.1 1,... ( )

Size: px
Start display at page:

Download ".1 1,... ( )"

Transcription

1 1 δ( ε )δ 2 f(b) f(a) slope f (c) = f(b) f(a) b a a c b [ ] [URL] nobuo 1

2 .1 1,... ( ) ( ) I R d C I

3 6 II I ( ) ( ) I ( ) II ( ) ( ) III II ( ) II ( ) ( ) ( ) ( ) ( ) Γ- B ( ) ( )Γ- B

4 13 ( ) ( ) ( ) ( ) ( ) ( ) [ ] [ ] [Rud] Rudin, W.: Principles of Mathmatical Analysis-3rd Edition McGraw-Hill Book Company. [ ] I,II [ ] [ 1] [ 2] 4

5 [ ] [ ] 1 exp, sin, cos... [ 1] [ 2] 3 5

6 1 ( ) ( ) P, Q P = Q P Q Q = P P Q P = Q P = Q x,... x... x, x 1 1x, x P def. Q P Q P def. = Q,, ( ) X, Y X Y, X Y, X\Y X Y = {z ; z X z Y }, X Y = {z ; z X z Y }, X\Y = {z ; z X z Y }. 6

7 1.1.3 ( ) X, Y φ x X x Y φ(x) φ X Y φ X Y φ : X Y x X φ(x) Y x φ(x) φ : X Y, A X φ(a) Y φ A φ(a) = {φ(x) ; x A}. φ(x) = Y φ φ x, y X, φ(x) = φ(y) = x = y. φ φ φ y φ(x) y = φ(x) x X x = φ 1 (y) φ 1 : φ(x) X (y φ 1 (y)) φ Z ψ : Y Z φ ψ ψ φ ψ φ : X Z (x ψ(φ(x))) 7

8 1.1.4 (a) X = {x 1, x 2, x 3 }, Y = {y 1, y 2 }, φ(x 1 ) = y 1, φ(x 2 ) = φ(x 3 ) = y 2 φ : X Y (b) X = {x 1, x 2 }, Y = {y 1, y 2, y 3 }, φ(x 1 ) = y 1, φ(x 2 ) = y 2 φ : X Y (c) X = {x 1, x 2, x 3 }, Y = {y 1, y 2, y 3 }, φ(x j ) = y j, j = 1, 2, 3 φ : X Y φ φ 1 (x j ) = x j, j = 1, 2, (16.1 )

9 1.2.1 R R N, Z, Q N = {, 1, 2,...}, ( ) Z = {a b ; a, b N}, ( ) Q = {a/b ; a Z, b N, b }. ( ) a a >, a <, a a, a +, a { { a, a, a = a + a, a, = a = a, a., a. {, a, a, a. a, a +, a,, R 2 +, R = R {, + } + ± a R { } a < +, a R {+ } < a. +, R = R {, + } ± a R {+ } a + = + a =, a R { } a = a + ( ) = + a =, < a + a = a =, ( a) = ( a) = a( ) = ( )a =. a R a/ = a/( ) =. < a + a a = + 1,, / 9

10 1.2.3 a, b R (a, b) R, [a, b] R (a, b) = {x R ; a < x < b}, [a, b] = {x R ; a x b}, (a, b) [a, b] [a, b) R (a, b] R [a, b) = {x R ; a x < b}, (a, b] = {x R ; a < x b}. (a, b), [a, b], [a, b), (a, b] a, b l, r R, l < r (l, r). x x (l, r), (l =, r = ), l + 1, ( < l, r = ), x = r 1, (l =, r < ), (l + r)/2, ( < l, r < ) A R, m R a A a m m A a A m a m A ( ) m A A m A max A \( )/ m A A m m A min A A A A A A R A R A R ± max A = { { A, A = { }, min A = A, A = { } A R max A, min A A n N φ : {x N ; 1 x n} A A n A 1.

11 1.2.7 a, b Z, a < b A = b a. A = {z Z ; a < z b} z z + a {z N ; < z b a} A. \( )/ ( ) A R max A, min A A A = {a 1,..., a n } max A = a 1 a 2... a n, min A = a 1 a 2... a n (1.1) ( ) l < r, (l, r) I [l, r] x I r x, x I l x. (1.2) max I r I = max I = r, min I l I = min I = l. : (1.2) :. (1.3) : x < r x l < r x l < y < r y ( 1.2.4) y y I x < y. x I. \( )/ ( ) D f : D R c R f, g : D R cf, f + g,fg, f/g (cf)(x) = cf(x), (f + g)(x) = f(x) + g(x), (fg)(x) = f(x)g(x), (f/g)(x) = f(x)/g(x). f/g D(f/g) = {x D ; g(x) } 11

12 1.3.2 ( ) D R, f : D R f, x, y D, x < y = f(x) f(y) f x, y D, x < y = f(x) < f(y). f ( ) f f, f f f ( ) E D {f(x) ; x E} f E E ( ) f D f D ( ) E D max E max E f, min f E f = max f(e), min f = min f(e). (1.4) E (1.4) D R f : D R. f f 1. z, w f(i) z < w f 1 (z) < f 1 (w) f 1 (z) f 1 (z) z = f f 1 (z) f f f 1 (w) = w ( ) I R f : I R f \( )/ x, y I, α, β >, α + β = 1 f(αx + βy) αf(x) + βf(y). (1.5) (1.5) < f f f. f f. 12

13 (1.5) f f(x) = x n (n = 1, 2) R (n ). n = 1 (1.5) n = 2 x, y R α, β >, α + β = 1 2xy x 2 + y 2. (αx + βy) 2 = α 2 x 2 + 2αβxy + β 2 y 2 (α 2 + αβ)x }{{} 2 + (β 2 + αβ)y }{{} 2. =α =β \( )/ I R, f, g : I R (i) f + g (ii) f, g fg f(x) = x n (n ) [, ), n R I, J R f : I J f 1 : J I x, y R, n = 1, 2,.. n 1 x n y n = (x y) x k y n 1 k. (1.6) k= (a) x, y r x n y n nr n 1 x y. (1.7) (b) y x ny n 1 (x y) x n y n nx n 1 (x y). (1.8) (1.8) x = y, n = 1 = (c) x (, ) 1 + (x 1)n x n. (1.9) 13

14 (1.6):p(x, y) def = n 1 k= xk y n 1 k n 2 n 1 xp(x, y) = x k+1 y n 1 k + x n, yp(x, y) = y n + x k y n k. k= (1.6) (1.7): n 1 n 1 x k y n 1 k x k y n 1 k nr n 1. }{{} k= k= r n 1 (1.8) : (1.6) y x x = y, n = 1 (1.8) : (1.9):(1.8) y = 1 x 1 (1.9) (1.8) x, y y = 1 x 1 (1.9) k=1 \( )/ n N n!, n, k N (k n) ( n k )! = 1, n! = n(n 1) 1 (n 1), (1.1) ( n ) n(n 1) (n k + 1) n! = = k k! k!(n k)!. (1.11) ( 1.4.1) ( n ) ( ) n + k k + 1 ( ) n (k + 1) + k x, y R, n = 1, 2,.. (x + y) n = = ( n k ) k = n n k= ( n + 1 k + 1 ), (1.12) ( n k ). (1.13) ( n k ) x k y n k. (1.14) n n = (1.14) n (1.14) x(x + y) n = y(x + y) n = n k= n k= ( n k ) x k+1 y n k = x n+1 + ( n k ) x k+1 y n+1 k = n k=1 n k=1 ( ) n x k y n+1 k, k 1 ( n k ) x k y n+1 k + y n+1,(1.12) (1.14) n n + 1 \( )/ (1.12) (1.13). 14

15 2 ( ) ( ) (R ) R A R, m R A, U(A),L(A) U(A) = a A [a, ], L(A) = a A[, a]. (2.1) 1 (2.1) A, B R U(A B) = U(A) U(B), L(A B) = L(A) L(B). (2.2) 2.2 max A, min A A R, m R m = max A m A U(A) = [m, ], (2.3) m = min A m A L(A) = [, m]. (2.4) max A, min A, (2.3) : m A max U(A) = [m, ], x R (1) a A, a x m x. (1) : a = m m x. (1) : m U(A) a A a m. a A a x. (2.3) : (2.4): (2.3) \( )/ 15

16 2.1.3 ( ) A R, m R, A = { a ; a A} (2.5) m U(A) m L( A), (2.6) m L(A) m U( A), (2.7) m = max A m = min( A), (2.8) m = min A m = max( A). (2.9) (2.6), (2.7) A ( ) m A m A. (2.6) ( ) (2.8) (2.7) ( ) (2.9) \( )/ (2.6), (2.7) U(A) = L( A), L(A) = U( A). (2.1) A max A max A A A A R, l, r R, l < r. (a) (l, r] I [l, r], A I, r U(A) U(A I) = U(A), (2.11) m = max(a I) = m = max A. (2.12) (b) [l, r) I [l, r], A I, l L(A) L(A I) = L(A), (2.13) m = min(a I) = m = min A. (2.14) (a):(2.11) (A I) U(A I) A U(A). (2.12) (2.11) A + = A I, A = A\I. I [l, ] (1) = A + [l, ]. R\I [, l] (r, ), A (r, ) = 16

17 (2) A [, l]. (1) (2) (3) U(A + ) U(A ). A = A + A (2.2) (4) U(A) = U(A + ) U(A ). (3),(4) U(A) = U(A + ), (2.11). (b): (a) ( (a) ) \( )/ = A Z (a) A b Z max A (b) A b Z min A (a),(b) b Z b R 2.3.2) : (a): A a A A [a, b] max(a [a, b]) ( 1.2.8) max A (b): (a) ( (a) ) \( )/ ( ) d N\{}, x Z x = qd + r (q, r) Z {,.., d 1} ( ) d 1 = x, d = d d n 1 d n d n+1 n =, 1, 2,.. d n 1 d n+1 d n 1. d N 1 d N+1 = N N x d d N ( ) x, d, q q x/d [q, q + 1) (2.1)

18 (a) x x < n n (b) x 2 = 2 (a),(b) 2.3.1, A R, m R U(A), L(A) (2.1), m A, sup A U(A) = [m, ]. (2.15), m A, inf A L(A) = [, m]. (2.16) sup A = min U(A), inf A = max L(A). (2.17) ( ) l < r, (l, r) I [l, r] sup I = r, inf I = l. (2.18) ( ) A R, m R (a) m = max A m = sup A A (b) m = min A m = inf A A \( )/ (2.1) 18

19 2.2.4 ( ) A R, m R, A = { a ; a A} m = sup A m = inf( A), (2.19) m = inf A m = sup( A). (2.2) (2.9) A U(A) m = min U(A) m = max( U(A)) (2.1) max( U(A)) = max L( A). (2.17) (2.19) (2.2) \( )/ (AC) : (AC) A R sup A (AC) A U(A) sup A 4 (AC) (AC) (AC ) (AC ) A R inf A : (AC) (AC ): A A (AC) sup( A) inf A sup( A) (AC ) (AC): \( )/ 4 ( 2.2.4) 19

20 2.2.7 (a) A R sup A R, inf A R { sup A b b A, (b) b R b inf A b A. (c) b R (d) { { b < sup A a A, b < a, inf A < b a A, a < b. sup A < + A, inf A > A. (e) = A [l, u] l u. inf A sup A. : (a): sup A (2.15) { +, A sup A =, A =, { }, A R A, { } A R (AC) m = sup(a R). A A (, ] = A R (a) I = (, ], U(A) = U(A (, ]) = U(A R) = [m, ] m = sup A. (b): (2.15),(2.16) (c): b R (b) (d): (b) (e): \( )/ A R, γ R\{}, β R γa + β = {γa + β ; a A} γ (, ) sup(γa + β) = γ sup A + β, inf(γa + β) = γ inf A + β, sup( γa + β) = γ inf A + β, inf( γa + β) = γ sup A + β = A (, ] sup{1/a ; a A} = 1/ inf A, inf{1/a ; a A} = 1/ sup A. 1/ = A 1, A 2 R sup(a 1 A 2 ) = sup A 1 sup A 2, inf(a 1 A 2 ) = inf A 1 inf A ( ) B, B R, R = B B, b B, b B b < b (B, B ) R R (B, B ) 2

21 (i)b B (ii): (i) sup B, inf B (iii) m = sup B = inf B B = (, m] ( B B = (, m) ( B = [m, )) = (m, )), ( ) R (B, B ) max B, min B = A R A (i) max(r\u(a)), max(r\u(a)) (ii) sup A B def = R\U(A), B def = U(A) R R ( ) Z Z (AC) m def = sup Z R. m 1 < m m 1 U(Z). z Z, m 1 < z. z m < z + 1 Z. m U(Z) (AC ) \( )/ Z Z x x < z z Z (a) = A Z A max A A min A (b) ( ) a R q (a 1, a], a [q, q + 1) q Z q a a [a] a Q (a): max A A = m Z, A [, m] = max A (b):(a 1, a] 2 b, c (a 1, a] Z, b < c 1 = a (a 1) > c b 1 (a 1, a] Z 2 21

22 (1) A def. = Z (, a] max A (2) m = max A a 1 < m. m (a 1, a] Z (1) (a) A : A (, a] A : z Z, z a., z A. (2) m a 1, m+1 a m < m+1 A. m A \( )/ D R a < b (a, b) D D R R R ( ) Q R : a < b (b a) 1 < n, na + 1 < nb n N\{} m (na, na + 1] m Z m (na, nb), m/n (a, b) Q. \( )/ ( ) x R N = 1, 2, x p q < 1 Nq p Z q {1,, N} N + 1 x j = jx jx [, 1) (j =, 1,.., N) x p/q Diophantus 22

23 D, f : D R E D sup f, inf f E E sup f = sup f(e), E inf E f = inf f(e). max f(e), min f(e) max E inf f, max f, min E E E f, min f sup E E f f sup f(x) x E f E sup f <, E f E sup f <, E f E inf E sup, inf sup inf A f : A R, β R (a) inf A f sup A f. (b) sup A f β a A f(a) β. (c) inf A f β a A f(a) β. : \( )/ A f : A R, γ R\{}, β R sup A (γf+β) = γ sup A f+β, inf A (γf+β) = γ inf A f+β, sup A ( γf+β) = γ inf A f+β, inf A ( γf + β) = γ sup A f + β A, B f : A R,g : B R (i) a A f(a) g(b) b B sup A f sup B g. (ii) a A f(a) g(b) b B inf B (iii) A B inf B g inf A g sup A g sup B g. g inf A f. (iv) A = B a f(a) g(a) inf A f inf A g, sup A f sup A g A f : A R, g : A R inf A f + inf g inf A A (f + g) sup A (f + g) sup A f + sup g.. A 23

