / 6 / 6 確率分布が等しいので,4 の等式も自明になる 例題 枚のカードからなる母集団があり, 数字 のカードは 枚, 数字 のカードは 枚とする カードの数字を とし, この母集団に対して, 試行 T : 大きさ の標本の復元無作為抽出 を考え, 大きさ の標本変量を, とする 母集団 試行 T : 大きさ の標本の復元無作為抽出 大きさ の標本 大きさ の標本変量,, 枚目のカードの数字 カードの数字 枚目のカードの数字 の確率分布, の確率分布, の確率分布を求めよ 大きさ の無作為標本をすべて求めよ 6

7 解説 復元無作為抽出であるから, の確率分布も, の確率分布も, の確率分布 母集団分布 に等しいので, 次のようになる 計 計 計 P / / P / / P / / また, 大きさ の無作為標本の個数は 9 であり, 右のようになる 数字 のカードは 枚あるが, これらは異なる個体なので区別する 大きさ の無作為標本 大きさ の無作為標本,,,,,,,,, 4. 標本平均の定義 標本平均の定義大きさ の標本変量,,, から作られる式 を, 大きさ の標本平均といい, で表す すなわち, i i は, 試行 T : 大きさ の標本の復元無作為抽出における確率変数になる の実現値とは, 標本,,, の平均値 x のことである 標本平均 の実現値とは, 標本,,, から定まる特性値の組を x, x,, x で表したとき, x, x,, x の平均値 x のことである すなわち, の 実現値は, 抽出された標本の平均のことである 試行 T の結果 標本点 は, 大きさ の無作為標本,,, 7

8 8 であり, は, 各標本点に対して値が定まる変数であるので, 確率変数になる 5. 標本平均の平均と分散復元無作為抽出の場合は, 標本平均の平均や分散が容易に計算できる 定理 標本平均の平均と分散 母平均, 母分散の母集団からの大きさの標本変量について, 次が成り立つ 個体の特性値は とする 標本平均 の平均は, 母平均に等しい すなわち E E 標本平均 の分散は, 母分散を標本のサイズで割ったものに等しい すなわち V V 大数の法則 標本のサイズを大きくしていけば, 標本平均の実現値は母平均に近づいていく 証明 の証明は容易である E E E E E E また, は独立であるから, V V V V V V の大数の法則も, より自明である 実際 より, の平均は, 常に母平均に一致する 一方, より, 標本のサイズを大きくしていけば, の分散の値は 0 に近づいていくので, の実現値のばらつきがどんどん小さくなり, その実現値は平均のまわりに集まってくるのである なお, のときは, である,,,,,, /

9 例 標本平均 の平均 E は, のすべての実現値 標本の平均 の平均ことである これが, 母平均に一致するという事実は, 非常に重要である 簡単な例で確認しておこう いま, 母集団は, 数字が書かれた 枚のカードからなり, 従って, 標本平均は 数字 のカード 枚 数字 のカード 枚 数字 のカード 枚 とする カードの数字を とし, 母集団からの大きさ の標本変量, の確率分布 母集団分布 は, 当然, 次のようになる を考える 従って, 母平均 と母分散 は, 次のとおり は,, の平均, は,, の分 散のことである ここで, の平均や分散はすぐに分かるが, あえてその確率分布を求めて計算してみよう {,, } とおくと, の標本空間は である 試行 T : 大きさ の復元無作為抽出 であり, 標本の個数は 9 9 個の標本点に対する の実現値は, 右の通りであり, この 9 個の実現値の平均が E である 確率を求めると, 例えば,, と, であるから, P.5 計 P / / / E V E E 9.5 となる標本点は この確率は,9 個の実現値における.5 の相対度数である 従って, の確率分布は次のようになる 標本 母集団 の実現値,,.5,,.5,,.5,,.5, 9

10 .5.5 計 P / 9 / 9 / 9 / 9 / 9 よって, E V 従って, 確かに次が成立している E 母平均, V 母分散 標本のサイズ なお, 標本平均 の確率分布を図示すれば次のようになり, 正規分布のような形になってい る そこでは, 母平均 での確率が最大であり, 左右対称のグラフになっている 中心極限定理 母集団分布は正規分布であるとは限らないし, また, その形が想定できない場合も多い しかし, 標本平均を考えると, どのような母集団であっても, 標本のサイズをある程度大きくすれば, 標本平均の分布は近似的に正規分布になるということが, 以下の中心極限定理で保証されている この定理は, 統計学における著しい結果であり, 最も重要な定理である 中心極限定理を実際に適用できるのは, 大標本の場合である 大標本とは, 標本のサイズ が大きい標本のことであるが, の値の基準値は解説書によって多少異なる ここでは, 0 の場合を, 大標本と呼ぶことにする 0

11 中心極限定理 母平均, 母分散 の母集団からの大きさ の標本変量,,, について, を大きくしていけば, 標本平均 の確率分布は, 正規分布 N, に限りなく近づいていく 特に, 大標本 0 の場合は, ~ N, と見なしてよい よって, このとき を標準化して Z とおくと, Z ~ N 0, となる 7. 正規母集団の標本平均 定理 正規母集団の場合 正規母集団 N, からの大きさ の標本変量,,, について, の値に 関係がなく, 標本平均 は正規分布に従う すなわち ~ N, 母集団分布が正規分布をなしている場合, その母集団を正規母集団という つまり, 母集団の個体の特性値を としたとき, の確率分布がすでに正規分布に従っ ている場合, すなわち, ~ N, であるとき, この母集団を正規母集団 N, と表現する 正規母集団に対して, 復元無作為抽出を行った場合は, 標本のサイズ に関係がなく, 標本平均 は正規分布に従う 4 上記の定理は, 正規分布の再生性から, ただちに導かれる,,, i のいずれの確率分布も, 母集団分布 N, に等しいので, ~ N, i,,, よって,p.7 の定理から, とにかく,,, の 次結合である

12 は正規分布をなすので, ~ N E, V 一方,p.80 の定理より, E E, V 従って, ~ N, となる V 例題 A 地方の中学 年生全体に実施されたテストの成績は平均点 6.5 点, 標準偏差 8 点であった このとき, この地方の中学 年生から無作為抽出した 00 人の平均点が 64 点以上になる確率を求めよ 母集団 A 地方の中学 年生全体 母平均 母標準偏差 無作為抽出 00 標本平均 の実現値大きさ 00 の標本 64 解説 詳しく説明しよう このような問題では, まず, 母集団はどれであるかに注意する必要があ るが, ここでは, 明らかに A 地方の中学 年生全体が母集団である 従って, 母集団のサイ ズは非常に大きいと判断できるので, 復元の議論を適用してよい これについては後述 この問題は, 大きさ 00 の標本平均 について, 確率 を求めよという問題である 標本のサイズは 00 であるから, 0 であり, 大標本である よって, 中心極限定 理により, は正規分布 8 N, すなわち N 6.5, 00 に従うと考えてよい 正規母集団であれば, の値に関係なく, はこの正規分布に従って いる P 64

13 8 8 の標準偏差は, 0. 8 でり, を標準化して Z 0.8 とおくと, Z ~ N 0, である よって, P 64 P 64 P Z P Z 上記のような計算はワンパターンであり, 結局, の確率分布が分かるわけであるから, それに関する確率計算はいくらでもできる 上記の結果には, 次のような意味がある 母集団から 00 人抽出したとき,00 人の平均点が 64 点以上になる確率は, 約 0.0 である 非常に小さな値である 大ざっぱに言えば,00 人抽出するという試行を 00 回繰り返したとき, 抽出した 00 人の平均点が 64 点以上になる場合は 回程度しか起こらないということである 00 回中 回程度しか起こらないような出来事は, 非常に珍しい現象である 逆に言えば, 現実に行った 回の試行で,00 人の平均点が 64 点以上になることは, ほとんどないといってよい このような考え方が, 統計的仮説検定の基礎になる 8. 非復元抽出の場合 中心極限定理は復元抽出の場合の話であるが, 非復元抽出ではどのようになるのだろうか 問題は, 大きさ の標本,,, から決まる確率変数,,, の独立性で ある 母集団のサイズ N が非常に大きく, 標本のサイズ がそれほど大きくない場合は, 非復元 抽出であっても復元抽出と考えてよい 例えば, 母集団のサイズが N 000 であり, 標本のサイズが 0 の場合, 非復元で 最初に 個の個体を取っても, 個目の個体 を取るときは母集団には 999 個の個体が 残っている 個目の個体を取るときは, 母集団にはまだ 998 個の個体が残っている 個目や 個目にどのような個体を取っても, そのことが 個目の個体の抽出結果に大きな影響を与え るとは考えにくい 標本のサイズも 0 であるので, 個の個体を取る試行を 0 回繰り返す操作は, 各 回の結果が他の回には影響を与えない試行, つまり 0 回の独立試行と考えてよい よって, この非復元抽出は, 復元抽出と考えてよいだろう もちろん, 標本のサイズが 00 のような大きな値になれば,00 個の個体を取る試行は, 00 回の独立試行とは考えられない このように, 標本のサイズ に比べて母集団のサイズ

