Size: px
Start display at page:

Download ""

Transcription

1 30 I

2

3 Γ B Γ B (Rodrigues) (Goursat) (Jacobi) (Gegenbauer) (Legendre) i

4 3.3.4 (Chebyshev) (Sonine) (Laguerre) (Laguerre) (Hermite) (Sturm-Liouville) A 45 ii

5 . N 2 a b a 2 a =., b = b 2., a N b N a b N a b = a i b i = a b + a 2b a Nb N (.) i= a b = 0 a b a () a a = a a (.2).2 N {a, a 2,..., a N } α a + α 2 a α N a N = 0 (.3) {α, α 2,..., α N } α = α 2 = = α N = 0 N (.3) {α, α 2,..., α N } α = α 2 = = α N = 0 N. ( ) ( ) 0 () 2 a = a 2 = 0 ( ) ( ) 2 (2) 2 a = a 2 = 0 0 ( ) ( ) ( ) 0 (3) 3 a = a 2 = a 3 = 0.3 N N {a, a 2,..., a N } {a i }

6 {a, a 2,..., a N } x N x = α a + α 2 a α N a N = α i a i (.4) i= α i {a i } {a i }.4 ( ) {a i } x (.4) x (α, α 2,..., α N ) 2 ( ) ( ) 0 e = e 2 = (x, y) x 0 x = xe + ye 2 = (x, y) ( ) x.2 (3, 2) ( ) ( ) () 2 a = a 2 = ( ) ( ) (2) 2 b = 0 b 2 = () a a 2 = 0 a a 2 a = a 2 = 2 (2) b b 2 y.5 N N {a i } a i a j = 0 (for i j) (.5) a = a 2 = = a N = (.6) a i a j = δ ij (.7) 2

7 N N x (.4) {a i } {α i } α i = a i x (.8) {a i } x N x = (a i x)a i (.9).3 (.8) i=.6 () () N {a i } {e i }. e = a / a e 2. a 2 = a 2 (a 2 e )e e 2 = a 2/ a 2 e 2 3. n n + N {e, e 2,..., e n, a n+,..., a N } n + a n+ = a n+ (a n+ e )e (a n+ e 2 )e 2 (a n+ e n )e n n = a n+ (a n+ e i )e i (.0) i= e n+ = a n+/ a n+ (.) 4. 3 n + = N a.4 3 e n+ e j (j n) ( ) ( ) a = 0 a 2 = 2 {e, e 2 } a = a 2 = 0 a 3 = 0 () {e, e 2, e 3 } (2) (e i e j = δ ij ) 3

8 .7 (N ) 4

9 2 2. (x n ) 2.. f(x) () f(x) ( ) f(x) f (x) f(x) 2..2 π, π 2π (f(x) = f(x + 2π)) f(x) {cos nx} {sin nx} f(x) a (a n cos nx + b n sin nx) (2.) n= a n (n =, 2, 3,... ) b n (n =, 2, 3,... ) = f(x) f(x) (f(x + 0) + f(x 0)) (2.2) 2 (2.) a n b n a n = π b n = π π π π π f(x) cos nx (n 0) (2.3) f(x) sin nx (n ) (2.4) 5

10 π π π π π π 2. (2.5) (2.7) 2.2 (2.5) (2.7) (2.3) (2.4) π < x 0 () f(x) = 0 < x π x π < x 0 (2) f(x) = x 0 < x π π < x 0 (3) f(x) = 0 < x π ( ) () f(x) 2 + (3) f(x) n= n= cos mx cos nx = πδ mn (n, m ) (2.5) sin mx sin nx = πδ mn (n, m ) (2.6) cos mx sin nx = 0 (n, m ) (2.7) nπ ( ( )n ) sin nx (2) f(x) = π n 2 π (( )n ) cos nx 2 nπ ( ( )n ) sin nx 2.3 (2) sin nx 0 (3) cos nx 0 cos nx sin nx n= 2.3() 3 (a) 0 (b) 00 (c) ( ) (a) (b) (c) (d) (c) 2π 6