24 2.4.4 ( ) B b B A b R sup ( b B A b ) = sup sup A b, b B inf ( b B A b ) = inf b B inf A b ( ) A,B f : A B R (i)(sup sup ) (ii)(inf inf ) sup (a,b) A B inf (a,b) A B (iii) ( sup inf inf sup ) sup a A f(a, b) = sup b B f(a, b) = inf sup a A inf b B a A inf f(a, b) inf b B f(a, b) = sup a A f(a, b) = inf sup b B a A f(a, b). inf a A b B sup f(a, b). b B f(a, b) ( ) {, 1} A B A B [, 1], f(a, b) = a b sup inf f(a, b) = < 1/2 inf a A b B sup b B a A f(a, b) ( ) (a, b ) f, f(a, b ) f(a, b ) f(a, b), (a, b) A B sup inf f(a, b) = inf a A b B sup b B a A f(a, b) = f(a, b ). 24

25 3 I ( ) 3.1 n = 1, 2,... n 1/n 1/n (ε- ) a R, ε (, ) (a ε, a + ε) (a R ), B(a, ε) def = (1/ε, ) (a = ), (, 1/ε) (a = ). (3.1) a ε a a+ε B(a,ε) 1/ε B(,ε) 1/ε B(,ε) B(a, ε) a a ε ( ) N n a n (a n ) n=, (a n ) n, a n. a n a a n : ε (, ) n 1 N n n 1 a n B(a, ε). (3.2) ((3.1) ) (3.2) lim a n = a, a n a n (3.2) a R (a n ) n a R (3.2) a = ± (a n ) n ± 25

26 (3.2) ε (, ), n 1 N, n n 1, a n B(a, ε). (3.3) 1 a n N, n = 1, 2,.. N [n, ). 2 (3.2) ε (, ) ε (, ) ε 3 a R, m N lim a n = a lim a m+n = a n n (a n ) (a) a n 1/a n 1/( a n ) = 1/a n. (b) c > n a n cn a n, 1/a n. (a): a n B(, ε) 1/a n B(, ε) 1/a n B(, ε) (b): (a) a n ε (, ) n 1 N, n n 1, n > 1 cε ). n n 1 a n cn > 1. ε \( )/ (a) p = 1, 2,.. lim n n p = r n (b) r > 1, p =, 1,.. lim n n =, p (a): n p n (b): s = r 1 >, n 2p + 1, c = sp+1 (p+1)! def a n = rn (1 + s)n = = 1 np n p n p n k= lim n p =. n lim n p n r =. n n(n 1) (n k + 1) s k k! > 1 n(n 1) (n p) s p+1 = cn n p (p + 1)! ( 1 1 ) ( 1 p ), n n n k= k = p +1 j = 1,..., p 1 j n 1 p 2p n 2p + 1 a n c 2 p n. 26

27 3.1.3 \( )/ ( I) K 1, K 2 N, K 1 K 2 = N, K i (i = 1, 2) k i () < k i (1) <... ( K 1 =, K 2 =, k 1 (n) = 2n, k 2 (n) = 2n + 1. K 1, K 2 ) a R (a),(b) (a) a n a, (b) K i i a ki (n) a. (a) (b): K i ε > n 1 N, n n 1, a n B(a, ε). n n k i (n) n n 1, a ki (n) B(a, ε). (a) (b): K 1 K 2 : K 1,m 1 = max K 1 m = k 2 (n 2 ) N [m 1 + 1, ) = {k 2 (n) ; n n 2 }. lim n a n = a lim n a k2 (n) = a K 1,K 2 : ε > n 1 N, n n 1, a k1 (n) B(a, ε), n 2 N, n n 2, a k2 (n) B(a, ε). n k 1 (n 1 ) k 2 (n 2 ) n n = k 1 (n ) (n n 1 ), n = k 2 (n ) (n n 2 ) a n B(a, ε) \( )/ a n = ( 1) n a R, a n a a n a (a n ) lim n a n = a R n a n = a ( ) D R R a R D (a n ) a n a 27

28 a, b, c R, (a n ), (b n ), (c n ) ( ) a n a (a) a a n (b) a + a n (c) a R a n : (a): b R, m, n m, b < a n (, a = b = 1 a b = a 1 ) n =, 1,.., m 1 n a n (b):(a) min{a, a 1,..., a m 1 } a n. m def. = min{a, a 1,..., a m 1, b} a n. (c): (a),(b) \( )/ a n a, b n b n a n b n a b. : b < a c R, b < c < a ( 1.2.4). a n a n 1 N, n n 1, c < a n, b n b n 2 N, n n 2, b n < c. n n 1 n 2, b n < c < a n. \( )/ ( ) (a n ) n a R : a, b R, a n a, a n b a b a b. \( )/ 28

29 3.2.4 ( ) (a) n a n b n c n a n a, c n a b n a. (b) n a n b n. a n = b n, a n = b n. : (a):ε > a n a n 1 N, n n 1, a n B(a, ε), c n a n 2 N, n n 2, c n B(a, ε), n 3 N, n n 3, b n [a n, c n ]. n n 1 n 2 n 3, b n [a n, c n ] B(a, ε). (b):(a) ( ) a n a, b n b \( )/ a n + b n a + b, {a, b} = {, } (3.4) a n b n ab, { a, b } = {, } (3.5) a 1 n a 1, a n a n (3.6) : a, b R a = b = ε >. (1) n 1 N, n n 1, a n a < ε, (2) n 2 N, n n 2, b n b < ε, (3.4): (1) (2) ε ε/2 n n 1 n 2. (a n + b n ) (a + b) a n a + b n b < ε/2 + ε/2 = ε. (3.5): b n M (, ) b n. (1) ε ε (2) 2M ε ε 2( a +1) n n 1 n 2 a n b n ab (a n a)b n + a(b n b) < ε 2M M + a ε 2( a + 1) ε. (3.6): (1) ε ε a 2 2 n 3 N, n n 3, a 2 < a n. 29

30 n n 1 n a n a = 1 a n a a n a < 2 a ε a = ε ( ) (a n ), (b n ) \( )/ s n = n a j (b j b j 1 ) j=1 a R, = b < b 1 <... < b n a n a s n b n a. b n = n s n /b n a n : ε >, n 1 N, n n 1, a n a < ε/2. a n a n a C [, ) a n a a = 1 b n n (b j b j 1 )a j=1 n n 1 s n a 1 n b n = (b j b j 1 )(a j a) b n j=1 1 n 1 1 (b j b j 1 ) a j a + 1 n b n b n j=1 j=n 1 (b j b j+1 ) a j a 1 n 1 1 (b j b j 1 )C + 1 n (b j b j 1 ) ε b n b j=1 n 2 b n1 1C b j=n n 1 }{{} (3) n 1 lim n (3) =. n 2 N, n n 2, (3) < ε/2. n n 1 n 2 a < ε. \( )/ s n bn I R f n : I R n = 1, 2,.... x I f(x) = lim n f n (x) R f : I R (a n ) lim n 1 n a n = lim n 1 n max 1 j n a j = 3 + ε 2.

31 a n a R s n /b n a ( ) n 1 t n = (a j+1 a j )b j (i) a n b n = s n + t n. (ii) a R, = b < b 1 <... < b n a n a s n /b n a t n /b n. a n a t n /b n j=1 ( ) ( ) a = ε > (3) n 3 N, n n 3, a n > 1 ε (3.4) ( a = b = a = b. b n 3.2.1). c R b n n N a n + c a n + b n. (3) 1/ε 1 ε c n n 3 1 ε (3) a n + c a n + b n. a n + b n. (3.5)( a = b = ): a = b =. a =,b > (3) ε bε/2 n 4 N, n n 4, b 2 < b n. n n 3 n 4 a n b n > b 2 2 bε = 1 ε. a n b n (3.6)( a = ) a = (3) n n 3 < a 1 n < ε. a = \( )/ 31

32 ( ) a n a def = lim n a n (a) a n a [a, ]. a < a n (3.7) a = a n (3.8) (b) a n a [, a ]. a > a n (3.9) a = a n (3.1) ) ( ) 6.5.1, (l n ), (r n ) l n r n (n =, 1, 2,..), (l n ), (r n ), r n l n c [l, r ] lim l n = lim r n = c. n n (1) l l n r n r (l n ) (r n ) c, c R lim l n = c, n lim r n = c. n, l n = r n + (l n r n ) ( 3.2.5) c = c (1) c [l, r ]. \( )/ 32

33 3.3.1 ( ) s m,n R (m, n N) m, n N s m+1,n s m,n, s m,n+1 s m,n lim m lim n s m,n = lim n lim m s m,n ( ) (a) (a n ) (b) (a n ) lim a n = sup a n. (3.11) n n lim a n = inf a n. (3.12) n n (a): (1) (3.11) (1) l N, m N, n m, a l a n. a = sup a n a n a n (2) b < a, m N, n m, b < a n. b < a sup l N, b < a l. l (1) m n m b < a l a n (2) (b): (3) (3.12) (3) l N, m N, n m, a l a n. (a) \( )/ I R f : I R a I f I (a n ) lim n a n = a lim n f(a n ) = f(a). (3.13) I C(I), C(I R) 33

34 f(a) f(a n) a n a A R A : a 1, a 2 A, a 1 x a 2 = x A. (3.14) ( ) I R, f C(I R), a, b I, f(a) s f(b) s = f(c) c [a, b] f(i) f(b) s f(a) a c b : a = b f(a) = s = f(b) c = a a < b b < a [a n, b n ] I, n =, 1,... : [a, b ] = [a, b]. [a n, b n ] c n = (a n + b n )/2 [a n+1, b n+1 ] = { [a n, c n ], s < f(c n ), [c n, b n ], f(c n ) s, 34

35 (1) f(a n ) s f(b n ). n = f(a) s f(b) (1) n s < f(c n ) f(a n+1 ) = f(a n ) f(c n ) s f(a n+1 ) = f(c n ) s s < f(c }{{} n ) = f(b n+1 ), {}}{ f(b n ) = f(b n+1 ). a n b n (n =, 1,...), a n, b n, b n = a n + 2 n (b a) c I lim a n = lim b n = c. n n, s = f(c). f(c) f = lim f(a n ) (1) s (2) lim f(b n ) f = f(c). n n \( )/ (3.13) n a n a (a n ) (a n ) f : R R (i) f lim n f(a n ) =, lim n f(b n ) = (a n ), (b n ) (ii) f lim n f(a n ) =, lim n f(b n ) = (a n ), (b n ) f f : [, 1] [, 1] f(c) = c c [, 1] f C(R) a R f(a + b) = f(b) b R 35

36 3.4 ( ) 3.4.2: :l = inf A, r = sup A (l, r) A [l, r] A [l, r] l, r (l, r) A x (l, r) a 1 < x < a 2 a 1, a 2 A ( 2.2.7) (3.14) x A. : = A R R\U(A) (3.14) max(r\u(a)) 2.2.5) R\U(A) = [, m) m R U(A) = [m, ]. m = sup A \( )/ ( 3.5.2) ( ) I R f : I R (a) f C(I R) f(i) (b) f C(I R) f 1 C(f(I) I) f 1 ). y = f(x) f(i) y = f 1 (x I I f(i) : (a): : : (b): f f f 1 : f(i) I 1.3.3). I (a) f 1 \( )/ 36

37 ( ) m N\{} f : [, ) [, ), f(x) = x m f 1 : [, ) [, )( ) f 1 (x) = x 1/m x 1/m x m m x 2 x x a n, b n, a, b > a n a, b n b a n b n ab, : : : p n = a n b n, q n = a n bn a n = p n q n x x a n b n a b. ab a b = a, b pn n = ab b q n a = b. \( )/ (i) a (, ) lim n a 1/n = 1. (ii) (a n ), a R lim n a n+1 /a n = a = lim n a 1/n n = a. (iii) ( ) (a n ) lim n ( n j=1 an j ) 1/n = supn 1 a n a b 2 ab a + b 2 ab + a b a > b >,a n, b n > (n 1) a n = a n 1+b n 1 2, b n = a n 1 b n 1 (i) a n b n a n 1 b n 1 2, (n 1). (ii) a n, b n. (iii) lim n a n, lim n b n a >, b, c R, f(x) = ax 2 + bx + c, S = {x R ; f(x) = } S b 2 4ac b 2 4ac S = {s, s + }, s ± b± b 2 4ac 2a. x [s, s + ] f(x) >, x (s, s + ) f(x) < ( ) I R a < b, f : I R, x n I (n N) x n+1 = f(x n ) 37

38 (i) x f(x ) f [x, b) n x n x n+1 x n f(x n ). x (c, m) f(x) < x m (a, b) x n x (a, m] (ii) x f(x ) f (, x ] I n x n x n+1 x n f(x n ). x (a, m) f(x) > x m (a, b) x n x [m, b) (iii) f lim n x n = x I x = f(x ) ( ) b, c >, s = b + b 2 + c, f(x) = 2bx + c (i) x < s, x = s, x > s x < f(x), x = f(x), x > f(x). (ii) x n > (n N) x n+1 = f(x n ) lim n x n s ( ) I R (± ), f : I R x n I (n N) x n+1 = f(x n ) (i) (x 2n ), (x 2n+1 ) g = f f (ii) f s = f f(s) s I x n s (iii) I = [, ) f(x) = 1/(ax + b) (a, b > ) (x n ) ( ) ( ) (i) 2 Q. (ii) x, y Q, y x + y 2 Q. (iii) R\Q R. a, b R, a < b, (a, b) Q. x (a, b) n x + 2/n (a, b). 3.5 ( ) 3.5.1(a) 5 a n, a I, a n a, a n a (1) lim n f(a n ) = f(a) K 1, K 2 N K 1 = {n N ; a n < a}, K 2 = {n N ; a n > a} K 1 K 2 = N. K i = {k i () < k i (1) <..} (2) K i lim n f(a ki (n)) = f(a), (2) I (1). f (f ) i = 1 i = 2 a k1 (n) a f δ ε, δ ε 38

39 (3) l N, m N, n m, f(a k1 (l)) f(a k1 (n)) (4) lim f(a k1 n (n)) = sup f(a k1 (n)). n (1) (5) sup f(a k1 (n)) = f(a). n s. f n f(a k1 (n)) f(a). s f(a). s < f(a) n (6) f(a k1 (n)) s < f(a). (6) f(i) s f(i). s = f(b) b I (6) (7) f(a k1 (n)) f(b) < f(a). (7) f a k1 (n) b < a. a n a. \( )/ ( ) 3.5.1(a) : ε >, a I (1) a I I a 1 I a 1 < a x (a 1, a) f(a) f(x) < ε. (2) a I I a 2 I a < a 2 x (a, a 2 ) f(x) f(a) < ε. (1),(2) δ = (a a 1 ) (a 2 a) x (a δ, a + δ) I f(x) f(a) < ε (1) (2) a I b < a b I f(b) = f(a) x (b, a) f(x) = f(a) (1) f(b) < f(a) f(b) < f(a) ε < f(a) ε (, ε) f(i) f(a 1 ) = f(a) ε a 1 I f a 1 (b, a). x (a 1, a) f(a) f(x) f(a) f(a 1 ) = ε < ε. (1) \( )/ 39