14 N が大きい場合は, 非復元抽出であっても復元抽出と考えてよく,,,, であると見なして良い は独立 4 このことを, 標本の個数で確認してみよう 母集団のサイズを N, 標本のサイズを とす ると, 以下のようになる 非復元抽出の場合 大きさ の標本,,, の個数は N P 復元抽出の場合 N 大きさ の標本,,, の個数は N P N であるが, ここで P / N を計算すると, これは, に比べて N が非常に大きいときは, P / N の値は に近くなり, P N を示す つまり, 上記の と の個数がだいたい等しくなってしまい, 非復元と復元の違い が少なくなるのである 5 統計的推測は, 一般に, 無限母集団を想定して議論される 無限母集団とは母集団の個体 が無限に多くある母集団のことだが, 実際には, 次のような場合は, 無限母集団と見なして 議論するのが普通である 母集団のサイズが非常に大きい場合 個体が無限に多くあると考えられる場合 母集団のサイズが標本のサイズと比べて大きい場合 実用的には, 有限母集団でも 母集団のサイズ 標本のサイズ 0 を満たすときは, 通常は無限母集団と考えてよい このような無限母集団では, 非復元であっても復元の議論を適用してよい 6 以下のような場合は, 通常, 無限母集団と見なされる 日本の全有権者が母集団であり, 調査のために 000 人の有権者を標本とした場合 ある物を多数回測定して得られるであろう測定データの全体を母集団とし, 実際に測定 して得られた 5 個の測定データが標本の場合 この場合は, 母集団は, 無限回測定した と仮定しての測定データの全体であると判断する N N P N N N { N } N N N N N ある工場で多数生産される部品 A の品質特性 厚さ, 強度など を調べるために, 生産 N N 4

15 される部品 A の全体, すなわち, 生産された部品 A のみならず, これからも生産されるであろう部品 A の全体を母集団と考えた場合 4 新しく開発した血圧を下げる薬の効能を調べるために, マウスを何匹か選んで実験する場合 この場合, 実験対象となるマウスは多数であり, 正確にその数が分からないのが普通である 従って, 実験対象のマウス全体を無限母集団と考える 逆に言えば, 有限母集団と見なすと, そのサイズを求めるために, マウスの数を数えなければならないことにもなる 7 実際の標本抽出では, 復元における各種の定理が使われていくが 無作為抽出でない場合 無限母集団と見なされない場合 標本のサイズに比べて母集団のサイズがあまり大きくない場合などは, 各種の定理の成立が保証されない状況になる 従って, このような場合は, 統計的推測を慎重に行う必要がある 8 なお, 統計学入門における練習問題のほとんどは, 上記の意味での無限母集団を仮定している 従って, 非復元であっても, 復元の議論 中心極限定理など を適用してよい 5

Microsoft PowerPoint - stat-2014-[9] pptx

Microsoft PowerPoint - stat-2014-[9] pptx 統計学 第 17 回 講義 母平均の区間推定 Part-1 014 年 6 17 ( )6-7 限 担当教員 : 唐渡 広志 ( からと こうじ ) 研究室 : 経済学研究棟 4 階 43 号室 email: kkarato@eco.u-toyama.ac.j website: htt://www3.u-toyama.ac.j/kkarato/ 1 講義の目的 標本平均は正規分布に従うという性質を

More information

EBNと疫学

EBNと疫学 推定と検定 57 ( 復習 ) 記述統計と推測統計 統計解析は大きく 2 つに分けられる 記述統計 推測統計 記述統計 観察集団の特性を示すもの 代表値 ( 平均値や中央値 ) や ばらつきの指標 ( 標準偏差など ) 図表を効果的に使う 推測統計 観察集団のデータから母集団の特性を 推定 する 平均 / 分散 / 係数値などの推定 ( 点推定 ) 点推定値のばらつきを調べる ( 区間推定 ) 検定統計量を用いた検定

More information

<4D F736F F D208EC08CB18C7689E68A E F1939D8C E82E646F63>

<4D F736F F D208EC08CB18C7689E68A E F1939D8C E82E646F63> 第 5 回統計的推定 実験計画学 A. 統計的推定と検定母集団から無作為抽出した標本から母集団についてなんらかの推論を行う. この場合, 統計から行う推論には統計的 ( ) と統計的 ( ) の 2つがある. 推定統計的に標本の統計量から母集団の母数 ( 母平均, 母標準偏差など ) を推論することを統計的推定という. 例 : 視聴率調査を 200 人に対して行い, 番組 Aの視聴率を推定した. 検定統計的に標本の統計量から母数に関する予想の真偽を検証することを統計的検定という.

More information

<4D F736F F D208EC08CB18C7689E68A E F AA957A82C682948C9F92E82E646F63>

<4D F736F F D208EC08CB18C7689E68A E F AA957A82C682948C9F92E82E646F63> 第 7 回 t 分布と t 検定 実験計画学 A.t 分布 ( 小標本に関する平均の推定と検定 ) 前々回と前回の授業では, 標本が十分に大きいあるいは母分散が既知であることを条件に正規分布を用いて推定 検定した. しかし, 母集団が正規分布し, 標本が小さい場合には, 標本分散から母分散を推定するときの不確実さを加味したt 分布を用いて推定 検定しなければならない. t 分布は標本分散の自由度 f(

More information

情報工学概論

情報工学概論 確率と統計 中山クラス 第 11 週 0 本日の内容 第 3 回レポート解説 第 5 章 5.6 独立性の検定 ( カイ二乗検定 ) 5.7 サンプルサイズの検定結果への影響練習問題 (4),(5) 第 4 回レポート課題の説明 1 演習問題 ( 前回 ) の解説 勉強時間と定期試験の得点の関係を無相関検定により調べる. データ入力 > aa

More information

第7章

第7章 5. 推定と検定母集団分布の母数を推定する方法と仮説検定の方法を解説する まず 母数を一つの値で推定する点推定について 推定精度としての標準誤差を説明する また 母数が区間に存在することを推定する信頼区間も取り扱う 後半は統計的仮説検定について述べる 検定法の基本的な考え方と正規分布および二項確率についての検定法を解説する 5.1. 点推定先に述べた統計量は対応する母数の推定値である このように母数を一つの値およびベクトルで推定する場合を点推定

More information

<4D F736F F D208EC08CB18C7689E68A E F193F18D8095AA957A C C839395AA957A814590B38B4B95AA957A2E646F63>

<4D F736F F D208EC08CB18C7689E68A E F193F18D8095AA957A C C839395AA957A814590B38B4B95AA957A2E646F63> 第 4 回二項分布, ポアソン分布, 正規分布 実験計画学 009 年 月 0 日 A. 代表的な分布. 離散分布 二項分布大きさ n の標本で, 事象 Eの起こる確率を p とするとき, そのうち x 個にEが起こる確率 P(x) は二項分布に従う. 例さいころを 0 回振ったときに の出る回数 x の確率分布は二項分布に従う. この場合, n = 0, p = 6 の二項分布になる さいころを

More information

Microsoft PowerPoint - statistics pptx

Microsoft PowerPoint - statistics pptx 統計学 第 16 回 講義 母平均の区間推定 Part-1 016 年 6 10 ( ) 1 限 担当教員 : 唐渡 広志 ( からと こうじ ) 研究室 : 経済学研究棟 4 階 43 号室 email: kkarato@eco.u-toyama.ac.jp website: http://www3.u-toyama.ac.jp/kkarato/ 1 講義の目的 標本平均は正規分布に従うという性質を

More information

基礎統計

基礎統計 基礎統計 第 11 回講義資料 6.4.2 標本平均の差の標本分布 母平均の差 標本平均の差をみれば良い ただし, 母分散に依存するため場合分けをする 1 2 3 分散が既知分散が未知であるが等しい分散が未知であり等しいとは限らない 1 母分散が既知のとき が既知 標準化変量 2 母分散が未知であり, 等しいとき 分散が未知であるが, 等しいということは分かっているとき 標準化変量 自由度 の t

More information

<4D F736F F D208D A778D5A8A778F4B8E7793B CC A7795D2816A2E646F6378>

<4D F736F F D208D A778D5A8A778F4B8E7793B CC A7795D2816A2E646F6378> 高等学校学習指導要領解説数学統計関係部分抜粋 第 部数学第 2 章各科目第 節数学 Ⅰ 3 内容と内容の取扱い (4) データの分析 (4) データの分析統計の基本的な考えを理解するとともに, それを用いてデータを整理 分析し傾向を把握できるようにする アデータの散らばり四分位偏差, 分散及び標準偏差などの意味について理解し, それらを用いてデータの傾向を把握し, 説明すること イデータの相関散布図や相関係数の意味を理解し,

More information

_KyoukaNaiyou_No.4

_KyoukaNaiyou_No.4 理科教科内容指導論 I : 物理分野 物理現象の定量的把握第 4 回 ( 実験 ) データの眺め ~ 統計学の基礎続き 統計のはなし 基礎 応 娯楽 (Best selected business books) 村平 科技連出版社 1836 円 前回の復習と今回以降の 標 東京 学 善 郎 Web サイトより データ ヒストグラム 代表値 ( 平均値 最頻値 中間値 ) 分布の散らばり 集団の分布

More information

Microsoft PowerPoint - 基礎・経済統計6.ppt

Microsoft PowerPoint - 基礎・経済統計6.ppt . 確率変数 基礎 経済統計 6 確率分布 事象を数値化したもの ( 事象ー > 数値 の関数 自然に数値されている場合 さいころの目 量的尺度 数値化が必要な場合 質的尺度, 順序的尺度 それらの尺度に数値を割り当てる 例えば, コインの表が出たら, 裏なら 0. 離散確率変数と連続確率変数 確率変数の値 連続値をとるもの 身長, 体重, 実質 GDP など とびとびの値 離散値をとるもの 新生児の性別

More information

Microsoft PowerPoint - statistics pptx

Microsoft PowerPoint - statistics pptx 統計学 第 17 回 講義 母平均の区間推定 Part- 016 年 6 14 ( )3 限 担当教員 : 唐渡 広志 ( からと こうじ ) 研究室 : 経済学研究棟 4 階 43 号室 email: kkarato@eco.u toyama.ac.jp website: http://www3.u toyama.ac.jp/kkarato/ 1 講義の目的 標本平均は正規分布に従うという性質を