11 (d) (e) 2..3 (e) 2.3() 000 x = π 8% ( ) ( ) π L L/2, L/2 L (f(x) = f(x + L)) f(x) (2.) (2.3) (2.4) x 2π L x f(x) a (a n cos 2πnx L n= + b n sin 2πnx L ) (2.8) a n = 2 L b n = 2 L L/2 L/2 L/2 L/2 f(x) cos 2πnx (n 0) (2.9) L f(x) sin 2πnx (n ) (2.0) L L = 2π (2.) (2.3) (2.4) 2.4 () f(x) = x, < x + x < x 0 (2) f(x) = x 0 < x ( ) () f(x) n= (f(x + 0) + f(x 0)) (2.) 2 ( ) n 2 nπ sin nπx (2) f(x) = n 2 π 2 ( ( )n ) cos nπx n= 7

12 2..5 π, π 2π f(x) {sin nx, cos nx} {e inx } e inx = cos nx + i sin nx (2.2) e inx = cos nx i sin nx (2.3) cos nx = 2 (einx + e inx ) (2.4) sin nx = 2i (einx e inx ) (2.5) (2.) f(x) a (a n ib n )e inx + (a n + ib n )e inx ) (2.6) n= a 0 2 = c 0, a n ib n 2 = c n, c n c n (c n = c n ) (2.6) a n + ib n 2 = c n (2.7) f(x) n= c n e inx (2.8) c n = π f(x)e inx (2.9) 2π π n ({sin nx, cos nx} 0 ) (2.9) π π e inx e imx = 2πδ nm (2.20) 2.5 (2.20) 2.6 (2.20) (2.9) () (2) 2.3 ( ) () f(x) 2 + (3) f(x) n= n 0 n= n 0 i nπ (( )n )e inx i 2nπ (( )n )e inx (2) f(x) = π 2 + n= n 0 n 2 π (( )n )e inx 8

13 L/2, L/2 L f(x) f(x) c n = L L/2 n= L/2 c n e i 2πnx L (2.2) 2πnx i f(x)e L (2.22) 2..6 f(x) g(x) (f(x) g(x)) (f(x) g(x)) = 2π π π f(x) g(x) (2.23) f(x) g(x) (f(x) g(x)) 0 f(x) g(x) f(x) (f(x) f(x)) f(x) (2.23) 2π f(x) e inx ( ) x a n a n = e inx x = f(x) (2.23) (a m a n ) = π e imx e inx = δ mn (2.24) 2π π (.7) {e inx } (2.2) (2.22) x = f(x) = c n e inx π = f(x)e inx e inx 2π n= n= π π = (e inx ) f(x) e inx = (a n x)a n (2.25) 2π π n= n= (.9) {e inx } {e inx } ( ) (2.8) ( 2) (2.23) 2π (f(x) g(x)) = { 2π e inx } π π f(x) g(x) (2.26) ( 3) {x n } {x n } {x n } 9

14 2.2 X 2.2. f(x) f(x)δ(x x 0 ) = f(x 0 ) (2.27) δ n (x) (δ(x) = lim n δ n (x)) δ(x x 0 ) = (2.28) δ(x x 0 ) x = x 0 (δ nm ) {. δ(x) = lim δ n x /2n n(x), δ n (x) = n 0 x > /2n 2. δ(x) = lim δ sin nx n(x) = lim n n πx 3. δ(x) = lim n δ n(x) = lim n n 2 π e nx 2.8 (2.28) 2.9 () δ(x) = δ( x) (2) δ(ax) = a δ(x) (3) δ(x 2 a 2 ) = 2a {δ(x a) + δ(x + a)} (a > 0) L/2, L/2, L ( ) 2π L = k (2.29) 0

15 (2.2) (2.22) f(x) = c n = L n= L/2 L/2 c n e in kx (2.30) e in kx (2.3) L k n k n k = k (2.30) n k (L ) n k k dn dk k (2.30) dk = L dk (2.32) k 2π (2.30) n= f(x) = L 2π (2.3) c n c n e ikx dk (2.33) f(x) = f(t)e ikt dt e ikx dk (2.34) 2π k f(t) k f(x) = f(t) e ik(x t) dk dt (2.35) 2π (2.34) (2.35) (2.27) (2.35) 2π eik(x t) dk δ(t x) δ(x) = δ( x) δ(x x 0 ) = e ik(x x0) dk (2.36) 2π (2.34) 2 F (k) = f(x) = 2π f(x)e ikx = F{f(x)} (2.37) F (k)e ikx dk = F {F (k)} (2.38)