40 3.6 R d C d A 1,..., A d A 1,..., A d a j A j (j = 1,.., d) A 1 A d = {(a j ) d j=1 ; a j A j, j = 1,.., d.} (3.15) A 1,..., A d a j j j A j = A (j = 1,..., d) A d : A d = {(a j ) d j=1 ; a j A, j = 1,.., d.} (3.16) R d ((3.16) A = R ) d- d-. def = (,..., ), c R R d x = (x j ) d j=1, y = (y j ) d j=1 cx Rd, x + y R d cx = (cx 1,..., cx d ), x + y = (x 1 + y 1,.., x d + y d ). x y R x [, ) x y = d x i y i, x = x x. i=1 x y, x, R d d, B R d { x ; x B} R B ( ) 4

41 x, y R d (a) c R cx = c x, (b) x + y 2 = x 2 + 2x y + y 2, (c) x y x y, (d) x + y x + y. (a): (b): (x j + y j ) 2 = x 2 j + 2x j y j + yj 2 j = 1,..., d (c): x = x, x > c = x y x 2 (c) R cx y 2 (a),(b) = c 2 x 2 2cx y + y 2 (x y)2 = + y 2 x 2 (d): x + y (b) = ( x 2 + 2x y + y 2) 1/2 (c) ( x x y + y 2) 1/2 = x + y. \( )/ R 2 x = (x 1, x 2 ) x = x 1 + x 2 i (3.17) C (3.17) x 1 R x Re x (3.17) x 2 R x Im x x 1 x 2 i z x Re x = x + x, Im x = x x, 2 2i C (x 1 + x 2 i) + (y 1 + y 2 i) = (x 1 + y 1 ) + (x 2 + y 2 )i, (3.18) x 1 + x 2 i = x x 2 2. (3.19) (x 1 + x 2 i)(y 1 + y 2 i) = (x 1 y 1 x 2 y 2 ) + (x 1 y 2 + y 1 x 2 )i. (3.2) {x C ; Im x = }, {x C ; Re x = }, R R C i i i 41

42 x, y C (a) x + y = x + y, xy = x y, (b) x 2 = xx, (c) xy = x y, (d) x 1/x = x/ x 2, 1/x = 1/x, 1/x = 1/ x. \( )/ x, y C, n = 1, 2,.. x, y r n 1 x n y n = (x y) x k y n 1 k (3.21) k= x n y n nr n 1 x y. (3.22) x, y R ( 1.4.1) \( )/ N R d n a n R 2 = C. a n a R d (a n ) n=, (a n ) n, lim a n a = n a n a R d lim a n = a, a n a n {a n ; n N} (a n ) 1 a n N, n = 1, 2,.. N [n, ) 42

43 z C z < 1 z n. z n = z n. a, b R d, (a n ), (b n ) R d ( ) a = (a j ) d j=1, n a n = (a n,j ) d j=1 R d (a1) a n a j = 1,.., d lim n a n,j = a j. (a2) a n a Re a n Re a Im a n Im a a n a (b1) (a n ) j = 1,.., d (a n,j ) n= (b2) a n Re a n, Im a n (c) : (a1): max a n,j a j a n a 1 j d 1 j d a n,j a j. (a2):(a1) d = 2 (b1): max a n,j a n 1 j d (b2):(b1) d = 2 1 j d a n,j. (c): (a), (b) \( )/ ( ) a n a, b n b a n + b n a + b, a n b n a b. a n b n ab, a n b 1 n b n, b ab 1 : R d \( )/ 43

44 3.6.1 ( ) x C, a a 1... a n, a + a 1 x a n x n = x z C, n N (1 z) n j=1 (1 + z2j 1 ) = 1 z 2n, z < 1 lim n n j=1 (1 + z2j 1 ) = 1/(1 z) ( ) A R d diam(a) = sup x y A x,y A diam(a) < 44

45 4 ( ) a n s n,a n, a n s n = n a j (4.1) j= s n a n (4.1) s = lim n s n (s C, s = ± ) s a n, n= a n (4.2). s C (4.1) s = ± (4.1) 1 (4.1) (4.2) (4.2) 2 (a n ) a n n (a n ) a n = a + n j=1 (a j a j 1 ) ( ) a n p n N, q n N { } (n N) p n q n, lim p n =. n lim n q n j=p n a j =. p n = q n = n, p n = n, q n lim a n = lim n n a j =. j=n 45

46 n = s n = n j= a j s n s q n j=p n a j = s qn s pn s s = ( ) z C z n z < 1 = 1 1 z, z 1 n= n 1 1 z n = (1 z) z j. z < 1 z n j= \( )/ z 1 z n = z n \( )/ ( 3.3.1) a n s = s [, ]. (a) s n = a a n. (b) s <, a n. s n = a a n ( 3.3.1) s (a) (b) \( )/ a n 46

47 4.1.5 ( ) a n, b n A = (a) c 1, c 2 C a n, B = n= n= b n c 1 A + c 2 B = (c 1 a n + c 2 b n ), A = a n, n= n= A a n. (4.3) n= (b) ( ) a n, b n R, a n b n ( n N), a n b n A < B. (a):(4.3) N N N (b): a m < b m m N B A = (b n a n ) b m a m >. n= \( )/ (a) a n a n < = a n. (b) a n a n < Re a n <, Im a n < (4.4) = Re a n, Im a n (4.5) a n, (a): a ± n = ( a n ± a n )/2 a n = Re a n + i Im a n. (4.6) (1) a n = a + n a n, a n = a + n + a n. 47

48 s n = n a j, s ± n = j= n a ± j, t n = j= n a j j= (2) s n = s + n s n, t n = s + n + s n. a n < (2) t n s ± n s ± (2) n = s n (b): (4.4) : Re a n Im a n a n Re a n + Im a n (4.5) : (a) (4.6) : \( )/ ( ) a n a n < a n a n a n = a n ( 5.1.2) ( ) a n, b n C, c n def = n j= a jb n j : A = a n, B = b n, C = c n A,B C C = AB j n, k n n 2 j n n+1 2, k n = n j n j n, k n. def. δ n = n c l l= j n a j j= k n k= b k = j,k j+k n a j b k j n a j j= k n b k k= } {{ } (1) δ n j + k n j, k 48

49 (1) j j n, k k n, (2) j n < j, (3) j j n, k n < k k (3) k n (1) (2) j n j δ n = n j=j n+1 n j a j b k k= } {{ } (2) j n 1 + S = a n, S = b n j= a j n j k=k n +1 b k } {{ } (3) def. S n = a a n S, S n def. = b b n S S n S,S n S.. (2) (3) n j=j n+1 j n 1 j= n j a j b k (S n S jn )S, a j k= n j k=k n+1 b k S(S n S k n ). δ n \( )/ (a),(b) (a) (b) (b) (a) (a) (b)

50 4.3.1 ( ) (a n ), (b n ) a n (a) ( ) b n n a n b n. (b) ( ) r [, 1), n a n+1 ra n. (c) ( ) n a n b n b n+1. (a): m N, j m, a j b j. n m s n = s m 1 + n a j s m 1 + j=m n b j. j=m b j (s n ) (b) m N, j m, a j ra j 1... r j m a m. n m s n = s m 1 + n a j s m 1 + a m j=m (s n ) j=m n j=m r j m }{{} 1/(1 r) (c): m N, j m, a j b j b j+1. n m s n = s m 1 + n a j s m 1 + j=m n (b j b j+1 ) s m 1 + b m. j=m } {{ } =b m b n+1 (s n ) \( )/ { n p =, p = 1, <, p = 2, 3,... n=1 p = 1 s n = n j=1 j p s 2n s n = 2n j=n+1 j 1 n (2n) 1 = 2 1. s n s n p 2. 1 n 1 n + 1 = 1 n(n + 1) 1 2n 1 2 2n. p ( 4.3.1) n p \( )/ 5.

51 4.3.3 (a n ), a n (a) (a 2n + a 2n+1 ) a n (b) ( ) d = 1, a n = ( 1) n a n, a n a n+1 ( n N) a n : (a): s n = n j= a j (1) s 2n+1 = n (a 2j + a 2j+1 ). j=,s 2n+1 (2) s n lim n s n = lim n s 2n+1. s 2n+1 = s 2n + a 2n+1, lim a 2n+1 =. n s 2n lim s 2n = lim s 2n+1. I( 3.1.5) n n (2) (b): (a) s 2n+1 (1) a 2j + a 2j+1 s 2n+1. a 2j 1 + a 2j, a 2j+1 s 2n+1 = a + n (a 2j 1 + a 2j ) + a 2n+1 a j=1 s 2n+1 \( )/ ( 1) n p = 1, p 2 (n + 1) p p = p \( )/ (b) a n (i) m 2n m j=2n a j a 2n. (ii) m 2n + 1 a 2n+1 m j=2n+1 a j (x n ) R d (a) (b) (c) (a): r [, 1) n x n+1 x n r x n x n 1. (b): n= x n+1 x n <. (c): (x n ) 51

52 4.3.3 ( ) f : R d R d r [, 1) f x, y R d f(x) f(y) r x y. f f(x) = x x R d x R d x n R d, n = 1, 2,.. x n = f(x n 1 ) (x n ) x = lim n x n ( ) a m,n C (m, n N) (i) n= m= a m,n = m= n= a m,n ( ). (ii): (i) n m= a m,n m n= a m,n n= m= a m,n = n= a m,n. m= ( ) 2 q N, D {, 1.., q 1} (x n ) n 1 E D n x n = q 1 (i) (x n ) n 1 D\E x = n=1 x n/q n x [, 1) ( x q ). (ii) (x n ) n 1 x D\E [, 1) 4.4 a n x C f(x) = a n x n (4.7) n= ) r (, ], a n+1 lim n a n = 1 r (4.8) (4.7) x < r a n, r (4.8) (a) p Z, a n = (n + 1) p, r = 1. (b) a n = 1 n!, r =. b n = a n x n b n < x < ρ < 1 ρ r b n+1 = a n+1 x x b n a n r < ρ. n b n+1 /b n < ρ ) 52

53 (a): (b): a n+1 a n a n+1 a n ( ) p n + 2 = 1 = 1 n = 1 n + 1 = 1. \( )/ ( ) (4.7) x < r (a) < r < r, p N n p a n r n <. n= x < r : f (x) def = na n x n 1, n=1 g(x) def = n a n x n 1. (4.9) n=1 (b) x, y C, x, y r < r (c) x n, x C, x n, x < r, x n n x f(x) f(y) g(r) x y. (4.1) f(x n ) n f(x). (4.11) (d) a n R, a 2, a 3,... x, y R, y < x < r f (y) f(x) f(y) x y f (x). (4.12) a 2 = a 3 =... = (a): r < r 1 < r r 1 ( ) n r = lim n np r 1 n n p (r/r 1 ) n 1, n p a n r n a n r n 1. ( 4.3.1) (b): f(x) f(y) = a n (x n y n ) a n x n y n n= n= (3.22) x y n a n r n 1 = g(r) x y. n= (c): x < r < r r. x n n x n 1 N, n n 1, x n < r. n n 1 f(x) f(x n ) (4.1) 53 g(r) x x n n.

54 (d): (1.8) a n n = 1, 2,... ((1.8) n = 1 a 1 ) \( )/ ( ) (4.7) x < r ( < r ) x m C < x m < r, f(x m ) = (m N), x m m. a n (n N). : a = f() (4.11) = lim m f(x m) =. f(x) = xf 1 (x), f 1 (x) = a n+1 x n. f 1 (x) x < r x m n= f 1 (x m ) = f(x m) x m =, m N. a 1 = f 1 () (4.11) = lim m f 1(x m ) =. a n = (n = 2, 3,...) \( )/ ( ) (4.7) (a) f(±x) f(x) + f( x) 2 = a 2n x 2n, n= f(x) f( x) 2 = a 2n+1 x 2n+1. (4.13) n= (b) a n f(x) f(x), f(x) = f(x). : (a): f(x) + f( x) (4.3) = (4.13) (b):(4.3) a n (1 + ( 1) n )x n = 2 a 2n x 2n. \( )/ a, a 1 R, a n (n 2) (4.7) x ( r, r) ( < r ) f [, r) a 2n+1 (n 1) f ( r, r) (4.7) x < r ( < r ) (i) f a 2n+1 = (n N). (ii) f a 2n = (n N). 54

55 4.4.3 ( ) x, y R, y < x (i) n ( ) x+y n 1 2 x n y n n x y 2 (xn 1 + y n 1 ), ( n = 1, 2 ) (ii) a n R, a 3, a 4,.. x < r f ( ) x+y 2 f(x) f(y) x y = a 3 = a 4 =... f (x)+f (y) 2. 55

56 5 I ( ) 18 f(x), i, e, sin, cos ( 5.2.2) 5.1 (exponential) exponere (ex +ponere = + ) a > } a {{ a} = a n n n e x e x ( ) x C exp x = n= x n n! (5.1) x exp x e def. = exp(1) = (5.1) \( )/ exp x e x ( e x

57 5.1.2 ( I) exp : C C (a) x, y C exp(x + y) = exp x exp y ( ), (5.2) exp x = exp x, (5.3) exp x, x R exp x >, (5.4) exp x = exp(re x). (5.5) (b) ( ) x, y C, x, y r exp x exp y x y exp r. (5.6) (c) ( ) x, x n C, x n x exp x n exp x. (5.2): a n = xn, b n! n = xn n! n n (1) c n def = j= a j b n j = 1 n! j= n! j!(n j)! xj y n j = 1 n! (x + y)n. exp(x + y) (1) = (5.3): (5.1). (5.4): x C c n = a n b n = exp x exp y. 1 = exp (5.2) = exp( x) exp x, exp x. x R exp x 2 (5.5) exp x (5.2) = (exp x 2 )2 >. exp x 2 = exp x exp x (5.3) = exp x exp x (5.2) = exp (x + x) = exp(2 Re x) (5.2) = (exp(re x)) 2. (5.4) exp(re x) >. (5.5) (b): a n = 1/n! f(x) = g(x) = exp x. (4.1) (c): \( )/ (5.4) x R exp x > exp : R (, ) (5.7) 57

58 5.1.3 ( II) (5.7) (a) ( ) x, y R, x > y (x y) exp y < exp x exp y < (x y) exp x. (5.8) 5.7, (b) ( ) x n x R x n x = exp x n exp x. exp( ) =, exp( ) = 5.7 exp x 1 (a): x = x + y, ỹ = y + y x > ỹ, x ỹ = x y. (4.12) (x y) exp ỹ < exp x exp ỹ < (x y) exp x. exp( y ) (b): a R : a = : m N, n m, x n >. n m (1) exp x n (5.8) > 1 + x n (n ). a = : x n exp x n = 1/ exp( x n ) (n ). \( )/ (5.8) (x y) exp x + y 2 < exp x exp y < (x y) exp x + exp y. (5.9) 2 58