More information

統計学 Ⅱ(06) 0 章 0 章 統計学の基本的な考え方 データ = 母集団から抽出された標本とみなす 実際に標本抽出されたデータ 視聴率, 失業率 そうでないデータ GDP, 株価, 為替レート, 試験の得点 このようなデータも母集団からの標本とみなす ( 母集団を想定する ) cf. 例題 0

統計学 Ⅱ(06) 0 章 0 章 統計学の基本的な考え方 データ = 母集団から抽出された標本とみなす 実際に標本抽出されたデータ 視聴率, 失業率 そうでないデータ GDP, 株価, 為替レート, 試験の得点 このようなデータも母集団からの標本とみなす ( 母集団を想定する ) cf. 例題 0 統計学 Ⅱ(06) 0 章 0 章 0 章標本抽出と標本分布. 母集団と標本 () 視聴率調査 () 有限母集団と無限母集団 (3) データと母集団. 標本抽出法 () 全数調査と標本調査 () 無作為抽出と有意抽出 (3) 単純無作為抽出法 (4) 層別抽出法 (5) 多段抽出法 (6) 系統抽出法 (7) その他の抽出法 3. 標本平均 の標本分布 () 標本平均の標本分布の例 () 標本平均

More information

Microsoft PowerPoint - 測量学.ppt [互換モード]

Microsoft PowerPoint - 測量学.ppt [互換モード] 8/5/ 誤差理論 測定の分類 性格による分類 独立 ( な ) 測定 : 測定値がある条件を満たさなければならないなどの拘束や制約を持たないで独立して行う測定 条件 ( 付き ) 測定 : 三角形の 3 つの内角の和のように, 個々の測定値間に満たすべき条件式が存在する場合の測定 方法による分類 直接測定 : 距離や角度などを機器を用いて直接行う測定 間接測定 : 求めるべき量を直接測定するのではなく,

More information

<4D F736F F D208EC08CB18C7689E68A E F193F18D8095AA957A C C839395AA957A814590B38B4B95AA957A2E646F63>

<4D F736F F D208EC08CB18C7689E68A E F193F18D8095AA957A C C839395AA957A814590B38B4B95AA957A2E646F63> 第 4 回二項分布, ポアソン分布, 正規分布 実験計画学 A. 代表的な分布. 離散分布 二項分布大きさ n の標本で, 事象 Eの起こる確率を p とするとき, そのうち x 個にEが起こる確率 P(x) は二項分布に従う. 例さいころを 0 回振ったときに の出る回数 x の確率分布は二項分布に従う. この場合, n 0, p 6 の二項分布になる さいころを 0 回振ったときに が 0 回出る

More information

統計学の基礎から学ぶ実験計画法ー1

統計学の基礎から学ぶ実験計画法ー1 第 部統計学の基礎と. 統計学とは. 統計学の基本. 母集団とサンプル ( 標本 ). データ (data) 3. 集団の特性を示す統計量 基本的な解析手法 3. 統計量 (statistic) とは 3. 集団を代表する統計量 - 平均値など 3.3 集団のばらつきを表す値 - 平方和 分散 標準偏差 4. ばらつき ( 分布 ) を表す関数 4. 確率密度関数 4. 最も重要な正規分布 4.3

More information

Microsoft PowerPoint - Statistics[B]

Microsoft PowerPoint - Statistics[B] 講義の目的 サンプルサイズの大きい標本比率の分布は正規分布で近似できることを理解します 科目コード 130509, 130609, 110225 統計学講義第 19/20 回 2019 年 6 月 25 日 ( 火 )6/7 限 担当教員 : 唐渡広志 ( からと こうじ ) 研究室 : email: website: 経済学研究棟 4 階 432 号室 kkarato@eco.u-toyama.ac.jp

More information

<4D F736F F D2090B695A8939D8C768A E F AA957A82C682948C9F92E8>

<4D F736F F D2090B695A8939D8C768A E F AA957A82C682948C9F92E8> 第 8 回 t 分布と t 検定 生物統計学 A.t 分布 ( 小標本に関する平均の推定と検定 ) 前々回と前回の授業では, 標本が十分に大きいあるいは母分散が既知であることを条件に正規分布を用いて推定 検定した. しかし, 母集団が正規分布し, 標本が小さい場合には, 標本分散から母分散を推定するときの不確実さを加味したt 分布を用いて推定 検定しなければならない. t 分布は標本分散の自由度 f(

More information

不偏推定量

不偏推定量 不偏推定量 情報科学の補足資料 018 年 6 月 7 日藤本祥二 統計的推定 (statistical estimatio) 確率分布が理論的に分かっている標本統計量を利用する 確率分布の期待値の値をそのまま推定値とするのが点推定 ( 信頼度 0%) 点推定に ± で幅を持たせて信頼度を上げたものが区間推定 持たせた幅のことを誤差 (error) と呼ぶ 信頼度 (cofidece level)

More information

untitled

untitled 分析の信頼性を支えるもの データ評価のための統計的方法 確率分布と平均値の推定 検定 田中秀幸 1 はじめに前回は, 統計的手法を適用するために意味のあるデータをどのように取得するのかについて, 母集団と標本について, 期待値 分散 標準偏差について解説した 今回は, 統計的推定 検定の基礎となる確率分布とその確率分布を用いた推定 検定について解説する 2 確率分布 測定データを取得したとき, そのデータのばらつきを視覚的に表すために,

More information

Microsoft PowerPoint - statistics pptx

Microsoft PowerPoint - statistics pptx 統計学 第 回 講義 仮説検定 Part-3 06 年 6 8 ( )3 限 担当教員 唐渡 広志 ( からと こうじ ) 研究室 経済学研究棟 4 階 43 号室 email kkarato@eco.u-toyama.ac.j webite htt://www3.u-toyama.ac.j/kkarato/ 講義の目的 つの 集団の平均 ( 率 ) に差があるかどうかを検定する 法を理解します keyword:

More information

第 3 回講義の項目と概要 統計的手法入門 : 品質のばらつきを解析する 平均と標準偏差 (P30) a) データは平均を見ただけではわからない 平均が同じだからといって 同一視してはいけない b) データのばらつきを示す 標準偏差 にも注目しよう c) 平均

第 3 回講義の項目と概要 統計的手法入門 : 品質のばらつきを解析する 平均と標準偏差 (P30) a) データは平均を見ただけではわからない 平均が同じだからといって 同一視してはいけない b) データのばらつきを示す 標準偏差 にも注目しよう c) 平均 第 3 回講義の項目と概要 016.8.9 1.3 統計的手法入門 : 品質のばらつきを解析する 1.3.1 平均と標準偏差 (P30) a) データは平均を見ただけではわからない 平均が同じだからといって 同一視してはいけない b) データのばらつきを示す 標準偏差 にも注目しよう c) 平均 :AVERAGE 関数, 標準偏差 :STDEVP 関数とSTDEVという関数 1 取得したデータそのものの標準偏差

More information

Microsoft Word - Stattext07.doc

Microsoft Word - Stattext07.doc 7 章正規分布 正規分布 (ormal dstrbuto) は 偶発的なデータのゆらぎによって生じる統計学で最も基本的な確率分布です この章では正規分布についてその性質を詳しく見て行きましょう 7. 一般の正規分布正規分布は 平均と分散の つの量によって完全に特徴付けられています 平均 μ 分散 の正規分布は N ( μ, ) 分布とも書かれます ここに N は ormal の頭文字を 表わしています

More information

統計学 Ⅱ8-9 章 確率分布 確率の条件 8 ページ p: 確率関数 p は の関数とみなせる 確率分布 : すべてのに関する = または p の分布 グラフや表で表わすことが多い サイコロの例 : 計 縦軸は p または = 棒の幅は 線 確率 p.. = / / / / / / サイコロの目の

統計学 Ⅱ8-9 章 確率分布 確率の条件 8 ページ p: 確率関数 p は の関数とみなせる 確率分布 : すべてのに関する = または p の分布 グラフや表で表わすことが多い サイコロの例 : 計 縦軸は p または = 棒の幅は 線 確率 p.. = / / / / / / サイコロの目の 統計学 Ⅱ8-9 章 章確率と確率分布. 確率変数と離散的確率分布 確率変数 確率分布. 確率変数の平均と分散 確率変数 の平均と期待値 確率変数 の分散 期待値の性質 期待値の一般的な定義 基準化確率変数 歪度 尖度. 同時確率 周辺確率 条件付確率 項確率モデル 同時確率と同時確率分布 周辺確率 一般的な場合の同時確率 周辺確率 条件付確率 ベイズの定理. つの確率変数の平均 分散 共分散 変数の関数の期待値

More information

ビジネス統計 統計基礎とエクセル分析 正誤表

ビジネス統計 統計基礎とエクセル分析 正誤表 ビジネス統計統計基礎とエクセル分析 ビジネス統計スペシャリスト エクセル分析スペシャリスト 公式テキスト正誤表と学習用データ更新履歴 平成 30 年 5 月 14 日現在 公式テキスト正誤表 頁場所誤正修正 6 知識編第 章 -3-3 最頻値の解説内容 たとえば, 表.1 のデータであれば, 最頻値は 167.5cm というたとえば, 表.1 のデータであれば, 最頻値は 165.0cm ということになります

More information

Microsoft PowerPoint slide2forWeb.ppt [互換モード]