16 () ( ) F (k) f(k) ( ) /2π F (k) = f(x) = 2π 2π f(x)e ikx = F{f(x)} (2.39) F (k)e ikx dk = F {F (k)} (2.40) k 2πk (2.37) (2.38) (2.37) (2.38) (2.39) (2.40) (2.34) f(x) = F {F{f(x)}} (2.4) f(x) 2.0 { x a f(x) = 0 x > a 2 sin ka ( ) k 2. () δ(x) (2) () (2.36) 2.2 f(x) = a/πe ax2 ( ) F (k) = I n = I n = I n = a π e ax2 e ikx = = a π x 2n e ax2 x 2n ( (2n )!! π (2a) n a e ax2 2a a π e ax2 cos kx = ) ) (e = x 2n ax2 e ax2 (cos kx + i sin kx) 2a = 2n 2a I n = 2n 2a a π 2n 3 2a e ax2 n=0 + 2n 2a a k 2n π 2n! x2n e ax 2 a k2n (2n )!! π = ( )n π 2n! (2a) n a = ( ) n (2n ) (2n 3) 3 k 2n 2n (2n )(2n 2) (2n 3) 3 2 (2a) n = ( ) n (kx)2n ( ) 2n! x 2n e ax2 3 2a 2a I 0, I 0 = e ax2 = π a ( ) n k 2n 2n(2n 2) 4 2 (2a) n = ( )n k 2n n!(4a) n 2

17 ( ) = n=0 ( ) n k 2n n!(4a) n F (k) = e k2 /4a = n=0 n! ) ( k2 = e k2 /4a 4a II { 0 x < θ(x) = θ(x) 0 x { 0 x < 0 () θ ϵ (x) e ϵx 0 x θ ϵ(x) θ(x) = lim ϵ 0 θ ϵ (x) θ(x) θ(k) θ(k) = lim ϵ 0 ϵ + ik (2) () θ(x) = lim 2π (3) (2) ( dθ(x) ϵ 0 e ikx dk ϵ + ik = δ(x)) f(x) (, ) f(x) f (x) x 0 f (x)e ikx = ik f(x)e ikx (2.42) F{f (x)} = ikf{f(x)} (2.43) ik n dn f(x) n = f (n) (x) x 0 f (n) (x)e ikx = (ik) n f(x)e ikx (2.44) F{f (n) (x)} = (ik) n F{f(x)} (2.45) n (ik) n 2.4 (2.42) (2.43) 2.5 (2.44) (2.45) 3

18 2.2.5 (, ) 2 f(x) g(x) f g = f(x u)g(u)du (2.46) f g f(x) g(x) f g = f(x u)g(u)du = F (k)g(k)e ikx dk (2.47) 2π f g = F {F (k)g(k)} = F {F{f(x)}F{g(x)}} (2.48) F{f g} = F (k)g(k) = F{f(x)}F{g(x)} (2.49) ( ) (2.37) (2.38) (2.39) (2.40) (2.47) f(x u)g(u)du = F (k)g(k)e ikx dk (2.50) (2.48) (2.49) f g = 2π 2.6 (2.47) f(x u)g(u)du (2.5) f(x)g (x) = F (k)g (k)dk (2.52) 2π g (x) G (k) g(x) G(k) f(x) = g(x) f(x) 2 = F (k) 2 dk (2.53) 2π g(x) = f(x)e ik x 4

19 f(x) 2 e ik x = F (k)f (k k )dk (2.54) 2π 2.7 (2.52) 2.8 (2.54) sin 2 x x f(x) F (s) = 0 f(x)e sx = L{f(x)} (2.55) F (s) f(x) s F (s) (2.55) f(x) f(x) F (s) f(x) = L {F (s)} (2.56) f(x) = L {L{f(x)}} (2.57) f(x) = L {F (s)} = 2πi γ+i γ i F (s)e sx ds (2.58) II (2.55) ( ) x M e s0x f(x) M (2.59) s 0 s > s 0 x e sx 5