59 5.1.4 ( ) x C s n (x) = n m= x m ( m!, e n(x) = 1 + x ) n n a, a n C, a n a exp x s n (x) x n+1 exp x, (n + 1)! (5.1) exp x e n (x) x 2 exp x 2n (5.11) (5.1): exp x s n (x) = s n (a n ) exp a, e n (a n ) exp a. (5.12) m=n+1 x m m! (4.3) m=n+1 x m m! = x n+1 m= x m (n + m + 1)! (n + m + 1)! = (n + m + 1) (n + m) (n + 2) (n + 1)! (m + 1)! (n + 1)!. }{{}}{{}}{{} m+1 m 2 (5.11): exp x s n (x) x n+1 (n + 1)! m= x m (m + 1)! } {{ } exp x. (1) z C 1 + z 1 + z exp z. (2) exp x n 1 x = n exp x ( x n s (5.1) 1 n) x 2n 2 exp ( ) x. n exp x = ( n. exp n) x ( exp x e n (x) = exp x ) n ( 1 + x n ( n ) n) 3.6.6, (1) n 1 exp n exp n x x n 1 x n (2) x 2 exp x. 2n (5.12): x, y C, n N, x, y r } s n (x) s n (y) x y exp r (5.13) e n (x) e n (y) 59

60 s n (5.13) (5.6) e n (5.13) e n (x) e n (y) (1) ( n 1 + r ) n 1 x y ( n ) n n 1 x y n exp n r n x y exp r. a n a r [, ) a n a r. s n (a n ) exp a s n (a n ) s n (a) + s n (a) exp a (5.13) a n a exp r + s n (a) exp a (5.1). e n \( )/ exp : R R n lim n (n!) lim ( 1/n n n n) = e a n, an n e n (a n ) exp( a n ) 1, e n ( a n ) exp(a n ) 1 (5.11) ( ) e Q e = p/q (p, q N) (5.1) x = 1 pn! qs n (1)n! qe/(n + 1) ( ) x exp x e n (x) x2. ( (5.1) 2n e n (x) exp x s n (x).) 6

61 ( ) x C ch x, sh x ch x = exp(x) + exp( x), sh x = 2 exp(x) exp( x), 2 ch x, sh x exp x = ch x + sh x. (5.14) (a) ( ) ch x = x 2n (2n)!, sh x = x 2n+1 (2n + 1)!. ch : R R [, ), (, ]. sh : R R. (b) ( ) a n, a C,a n a ch a n ch a, sh a n sh a. ch (± ) =, sh (± ) = ± a n R, a n ±. ch x 1 sh x (a): f(x) = exp x ch x, sh x (f(x) ± f( x))/ (b): \( )/ 61

62 5.2.2 ( ) x C cos x, sin x exp(ix) + exp( ix) cos x = ch (ix) =, 2 exp(ix) exp( ix) sin x = sh (ix)/i = 2i cos x, sin x, (sine) (5.14) (a) ( ) exp ix = cos x + i sin x ( ). (5.15) cos x = sin x = 1 i (ix) 2n = (2n)! ( 1) n x 2n, (2n)! (ix) 2n+1 (2n + 1)! = ( 1) n x 2n+1. (2n + 1)! (b) ( ) a n, a C,a n a cos a n cos a, sin a n sin a. \( )/ x, y C ch (x + y) = ch x ch y + sh x sh y, sh (x + y) = ch x sh y + ch y sh x, (5.16) cos(x + y) = cos x cos y sin x sin y, sin(x + y) = cos x sin y + cos y sin x. (5.17) (5.16), (5.17) y = x ch 2 x sh 2 x = 1, cos 2 x + sin 2 x = 1 (5.18) cos, sin cos x 1 n cos kx = 1 cos nx cos(n + 1)x +, 2 2(1 cos x) k= n sin kx = k= sin x + sin nx sin(n + 1)x. 2(1 cos x) r < 1, x R 1 r cos x 1 2r cos x + r = r n r sin x cos nx, 2 1 2r cos x + r = r n sin nx. 2 n= ( ) (E n ) n E = 1, n k= ( 1) k E k (2n 2k)!(2k)! (i) E n (2n)!r 2n ( n 1), r > ch r = 2 6 n=1 = (n 1) 6 r = log(2 + 3) = (ii) < z < π/2 62

63 (ii) z C, z < r ch z = ( 1) n E nz 2n (2n)!, 1 cos z = n= n= E n z 2n (2n)!. (5.19) E n. E 1 = 1, E 2 = 5, E 3 = 61, E 4 = 1385, E 5 = 5521, ( ) exp : R (, ) log : (, ) R (a) x (, ) exp log(x) = x, x R log exp(x) = x. log 1 =, log e = 1. (b) x, y (, ) log(xy) = log x + log y. (c) ( ) x y > x y x log x log y x y. (5.2) y (d) ( ) (a n ), a [, ] a n a log a n log a, log( ) =, log() = logx 1 63

64 (a): (b): ( 5.1.2) exp(log(xy)) = xy = exp(log x) exp(log y) = exp(log x + log y). exp : R (, ) (c): ( 5.1.2) (d): (c) \( )/ (5.2) (5.8) (5.9) (5.2) 2 x y x + y log x log y x y xy. (5.21) γ n = n 1 k=1 log n γ (, ) γ k (i) n 1 1 n+1 log(n + 1) log n 1 n (ii) n 1 γ n γ n+1 1 n 1 n a n > 1,p n = n j= (1 + a j) p n n= (1 + a n) (i) (a) (c) (a) (b) (c) (a) a n <. (b) log(1 + a n) <. (c) p n x ( 1, 1) x 1+ x (ii) a n (b) (c). log(1 + x) x 1 x. 64

65 ( ) a [, ) x C a x { a x exp(x log a), a > = (5.22), a = (a) x, y C a x+y = a x a y ( ). a x = a x, a x = a Re x. (b) ( ) < a < b x > 1 xa x 1 (b a) < b x a x < xb x 1 (b a), < x < 1 xa x 1 (b a) > b x a x > xb x 1 (b a), (5.23) x < x a x log b > a ax b x > x b x log b. a x < y, a, 1 (x y)a y log a < a x a y < (x y)a x log a. (5.24) e log e = 1. (5.22) e x = exp x. 2 (5.23) x < log b a b a b log b b a (5.23) x < a a x a x 1 (b a) > a x b x > x b x 1 (b a) (5.25) x > (a): ( 5.1.2) (b): (5.23) (1) c > x > 1 x(e c 1) < e cx 1 < xe c(x 1) (e c 1), (1) < x < 1 x(e c 1) > e cx 1 > xe c(x 1) (e c 1), x < x c > 1 e cx > x ce cx. (1) c = log(b/a) a x (5.23) (1) x > 1 x = y + 1 (y > ) ( ) ( ) = (y + 1)e cy (e c 1) e c(y+1) + 1 = e cy (y(e } c {{ 1 } ) + e c 1) e c(y+1) + 1 > cye cy (e cy 1) (5.8) >. >c ( ) ( ) = e}{{} c+cy +1 (y + 1)(e c 1) > y(ce c (e c 1)) (5.8) >. >e c (1+cy) 65

66 < x < 1 1/x > 1. x > 1 (1) x 1/x c cx 1 x (ecx 1) < e c 1 < 1 x ec(1 x) (e cx 1). < x < 1 (1) x < y = x > (5.8) cy cye > e cy 1 > cy. e cy x < (1) (5.24) a > 1 : x log a y log a a x a y = exp(x log a) exp(y log a) (5.8) < (x log a y log a) exp(x log a) }{{} =a x = (x y)a x log a. (5.24) (5.24) < a < 1 : a > 1 (x y)(1/a) y log(1/a) (1/a) x (1/a) y (x y)(1/a) x log(1/a). a x+y (5.24) \( )/ { n p =, p = 1, <, p > 1. n=1 p 1 : n p n 1 p = 1 ( 4.3.2) p 2 : n p n 2 p = 2 ( 4.3.2) 1 < p < 2 : (1) 1 n 1 n+1 1 2n 2. ( ) p 1 ( ) p (5.23) ( ) p 2 ( 1 1 (p 1) n n + 1 n n 1 ) (1) p 1 n n p. ( 4.3.1) n p \( )/ a >, x, y R (a x ) y = a xy a, b, p, q >, p q = 1 ab ap p + bp q ( ) x < 1, x 1 lim n n xn /n! =, 66

67 5.4.4 ( ) (i) f C(R R) x, x R f(x + x ) = f(x) + f(x ) f(x) = f(1)x. (ii) g C(R (, )) x, x R g(x + x ) = g(x)g(x ) g(x) = g(1) x (a n ) s C, Re s > 1 a n n=1 n s a n 1 ζ- 67

68 6 II ( ) 6.1 f(x) = x 2 x a R x 2 a 2 ( (± ) 2 = ) f x a f(x) l d, k N\{}, A D R d, f : D R k f d = 2, k = 2 a R d (d = 1 a = ± ), l R k (k = 1 l = ± ) A (a n ) a n a f(a n ) l. f a A l lim f(x) = l x a x A x A, x a f(x) l A = D f a l lim x a f(x) = l x a f(x) l (i) a R (ii) a [, ] lim exp x = x a lim log x = x a exp a, a R,, a =,, a =. log a,, a =,, a =. a (, ), 68

69 6.1.3 A D R d, a R d (d = 1 a = ± ) f i : D R k, x a lim f i (x) = l i (i = 1, 2) : x A (a) ( ) l i R k f i,l i f 1 C\{} l 1 lim (f 1 + f 2 )(x) = l 1 + l 2 (6.1) x a x A lim (f 1 f 2 )(x) = l 1 l 2 (6.2) x a x A lim (1/f 1 )(x) = 1/l 1. (6.3) x a x A k = 1, l i R {l 1, l 2 } = {, } (6.1) { l 1, l 2 } = {, } (6.2) (b) ( ) k = 1, l 1 = l 2 R f : D R A f 1 f f 2 x a lim f(x) = l 1. x A : A (a n ) lim n a n = a f i (a n ), f(a n ) 3.2.5, 3.2.4, \( )/ ( ) g : f(d) R m, (a) x a lim f(x) = l (b) lim g(y) = l y l x A l R m m = 1 l = ± lim g f(x) = l. x a x A : A (a n ) lim n a n = a (a) f(a n ) l. (b) g f(a n ) l. \( )/ p, q, x > (i) a [, ] lim x p = a p, lim x p = a p, p def. p def. =, =. x a x a (ii) lim x x p e qx =. (iii) lim x p log x =, x lim x p log x =. x (i) x ±p = exp(±p log x) ( 6.1.2), ( 6.1.4) 69

70 (ii) m N (p, ) (qx) m /m! e qx x p e qx m!q m x p m. (i) x p m. x p e qx. (iii) y = log x x ( y ) x ( y ) x p log x = exp( py)y (ii), x p log x = exp(py)y = exp( p y ) y (ii) (a) x a lim f(x) = l. x A (b) ε > δ > x A B d (a, δ) = f(x) B k (l, ε). \( )/ {x R d ; x a < δ} (a R d ), B d (a, δ) = (1/δ, ] (d = 1, a = ), [, 1/δ) (d = 1, a = ). (6.4) B k (l, ε) B d (a, δ) a a : (b) δ-ε : (a) = (b): (b) ε >, δ >, A δ def. = {x A B d (a, δ) ; f(x) B k (l, ε)}. a n A 1/n a n B d (a, 1/n) a n a. f(a n ) B k (l, ε) f(a n ) l. (a) (a) = (b): a n A, a n a ε > (b) δ > a n a n a n B d (a, δ). (b) n f(a n ) B k (l, ε). f(a n ) l \( )/ ( 3.6.9) x a lim f(x) = l R d x A {f(x) ; x A B d (a, δ)} δ > 7

71 6.1.6 (b) ε = 1 δ {f(x) ; x A B d (a, δ)} B k (l, 1). \( )/ < x x x, x 1/x, x xx, (i)f(x) = p j= a jx j,g(x) = q j= b jx j (a p >, b q > ) lim x f(x) g(x). (ii) p R lim x {(x + 1) p x p }. 6.2 I R ( ) d, k N\{}, D R d, f D R k f d = 2, k = 2 a D f a (6.5) lim x a f(x) = f(a). (6.5) x D D a n a n a f(a n ) f(a). ( ) f a D f D D D R k - D C(D), C(D R k ) a n x C f(x) = a n x n n= x < r D = {x C ; x < r } f C(D C). exp, ch, sh, cos, sin C(C C) (5.12), 5.2.1,

72 f L [, ), α (, 1] f C(D). x, y D f(x) f(y) L x y α. f ( α = 1 x, a D, x a x a. x a α ( 6.1.2). f(x) f(a). \( )/ D R d (a) f 1, f 2 a D f 1 + f 2 a D f 1, f 2 f 1 f 2, f 1 /f 2 a D f 1 /f 2 f 2 (a) (b) ( ) a D R d, f : D R k, g : f(d) R m f a g f(a) g f a : (a) 6.1.3, (b) \( )/ ( ) n 1,.., n d N, c C m : C d C m(x) = cx n 1 1 x n d d. p 1, p 2 D = {x C d ; p 2 (x) } r(x) = p 1 (x)/p 2 (x) r C(D C). : x = (x i ) d i=1 C x x i 6.2.4(a) \( )/ (a):f C(D R k ). (b): a D f C(D B d (a, δ) R k ) δ > q : R d [, ) (1) (3) q (1) c R, x R d q(cx) = c q(x). (2) x, y R d q(x + y) q(x) + q(y). (3) q(x) = x =. (1), (2) q C(R d ) 72

73 6.2.3 f : R d R, α R t >, x R d f(tx) = t α f(x) f α α f (i) α > f(x) x = 1 f (ii) α = f α < f lim x f(x) ( f x = ) n 1,.., n d N, r > f : R d R f(x) = x n 1 1 x n d d / x r (x ), f() = f n n d > r n n d r (x = ) ( ) x Q, x R\Q f(x) = 1, f : R R x C\{}, x exp, sin, cos (e x 1)/x, sin x/x, (1 cos x)/x a < b, f : (a, b) R k x c (a, b) f(x) x c a < b, f : (a, b) R k a < c b lim x c f(x) x<c c f(c ) c = b f(c ) x c lim f(x) x c a c < b lim x c f(x) x>c c f(c+) c = a f(c+) x c lim f(x) x c a < c b f(c ) = f(c) f c c = b c a c < b f(c+) = f(c) f c c = a c A (a, b) f c A f A (a, b) 73

74 6.3.2 ( ) c R (a) 1 (c, ) c (b) 1 [c, ) c 1 (c, ) 1 [c, ) c c ( ) c (a, b), l R k f(c+) = f(c ) = l, (a < c < b ) lim f(x) = l f(c+) = l, (c = a ) x c x c f(c ) = l, (c = b ) k = 1, l = ± : = : =: c = a, b c, x n (a, b),x n c, x n c lim n f(x n ) = l K 1, K 2 N K 1 = {n N ; x n < c}, K 2 = {n N ; x n > c} K i = {k i () < k i (1) <...} K 1 lim n f(x k1 (n)) = f(c ) = l, K 2 lim n f(x k2 (n)) = f(c+) = l. I( 3.1.5) lim n f(x n ) = l. \( )/ ( ) c (a, b) f(c+) = f(c ) = f(c), (a < c < b ) f c f(c+) = f(c), (c = a ) f(c ) = f(c), (c = b ) : ( 6.3.3) l = f(c) \( )/, ,