Microsoft PowerPoint slide2forWeb.ppt [互換モード] 講義内容 9..4 正規分布 ormal dstrbuto ガウス分布 Gaussa dstrbuto 中心極限定理 サンプルからの母集団統計量の推定 不偏推定量について 確率変数, 確率密度関数 確率密度関数 確率密度関数は積分したら. 平均 : 確率変数 分散 : 例 ある場所, ある日時での気温の確率. : 気温, : 気温 が起こる確率 標本平均とのアナロジー 類推 例 人の身長の分布と平均

More information

スライド 1

スライド 1 計測工学第 12 回以降 測定値の誤差と精度編 2014 年 7 月 2 日 ( 水 )~7 月 16 日 ( 水 ) 知能情報工学科 横田孝義 1 授業計画 4/9 4/16 4/23 5/7 5/14 5/21 5/28 6/4 6/11 6/18 6/25 7/2 7/9 7/16 7/23 2 誤差とその取扱い 3 誤差 = 測定値 真の値 相対誤差 = 誤差 / 真の値 4 誤差 (error)

More information

講義「○○○○」

講義「○○○○」 講義 信頼度の推定と立証 内容. 点推定と区間推定. 指数分布の点推定 区間推定 3. 指数分布 正規分布の信頼度推定 担当 : 倉敷哲生 ( ビジネスエンジニアリング専攻 ) 統計的推測 標本から得られる情報を基に 母集団に関する結論の導出が目的 測定値 x x x 3 : x 母集団 (populaio) 母集団の特性値 統計的推測 標本 (sample) 標本の特性値 分布のパラメータ ( 母数

More information

Excelによる統計分析検定_知識編_小塚明_1_4章.indd

Excelによる統計分析検定_知識編_小塚明_1_4章.indd 第1章 母集団と統計データ 本章では, ビジネスのさまざまな場面において統計データを扱ううえで, もっとも基本的事項となる母集団の概念と統計データの種類についてまとめています 母集団の統計的性質を調べるためにとても重要な概念であるサンプリングについて述べるとともに, ランダムサンプリングの重要性についても説明します 統計分析の考え方 ビジネスの多くの場面において, 統計分析は重要です この場合の統計分析とは,

More information

Python-statistics5 Python で統計学を学ぶ (5) この内容は山田 杉澤 村井 (2008) R によるやさしい統計学 (

Python-statistics5   Python で統計学を学ぶ (5) この内容は山田 杉澤 村井 (2008) R によるやさしい統計学 ( http://localhost:8888/notebooks/... Python で統計学を学ぶ (5) この内容は山田 杉澤 村井 (2008) R によるやさしい統計学 (http://shop.ohmsha.co.jp/shop /shopdetail.html?brandcode=000000001781&search=978-4-274-06710-5&sort=) を参考にしています

More information

Microsoft PowerPoint - sc7.ppt [互換モード]

Microsoft PowerPoint - sc7.ppt [互換モード] / 社会調査論 本章の概要 本章では クロス集計表を用いた独立性の検定を中心に方法を学ぶ 1) 立命館大学経済学部 寺脇 拓 2 11 1.1 比率の推定 ベルヌーイ分布 (Bernoulli distribution) 浄水器の所有率を推定したいとする 浄水器の所有の有無を表す変数をxで表し 浄水器をもっている を 1 浄水器をもっていない を 0 で表す 母集団の浄水器を持っている人の割合をpで表すとすると

More information

FdData中間期末数学3年

FdData中間期末数学3年 中学中間 期末試験問題集( 過去問 ): 数学 3 年 http://www.fdtext.com/dat/ 全数調査と標本調査 次の調査で, 全数調査より標本調査が適しているものをすべて選び, 記号で答えよ ア高校の入学試験イ内閣支持率世論調査ウ自動車の衝突実験エ学級での朝の健康観察 [ 解答 ] イ, ウ ぼしゅうだんぜんすうちょうさ調査の対象となる母集団のすべてのものについて調べることを全数調査という

More information

経営統計学

経営統計学 5 章基本統計量 3.5 節で量的データの集計方法について簡単に触れ 前章でデータの分布について学びましたが データの特徴をつの数値で示すこともよく行なわれます これは統計量と呼ばれ 主に分布の中心や拡がりなどを表わします この章ではよく利用される分布の統計量を特徴で分類して説明します 数式表示を統一的に行なうために データの個数を 個とし それらを,,, と表わすことにします ここで学ぶ統計量は統計分析の基礎となっており

More information

平成 7 年度数学 (3) あるゲームを 回行ったときに勝つ確率が. 8のプレイヤーがいる このゲームは 回ごとに独 立であるとする a. このゲームを 5 回行う場合 中心極限定理を用いると このプレイヤーが 5 回以上勝つ確率 は である. 回以上ゲームをした場合 そのうちの勝ち数が 3 割以上

平成 7 年度数学 (3) あるゲームを 回行ったときに勝つ確率が. 8のプレイヤーがいる このゲームは 回ごとに独 立であるとする a. このゲームを 5 回行う場合 中心極限定理を用いると このプレイヤーが 5 回以上勝つ確率 は である. 回以上ゲームをした場合 そのうちの勝ち数が 3 割以上 平成 7 年度数学 数学 ( 問題 ) 問題 から問題 3 を通じて必要であれば ( 付表 ) に記載された数値を用いなさい 問題. 次の ()~() の各問について 空欄に当てはまる最も適切なものをそれぞれの選択肢 の中から選び 解答用紙の所定の欄にマークしなさい なお 同じ選択肢を複数回選択してもよい 各 5 点 ( 計 6 点 ) ()つのサイコロを振る試行を 回繰り返すこととする 回目と 回目の試行でともにの目が出る事象を

More information

Microsoft PowerPoint - Inoue-statistics [互換モード]

Microsoft PowerPoint - Inoue-statistics [互換モード] 誤差論 神戸大学大学院農学研究科 井上一哉 (Kazuya INOUE) 誤差論 2011 年度前期火曜クラス 1 講義内容 誤差と有効数字 (Slide No.2~8 Text p.76~78) 誤差の分布と標準偏差 (Slide No.9~18 Text p.78~80) 最確値とその誤差 (Slide No.19~25 Text p.80~81) 誤差の伝播 (Slide No.26~32 Text

More information

untitled

untitled 分析の信頼性を支えるもの データ評価のための統計的方法 測定と統計の基礎知識 田中秀幸 1 はじめに 測定とは, ある物理現象をより良く知るために行うものであるが, 測定したデータをどう解釈するかということは案外難しい問題である データを解釈する際に大変有用であるのは統計的手法であり, 適切な統計的手法を取得したデータに適用するとデータの解釈が非常に楽になるだけではなく, データ, グラフを眺めているだけでは見えてこない隠された性質までも明示することができるようになる

More information

(.3) 式 z / の計算, alpha( ), sigma( ) から, 値 ( 区間幅 ) を計算 siki.3<-fuctio(, alpha, sigma) elta <- qorm(-alpha/) sigma /sqrt() elta [ 例 ]., 信頼率 として, サイ

(.3) 式 z / の計算, alpha( ), sigma( ) から, 値 ( 区間幅 ) を計算 siki.3<-fuctio(, alpha, sigma) elta <- qorm(-alpha/) sigma /sqrt() elta [ 例 ]., 信頼率 として, サイ 区間推定に基づくサンプルサイズの設計方法 7.7. 株式会社応用数理研究所佐々木俊久 永田靖 サンプルサイズの決め方 朝倉書店 (3) の 章です 原本とおなじ 6 種類を記述していますが 平均値関連 4 つをから4 章とし, 分散の つを 5,6 章に順序を変更しました 推定手順 サンプルサイズの設計方法は, 原本をそのまま引用しています R(S-PLUS) 関数での計算方法および例を追加しました.

More information

Microsoft Word - Stattext12.doc

Microsoft Word - Stattext12.doc 章対応のない 群間の量的データの検定. 検定手順 この章ではデータ間に 対 の対応のないつの標本から推定される母集団間の平均値や中央値の比較を行ないます 検定手法は 図. のようにまず正規に従うかどうかを調べます 但し この場合はつの群が共に正規に従うことを調べる必要があります 次に 群とも正規ならば F 検定を用いて等分散であるかどうかを調べます 等分散の場合は t 検定 等分散でない場合はウェルチ

More information

禁無断転載 第 3 章統計的手法に用いられる分布 All rights reserved (C) 芳賀 第 1 節我々の身の回りにある代表的分布と性質 1. 分布の表わし方我々の身の回りにある全てのものは ばらつきを持っています 収集したデータを分析していくためには このばらつきがどのような分布にな

禁無断転載 第 3 章統計的手法に用いられる分布 All rights reserved (C) 芳賀 第 1 節我々の身の回りにある代表的分布と性質 1. 分布の表わし方我々の身の回りにある全てのものは ばらつきを持っています 収集したデータを分析していくためには このばらつきがどのような分布にな 第 3 章統計的手法に用いられる分布 第 節我々の身の回りにある代表的分布と性質. 分布の表わし方我々の身の回りにある全てのものは ばらつきを持っています 収集したデータを分析していくためには このばらつきがどのような分布になっているかを明確に表現し 分析 比較を行えるようにしなければなりません この手法を覚えるようにしましょう () 分布の示し方収集した分布の全体的状態を目視で確認 比較するためには