20 2.3.2 f(x) F (s) δ(x) + 0 (2.60) s s > 0 (2.6) x n n! s n+ s > 0 (2.62) e ax s a s > a (2.63) xe ax (s a) 2 s > a (2.64) s cosh ax s 2 a 2 s > a (2.65) a sinh ax s 2 a 2 s > a (2.66) s cos ax s 2 + a 2 s > 0 (2.67) a sin ax s 2 + a 2 s > 0 (2.68) e bx cos ax s b (s b) 2 + a 2 s > b (2.69) e bx sin ax a (s b) 2 + a 2 s > b (2.70) x cos ax x sin ax s 2 b 2 (s 2 + a 2 ) 2 s > 0 (2.7) 2as (s 2 + a 2 ) 2 s > 0 (2.72) 2.20 (2.60) (2.6) (2.63) (2.65)-(2.68) L{af(x) + bg(x)} = al{f(x)} + bl{g(x)} (2.73) L{f(λx)} = F (s/λ) λ (2.74) L{e ax f(x)} = F (s + a) (2.75) L{f(x a)} = e as F (s) (2.76) I L{f (x)} = s{f(x)} f(0) = sf (s) f(o) (s > 0) (2.77) II L{f (x)} = s 2 {f(x)} sf(0) f (0) = s 2 F (s) sf(0) f (0) (s > 0) (2.78) d n F (s) ds n = F (n) (s) = L{( x) n f(x)} (2.79) { } f(x) F (t)dt = L (2.80) x s 6

21 2.2 (2.73) (2.80) 2.22 (2.75) (2.69) (2.70) 2.23 (2.79) (2.62) (2.64) (2.7) (2.72) f(x) g(x) f g f g = 0 f(x u)g(u)du (2.8) { } L{f g} = L f(x u)g(u)du = F (s)g(s) = L{f(x)}L{g(x)} (2.82) (2.82) 7

22 3 3. Γ B 3.. Γ x > 0 Γ(x) = Γ() 0 e t t x dt (3.) Γ Γ(x + ) = xγ(x) (3.2) x n Γ(n + ) = n! (3.3) Γ (n!) Γ() = Γ(/2) = π 3. (3.2) 3.2 Γ() = Γ(/2) = π x < 0 (3.2) x + n > 0 n Γ(x) = Γ(x + n) x(x + )... (x + n ) (3.4) x (Stirling) x Γ(x + ) 2πxx x e x (3.5) log Γ(x + ) x log x x + log 2πx x log x x (3.6) 20 Γ(x + ) ( 3, 4) 2πxx x e x (0, 4) Γ(x + ) 2πxx x e x

23 3..2 B x > 0 y > 0 B(x, y) = B() 0 t x ( t) y dt (3.7) B Γ B(x, y) = Γ(x)Γ(y) Γ(x + y) (3.8) 3.3 (3.8) f(x) x f(x) = a 0 + a x + + a n x n + a n x n (3.9) f(x) x n a, b w(x) (f(x), g(x)) = b a w(x)f (x)g(x) (3.0) 0 f(x) g(x) n ϕ n (x) n ϕ n (x) = a n kx k = a n 0 + a n x + + an x n n + a n nx n (3.) k=0 a n k n k ( ) (a k n ) {ϕ n (x)} = {ϕ 0 (x), ϕ (x), ϕ 2 (x),... } (ϕ m (x), ϕ n (x)) = b a w(x)ϕ m(x)ϕ n (x) = δ mn w n (3.2) {ϕ n (x)} ϕ m(x) ϕ m (x) w n = ( ) w n ( ϕ n (x)/ w n ϕ n (x) ) 9

24 ( ) (3.2) ϕ m(x) = ϕ m (x) {, x, x 2, x 3,... } 3.4, w(x) = {, x, x 2, x 3 } 3 n x m (m n ) b a w(x)ϕ n (x)x m = 0 (0 m n ) (3.3) 3.5 (3.3) w(x) a, b n b a w(x)xn (3.) (3.2) a n n ϕ n (x) = (α n x β n )ϕ n (x) γ n ϕ n 2 (x) (3.4) 3 α n = a n n a n n (xϕ n (x), ϕ n (x)) β n = α n (ϕ n (x), ϕ n (x)) α n (ϕ n (x), ϕ n (x)) γ n = α n (ϕ n 2 (x), ϕ n 2 (x)) (3.5) ( ) ϕ n (x) ϕ n (x) ϕ n (x) x an n ϕ n (x) = a n 0 + a n x + + a n n x n + a n nx n ϕ n (x) = a n 0 + a n x + + a n n xn a n n ϕ n (x) n n ϕ k (x) ϕ n (x) x an n a n n n ϕ n (x) = b k ϕ k (x) (3.6) k=0 20