75 6.3.5 ( ) k = 1 (a) a < c b f(c ) R (b) a c < b f(c+) R ( 2.2.1) 6.3 ( ) (a) a < c b f(c ) = (b) a c < b f(c+) = sup f(x), a<x<c inf f(x), a<x<c inf f(x), c<x<b f(x), sup c<x<b f, f. f, f. (a) f a < c n < c, c n c (1) lim f(c n ) = sup f(x). n a<x<c f l N, m N, n m, f(c l ) f(c n ) lim f(c n) = sup f(c n ) sup f(x). n n a<x<c }{{}}{{} s t s < t sup t s < f(y) t y (a, c) y n c n < y < c. c n c s = t. \( )/ ( ) a < b, f : (a, b) R f g(x) = sup a<y x f(y) x (a, b) ( ) f : [, 1] R [, 1) (, 1] f : s = sup{x [, 1] ; f [, x] } : (i) s >, (ii) f [, s], (iii) s = ( ) g n (x) (n N,x [, 1)) x x f(x) = n= g n(x) g n (1 ), f(1 ) f(1 ) = n= g n(1 ) ( ) 75

76 6.4 I ( ) ( I) I = [l, r] ( < l < r < ), f C(I R) c, c I x I f(c ) f(x) f(c). f min I f = f(c ), max I f = f(c) I f C(R R), lim x f(x) = f T >, f : R R x R f(x + T ) = f(x) f 6.5 ( ) I ( 3.3.2) ( I) I = [l, r] ( < l < r < ), a n I (n =, 1,..) c I a n a k(n) lim n a k(n) = c [l n, r n ] I, n =, 1,... [l, r ] = [l, r]. c n = (l n + r n )/2 { [l n+1, r n+1 ] = n (1) a k [l n, r n ] [l n, c n ], a k [l n, c n ] k, [c n, r n ], a k [l n, c n ] k. k k(n) l n, r n, r n l n = 2 n (r l) n ) c [l, r] 76

77 (2) lim n l n = lim n r n = c. (1) (2) lim n a k(n) = c. \( )/ ( ) ( ) c c f(i) R( ) a n I, n =, 1, 2,... f(a n ) R c I (a n ) (a k(n) ) a k(n) c R = lim f(a k(n) ) f = f(c). n R < R f \( )/ 7 Dugac, P: Elément d analyse de Karl Weierstrass, Archive for History of Exact Sciences 1, 1973,

78 7 ( ) 3 f(t) = t(cos t, sin t), t ) 17 y = f(x) (y )/( x ) x (y )/( x ) dy/dx y ( ) I R f : I R k (f : I C k = 2 ) x I f (x) x ( ) f (x) = y x lim D x,y (f), D x,y (f) = y x,y I f(y) f(x). (7.1) y x k = 1 f (x) = ± f (x) (f(x)) d, dx f(x), df dx (x). f (x) R k ( k = 1,f (x) = ± ) f x f x I x f (x) f ( ) y = f(x) (c,f(c)) y = f (c)(x c)+f(c) f (x) (x, f(x)) x f (x) f(x) x 78

79 7.1.2 ( ) (i) p N, x R (x p ) = px p 1. (ii) x (, ) (log x) = 1/x. : (i): y x, y x xp y p x y = p 1 x k y p 1 k px p 1. (ii):x, y (, ), y x log x log y ( 5.3.1) k= 1 x 1 y log x log y x y 1 x 1 y. y x ( ) 1, ( ) 1. x x \( )/ ( ) (a) : f(x) = x x = y >, y < D,y (f) = 1, 1. f () (b) : f(x) = x p, < p < 1 x = y > D,y (f) = yp = y yp 1, (y ) ( ) I R f : I R k x I f x : I\{x} y x D x,y (f) f(y) f(x) = D x,y (f)(y x). \( )/ I R f, g : I R k x I (a) ( ) f + g x I (f + g) (x) = f (x) + g (x). (b) ( ) f, g : I C fg x I (fg) (x) = f (x)g(x) + f(x)g (x). (c) ( ) f, g : I C, g(x) f/g x : (a),(b):y x (f/g) (x) = f (x)g(x) f(x)g (x) g(x) 2. D x,y (f + g) = D x,y (f) + D x,y (g) f (x) + g (x), D x,y (fg) = g(y)d x,y (f) + f(x)d x,y (g) f (x)g(x) + f(x)g (x). (c):g(x) g x y x g(y) 79

80 D x,y (1/g) = D x,y(g) g(x)g(y) g (x) g(x) 2. f 1 b f/g = f 1 g \( )/ ( ) D R d, f : D R x D x 1,.., x i 1, x i+1,.., x d i t f(x 1,.., x i 1, t, x i+1,.., x d ) t (x i ε, x i + ε) ε > f x i t = x i f x x i i f(x), xi f(x), x i f(x), f x i (x) x D i f(x) i f : x i f(x) x i ( ) r (, ], a n C (n N), z D def. = {z C ; z < r} : f(z) = a n z n n= z D f (z) def. = lim w z w z f(w) f(z) w z = na n z n 1 ( ). (7.2) n=1 z = x + iy (x, y R ) z D f(z) x, y x f(z) = 1 i yf(z) = f (z). (7.3) z D z < s < r s w z w < s (1) w n z n nz n 1 (z w) 1 2 n(n 1)(z w)2 s n 2. 8

81 w z f(w) f(z) w z na n z n 1 = n=1 ( ) w n z n a n w z nzn 1 n=1 n(n 1) a n s n 2. (1) w z n=1 } {{ } (7.2) (7.2) z = x + iy y x x y f x (z) = f (z). 1 f i y (z) = f (z) x R (i) c C (e cx ) = ce cx. (ii) a (, ) (a x ) = a x log a. (iii) (ch x) = sh x, (sh x) = ch x, (cos x) = sin x, (sin x) = cos x. : (i): e cx = c n x n n= n! (e cx ) c n x n 1 = (n 1)! = c c n x n. n! n=1 n= }{{} =e cx (ii): (i) c = log a \( )/ (iii): ch, sh, cos, sin exp 5.2.1, (i), \( )/ ( ) I R f : I R k, l R k (k = 1, l = ± ), x I (a),(b) (a) f x f (x) = l (b) φ : I R k y I f(y) f(x) = l(y x) + φ(y). (7.4) lim y x φ(y)/ y x =. (7.5) y x,y I 81

82 : (a) = (b): φ : I R (7.4) φ(y) = f(y) f(x) l(y x) φ (a) (7.5) (b) (a) = (b): (b) lim D y x x,y (f) = y x,y I ( y x lim l + φ(y) ) = l, y x y x,y I (a) \( )/ ( ) J R x J, J g f I R k g x f g(x) f g x (f g) (x) = f (g(x)) g (x). : φ 1 : J R, φ 2 : I R k (1) y J, g(y) g(x) = g (x)(y x) + φ 1 (y), y x lim φ 1 (y)/ y x =. y x,y J (2) z I, f(z) f(g(x)) = f (g(x))(z g(x))+φ 2 (z), y x lim φ 2 (z)/ z g(x) =. z g(x),z I (3) y x lim φ 2 (g(y))/ y x =. y x,y J (3) (3) f(g(y)) f(g(x)) (2) = f (g(x))(g(y) g(x)) + φ 2 (g(y)) (1) = f (g(x))g (x)(y x) + f (g(x))φ 1 (y) + φ 2 (g(y)) }{{} φ(y) (1), (3) lim φ(y)/(y x) =. y x y x,y J (3) x n J\{x}, x n x (4) lim n φ 2 (g(x n ))/ x n x =. g(x n ) = g(x) φ 2 (g(x n )) = φ 2 (g(x)) =. (4) g(x n ) g(x) n g x lim n g(x n ) = g(x). n φ 2 (g(x n )) x n x = φ 2(g(x n )) g(x n ) g(x) } {{ } (2) 82 g(x n ) g(x) x n x } {{ } (1).

83 (4) \( )/ ( ) x >,c C (x c ) = cx c 1. x c = e c log x = f g(x), f(y) = e cy, g(x) = log x. (x c ) = f (g(x)) g (x) = ce c log x 1 x = cxc 1. \( )/ I R f, g : I R k x I f g x I (f g) (x) = f (x) g(x) + f(x) g (x), I R f i : I C (i = 1,.., n) x I (i) f = f 1 f n x I x f = n i=1 f 1 f i 1 f if i+1 f n. (ii) p : C n C f = p(f 1,..., f n ) f x I f q : C 2n C f = q(f 1,..., f n, f 1,..., f n) a (, ),x R (a x ) = a x log a ( 7.1.8) a x a y g : I (, ) x I log g x (log g) (x) = g (x)/g(x) f j : I R (j = 1, 2) (i) I = R, f 1 (x) = sin m x, f 2 (x) = sin m x n (m, n N\{}). (ii) I = (, ), f 1 (x) = x x, f 2 (x) = x xx I R f : I R k x I f(x) ( 1 f(x) ), (f(x) 1 f(x) ) f(x) f (x) x, y C, x r, y r n = 2, 3,.. x n y n nx n 1 (x y) 1 2 n(n 1)rn 2 x y 2. n 1 n 1 (1) nx n x j y n j = (x y) (j + 1)x j y n 1 j. j= j= p(x, y) def = n 1 j= (j + 1)xj y n 1 j n xp(x, y) = nx n + jx j y n j, yp(x, y) = j=1 n (j + 1)x j y n j. j= 83

84 (1) n 1 x n y n = (x y) x j y n 1 j j= x n y n nx n 1 (x y) = (x y) ( n 1 ) x j y n 1 j nx n 1 j= ( ) n 2 = (x y) (n 1)x n 1 x j y n 1 j j= (1) n 2 = (x y) 2 (j + 1)x j y n 2 j. j= \( )/ ( ) I R f : I R k (f : I C k = 2 ) f x I f I I f : I R k D 1 (I), D 1 (I R k ) f D 1 (I) f D 1 (I) (f ) ( I ) (f ) f f (2) (second derivative) f m (m-th derivative) f (m), m = 1, 2,.., f () = f f (m) (x) (f(x)) (m), d m dx m f(x), d m f dx m (x), ( ) m d (x). (7.6) dx m N D m (I) I m, C m (I) f D m (I) f (),..., f (m) C(I) f D (I) f : I R k C (I) = C(I) ( ) D m+1 (I) C m (I) D m (I). f D m 1 (I) x I (f (m 1) ) (x) f (m) (x), (7.6) 84

85 7.2.2 f 1 f C (R) f D 1 (R) f 1 f C (R) f, g D m (I) (a) ( ) f + g D m (I) (f + g) (m) = f (m) + g (m). (b) ( ) f, g : I C fg D m (I) (fg) (m) = m ( m r r= ) f (r) g (m r), ( ), (7.7) ( ) m r ((1.11) ) (c) ( ) f, g : I C x I g(x) f/g D m (I). (d) f, g C m (I) (a),(b),(c) f + g C m (I), fg C m (I), f/g C m (I). : (a): ( 7.1.5) (b):m m = m 1 m 1 m 1 ( ) m 1 (1) (fg) (m 1) = f (r) g (m 1 r). r r= r m 1 f (r), g (r) D 1 (I) (1) (2) (fg) (m) = m 1 r= ( m 1 (3) ( m 1 r 1 ) ( + m 1 ) ( r = m ) r 1.11 (2) = f () g (m) + r ) (f (r+1) g (m 1 r) + f (r) g (m r) ). m r=1 {( ) m 1 + r 1 ( m 1 r )} f (r) (m r) (3) g = (7.7). (c): A m, B m A m B m m A 1 B 1. m 2 A m A m 1 B m 1 A m A m 1 B m 1 f/g D m 1 (I) D 1 (I). (f/g) = f g fg, f g fg, g 2 (b) D m 1 (I). g 2 85

86 A m 1 B m 1 f g fg, g 2 (f/g) D m 1 (I). f/g D m (I) (d): (a),(b),(c) \( )/ ( ) I, J R J g I f R k (a) g D m (J R), f D m (I R k ) f g D m (J R k ). (b) g C m (J R), f C m (I R k ) f g C m (J R k ). : (a):m m = m 1 m (1) (f g) = (f g)g. f D m 1 (I R k ) f g D m 1 (J R k ). g D m 1 (I R). (1) (f g) D m 1 (J R k ), f g D m (J R k ). (b): (a) m = 6.2.4(b) ( ) r (, ], a n C (n N), z D def. = {z C ; z < r} : f(z) = a n z n n= f(z) z D m f (m) (z) f (m) (z) = \( )/ n(n 1) (n m + 1)a n z n m ( ). (7.8) n=m f (m) () = m!a m. (7.9) z = x + iy (x, y R ) z D f(z) x, y C m =, 1, 2,.. ( x ) m f(z) = (1/i) m ( y ) m f(z) = f (m) (z). ( x ) m, ( y ) m x, y m 86

87 7.1.7 f(z) z z D f (z) = na n z n 1, n=1 ( ). f (z) z D ( 4.4.2) f(z) (z D) (7.8) (7.8) z = (7.9) y x x y \( )/ f : I C f C (I) : (i) I = R, f(x) = a x, ch x, sh x, cos x, sin x (a > ). (ii) I = (, ), f(x) = log x, x c (c C) ( ) 2n q n (x) = (x 2 1) n m q (m) n (i) (x 2 1)q n (1) (x) = 2nxq n (x). (ii) (x 2 1)q (n+2) n 1 2 n n! q(n) n (x) + 2xq n (n+1) (x) n(n + 1)q n (n) (x) =. n P n (x) = (x) (ii) (1 x 2 )P n (x) 2xP n(x) + n(n + 1)P n (x) = H n (x) = ( 1) n exp(x 2 /2) dn exp( x 2 /2), dx n x R, n =, 1, 2... (i) H n (x) n ( x n 1. (ii)h n(x) = xh n (x) H n+1 (x) = nh n 1 (x) 2 (iii) H n(x) xh n(x) = nh n (x) ( ) H n (x) ( 7.2.3) n H 1 (x) = x n = 1 H n (x) = n j=1 (x c j), (c 1 <... < c n ) (i) (iii) (i) ( 1) n j H n(c j ) >, j = 1, 2,.., n. (ii) H n+1 (c j ) n j n j H n(x) = xh n (x) H n+1 (x). (iii)h n+1 (x) n r >, a n, b n C (n N), z D def. = {z C ; z < r} : f(z) = n= a nz n, g(z) = n= b nz n ( ) m ( x f() = m x) g() ( m N) D f = g a, b, c, z C, c N, z < 1 F (z) = n= a(a + 1) (a + n 1)b(b + 1) (b + n 1) z n n!c(c + 1) (c + n 1) 87

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10% 1 2006.4.17. A 3-312 tel: 092-726-4774, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office hours: B A I ɛ-δ ɛ-δ 1. 2. A 1. 1. 2. 3. 4. 5. 2. ɛ-δ 1. ɛ-n

More information

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ = 1 1.1 ( ). z = + bi,, b R 0, b 0 2 + b 2 0 z = + bi = ( ) 2 + b 2 2 + b + b 2 2 + b i 2 r = 2 + b 2 θ cos θ = 2 + b 2, sin θ = b 2 + b 2 2π z = r(cos θ + i sin θ) 1.2 (, ). 1. < 2. > 3. ±,, 1.3 ( ). A

More information

1 I

1 I 1 I 3 1 1.1 R x, y R x + y R x y R x, y, z, a, b R (1.1) (x + y) + z = x + (y + z) (1.2) x + y = y + x (1.3) 0 R : 0 + x = x x R (1.4) x R, 1 ( x) R : x + ( x) = 0 (1.5) (x y) z = x (y z) (1.6) x y =

More information

I, II 1, 2 ɛ-δ 100 A = A 4 : 6 = max{ A, } A A 10

I, II 1, 2 ɛ-δ 100 A = A 4 : 6 = max{ A, } A A 10 1 2007.4.13. A 3-312 tel: 092-726-4774, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office hours: B A I ɛ-δ ɛ-δ 1. 2. A 0. 1. 1. 2. 3. 2. ɛ-δ 1. ɛ-n

More information

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google I4 - : April, 4 Version :. Kwhir, Tomoki TA (Kondo, Hirotk) Google http://www.mth.ngoy-u.c.jp/~kwhir/courses/4s-biseki.html pdf 4 4 4 4 8 e 5 5 9 etc. 5 6 6 6 9 n etc. 6 6 6 3 6 3 7 7 etc 7 4 7 7 8 5 59

More information

4................................. 4................................. 4 6................................. 6................................. 9.................................................... 3..3..........................