More information

ダンゴムシの 交替性転向反応に 関する研究 3A15 今野直輝

ダンゴムシの 交替性転向反応に 関する研究 3A15 今野直輝 ダンゴムシの 交替性転向反応に 関する研究 3A15 今野直輝 1. 研究の動機 ダンゴムシには 右に曲がった後は左に 左に曲がった後は右に曲がる という交替性転向反応という習性がある 数多くの生物において この習性は見受けられるのだが なかでもダンゴムシやその仲間のワラジムシは その行動が特に顕著であるとして有名である そのため図 1のような道をダンゴムシに歩かせると 前の突き当りでどちらの方向に曲がったかを見ることによって

More information

PowerPoint Presentation

PowerPoint Presentation 付録 2 2 次元アフィン変換 直交変換 たたみ込み 1.2 次元のアフィン変換 座標 (x,y ) を (x,y) に移すことを 2 次元での変換. 特に, 変換が と書けるとき, アフィン変換, アフィン変換は, その 1 次の項による変換 と 0 次の項による変換 アフィン変換 0 次の項は平行移動 1 次の項は座標 (x, y ) をベクトルと考えて とすれば このようなもの 2 次元ベクトルの線形写像

More information

確ç”⁄ㆮå�ºæœ¬

確ç”⁄ㆮå�ºæœ¬ 確率の基本 解説 数学 A で習う確率の初めの部分は, 中学校の復習になっている. 確率の定義 例 くじで当たる確率を求めるときに, 当たりかはずれかどちらかだから, 当たる確率は 分の などと雑な議論をしてはいけない. 図 のように,5 本のくじの中に当たりくじが 本入っているときに, 本引いて当たる確率は, 次のように求められる. 図 くじの出方の全体の場合の数は N5 当たりくじが出る場合の数は

More information

2016年度 九州大・理系数学

2016年度 九州大・理系数学 0 九州大学 ( 理系 ) 前期日程問題 解答解説のページへ 座標平面上の曲線 C, C をそれぞれ C : y logx ( x > 0), C : y ( x-)( x- a) とする ただし, a は実数である を自然数とするとき, 曲線 C, C が 点 P, Q で交わり, P, Q の x 座標はそれぞれ, + となっている また, 曲線 C と直線 PQ で囲まれた領域の面積を S,

More information

データ解析

データ解析 データ解析 ( 前期 ) 最小二乗法 向井厚志 005 年度テキスト 0 データ解析 - 最小二乗法 - 目次 第 回 Σ の計算 第 回ヒストグラム 第 3 回平均と標準偏差 6 第 回誤差の伝播 8 第 5 回正規分布 0 第 6 回最尤性原理 第 7 回正規分布の 分布の幅 第 8 回最小二乗法 6 第 9 回最小二乗法の練習 8 第 0 回最小二乗法の推定誤差 0 第 回推定誤差の計算 第

More information

Probit , Mixed logit

Probit , Mixed logit Probit, Mixed logit 2016/5/16 スタートアップゼミ #5 B4 後藤祥孝 1 0. 目次 Probit モデルについて 1. モデル概要 2. 定式化と理解 3. 推定 Mixed logit モデルについて 4. モデル概要 5. 定式化と理解 6. 推定 2 1.Probit 概要 プロビットモデルとは. 効用関数の誤差項に多変量正規分布を仮定したもの. 誤差項には様々な要因が存在するため,

More information

森林水文 水資源学 2 2. 水文統計 豪雨があった時, 新聞やテレビのニュースで 50 年に一度の大雨だった などと報告されることがある. 今争点となっている川辺川ダムは,80 年に 1 回の洪水を想定して治水計画が立てられている. 畑地かんがいでは,10 年に 1 回の渇水を対象として計画が立て

森林水文 水資源学 2 2. 水文統計 豪雨があった時, 新聞やテレビのニュースで 50 年に一度の大雨だった などと報告されることがある. 今争点となっている川辺川ダムは,80 年に 1 回の洪水を想定して治水計画が立てられている. 畑地かんがいでは,10 年に 1 回の渇水を対象として計画が立て . 水文統計 豪雨があった時, 新聞やテレビのニュースで 50 年に一度の大雨だった などと報告されることがある. 今争点となっている川辺川ダムは,80 年に 回の洪水を想定して治水計画が立てられている. 畑地かんがいでは,0 年に 回の渇水を対象として計画が立てられる. このように, 水利構造物の設計や, 治水や利水の計画などでは, 年に 回起こるような降雨事象 ( 最大降雨強度, 最大連続干天日数など

More information

Excelによる統計分析検定_知識編_小塚明_5_9章.indd

Excelによる統計分析検定_知識編_小塚明_5_9章.indd 第7章57766 検定と推定 サンプリングによって得られた標本から, 母集団の統計的性質に対して推測を行うことを統計的推測といいます 本章では, 推測統計の根幹をなす仮説検定と推定の基本的な考え方について説明します 前章までの知識を用いて, 具体的な分析を行います 本章以降の知識は操作編での操作に直接関連していますので, 少し聞きなれない言葉ですが, 帰無仮説 有意水準 棄却域 などの意味を理解して,

More information

Medical3

Medical3 Chapter 1 1.4.1 1 元配置分散分析と多重比較の実行 3つの治療法による測定値に有意な差が認められるかどうかを分散分析で調べます この例では 因子が1つだけ含まれるため1 元配置分散分析 one-way ANOVA の適用になります また 多重比較法 multiple comparison procedure を用いて 具体的のどの治療法の間に有意差が認められるかを検定します 1. 分析メニュー

More information

様々なミクロ計量モデル†

様々なミクロ計量モデル† 担当 : 長倉大輔 ( ながくらだいすけ ) この資料は私の講義において使用するために作成した資料です WEB ページ上で公開しており 自由に参照して頂いて構いません ただし 内容について 一応検証してありますが もし間違いがあった場合でもそれによって生じるいかなる損害 不利益について責任を負いかねますのでご了承ください 間違いは発見次第 継続的に直していますが まだ存在する可能性があります 1 カウントデータモデル

More information

統計学 - 社会統計の基礎 - 正規分布 標準正規分布累積分布関数の逆関数 t 分布正規分布に従うサンプルの平均の信頼区間 担当 : 岸 康人 資料ページ :

統計学 - 社会統計の基礎 - 正規分布 標準正規分布累積分布関数の逆関数 t 分布正規分布に従うサンプルの平均の信頼区間 担当 : 岸 康人 資料ページ : 統計学 - 社会統計の基礎 - 正規分布 標準正規分布累積分布関数の逆関数 t 分布正規分布に従うサンプルの平均の信頼区間 担当 : 岸 康人 資料ページ : https://goo.gl/qw1djw 正規分布 ( 復習 ) 正規分布 (Normal Distribution)N (μ, σ 2 ) 別名 : ガウス分布 (Gaussian Distribution) 密度関数 Excel:= NORM.DIST

More information

Excelによる統計分析検定_知識編_小塚明_1_4章.indd

Excelによる統計分析検定_知識編_小塚明_1_4章.indd 第2章 1 変量データのまとめ方 本章では, 記述統計の手法について説明します 具体的には, 得られたデータから表やグラフを作成し, 意昧のある統計量を算出する方法など,1 変量データのまとめ方について学びます 本章から理解を深めるための数式が出てきますが, 必ずしも, これらの式を覚える必要はありません それぞれのデータの性質や統計量の意義を理解することが重要です 円グラフと棒グラフ 1 変量質的データをまとめる方法としてよく使われるグラフは,

More information

したがって ばらつきを表すには 偏差の符号をなくしてから平均化する必要がある そのひとつの方法は 1 偏差の絶対値を用いることである 偏差の絶対値の算術平均を 平均偏差 という ( )/5=10.8 偏差の符号を取るもうひとつの方法は 2それを2 乗することです 偏差の2 乗の算

したがって ばらつきを表すには 偏差の符号をなくしてから平均化する必要がある そのひとつの方法は 1 偏差の絶対値を用いることである 偏差の絶対値の算術平均を 平均偏差 という ( )/5=10.8 偏差の符号を取るもうひとつの方法は 2それを2 乗することです 偏差の2 乗の算 統計学テキストの69ページに 平均偏差 分散 標準偏差 変動係数 標準誤差 信頼区間に関する記述がある 分布を考える分布の中心の位置 ( 例 ) 65 53 44 78 50 の数値の算術平均は (65+53+44+78+50)/5=58 である 此れだけでは 分布の状態がわからない ばらつきの程度を表すには最大値と最小値との差 (78-44)=34 これをレンジ ( 範囲 ) と言う しかし 両端の数字だけでは

More information

Microsoft Word - apstattext04.docx

Microsoft Word - apstattext04.docx 4 章母集団と指定値との量的データの検定 4.1 検定手順今までは質的データの検定の方法を学んで来ましたが これからは量的データについてよく利用される方法を説明します 量的データでは データの分布が正規分布か否かで検定の方法が著しく異なります この章ではまずデータの分布の正規性を調べる方法を述べ 次にデータの平均値または中央値がある指定された値と違うかどうかの検定方法を説明します 以下の図 4.1.1

More information

スライド 1

スライド 1 データ解析特論重回帰分析編 2017 年 7 月 10 日 ( 月 )~ 情報エレクトロニクスコース横田孝義 1 ( 単 ) 回帰分析 単回帰分析では一つの従属変数 ( 目的変数 ) を 一つの独立変数 ( 説明変数 ) で予測する事を考える 具体的には y = a + bx という回帰直線 ( モデル ) でデータを代表させる このためにデータからこの回帰直線の切片 (a) と傾き (b) を最小