25 ϕ j (x) (j n 3) ( ϕ n (x) x an n a n n a n n a n n ϕ n (x), ϕ j (x) (xϕ n (x), ϕ j (x)) = ) an n a n n = b j (ϕ j (x), ϕ j (x)) (3.7) (ϕ n (x), xϕ j (x)) (3.8) xϕ j (x) n 2 0 (3.7) b j = 0 (j n 3) (3.9) (3.6) k = n n 2 ϕ n (x) x an n a n n ϕ n (x) = b n ϕ n (x) + b n 2 ϕ n 2 (x) (3.20) α n = a n n/a n n, β n = b n, γ n = b n 2 (3.2) ϕ n (x) = (α n x β n )ϕ n (x) γ n ϕ n 2 (x) (3.22) b n b n 2 β n γ n (3.22) ϕ n (x) 0 = α n (xϕ n (x), ϕ n (x)) β n (ϕ n (x), ϕ n (x)) β n = α n (xϕ n (x), ϕ n (x)) (ϕ n (x), ϕ n (x)) (3.22) ϕ n 2 (x) (3.23) 0 = α n (xϕ n (x), ϕ n 2 (x)) γ n (ϕ n 2 (x), ϕ n 2 (x)) γ n = α n (xϕ n (x), ϕ n 2 (x)) (ϕ n 2 (x), ϕ n 2 (x)) (3.24) (xϕ n (x), ϕ n 2 (x)) = (ϕ n (x), xϕ n 2 (x)) = (ϕ n (x), a n 2 n 2 xn +... ) = an 2 a n n ϕ n (x) ϕ n (x) = a n n xn + n 2 (ϕ n (x), a n n xn +... ) = an 2 k=0 an k x k n 2 a n n xn = ϕ n (x) a n 2 k x k (3.25) ( ) (xϕ n (x), ϕ n 2 (x)) = an 2 n 2 a n ϕ n (x), ϕ n (x) a n k x k n (3.24) γ n γ n = k=0 k=0 α n (ϕ n (x), ϕ n (x)) α n (ϕ n 2 (x), ϕ n 2 (x)) a n n = an 2 a n n (ϕ n (x), a n n xn ) (3.25) (ϕ n (x), ϕ n (x)) (3.26) 2

26 3.6 (3.4) (3.5) w(x) =, a n n (Rodrigues) G (k) n ϕ n (x) = (a) = G (k) n c n d n G n (x) w(x) n (3.27) (b) = 0 G (k) n (x) G n (x) k ( ϕ n (x) ) ϕ n (x) n (3.27) 3.7 (3.27) ϕ n (x) n d n+ c n d n G n (x) n+ w(x) n = 0 (3.28) G n (x) w(x) {ϕ n (x)} (Goursat) II (Goursat) f(z) n f (n) (z) f (n) (z) = n! f(t) dt (3.29) 2πi C (t z) n+ C t = z (3.27) ϕ n (z) = n! G n (t) dt (3.30) 2πi C w(z)(t z) n+ 22

27 3.3 a, b, a, b, (Jacobi) (Legendre) (Chebyshev) ( ) 0, 3.3. (Jacobi) {P n (α,β) (x)} w(x) = ( x) α ( + x) β, P n (α,β) (x) = ( )n 2 n n! w(x) Dn w(x)( x 2 ) n, = ( )n 2 n n! ( x) α ( + x) β D n ( x) n+α ( + x) n+β, (3.3) D = d w n = w(x)p n (α,β) (x)p m (α,β) (x) = w n δ nm, (3.32) 2 α+β+ 2n + α + β + Γ(n + α + )Γ(n + β + ). (3.33) n!γ(n + α + β + ) 2(n + )(n + α + β + )(2n + α + β)p (α,β) n+ (x) = (2n + α + β + ){(2n + α + β)(2n + α + β + 2)x + (α 2 β 2 )}P n (α,β) (x) 2(n + α)(n + β)(2n + α + β + 2)P (α,β) n (x) (3.34) P (α,β) 0 (x) =, P (α,β) (x) = {(α + β + 2)x + (α β)} (3.35) (Gegenbauer) {Cn(x)} λ α = β = λ /2 w(x) = ( x 2 ) λ 2 Cn(x) λ = Γ(λ + 2 )Γ(n + 2λ) (λ Γ(2λ)Γ(n + λ + 2,λ 2 ) 2 )P n (x) (3.36) 23