More information

No2 4 y =sinx (5) y = p sin(2x +3) (6) y = 1 tan(3x 2) (7) y =cos 2 (4x +5) (8) y = cos x 1+sinx 5 (1) y =sinx cos x 6 f(x) = sin(sin x) f 0 (π) (2) y

No2 4 y =sinx (5) y = p sin(2x +3) (6) y = 1 tan(3x 2) (7) y =cos 2 (4x +5) (8) y = cos x 1+sinx 5 (1) y =sinx cos x 6 f(x) = sin(sin x) f 0 (π) (2) y No1 1 (1) 2 f(x) =1+x + x 2 + + x n, g(x) = 1 (n +1)xn + nx n+1 (1 x) 2 x 6= 1 f 0 (x) =g(x) y = f(x)g(x) y 0 = f 0 (x)g(x)+f(x)g 0 (x) 3 (1) y = x2 x +1 x (2) y = 1 g(x) y0 = g0 (x) {g(x)} 2 (2) y = µ

More information

f(x) = x (1) f (1) (2) f (2) f(x) x = a y y = f(x) f (a) y = f(x) A(a, f(a)) f(a + h) f(x) = A f(a) A x (3, 3) O a a + h x 1 f(x) x = a

f(x) = x (1) f (1) (2) f (2) f(x) x = a y y = f(x) f (a) y = f(x) A(a, f(a)) f(a + h) f(x) = A f(a) A x (3, 3) O a a + h x 1 f(x) x = a 3 3.1 3.1.1 A f(a + h) f(a) f(x) lim f(x) x = a h 0 h f(x) x = a f 0 (a) f 0 (a) = lim h!0 f(a + h) f(a) h = lim x!a f(x) f(a) x a a + h = x h = x a h 0 x a 3.1 f(x) = x x = 3 f 0 (3) f (3) = lim h 0 (

More information

2 2 MATHEMATICS.PDF 200-2-0 3 2 (p n ), ( ) 7 3 4 6 5 20 6 GL 2 (Z) SL 2 (Z) 27 7 29 8 SL 2 (Z) 35 9 2 40 0 2 46 48 2 2 5 3 2 2 58 4 2 6 5 2 65 6 2 67 7 2 69 2 , a 0 + a + a 2 +... b b 2 b 3 () + b n a

More information

f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f

f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f 22 A 3,4 No.3 () (2) (3) (4), (5) (6) (7) (8) () n x = (x,, x n ), = (,, n ), x = ( (x i i ) 2 ) /2 f(x) R n f(x) = f() + i α i (x ) i + o( x ) α,, α n g(x) = o( x )) lim x g(x) x = y = f() + i α i(x )

More information

newmain.dvi

newmain.dvi 数論 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/008142 このサンプルページの内容は, 第 2 版 1 刷発行当時のものです. Daniel DUVERNEY: THÉORIE DES NOMBRES c Dunod, Paris, 1998, This book is published

More information

r 1 m A r/m i) t ii) m i) t B(t; m) ( B(t; m) = A 1 + r ) mt m ii) B(t; m) ( B(t; m) = A 1 + r ) mt m { ( = A 1 + r ) m } rt r m n = m r m n B

r 1 m A r/m i) t ii) m i) t B(t; m) ( B(t; m) = A 1 + r ) mt m ii) B(t; m) ( B(t; m) = A 1 + r ) mt m { ( = A 1 + r ) m } rt r m n = m r m n B 1 1.1 1 r 1 m A r/m i) t ii) m i) t Bt; m) Bt; m) = A 1 + r ) mt m ii) Bt; m) Bt; m) = A 1 + r ) mt m { = A 1 + r ) m } rt r m n = m r m n Bt; m) Aert e lim 1 + 1 n 1.1) n!1 n) e a 1, a 2, a 3,... {a n

More information

2011de.dvi

2011de.dvi 211 ( 4 2 1. 3 1.1............................... 3 1.2 1- -......................... 13 1.3 2-1 -................... 19 1.4 3- -......................... 29 2. 37 2.1................................ 37

More information

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y)

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 1 1977 x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) ( x 2 y + xy 2 x 2 2xy y 2) = 15 (x y) (x + y) (xy

More information

i

i i 3 4 4 7 5 6 3 ( ).. () 3 () (3) (4) /. 3. 4/3 7. /e 8. a > a, a = /, > a >. () a >, a =, > a > () a > b, a = b, a < b. c c n a n + b n + c n 3c n..... () /3 () + (3) / (4) /4 (5) m > n, a b >, m > n,

More information

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x [ ] IC. f(x) = e x () f(x) f (x) () lim f(x) lim f(x) x + x (3) lim f(x) lim f(x) x + x (4) y = f(x) ( ) ( s46). < a < () a () lim a log xdx a log xdx ( ) n (3) lim log k log n n n k=.3 z = log(x + y ),

More information

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a =

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a = [ ] 9 IC. dx = 3x 4y dt dy dt = x y u xt = expλt u yt λ u u t = u u u + u = xt yt 6 3. u = x, y, z = x + y + z u u 9 s9 grad u ux, y, z = c c : grad u = u x i + u y j + u k i, j, k z x, y, z grad u v =

More information

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C 8 ( ) 8 5 4 I II III A B C( ),,, 5 I II A B ( ),, I II A B (8 ) 6 8 I II III A B C(8 ) n ( + x) n () n C + n C + + n C n = 7 n () 7 9 C : y = x x A(, 6) () A C () C P AP Q () () () 4 A(,, ) B(,, ) C(,,

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63> 電気電子数学入門 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/073471 このサンプルページの内容は, 初版 1 刷発行当時のものです. i 14 (tool) [ ] IT ( ) PC (EXCEL) HP() 1 1 4 15 3 010 9 ii 1... 1 1.1 1 1.

More information

(1) (2) (1) (2) 2 3 {a n } a 2 + a 4 + a a n S n S n = n = S n

(1) (2) (1) (2) 2 3 {a n } a 2 + a 4 + a a n S n S n = n = S n . 99 () 0 0 0 () 0 00 0 350 300 () 5 0 () 3 {a n } a + a 4 + a 6 + + a 40 30 53 47 77 95 30 83 4 n S n S n = n = S n 303 9 k d 9 45 k =, d = 99 a d n a n d n a n = a + (n )d a n a n S n S n = n(a + a n

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

熊本県数学問題正解

熊本県数学問題正解 00 y O x Typed by L A TEX ε ( ) (00 ) 5 4 4 ( ) http://www.ocn.ne.jp/ oboetene/plan/. ( ) (009 ) ( ).. http://www.ocn.ne.jp/ oboetene/plan/eng.html 8 i i..................................... ( )0... (

More information

( )

( ) 18 10 01 ( ) 1 2018 4 1.1 2018............................... 4 1.2 2018......................... 5 2 2017 7 2.1 2017............................... 7 2.2 2017......................... 8 3 2016 9 3.1 2016...............................

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

2000年度『数学展望 I』講義録

2000年度『数学展望 I』講義録 2000 I I IV I II 2000 I I IV I-IV. i ii 3.10 (http://www.math.nagoya-u.ac.jp/ kanai/) 2000 A....1 B....4 C....10 D....13 E....17 Brouwer A....21 B....26 C....33 D....39 E. Sperner...45 F....48 A....53

More information

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n (

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n ( 3 n nc k+ k + 3 () n C r n C n r nc r C r + C r ( r n ) () n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (4) n C n n C + n C + n C + + n C n (5) k k n C k n C k (6) n C + nc

More information

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y [ ] 7 0.1 2 2 + y = t sin t IC ( 9) ( s090101) 0.2 y = d2 y 2, y = x 3 y + y 2 = 0 (2) y + 2y 3y = e 2x 0.3 1 ( y ) = f x C u = y x ( 15) ( s150102) [ ] y/x du x = Cexp f(u) u (2) x y = xey/x ( 16) ( s160101)

More information

II R n k +1 v 0,, v k k v 1 v 0,, v k v v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ k σ dimσ = k 1.3. k

II R n k +1 v 0,, v k k v 1 v 0,, v k v v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ k σ dimσ = k 1.3. k II 231017 1 1.1. R n k +1 v 0,, v k k v 1 v 0,, v k v 0 1.2. v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ kσ dimσ = k 1.3. k σ {v 0,...,v k } {v i0,...,v il } l σ τ < τ τ σ 1.4.

More information

i I II I II II IC IIC I II ii 5 8 5 3 7 8 iii I 3........................... 5......................... 7........................... 4........................ 8.3......................... 33.4...................

More information

i 6 3 ii 3 7 8 9 3 6 iii 5 8 5 3 7 8 v...................................................... 5.3....................... 7 3........................ 3.................3.......................... 8 3 35

More information

2012 IA 8 I p.3, 2 p.19, 3 p.19, 4 p.22, 5 p.27, 6 p.27, 7 p

2012 IA 8 I p.3, 2 p.19, 3 p.19, 4 p.22, 5 p.27, 6 p.27, 7 p 2012 IA 8 I 1 10 10 29 1. [0, 1] n x = 1 (n = 1, 2, 3,...) 2 f(x) = n 0 [0, 1] 2. 1 x = 1 (n = 1, 2, 3,...) 2 f(x) = n 0 [0, 1] 1 0 f(x)dx 3. < b < c [, c] b [, c] 4. [, b] f(x) 1 f(x) 1 f(x) [, b] 5.

More information

1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C

1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C 0 9 (1990 1999 ) 10 (2000 ) 1900 1994 1995 1999 2 SAT ACT 1 1990 IMO 1990/1/15 1:00-4:00 1 N 1990 9 N N 1, N 1 N 2, N 2 N 3 N 3 2 x 2 + 25x + 52 = 3 x 2 + 25x + 80 3 2, 3 0 4 A, B, C 3,, A B, C 2,,,, 7,

More information

6. Euler x

6. Euler x ...............................................................................3......................................... 4.4................................... 5.5......................................

More information

OABC OA OC 4, OB, AOB BOC COA 60 OA a OB b OC c () AB AC () ABC D OD ABC OD OA + p AB + q AC p q () OABC 4 f(x) + x ( ), () y f(x) P l 4 () y f(x) l P

OABC OA OC 4, OB, AOB BOC COA 60 OA a OB b OC c () AB AC () ABC D OD ABC OD OA + p AB + q AC p q () OABC 4 f(x) + x ( ), () y f(x) P l 4 () y f(x) l P 4 ( ) ( ) ( ) ( ) 4 5 5 II III A B (0 ) 4, 6, 7 II III A B (0 ) ( ),, 6, 8, 9 II III A B (0 ) ( [ ] ) 5, 0, II A B (90 ) log x x () (a) y x + x (b) y sin (x + ) () (a) (b) (c) (d) 0 e π 0 x x x + dx e

More information

I y = f(x) a I a x I x = a + x 1 f(x) f(a) x a = f(a + x) f(a) x (11.1) x a x 0 f(x) f(a) f(a + x) f(a) lim = lim x a x a x 0 x (11.2) f(x) x

I y = f(x) a I a x I x = a + x 1 f(x) f(a) x a = f(a + x) f(a) x (11.1) x a x 0 f(x) f(a) f(a + x) f(a) lim = lim x a x a x 0 x (11.2) f(x) x 11 11.1 I y = a I a x I x = a + 1 f(a) x a = f(a +) f(a) (11.1) x a 0 f(a) f(a +) f(a) = x a x a 0 (11.) x = a a f (a) d df f(a) (a) I dx dx I I I f (x) d df dx dx (x) [a, b] x a ( 0) x a (a, b) () [a,

More information

ORIGINAL TEXT I II A B 1 4 13 21 27 44 54 64 84 98 113 126 138 146 165 175 181 188 198 213 225 234 244 261 268 273 2 281 I II A B 292 3 I II A B c 1 1 (1) x 2 + 4xy + 4y 2 x 2y 2 (2) 8x 2 + 16xy + 6y 2

More information

x = a 1 f (a r, a + r) f(a) r a f f(a) 2 2. (a, b) 2 f (a, b) r f(a, b) r (a, b) f f(a, b)

x = a 1 f (a r, a + r) f(a) r a f f(a) 2 2. (a, b) 2 f (a, b) r f(a, b) r (a, b) f f(a, b) 2011 I 2 II III 17, 18, 19 7 7 1 2 2 2 1 2 1 1 1.1.............................. 2 1.2 : 1.................... 4 1.2.1 2............................... 5 1.3 : 2.................... 5 1.3.1 2.....................................

More information

A S- hara/lectures/lectures-j.html r A = A 5 : 5 = max{ A, } A A A A B A, B A A A %

A S-   hara/lectures/lectures-j.html r A = A 5 : 5 = max{ A, } A A A A B A, B A A A % A S- http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html r A S- 3.4.5. 9 phone: 9-8-444, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office

More information

A

A A 2563 15 4 21 1 3 1.1................................................ 3 1.2............................................. 3 2 3 2.1......................................... 3 2.2............................................

More information

, 1 ( f n (x))dx d dx ( f n (x)) 1 f n (x)dx d dx f n(x) lim f n (x) = [, 1] x f n (x) = n x x 1 f n (x) = x f n (x) = x 1 x n n f n(x) = [, 1] f n (x

, 1 ( f n (x))dx d dx ( f n (x)) 1 f n (x)dx d dx f n(x) lim f n (x) = [, 1] x f n (x) = n x x 1 f n (x) = x f n (x) = x 1 x n n f n(x) = [, 1] f n (x 1 1.1 4n 2 x, x 1 2n f n (x) = 4n 2 ( 1 x), 1 x 1 n 2n n, 1 x n n 1 1 f n (x)dx = 1, n = 1, 2,.. 1 lim 1 lim 1 f n (x)dx = 1 lim f n(x) = ( lim f n (x))dx = f n (x)dx 1 ( lim f n (x))dx d dx ( lim f d

More information

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g(

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g( 06 5.. ( y = x x y 5 y 5 = (x y = x + ( y = x + y = x y.. ( Y = C + I = 50 + 0.5Y + 50 r r = 00 0.5Y ( L = M Y r = 00 r = 0.5Y 50 (3 00 0.5Y = 0.5Y 50 Y = 50, r = 5 .3. (x, x = (, u = = 4 (, x x = 4 x,

More information

() Remrk I = [0, ] [x i, x i ]. (x : ) f(x) = 0 (x : ) ξ i, (f) = f(ξ i )(x i x i ) = (x i x i ) = ξ i, (f) = f(ξ i )(x i x i ) = 0 (f) 0.