More information

統計Ⅰ 第1回 序説~確率

統計Ⅰ 第1回 序説~確率 授業担当 : 徳永伸一 東京医科歯科大学教養部 数学講座 あらためて注意しておきたいこと ( 前期のはじめに注意したこと +α) 後期の授業は今日を含め ( たった )6 回 成績評価は前期試験 + 後期試験で 後期の方が比重が大きいですが前期の出来が悪かった人はハンデがあると思ってください 後期試験の出題範囲には前期授業の内容も含まれます 復習も怠りなく 欠席した場合は次回までに要点の確認を 次回の授業までに授業スライドを

More information

2015年度 信州大・医系数学

2015年度 信州大・医系数学 05 信州大学 ( 医系 ) 前期日程問題 解答解説のページへ 放物線 y = a + b + c ( a > 0) を C とし, 直線 y = -を l とする () 放物線 C が点 (, ) で直線 l と接し, かつ 軸と共有点をもつための a, b, c が満 たす必要十分条件を求めよ () a = 8 のとき, () の条件のもとで, 放物線 C と直線 l および 軸とで囲まれた部

More information

統計的データ解析

統計的データ解析 統計的データ解析 011 011.11.9 林田清 ( 大阪大学大学院理学研究科 ) 連続確率分布の平均値 分散 比較のため P(c ) c 分布 自由度 の ( カイ c 平均値 0, 標準偏差 1の正規分布 に従う変数 xの自乗和 c x =1 が従う分布を自由度 の分布と呼ぶ 一般に自由度の分布は f /1 c / / ( c ) {( c ) e }/ ( / ) 期待値 二乗 ) 分布 c

More information

ファイナンスのための数学基礎 第1回 オリエンテーション、ベクトル

ファイナンスのための数学基礎 第1回 オリエンテーション、ベクトル 春学期統計学 I 記述統計と推測統計 担当 : 長倉大輔 ( ながくらだいすけ ) 1 本日の予定 本日はまず記述統計と推測統計の違い 推測統計学の基本的な構造について説明します 2 記述統計と推測統計 統計学とは? 与えられたデータの背後にある 特性 法則 を 検証 発見 分析 するための手法の開発 その応用などに関わる学問の事です 3 記述統計と推測統計 データの種類 データの種類はおおまかに

More information

モジュール1のまとめ

モジュール1のまとめ 数理統計学 第 0 回 復習 標本分散と ( 標本 ) 不偏分散両方とも 分散 というのが実情 二乗偏差計標本分散 = データ数 (0ページ) ( 標本 ) 不偏分散 = (03 ページ ) 二乗偏差計 データ数 - 分析ではこちらをとることが多い 復習 ここまで 実験結果 ( 万回 ) 平均 50Kg 標準偏差 0Kg 0 人 全体に小さすぎる > mea(jkke) [] 89.4373 標準偏差

More information

<4D F736F F D208CF68BA48C6F8DCF8A C30342C CFA90B68C6F8DCF8A7782CC8AEE967B92E8979D32288F4390B394C529332E646F63>

<4D F736F F D208CF68BA48C6F8DCF8A C30342C CFA90B68C6F8DCF8A7782CC8AEE967B92E8979D32288F4390B394C529332E646F63> 2. 厚生経済学の ( 第 ) 基本定理 2 203 年 4 月 7 日 ( 水曜 3 限 )/8 本章では 純粋交換経済において厚生経済学の ( 第 ) 基本定理 が成立することを示す なお より一般的な生産技術のケースについては 4.5 補論 2 で議論する 2. 予算集合と最適消費点 ( 完全 ) 競争市場で達成される資源配分がパレート効率的であることを示すための準備として 個人の最適化行動を検討する

More information

Microsoft PowerPoint - データ解析基礎4.ppt [互換モード]

Microsoft PowerPoint - データ解析基礎4.ppt [互換モード] データ解析基礎. 正規分布と相関係数 keyword 正規分布 正規分布の性質 偏差値 変数間の関係を表す統計量 共分散 相関係数 散布図 正規分布 世の中の多くの現象は, 標本数を大きくしていくと, 正規分布に近づいていくことが知られている. 正規分布 データ解析の基礎となる重要な分布 平均と分散によって特徴づけることができる. 平均値 : 分布の中心を表す値 分散 : 分布のばらつきを表す値 正規分布

More information

Microsoft PowerPoint - データ解析基礎2.ppt

Microsoft PowerPoint - データ解析基礎2.ppt データ解析基礎. 度数分布と特性値 keyword データの要約 度数分布表, ヒストグラム 分布の中心を表す基本統計量 平均, 最頻値, 中央値 分布のばらつきを表す統計量 分散, 標準偏差 統計データの構造 - データ解析の目的 具体的な対象 ( 母集団 ) についての調査結果 ( 標本をどう加工 処理し, 有益な情報を引き出すかである. 加工 処理するための調査結果として, データ ( 観測データ

More information

2014年度 名古屋大・理系数学

2014年度 名古屋大・理系数学 04 名古屋大学 ( 理系 ) 前期日程問題 解答解説のページへ空間内にある半径 の球 ( 内部を含む ) を B とする 直線 と B が交わっており, その交わりは長さ の線分である () B の中心と との距離を求めよ () のまわりに B を 回転してできる立体の体積を求めよ 04 名古屋大学 ( 理系 ) 前期日程問題 解答解説のページへ 実数 t に対して 点 P( t, t ), Q(

More information

切片 ( 定数項 ) ダミー 以下の単回帰モデルを考えよう これは賃金と就業年数の関係を分析している : ( 賃金関数 ) ここで Y i = α + β X i + u i, i =1,, n, u i ~ i.i.d. N(0, σ 2 ) Y i : 賃金の対数値, X i : 就業年数. (

切片 ( 定数項 ) ダミー 以下の単回帰モデルを考えよう これは賃金と就業年数の関係を分析している : ( 賃金関数 ) ここで Y i = α + β X i + u i, i =1,, n, u i ~ i.i.d. N(0, σ 2 ) Y i : 賃金の対数値, X i : 就業年数. ( 統計学ダミー変数による分析 担当 : 長倉大輔 ( ながくらだいすけ ) 1 切片 ( 定数項 ) ダミー 以下の単回帰モデルを考えよう これは賃金と就業年数の関係を分析している : ( 賃金関数 ) ここで Y i = α + β X i + u i, i =1,, n, u i ~ i.i.d. N(0, σ 2 ) Y i : 賃金の対数値, X i : 就業年数. ( 実際は賃金を就業年数だけで説明するのは現実的はない

More information

多変量解析 ~ 重回帰分析 ~ 2006 年 4 月 21 日 ( 金 ) 南慶典

多変量解析 ~ 重回帰分析 ~ 2006 年 4 月 21 日 ( 金 ) 南慶典 多変量解析 ~ 重回帰分析 ~ 2006 年 4 月 21 日 ( 金 ) 南慶典 重回帰分析とは? 重回帰分析とは複数の説明変数から目的変数との関係性を予測 評価説明変数 ( 数量データ ) は目的変数を説明するのに有効であるか得られた関係性より未知のデータの妥当性を判断する これを重回帰分析という つまり どんなことをするのか? 1 最小 2 乗法により重回帰モデルを想定 2 自由度調整済寄与率を求め

More information

経済統計分析1 イントロダクション

経済統計分析1 イントロダクション 1 経済統計分析 9 分散分析 今日のおはなし. 検定 statistical test のいろいろ 2 変数の関係を調べる手段のひとつ適合度検定独立性検定分散分析 今日のタネ 吉田耕作.2006. 直感的統計学. 日経 BP. 中村隆英ほか.1984. 統計入門. 東大出版会. 2 仮説検定の手続き 仮説検定のロジック もし帰無仮説が正しければ, 検定統計量が既知の分布に従う 計算された検定統計量の値から,

More information

Microsoft Word - 補論3.2

Microsoft Word - 補論3.2 補論 3. 多変量 GARC モデル 07//6 新谷元嗣 藪友良 対数尤度関数 3 章 7 節では 変量の対数尤度を求めた ここでは多変量の場合 とくに 変量について対数尤度を求める 誤差項 は平均 0 で 次元の正規分布に従うとする 単純化のため 分散と共分散は時間を通じて一定としよう ( この仮定は後で変更される ) したがって ij から添え字 を除くことができる このとき と の尤度関数は

More information

数学の学び方のヒント

数学の学び方のヒント 数学 Ⅱ における微分単元の 指導法の改善に関する研究 2017 年 10 月北数教旭川大会で発表した内容です 北海道札幌国際情報高等学校和田文興 1 Ⅰ. 研究の動機と背景 高校では極限を厳密に定義できず, 曖昧でわかりにくい. 私自身は, はじめて微分と出会ったとき, 極限の考え方等が納得できなかった. y () a h 接線 a 傾き (a) 2 Ⅰ. 研究の動機と背景 微分の指導改善に関する優れた先行研究がいくつかあるが,

More information

JMP による 2 群間の比較 SAS Institute Japan 株式会社 JMP ジャパン事業部 2008 年 3 月 JMP で t 検定や Wilcoxon 検定はどのメニューで実行できるのか または検定を行う際の前提条件の評価 ( 正規性 等分散性 ) はどのメニューで実行できるのかと

JMP による 2 群間の比較 SAS Institute Japan 株式会社 JMP ジャパン事業部 2008 年 3 月 JMP で t 検定や Wilcoxon 検定はどのメニューで実行できるのか または検定を行う際の前提条件の評価 ( 正規性 等分散性 ) はどのメニューで実行できるのかと JMP による 2 群間の比較 SAS Institute Japan 株式会社 JMP ジャパン事業部 2008 年 3 月 JMP で t 検定や Wilcoxon 検定はどのメニューで実行できるのか または検定を行う際の前提条件の評価 ( 正規性 等分散性 ) はどのメニューで実行できるのかというお問い合わせがよくあります そこで本文書では これらについて の回答を 例題を用いて説明します 1.