28 Cn(x) λ = ( )n Γ(λ + 2 )Γ(n + 2λ) 2 n n!γ(2λ)γ(n + λ + 2 ) w(x) Dn w(x)( x 2 ) n (3.37) w(x)c λ n (x)c λ m(x) = π2 2λ Γ(n + 2λ) n!(λ + n)γ 2 (λ) δ nm (3.38) (n + )C λ n+(x) = 2(λ + n)xc λ n(x) (2λ + n )C λ n (x) (3.39) C λ 0 (x) =, C λ (x) = 2λx (3.40) (Legendre) P n (x) w(x) =, α = β = 0 ν = /2 P n (x) = P (0,0) n (x) = C /2 n (x), (3.4) (3.42) P n (x) = ( )n 2 n n! Dn ( x 2 ) n, (3.42) P n (x) = 2 n n 2 m=0 x x n/2 n n/2 n (n )/2 (3.43) P n (x) n n 4 n ( ) m (2n 2m)! m!(n m)!(n 2m)! xn 2m (3.43) n n n n + n P 0 x P x P 2 x P 3 x P 4 x 24

29 3.8 (3.43) P m(x)p n (x) = 2 2n + δ nm, (3.44) 3.9 (3.44) P 0 (x) = P (x) = x (n + )P n+ (x) = (2n + )xp n (x) np n (x), (3.45) 3.0 (3.45) / 2xt + t 2 t t = 0 = P n (x)t n (3.46) 2xt + t 2 n=0 / 2xt + t 2 3. (3.46) ( ) f(x) = x x = f(x) n f (n) (x) = (2n)! 2 2n n! ( x) 2 n f (0) (x) = ( x) 2 f () (x) = 2 ( x) 3 2 f (k+) (x) = d (2k)! 2 2k k! ( x) 2 k = (2k)! 2 2k k! = (2k)! 2 2k k! = 2k + ( x) 2 (k+) = (2k)! 2 2 2k k! (2(k + ))! 2 2(k+) (k + )! ( x) 2 (k+) n = 0, n = k ( 2 k ) ( x) 2 (k+) (2k + 2)(2k + ) ( x) 2 (k+) 2(2k + 2) n = k + f(x) (2n)! f(x) = = x 2 2n (n!) 2 xn x 2xt t 2 n=0 = (2n)! 2xt + t 2 2 2n (n!) 2 (2xt t2 ) n = = = n=0 (2n)! 2 2n (n!) 2 tn n n=0 m=0 n=0 n nc m (2x) n m ( t) m = m=0 n=0 n=0 ( ) m (2n)! 2 2n n!m!(n m)! (2x)n m t n+m ( ) (2n)! 2 2n (n!) 2 tn (2x t) n (2n)! 2 2n (n!) 2 tn n ( ) m n! m!(n m)!) (2x)n m ( t) m m=0 25

30 n + m = n ( ) = = = n 2 n =0 m=0 n 2 n =0 m=0 P n (x)t n n =0 ( ) m (2n 2m)! 2 2(n m) (n m)!m!(n 2m)! (2x)n 2m t n ( ) m (2n 2m)! 2 n (n m)!m!(n 2m)! xn 2m t n 3.2 (3.46) (3.42) (3.29) 3.3 (3.46) (3.45) z = a q (r, θ, φ) ϕ ϕ r ϕ = 4πϵ 0 q r (3.47) r r = r 2 2ar cos θ + a 2 ϕ = q 4πϵ 0 r 2 a r cos θ + ( a r ) 2 (3.48) (3.46) ϕ ϕ = q ( a ) n P n (cos θ) (3.49) 4πϵ 0 r r n=0 z = a q z = a q (r, θ, φ) ϕ ϕ ϕ = q ( ) 4πϵ 0 r r 2 { q ( a ) n ϕ = P n (cos θ) 4πϵ 0 r r = 2q 4πϵ 0 r n=0 P (cos θ) a r + P 3(cos θ) n=0 (3.50) } ( P n (cos θ) a ) n = 2q r 4πϵ 0 r ( a r ) n=0 ( a ) 2n+ P 2n+ (cos θ) r (3.5) 26