() Remrk I = [0, ] [x i, x i ]. (x : ) f(x) = 0 (x : ) ξ i, (f) = f(ξ i )(x i x i ) = (x i x i ) = ξ i, (f) = f(ξ i )(x i x i ) = 0 (f) 0. () 6 f(x) [, b] 6. Riemnn [, b] f(x) S f(x) [, b] (Riemnn) = x 0 < x < x < < x n = b. I = [, b] = {x,, x n } mx(x i x i ) =. i [x i, x i ] ξ i n (f) = f(ξ i )(x i x i ) i=. (ξ i ) (f) 0( ), ξ i, S, ε >

More information

A S hara/lectures/lectures-j.html ϵ-n 1 ϵ-n lim n a n = α n a n α 2 lim a n = 0 1 n a k n n k= ϵ

A S hara/lectures/lectures-j.html ϵ-n 1 ϵ-n lim n a n = α n a n α 2 lim a n = 0 1 n a k n n k= ϵ A S1-20 http://www2.mth.kyushu-u.c.jp/ hr/lectures/lectures-j.html 1 1 1.1 ϵ-n 1 ϵ-n lim n n = α n n α 2 lim n = 0 1 n k n n k=1 0 1.1.7 ϵ-n 1.1.1 n α n n α lim n n = α ϵ N(ϵ) n > N(ϵ) n α < ϵ (1.1.1)

More information

, x R, f (x),, df dx : R R,, f : R R, f(x) ( ).,, f (a) d f dx (a), f (a) d3 f dx 3 (a),, f (n) (a) dn f dx n (a), f d f dx, f d3 f dx 3,, f (n) dn f

, x R, f (x),, df dx : R R,, f : R R, f(x) ( ).,, f (a) d f dx (a), f (a) d3 f dx 3 (a),, f (n) (a) dn f dx n (a), f d f dx, f d3 f dx 3,, f (n) dn f ,,,,.,,,. R f : R R R a R, f(a + ) f(a) lim 0 (), df dx (a) f (a), f(x) x a, f (a), f(x) x a ( ). y f(a + ) y f(x) f(a+) f(a) f(a + ) f(a) f(a) x a 0 a a + x 0 a a + x y y f(x) 0 : 0, f(a+) f(a)., f(x)

More information

2016 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 1 16 2 1 () X O 3 (O1) X O, O (O2) O O (O3) O O O X (X, O) O X X (O1), (O2), (O3) (O2) (O3) n (O2) U 1,..., U n O U k O k=1 (O3) U λ O( λ Λ) λ Λ U λ O 0 X 0 (O2) n =

More information

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F F 1 F 2 F, (3) F λ F λ F λ F. 3., A λ λ A λ. B λ λ

More information

2 (2016 3Q N) c = o (11) Ax = b A x = c A n I n n n 2n (A I n ) (I n X) A A X A n A A A (1) (2) c 0 c (3) c A A i j n 1 ( 1) i+j A (i, j) A (i, j) ã i

2 (2016 3Q N) c = o (11) Ax = b A x = c A n I n n n 2n (A I n ) (I n X) A A X A n A A A (1) (2) c 0 c (3) c A A i j n 1 ( 1) i+j A (i, j) A (i, j) ã i [ ] (2016 3Q N) a 11 a 1n m n A A = a m1 a mn A a 1 A A = a n (1) A (a i a j, i j ) (2) A (a i ca i, c 0, i ) (3) A (a i a i + ca j, j i, i ) A 1 A 11 0 A 12 0 0 A 1k 0 1 A 22 0 0 A 2k 0 1 0 A 3k 1 A rk

More information

y = f(x) y = f( + h) f(), x = h dy dx f () f (derivtive) (differentition) (velocity) p(t) =(x(t),y(t),z(t)) ( dp dx dt = dt, dy dt, dz ) dt f () > f x

y = f(x) y = f( + h) f(), x = h dy dx f () f (derivtive) (differentition) (velocity) p(t) =(x(t),y(t),z(t)) ( dp dx dt = dt, dy dt, dz ) dt f () > f x I 5 2 6 3 8 4 Riemnn 9 5 Tylor 8 6 26 7 3 8 34 f(x) x = A = h f( + h) f() h A (differentil coefficient) f f () y = f(x) y = f( + h) f(), x = h dy dx f () f (derivtive) (differentition) (velocity) p(t)

More information

4 II I

4 II I 1 2.1 1,... 1.1..................................... 1.2......................................... 3.3........................... 3 1 6 1.1.................................... 6 1.2......................................

More information

29

29 9 .,,, 3 () C k k C k C + C + C + + C 8 + C 9 + C k C + C + C + C 3 + C 4 + C 5 + + 45 + + + 5 + + 9 + 4 + 4 + 5 4 C k k k ( + ) 4 C k k ( k) 3 n( ) n n n ( ) n ( ) n 3 ( ) 3 3 3 n 4 ( ) 4 4 4 ( ) n n

More information

< 1 > (1) f 0 (a) =6a ; g 0 (a) =6a 2 (2) y = f(x) x = 1 f( 1) = 3 ( 1) 2 =3 ; f 0 ( 1) = 6 ( 1) = 6 ; ( 1; 3) 6 x =1 f(1) = 3 ; f 0 (1) = 6 ; (1; 3)

< 1 > (1) f 0 (a) =6a ; g 0 (a) =6a 2 (2) y = f(x) x = 1 f( 1) = 3 ( 1) 2 =3 ; f 0 ( 1) = 6 ( 1) = 6 ; ( 1; 3) 6 x =1 f(1) = 3 ; f 0 (1) = 6 ; (1; 3) < 1 > (1) f 0 (a) =6a ; g 0 (a) =6a 2 (2) y = f(x) x = 1 f( 1) = 3 ( 1) 2 =3 ; f 0 ( 1) = 6 ( 1) = 6 ; ( 1; 3) 6 x =1 f(1) = 3 ; f 0 (1) = 6 ; (1; 3) 6 y = g(x) x = 1 g( 1) = 2 ( 1) 3 = 2 ; g 0 ( 1) =

More information

ii

ii ii iii 1 1 1.1..................................... 1 1.2................................... 3 1.3........................... 4 2 9 2.1.................................. 9 2.2...............................

More information

n Y 1 (x),..., Y n (x) 1 W (Y 1 (x),..., Y n (x)) 0 W (Y 1 (x),..., Y n (x)) = Y 1 (x)... Y n (x) Y 1(x)... Y n(x) (x)... Y n (n 1) (x) Y (n 1)

n Y 1 (x),..., Y n (x) 1 W (Y 1 (x),..., Y n (x)) 0 W (Y 1 (x),..., Y n (x)) = Y 1 (x)... Y n (x) Y 1(x)... Y n(x) (x)... Y n (n 1) (x) Y (n 1) D d dx 1 1.1 n d n y a 0 dx n + a d n 1 y 1 dx n 1 +... + a dy n 1 dx + a ny = f(x)...(1) dk y dx k = y (k) a 0 y (n) + a 1 y (n 1) +... + a n 1 y + a n y = f(x)...(2) (2) (2) f(x) 0 a 0 y (n) + a 1 y

More information

1

1 1 1 7 1.1.................................. 11 2 13 2.1............................ 13 2.2............................ 17 2.3.................................. 19 3 21 3.1.............................

More information

1.2 y + P (x)y + Q(x)y = 0 (1) y 1 (x), y 2 (x) y 1 (x), y 2 (x) (1) y(x) c 1, c 2 y(x) = c 1 y 1 (x) + c 2 y 2 (x) 3 y 1 (x) y 1 (x) e R P (x)dx y 2

1.2 y + P (x)y + Q(x)y = 0 (1) y 1 (x), y 2 (x) y 1 (x), y 2 (x) (1) y(x) c 1, c 2 y(x) = c 1 y 1 (x) + c 2 y 2 (x) 3 y 1 (x) y 1 (x) e R P (x)dx y 2 1 1.1 R(x) = 0 y + P (x)y + Q(x)y = R(x)...(1) y + P (x)y + Q(x)y = 0...(2) 1 2 u(x) v(x) c 1 u(x)+ c 2 v(x) = 0 c 1 = c 2 = 0 c 1 = c 2 = 0 2 0 2 u(x) v(x) u(x) u (x) W (u, v)(x) = v(x) v (x) 0 1 1.2

More information

( z = x 3 y + y ( z = cos(x y ( 8 ( s8.7 y = xe x ( 8 ( s83.8 ( ( + xdx ( cos 3 xdx t = sin x ( 8 ( s84 ( 8 ( s85. C : y = x + 4, l : y = x + a,

( z = x 3 y + y ( z = cos(x y ( 8 ( s8.7 y = xe x ( 8 ( s83.8 ( ( + xdx ( cos 3 xdx t = sin x ( 8 ( s84 ( 8 ( s85. C : y = x + 4, l : y = x + a, [ ] 8 IC. y d y dx = ( dy dx ( p = dy p y dx ( ( ( 8 ( s8. 3 A A = ( A ( A (3 A P A P AP.3 π y(x = { ( 8 ( s8 x ( π < x x ( < x π y(x π π O π x ( 8 ( s83.4 f (x, y, z grad(f ( ( ( f f f grad(f = i + j

More information

DVIOUT

DVIOUT A. A. A-- [ ] f(x) x = f 00 (x) f 0 () =0 f 00 () > 0= f(x) x = f 00 () < 0= f(x) x = A--2 [ ] f(x) D f 00 (x) > 0= y = f(x) f 00 (x) < 0= y = f(x) P (, f()) f 00 () =0 A--3 [ ] y = f(x) [, b] x = f (y)

More information

0 1-4. 1-5. (1) + b = b +, (2) b = b, (3) + 0 =, (4) 1 =, (5) ( + b) + c = + (b + c), (6) ( b) c = (b c), (7) (b + c) = b + c, (8) ( + b)c = c + bc (9

0 1-4. 1-5. (1) + b = b +, (2) b = b, (3) + 0 =, (4) 1 =, (5) ( + b) + c = + (b + c), (6) ( b) c = (b c), (7) (b + c) = b + c, (8) ( + b)c = c + bc (9 1-1. 1, 2, 3, 4, 5, 6, 7,, 100,, 1000, n, m m m n n 0 n, m m n 1-2. 0 m n m n 0 2 = 1.41421356 π = 3.141516 1-3. 1 0 1-4. 1-5. (1) + b = b +, (2) b = b, (3) + 0 =, (4) 1 =, (5) ( + b) + c = + (b + c),

More information

X G P G (X) G BG [X, BG] S 2 2 2 S 2 2 S 2 = { (x 1, x 2, x 3 ) R 3 x 2 1 + x 2 2 + x 2 3 = 1 } R 3 S 2 S 2 v x S 2 x x v(x) T x S 2 T x S 2 S 2 x T x S 2 = { ξ R 3 x ξ } R 3 T x S 2 S 2 x x T x S 2

More information

2012 A, N, Z, Q, R, C

2012 A, N, Z, Q, R, C 2012 A, N, Z, Q, R, C 1 2009 9 2 2011 2 3 2012 9 1 2 2 5 3 11 4 16 5 22 6 25 7 29 8 32 1 1 1.1 3 1 1 1 1 1 1? 3 3 3 3 3 3 3 1 1, 1 1 + 1 1 1+1 2 2 1 2+1 3 2 N 1.2 N (i) 2 a b a 1 b a < b a b b a a b (ii)

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

さくらの個別指導 ( さくら教育研究所 ) A a 1 a 2 a 3 a n {a n } a 1 a n n n 1 n n 0 a n = 1 n 1 n n O n {a n } n a n α {a n } α {a

さくらの個別指導 ( さくら教育研究所 ) A a 1 a 2 a 3 a n {a n } a 1 a n n n 1 n n 0 a n = 1 n 1 n n O n {a n } n a n α {a n } α {a ... A a a a 3 a n {a n } a a n n 3 n n n 0 a n = n n n O 3 4 5 6 n {a n } n a n α {a n } α {a n } α α {a n } a n n a n α a n = α n n 0 n = 0 3 4. ()..0.00 + (0.) n () 0. 0.0 0.00 ( 0.) n 0 0 c c c c c

More information

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1)

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1) 1. 1.1...,. 1.1.1 V, V x, y, x y x + y x + y V,, V x α, αx αx V,, (i) (viii) : x, y, z V, α, β C, (i) x + y = y + x. (ii) (x + y) + z = x + (y + z). 1 (iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y

More information

04.dvi

04.dvi 22 I 4-4 ( ) 4, [,b] 4 [,b] R, x =, x n = b, x i < x i+ n + = {x,,x n } [,b], = mx{ x i+ x i } 2 [,b] = {x,,x n }, ξ = {ξ,,ξ n }, x i ξ i x i, [,b] f: S,ξ (f) S,ξ (f) = n i= f(ξ i )(x i x i ) 3 [,b] f:,

More information

入試の軌跡

入試の軌跡 4 y O x 4 Typed by L A TEX ε ) ) ) 6 4 ) 4 75 ) http://kumamoto.s.xrea.com/plan/.. PDF) Ctrl +L) Ctrl +) Ctrl + Ctrl + ) ) Alt + ) Alt + ) ESC. http://kumamoto.s.xrea.com/nyusi/kumadai kiseki ri i.pdf

More information

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2 II No.1 [n/] [1]H n x) H n x) = 1) r n! r!n r)! x)n r r= []H n x) n,, H n x) = 1) n H n x) [3] H n x) = 1) n dn x e dx n e x [4] H n+1 x) = xh n x) nh n 1 x) ) d dx x H n x) = H n+1 x) d dx H nx) = nh

More information

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s ... x, y z = x + iy x z y z x = Rez, y = Imz z = x + iy x iy z z () z + z = (z + z )() z z = (z z )(3) z z = ( z z )(4)z z = z z = x + y z = x + iy ()Rez = (z + z), Imz = (z z) i () z z z + z z + z.. z

More information

2. 2 I,II,III) 2 x expx) = lim + x 3) ) expx) e x 3) x. ) {a } a a 2 a 3...) a b b {a } α : lim a = α b) ) [] 2 ) f x) = + x ) 4) x > 0 {f x)} x > 0,

2. 2 I,II,III) 2 x expx) = lim + x 3) ) expx) e x 3) x. ) {a } a a 2 a 3...) a b b {a } α : lim a = α b) ) [] 2 ) f x) = + x ) 4) x > 0 {f x)} x > 0, . 207 02 02 a x x ) a x x a x x a x x ) a x x [] 3 3 sup) if) [3] 3 [4] 5.4 ) e x e x = lim + x ) ) e x e x log x = log e x) a > 0) x a x = e x log a 2) 2. 2 I,II,III) 2 x expx) = lim + x 3) ) expx) e

More information

(ii) (iii) z a = z a =2 z a =6 sin z z a dz. cosh z z a dz. e z dz. (, a b > 6.) (z a)(z b) 52.. (a) dz, ( a = /6.), (b) z =6 az (c) z a =2 53. f n (z

(ii) (iii) z a = z a =2 z a =6 sin z z a dz. cosh z z a dz. e z dz. (, a b > 6.) (z a)(z b) 52.. (a) dz, ( a = /6.), (b) z =6 az (c) z a =2 53. f n (z B 4 24 7 9 ( ) :,..,,.,. 4 4. f(z): D C: D a C, 2πi C f(z) dz = f(a). z a a C, ( ). (ii), a D, a U a,r D f. f(z) = A n (z a) n, z U a,r, n= A n := 2πi C f(ζ) dζ, n =,,..., (ζ a) n+, C a D. (iii) U a,r

More information

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4 35-8585 7 8 1 I I 1 1.1 6kg 1m P σ σ P 1 l l λ λ l 1.m 1 6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m

More information

2009 IA I 22, 23, 24, 25, 26, a h f(x) x x a h

2009 IA I 22, 23, 24, 25, 26, a h f(x) x x a h 009 IA I, 3, 4, 5, 6, 7 7 7 4 5 h fx) x x h 4 5 4 5 1 3 1.1........................... 3 1........................... 4 1.3..................................... 6 1.4.............................. 8 1.4.1..............................