More information

3章 度数分布とヒストグラム

3章 度数分布とヒストグラム 度数分布とヒストグラム データとは 複雑な確率ゲームから生まれたと考えてよい データ分析の第一歩として データの持つ基本的特性を把握することが重要である 分析の流れ データの分布 ( 散らばり ) を 度数分布表にまとめ グラフ化する グラフに 平均値や分散など 分布の特徴を示す客観的な数値を加える データが母集団からのランダムサンプルならば 母集団についての推測を行う 度数分布とヒストグラムの作成

More information

<4D F736F F D E4F8E9F82C982A882AF82E98D7397F1>

<4D F736F F D E4F8E9F82C982A882AF82E98D7397F1> 3 三次における行列 要旨高校では ほとんど 2 2 の正方行列しか扱ってなく 三次の正方行列について考えてみたかったため 数 C で学んだ定理を三次の正方行列に応用して 自分たちで仮説を立てて求めていったら 空間における回転移動を表す行列 三次のケーリー ハミルトンの定理 三次における逆行列を求めたり 仮説をたてることができた. 目的 数 C で学んだ定理を三次の正方行列に応用する 2. 概要目的の到達点として

More information

RSS Higher Certificate in Statistics, Specimen A Module 3: Basic Statistical Methods Solutions Question 1 (i) 帰無仮説 : 200C と 250C において鉄鋼の破壊応力の母平均には違いはな

RSS Higher Certificate in Statistics, Specimen A Module 3: Basic Statistical Methods Solutions Question 1 (i) 帰無仮説 : 200C と 250C において鉄鋼の破壊応力の母平均には違いはな RSS Higher Certiicate in Statistics, Specimen A Module 3: Basic Statistical Methods Solutions Question (i) 帰無仮説 : 00C と 50C において鉄鋼の破壊応力の母平均には違いはない. 対立仮説 : 破壊応力の母平均には違いがあり, 50C の方ときの方が大きい. n 8, n 7, x 59.6,

More information

<4D F736F F D208C51985F82CD82B682DF82CC88EA95E A>

<4D F736F F D208C51985F82CD82B682DF82CC88EA95E A> 群論はじめの一歩 (6) 6. 指数 2の定理と2 面体群 命題 H を群 G の部分群とする そして 左剰余類全体 G/ H 右剰 余類全体 \ H G ともに指数 G: H 2 と仮定する このとき H は群 G の正規部分群である すなわち H 注意 ) 集合 A と B があるとき A から B を引いた差集合は A \ B と書かれるが ここで書いた H \ Gは差集合ではなく右剰余類の集合の意味である

More information

スライド 1

スライド 1 データ解析特論第 10 回 ( 全 15 回 ) 2012 年 12 月 11 日 ( 火 ) 情報エレクトロニクス専攻横田孝義 1 終了 11/13 11/20 重回帰分析をしばらくやります 12/4 12/11 12/18 2 前回から回帰分析について学習しています 3 ( 単 ) 回帰分析 単回帰分析では一つの従属変数 ( 目的変数 ) を 一つの独立変数 ( 説明変数 ) で予測する事を考える

More information

と 測定を繰り返した時のばらつき の和が 全体のばらつき () に対して どれくらいの割合となるかがわかり 測定システムを評価することができる MSA 第 4 版スタディガイド ジャパン プレクサス (010)p.104 では % GRR の値が10% 未満であれば 一般に受容れられる測定システムと

と 測定を繰り返した時のばらつき の和が 全体のばらつき () に対して どれくらいの割合となるかがわかり 測定システムを評価することができる MSA 第 4 版スタディガイド ジャパン プレクサス (010)p.104 では % GRR の値が10% 未満であれば 一般に受容れられる測定システムと .5 Gage R&R による解析.5.1 Gage R&Rとは Gage R&R(Gage Repeatability and Reproducibility ) とは 測定システム分析 (MSA: Measurement System Analysis) ともいわれ 測定プロセスを管理または審査するための手法である MSAでは ばらつきの大きさを 変動 という尺度で表し 測定システムのどこに原因があるのか

More information

Microsoft Word - 微分入門.doc

Microsoft Word - 微分入門.doc 基本公式 例題 0 定義式 f( ) 数 Ⅲ 微分入門 = の導関数を定義式にもとづいて計算しなさい 基本事項 ( f( ), g( ) が微分可能ならば ) y= f( ) g( ) のとき, y = y= f( ) g( ) h( ) のとき, y = ( f( ), g( ) が微分可能で, g( ) 0 ならば ) f( ) y = のとき, y = g ( ) とくに, y = のとき,

More information

4 3. (a) 2 (b) 1 2 xy xz- x , 4 R1 R2 R1 R xz- 2(a) 2(b) B 1 B 2 B 1 B 2 2

4 3. (a) 2 (b) 1 2 xy xz- x , 4 R1 R2 R1 R xz- 2(a) 2(b) B 1 B 2 B 1 B 2 2 2017 Vol. 16 1-33 1 2 1. 2. 21 [5], 1 2 2 [1] [2] [3] 1 4 3. (a) 2 (b) 1 2 xy- 2 1. xz- x 2. 3. 1 3 3, 4 R1 R2 R1 R2 3 1 4 2 xz- 2(a) 2(b) 1 4 2 B 1 B 2 B 1 B 2 2 5 8 7 6 5(a) 5(b) 9 7 8 2 (a) 5 (b) 1

More information

自動車感性評価学 1. 二項検定 内容 2 3. 質的データの解析方法 1 ( 名義尺度 ) 2.χ 2 検定 タイプ 1. 二項検定 官能検査における分類データの解析法 識別できるかを調べる 嗜好に差があるかを調べる 2 点比較法 2 点識別法 2 点嗜好法 3 点比較法 3 点識別法 3 点嗜好

自動車感性評価学 1. 二項検定 内容 2 3. 質的データの解析方法 1 ( 名義尺度 ) 2.χ 2 検定 タイプ 1. 二項検定 官能検査における分類データの解析法 識別できるかを調べる 嗜好に差があるかを調べる 2 点比較法 2 点識別法 2 点嗜好法 3 点比較法 3 点識別法 3 点嗜好 . 内容 3. 質的データの解析方法 ( 名義尺度 ).χ 検定 タイプ. 官能検査における分類データの解析法 識別できるかを調べる 嗜好に差があるかを調べる 点比較法 点識別法 点嗜好法 3 点比較法 3 点識別法 3 点嗜好法 : 点比較法 : 点識別法 配偶法 配偶法 ( 官能評価の基礎と応用 ) 3 A か B かの判定において 回の判定でAが選ばれる回数 kは p の二項分布に従う H :

More information

<4D F736F F F696E74202D B835E82CC8EED97DE B835E82CC834F BB F0955C82B793C190AB926C>

<4D F736F F F696E74202D B835E82CC8EED97DE B835E82CC834F BB F0955C82B793C190AB926C> 統計の種類 統計学 データの種類データのグラフ化中心を表す特性値 記述統計母集団 ( 調査対象の集団 ) をすべて調査でき その調査結果に基づき データをまとめる統計 推測統計母集団 ( 調査対象の集団 ) をすべて調査できないが 一部のデータから母集団の状況を推測する統計 外れ値 データの中には 他の観測値に比べて著しく離れた値が含まれている場合があります ( 入力ミスではなく ) このような値のことを外れ値といいます

More information

Microsoft Word - Stattext13.doc

Microsoft Word - Stattext13.doc 3 章対応のある 群間の量的データの検定 3. 検定手順 この章では対応がある場合の量的データの検定方法について学びます この場合も図 3. のように最初に正規に従うかどうかを調べます 正規性が認められた場合は対応がある場合の t 検定 正規性が認められない場合はウィルコクソン (Wlcoxo) の符号付き順位和検定を行ないます 章で述べた検定方法と似ていますが ここでは対応のあるデータ同士を引き算した値を用いて判断します

More information

2011年度 大阪大・理系数学

2011年度 大阪大・理系数学 0 大阪大学 ( 理系 ) 前期日程問題 解答解説のページへ a a を自然数とする O を原点とする座標平面上で行列 A= a の表す 次変換 を f とする cosθ siθ () >0 および0θ

More information

医学 薬学分野の研究で用いられるのは推測統計学 母集団のデータ 多数データの 数学的要約 記述 記述統計学 ( 古典統計学 ) 母集団 ( 準母集団 ) 無作為抽出 標本集団のデータ 少数データの 数学的要約 記述 推測統計学 ( 近代統計学 ) 逆規定 確率的推測 記述 記述統計学調査対象集団 =

医学 薬学分野の研究で用いられるのは推測統計学 母集団のデータ 多数データの 数学的要約 記述 記述統計学 ( 古典統計学 ) 母集団 ( 準母集団 ) 無作為抽出 標本集団のデータ 少数データの 数学的要約 記述 推測統計学 ( 近代統計学 ) 逆規定 確率的推測 記述 記述統計学調査対象集団 = 1.. 統計学の基本的な概念 1.1 統計学とは何ぞや? 統計学は沢山のデータを要約し 中に含まれている情報を把握しやすくするための手段 データデータ データデータ データデータ 要約値 ( 統計量 ) 実質科学的評価 < 例 >100 人の日本人について体重を測定した場合 100 個のデータを眺めただけでそこに含まれる情報を読み取るのは困難 100 個のデータのほぼ真ん中を表す要約値として平均値を求める

More information

2014年度 信州大・医系数学

2014年度 信州大・医系数学 4 信州大学 ( 医系 ) 前期日程問題 解答解説のページへ 3 個の玉が横に 列に並んでいる コインを 回投げて, それが表であれば, そのときに中央にある玉とその左にある玉とを入れ替える また, それが裏であれば, そのときに中央にある玉とその右にある玉とを入れ替える この操作を繰り返す () 最初に中央にあったものが 回後に中央にある確率を求めよ () 最初に右端にあったものが 回後に右端にある確率を求めよ

More information

数値計算法

数値計算法 数値計算法 008 4/3 林田清 ( 大阪大学大学院理学研究科 ) 実験データの統計処理その 誤差について 母集団と標本 平均値と標準偏差 誤差伝播 最尤法 平均値につく誤差 誤差 (Error): 真の値からのずれ 測定誤差 物差しが曲がっていた 測定する対象が室温が低いため縮んでいた g の単位までしかデジタル表示されない計りで g 以下 計りの目盛りを読み取る角度によって値が異なる 統計誤差

More information

Microsoft PowerPoint - 資料04 重回帰分析.ppt

Microsoft PowerPoint - 資料04 重回帰分析.ppt 04. 重回帰分析 京都大学 加納学 Division of Process Control & Process Sstems Engineering Department of Chemical Engineering, Koto Universit manabu@cheme.koto-u.ac.jp http://www-pse.cheme.koto-u.ac.jp/~kano/ Outline

More information

Microsoft Word - appendix_b

Microsoft Word - appendix_b 付録 B エクセルの使い方 藪友良 (2019/04/05) 統計学を勉強しても やはり実際に自分で使ってみないと理解は十分ではあ りません ここでは 実際に統計分析を使う方法のひとつとして Microsoft Office のエクセルの使い方を解説します B.1 分析ツールエクセルについている分析ツールという機能を使えば さまざまな統計分析が可能です まず この機能を使えるように設定をします もし

More information

Microsoft Word - Stattext11.doc

Microsoft Word - Stattext11.doc 章母集団と指定値との量的データの検定. 検定手順 前章で質的データの検定手法について説明しましたので ここからは量的データの検定について話します 量的データの検定は少し分量が多くなりますので 母集団と指定値との検定 対応のない 群間の検定 対応のある 群間の検定 と 3つに章を分けて話を進めることにします ここでは 母集団と指定値との検定について説明します 例えば全国平均が分かっている場合で ある地域の標本と全国平均を比較するような場合や

More information

Microsoft Word - lec_student-chp3_1-representative

Microsoft Word - lec_student-chp3_1-representative 1. はじめに この節でのテーマ データ分布の中心位置を数値で表す 可視化でとらえた分布の中心位置を数量化する 平均値とメジアン, 幾何平均 この節での到達目標 1 平均値 メジアン 幾何平均の定義を書ける 2 平均値とメジアン, 幾何平均の特徴と使える状況を説明できる. 3 平均値 メジアン 幾何平均を計算できる 2. 特性値 集めたデータを度数分布表やヒストグラムに整理する ( 可視化する )

More information

2018年度 筑波大・理系数学

2018年度 筑波大・理系数学 筑波大学 ( 理系 ) 前期日程問題 解答解説のページへ < < とする 放物線 上に 点 (, ), A (ta, ta ), B( - ta, ta ) をとる 三角形 AB の内心の 座標を p とし, 外心の 座標を q とする また, 正の実数 a に対して, 直線 a と放物線 で囲まれた図形の面積を S( a) で表す () p, q を cos を用いて表せ S( p) () S(

More information

講義ノート p.2 データの視覚化ヒストグラムの作成直感的な把握のために重要入力間違いがないか確認するデータの分布を把握する fig. ヒストグラムの作成 fig. ヒストグラムの出力例 度数分布表の作成 データの度数を把握する 入力間違いが無いかの確認にも便利 fig. 度数分布表の作成

講義ノート p.2 データの視覚化ヒストグラムの作成直感的な把握のために重要入力間違いがないか確認するデータの分布を把握する fig. ヒストグラムの作成 fig. ヒストグラムの出力例 度数分布表の作成 データの度数を把握する 入力間違いが無いかの確認にも便利 fig. 度数分布表の作成 講義ノート p.1 前回の復習 尺度について数字には情報量に応じて 4 段階の種類がある名義尺度順序尺度 : 質的データ間隔尺度比例尺度 : 量的データ 尺度によって利用できる分析方法に差異がある SPSS での入力の練習と簡単な操作の説明 変数ビューで変数を設定 ( 型や尺度に注意 ) fig. 変数ビュー データビューでデータを入力 fig. データビュー 講義ノート p.2 データの視覚化ヒストグラムの作成直感的な把握のために重要入力間違いがないか確認するデータの分布を把握する

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション 1/X Chapter 9: Linear correlation Cohen, B. H. (2007). In B. H. Cohen (Ed.), Explaining Psychological Statistics (3rd ed.) (pp. 255-285). NJ: Wiley. 概要 2/X 相関係数とは何か 相関係数の数式 検定 注意点 フィッシャーのZ 変換 信頼区間 相関係数の差の検定

More information

Microsoft PowerPoint - CVM.ppt [互換モード]

Microsoft PowerPoint - CVM.ppt [互換モード] 遺伝子組み換えコーン油を事例とした CVM 質問 問 1 現在 遺伝子組み換えトウモロコシを原料として使っているコーン油が 1 本 900gあたり約 600 円で販売されています もし 遺伝子組み換え原料を完全に使っていないコーン油を販売しようとすれば それは 流通管理を徹底しなければならないことから 値段がより高くなることが予想されます あなたは 900g のコーン油 1 本について 追加的な値上がりが何円までだったら

More information

DVIOUT

DVIOUT 5.3 音声を加工してみよう! 5.3. 音声を加工してみよう! 129 この節では 図 5.11 の音声 あ の離散化された波 (x n ) のグラフおよび図 5.12 の音声 あ の離散フーリエ変換 ( 周波数スペクトル密度 ) の絶対値 ( X k ) のグラフを基準に 離散フーリエ変換および離散フーリエ積分を使って この離散化された波の検証や加工を行なってみましよう 6 図 5.11: 音声

More information

0415

0415 今回の授業の狙い 基本的な統計量を求め 活用できること 章統計量と確率分布のと確率分布の活用 part 統計解析で用いる代表的な確率分布の特徴を 把握すること 統計解析の全体像 統計解析での注意点 ()( サンプリング サンプル 測定 母集団 何らかの意味で同質性が期待できるものの集団 e 日本人男性同じ条件で作った製品 母集団 推定 アクション 事実に基づく判断 データからモノをいう データ解析

More information

DVIOUT-SS_Ma

DVIOUT-SS_Ma 第 章 微分方程式 ニュートンはリンゴが落ちるのを見て万有引力を発見した という有名な逸話があります 無重力の宇宙船の中ではリンゴは落ちないで静止していることを考えると 重力が働くと始め静止しているものが動き出して そのスピードはどんどん大きくなる つまり速度の変化が現れることがわかります 速度は一般に時間と共に変化します 速度の瞬間的変化の割合を加速度といい で定義しましょう 速度が変化する, つまり加速度がでなくなるためにはその原因があり

More information

Microsoft Word - apstattext05.docx

Microsoft Word - apstattext05.docx 5 章 群間の量的データの検定 5. 対応のない検定手順例えば 男女の成績を比較しようとして試験を実施した場合 男性の集団 ( 群 ) と女性の集団 ( 群 ) との比較になりますから つの集団に同一人物は 人もいません しかしその試験で英語と国語の平均点を比較する場合 英語と国語を受験した集団には必ず同じ人がいます 前者のような場合を対応のないデータ 後者の場合を対応のあるデータと呼びます 対応のあるデータについては特別の処理ができるので

More information

Microsoft PowerPoint - mp11-02.pptx

Microsoft PowerPoint - mp11-02.pptx 数理計画法第 2 回 塩浦昭義情報科学研究科准教授 shioura@dais.is.tohoku.ac.jp http://www.dais.is.tohoku.ac.jp/~shioura/teaching 前回の復習 数理計画とは? 数理計画 ( 復習 ) 数理計画問題とは? 狭義には : 数理 ( 数学 ) を使って計画を立てるための問題 広義には : 与えられた評価尺度に関して最も良い解を求める問題

More information

学習指導要領

学習指導要領 (1) 数と式 ア数と集合 ( ア ) 実数数を実数まで拡張する意義を理解し 簡単な無理数の四則計算をすること 絶対値の意味を理解し適切な処理することができる 例題 1-3 の絶対値をはずせ 展開公式 ( a + b ) ( a - b ) = a 2 - b 2 を利用して根号を含む分数の分母を有理化することができる 例題 5 5 + 2 の分母を有理化せよ 実数の整数部分と小数部分の表し方を理解している

More information

<4D F736F F F696E74202D A6D82A982B3955D89BF82CC979D89F082C9954B977682C8939D8C768A7782CC8AEE91622E B8CDD8AB B83685D>

<4D F736F F F696E74202D A6D82A982B3955D89BF82CC979D89F082C9954B977682C8939D8C768A7782CC8AEE91622E B8CDD8AB B83685D> 不確かさ評価の理解に必要な統計学の基礎 産業技術総合研究所計測標準研究部門田中秀幸 1 1: 測定, 不確かさ評価を行う際の心構えについて 計量管理の重要性についてを中心に 1-1: 測定量の定義について 3 何を測定するのか? 金属棒の長さをレーザー測長器によって測りたい このときの測定の定義は? 定義 : レーザー測長器によって金属棒の長さを測り, その測定結果を測定対象である金属棒の長さとする

More information