More information

¿ô³Ø³Ø½øÏÀ¥Î¡¼¥È

¿ô³Ø³Ø½øÏÀ¥Î¡¼¥È 2011 i N Z Q R C A def B, A B. ii..,.,.. (, ), ( ),.?????????,. iii 04-13 04-20 04-27 05-04 [ ] 05-11 05-18 05-25 06-01 06-08 06-15 06-22 06-29 07-06 07-13 07-20 07-27 08-03 10-05 10-12 10-19 [ ] 10-26

More information

v er.1/ c /(21)

v er.1/ c /(21) 12 -- 1 1 2009 1 17 1-1 1-2 1-3 1-4 2 2 2 1-5 1 1-6 1 1-7 1-1 1-2 1-3 1-4 1-5 1-6 1-7 c 2011 1/(21) 12 -- 1 -- 1 1--1 1--1--1 1 2009 1 n n α { n } α α { n } lim n = α, n α n n ε n > N n α < ε N {1, 1,

More information

IA hara@math.kyushu-u.ac.jp Last updated: January,......................................................................................................................................................................................

More information

30 I .............................................2........................................3................................................4.......................................... 2.5..........................................

More information

IMO 1 n, 21n n (x + 2x 1) + (x 2x 1) = A, x, (a) A = 2, (b) A = 1, (c) A = 2?, 3 a, b, c cos x a cos 2 x + b cos x + c = 0 cos 2x a

IMO 1 n, 21n n (x + 2x 1) + (x 2x 1) = A, x, (a) A = 2, (b) A = 1, (c) A = 2?, 3 a, b, c cos x a cos 2 x + b cos x + c = 0 cos 2x a 1 40 (1959 1999 ) (IMO) 41 (2000 ) WEB 1 1959 1 IMO 1 n, 21n + 4 13n + 3 2 (x + 2x 1) + (x 2x 1) = A, x, (a) A = 2, (b) A = 1, (c) A = 2?, 3 a, b, c cos x a cos 2 x + b cos x + c = 0 cos 2x a = 4, b =

More information

Riemann-Stieltjes Poland S. Lojasiewicz [1] An introduction to the theory of real functions, John Wiley & Sons, Ltd., Chichester, 1988.,,,,. Riemann-S

Riemann-Stieltjes Poland S. Lojasiewicz [1] An introduction to the theory of real functions, John Wiley & Sons, Ltd., Chichester, 1988.,,,,. Riemann-S Riemnn-Stieltjes Polnd S. Lojsiewicz [1] An introduction to the theory of rel functions, John Wiley & Sons, Ltd., Chichester, 1988.,,,, Riemnn-Stieltjes 1 2 2 5 3 6 4 Jordn 13 5 Riemnn-Stieltjes 15 6 Riemnn-Stieltjes

More information

[ ] 0.1 lim x 0 e 3x 1 x IC ( 11) ( s114901) 0.2 (1) y = e 2x (x 2 + 1) (2) y = x/(x 2 + 1) 0.3 dx (1) 1 4x 2 (2) e x sin 2xdx (3) sin 2 xdx ( 11) ( s

[ ] 0.1 lim x 0 e 3x 1 x IC ( 11) ( s114901) 0.2 (1) y = e 2x (x 2 + 1) (2) y = x/(x 2 + 1) 0.3 dx (1) 1 4x 2 (2) e x sin 2xdx (3) sin 2 xdx ( 11) ( s [ ]. lim e 3 IC ) s49). y = e + ) ) y = / + ).3 d 4 ) e sin d 3) sin d ) s49) s493).4 z = y z z y s494).5 + y = 4 =.6 s495) dy = 3e ) d dy d = y s496).7 lim ) lim e s49).8 y = e sin ) y = sin e 3) y =

More information

chap1.dvi

chap1.dvi 1 1 007 1 e iθ = cos θ + isin θ 1) θ = π e iπ + 1 = 0 1 ) 3 11 f 0 r 1 1 ) k f k = 1 + r) k f 0 f k k = 01) f k+1 = 1 + r)f k ) f k+1 f k = rf k 3) 1 ) ) ) 1+r/)f 0 1 1 + r/) f 0 = 1 + r + r /4)f 0 1 f

More information

untitled

untitled 0. =. =. (999). 3(983). (980). (985). (966). 3. := :=. A A. A A. := := 4 5 A B A B A B. A = B A B A B B A. A B A B, A B, B. AP { A, P } = { : A, P } = { A P }. A = {0, }, A, {0, }, {0}, {}, A {0}, {}.

More information

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d S I.. http://ayapin.film.s.dendai.ac.jp/~matuda /TeX/lecture.html PDF PS.................................... 3.3.................... 9.4................5.............. 3 5. Laplace................. 5....

More information

π, R { 2, 0, 3} , ( R),. R, [ 1, 1] = {x R 1 x 1} 1 0 1, [ 1, 1],, 1 0 1,, ( 1, 1) = {x R 1 < x < 1} [ 1, 1] 1 1, ( 1, 1), 1, 1, R A 1

π, R { 2, 0, 3} , ( R),. R, [ 1, 1] = {x R 1 x 1} 1 0 1, [ 1, 1],, 1 0 1,, ( 1, 1) = {x R 1 < x < 1} [ 1, 1] 1 1, ( 1, 1), 1, 1, R A 1 sup inf (ε-δ 4) 2018 1 9 ε-δ,,,, sup inf,,,,,, 1 1 2 3 3 4 4 6 5 7 6 10 6.1............................................. 11 6.2............................... 13 1 R R 5 4 3 2 1 0 1 2 3 4 5 π( R) 2 1 0

More information

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt S I. x yx y y, y,. F x, y, y, y,, y n http://ayapin.film.s.dendai.ac.jp/~matuda n /TeX/lecture.html PDF PS yx.................................... 3.3.................... 9.4................5..............

More information

名古屋工業大の数学 2000 年 ~2015 年 大学入試数学動画解説サイト

名古屋工業大の数学 2000 年 ~2015 年 大学入試数学動画解説サイト 名古屋工業大の数学 年 ~5 年 大学入試数学動画解説サイト http://mathroom.jugem.jp/ 68 i 4 3 III III 3 5 3 ii 5 6 45 99 5 4 3. () r \= S n = r + r + 3r 3 + + nr n () x > f n (x) = e x + e x + 3e 3x + + ne nx f(x) = lim f n(x) lim

More information

Z: Q: R: C: sin 6 5 ζ a, b

Z: Q: R: C: sin 6 5 ζ a, b Z: Q: R: C: 3 3 7 4 sin 6 5 ζ 9 6 6............................... 6............................... 6.3......................... 4 7 6 8 8 9 3 33 a, b a bc c b a a b 5 3 5 3 5 5 3 a a a a p > p p p, 3,

More information

2009 IA 5 I 22, 23, 24, 25, 26, (1) Arcsin 1 ( 2 (4) Arccos 1 ) 2 3 (2) Arcsin( 1) (3) Arccos 2 (5) Arctan 1 (6) Arctan ( 3 ) 3 2. n (1) ta

2009 IA 5 I 22, 23, 24, 25, 26, (1) Arcsin 1 ( 2 (4) Arccos 1 ) 2 3 (2) Arcsin( 1) (3) Arccos 2 (5) Arctan 1 (6) Arctan ( 3 ) 3 2. n (1) ta 009 IA 5 I, 3, 4, 5, 6, 7 6 3. () Arcsin ( (4) Arccos ) 3 () Arcsin( ) (3) Arccos (5) Arctan (6) Arctan ( 3 ) 3. n () tan x (nπ π/, nπ + π/) f n (x) f n (x) fn (x) Arctan x () sin x [nπ π/, nπ +π/] g n

More information

D xy D (x, y) z = f(x, y) f D (2 ) (x, y, z) f R z = 1 x 2 y 2 {(x, y); x 2 +y 2 1} x 2 +y 2 +z 2 = 1 1 z (x, y) R 2 z = x 2 y

D xy D (x, y) z = f(x, y) f D (2 ) (x, y, z) f R z = 1 x 2 y 2 {(x, y); x 2 +y 2 1} x 2 +y 2 +z 2 = 1 1 z (x, y) R 2 z = x 2 y 5 5. 2 D xy D (x, y z = f(x, y f D (2 (x, y, z f R 2 5.. z = x 2 y 2 {(x, y; x 2 +y 2 } x 2 +y 2 +z 2 = z 5.2. (x, y R 2 z = x 2 y + 3 (2,,, (, 3,, 3 (,, 5.3 (. (3 ( (a, b, c A : (x, y, z P : (x, y, x

More information

8 i, III,,,, III,, :!,,,, :!,,,,, 4:!,,,,,,!,,,, OK! 5:!,,,,,,,,,, OK 6:!, 0, 3:!,,,,! 7:!,,,,,, ii,,,,,, ( ),, :, ( ), ( ), :... : 3 ( )...,, () : ( )..., :,,, ( ), (,,, ),, (ϵ δ ), ( ), (ˆ ˆ;),,,,,,!,,,,.,,

More information

AI n Z f n : Z Z f n (k) = nk ( k Z) f n n 1.9 R R f : R R f 1 1 {a R f(a) = 0 R = {0 R 1.10 R R f : R R f 1 : R R 1.11 Z Z id Z 1.12 Q Q id

AI n Z f n : Z Z f n (k) = nk ( k Z) f n n 1.9 R R f : R R f 1 1 {a R f(a) = 0 R = {0 R 1.10 R R f : R R f 1 : R R 1.11 Z Z id Z 1.12 Q Q id 1 1.1 1.1 R R (1) R = 1 2 Z = 2 n Z (2) R 1.2 R C Z R 1.3 Z 2 = {(a, b) a Z, b Z Z 2 a, b, c, d Z (a, b) + (c, d) = (a + c, b + d), (a, b)(c, d) = (ac, bd) (1) Z 2 (2) Z 2? (3) Z 2 1.4 C Q[ 1] = {a + bi

More information

n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................

More information

IA 2013 : :10722 : 2 : :2 :761 :1 (23-27) : : ( / ) (1 /, ) / e.g. (Taylar ) e x = 1 + x + x xn n! +... sin x = x x3 6 + x5 x2n+1 + (

IA 2013 : :10722 : 2 : :2 :761 :1 (23-27) : : ( / ) (1 /, ) / e.g. (Taylar ) e x = 1 + x + x xn n! +... sin x = x x3 6 + x5 x2n+1 + ( IA 2013 : :10722 : 2 : :2 :761 :1 23-27) : : 1 1.1 / ) 1 /, ) / e.g. Taylar ) e x = 1 + x + x2 2 +... + xn n! +... sin x = x x3 6 + x5 x2n+1 + 1)n 5! 2n + 1)! 2 2.1 = 1 e.g. 0 = 0.00..., π = 3.14..., 1

More information

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

I A A441 : April 15, 2013 Version : 1.1 I   Kawahira, Tomoki TA (Shigehiro, Yoshida ) I013 00-1 : April 15, 013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida) http://www.math.nagoya-u.ac.jp/~kawahira/courses/13s-tenbou.html pdf * 4 15 4 5 13 e πi = 1 5 0 5 7 3 4 6 3 6 10 6 17

More information

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω ω α 3 3 2 2V 3 33+.6T m T 5 34m Hz. 34 3.4m 2 36km 5Hz. 36km m 34 m 5 34 + m 5 33 5 =.66m 34m 34 x =.66 55Hz, 35 5 =.7 485.7Hz 2 V 5Hz.5V.5V V

More information

( ) a, b c a 2 + b 2 = c 2. 2 1 2 2 : 2 2 = p q, p, q 2q 2 = p 2. p 2 p 2 2 2 q 2 p, q (QED)

( ) a, b c a 2 + b 2 = c 2. 2 1 2 2 : 2 2 = p q, p, q 2q 2 = p 2. p 2 p 2 2 2 q 2 p, q (QED) rational number p, p, (q ) q ratio 3.14 = 3 + 1 10 + 4 100 ( ) a, b c a 2 + b 2 = c 2. 2 1 2 2 : 2 2 = p q, p, q 2q 2 = p 2. p 2 p 2 2 2 q 2 p, q (QED) ( a) ( b) a > b > 0 a < nb n A A B B A A, B B A =

More information

(2016 2Q H) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = ( ) a c b d (a c, b d) P = (a, b) O P ( ) a p = b P = (a, b) p = ( ) a b R 2 {( ) } R 2 x = x, y

(2016 2Q H) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = ( ) a c b d (a c, b d) P = (a, b) O P ( ) a p = b P = (a, b) p = ( ) a b R 2 {( ) } R 2 x = x, y (2016 2Q H) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = a c b d (a c, b d) P = (a, b) O P a p = b P = (a, b) p = a b R 2 { } R 2 x = x, y R y 2 a p =, c q = b d p + a + c q = b + d q p P q a p = c R c b

More information

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x (

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x ( II (1 4 ) 1. p.13 1 (x, y) (a, b) ε(x, y; a, b) f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a x a A = f x (a, b) y x 3 3y 3 (x, y) (, ) f (x, y) = x + y (x, y) = (, )

More information

II Time-stamp: <05/09/30 17:14:06 waki> ii

II Time-stamp: <05/09/30 17:14:06 waki> ii II waki@cc.hirosaki-u.ac.jp 18 1 30 II Time-stamp: ii 1 1 1.1.................................................. 1 1.2................................................... 3 1.3..................................................

More information