31 3.3.4 (Chebyshev) {T n (x)}, w(x) = / x 2 {P n (α,β) (x)} α = β = /2 {C λ n(x)} λ 0 T n (x) = 22n (n!) 2 (2n)! P n ( /2, /2) (x) = n 2 lim λ 0 Γ(λ)Cλ n(x) (3.52) T n (x) = ( )n (2n )!! w(x) Dn w(x)( x 2 ) n, w(x) = x 2 (3.53) (3.53) T n (x) = n 2 n 2 m=0 ( ) m (n m )! (2x) n 2m (3.54) m!(n 2m)! x x n/2 n n/2 n (n )/2 (3.54) T n (x) n n 4 n n n n n + n (3.54) T 0 x T x T 2 x T 3 x T 4 x w(x)tm(x)t π n = 0 n (x) = w n δ nm,, w n = π/2 n (3.55) 3.5 (3.55) T 0 (x) = T (x) = x T n+ (x) = 2xT n (x) T n (x), (3.56) 3.6 (3.56) 27

32 t2 2xt+t t t = 0 2 t 2 2xt + t 2 = T 0(x) + 2 T n (x)t n (3.57) n= t2 2xt+t (3.57) 3.8 (3.57) (3.53) (3.29) T n (cos θ) = cos nθ (3.58) ((cos θ + i sin θ) n = cos nθ + i sin nθ) T n (x) = 2 (x + i x 2 ) n + (x i x 2 ) n (3.59) 3.9 (3.58) sin cos (Sonine) 0, a, b ϕ n (x) = K n w(x) Dn w(x)(x a) n (x b) n, w(x) = (x a) α (x b) β (3.60) 0, a 0, b x 2x/β β S α n (x) = lim β P (α,β) n ( 2x β ) (3.6) {S α n (x)} 28

33 Sn α (x) = n! w(x) Dn w(x)x n, w(x) = e x x α (3.62) 3.20 (3.6) (3.62) (3.62) S α n (x) = n k=0 ( ) k (n + α)! (n k)!(α + k)!k! xk (3.63) 0 w(x)s α m (x)s α n (x) = (n + α)! δ nm (3.64) n! 3.2 (3.64) (n+)s α n+(x) = (2n+α+ x)s α n (x) (n+α)s α n (x), S α 0 (x) =, S α (x) = α + x (3.65) 3.22 (3.65) xz exp z ( z) α+ = Sn α (x)z n (3.66) n= (3.66) ( ) Methematica LaguerreL (Laguerre) L m n (x) = ( ) m n!s m n m(x) (3.67) n m 29

34 L m n (x) = ( ) m n! (n m)! w(x) Dn m w(x)x n m, w(x) = e x x m (3.68) (3.68) n m L m n (x) = ( ) m n! ( ) k n! (n m k)!(m + k)!k! xk (3.69) k=0 0 w(x)l m n (x)l m l (x) = (n!)3 (n m)! δ nl (3.70) 3.24 (3.64) (3.70) (n + m)l m n+(x) = (n + )(2n m + x)l m n (x) n 2 L n (x), L m m(x) = ( ) m m!, L m m+(x) = ( ) m (m + )!(m + x) (3.7) 3.25 (3.65) (3.7) exp xz ( ) m z ( z) m+ = (n + m)! Lm n+m(x)z n (3.72) n= (3.66) (3.72) (Laguerre) m = 0 {L n (x)} L n (x) = L 0 n(x) (3.73) L n (x) = w(x) Dn w(x)x n, w(x) = e x (3.74) L n (x) = n! n k=0 ( ) k n! (n k)!k!k! xk (3.75) 30

35 (3.69) L m n (x) = ( ) m d L n (x) (3.76) m = 0 0 w(x)l n(x)l l (x) = (n!) 2 δ nl (3.77) L n+ (x) = (2n + x)l n (x) n 2 L n (x), L 0 (x) =, L (x) = x (3.78) (e /2x L n (x)/n!) n n L 0 x L x L 2 x L 3 x L 4 x n l R l n(r) a B Rn(r) l e ρ/2 ρ l L 2l+ 2r n+l (ρ), ρ = (3.79) na B 3.5 (Hermite),, (3.60) a, b α = β, x x/ α α H n (x) = lim α 2n n!α n/2 P n (α,α) ( x ) (3.80) α {H n (x)} H n (x) = ( ) n w(x) Dn w(x), w(x) = e x 2 (3.8) 3

36 ( ) w(x) = e x2 / (3.80) (3.8) (3.8) n 2 H n (x) = ( ) m n! m!(n 2m)! (2x)n 2m (3.82) m=0 (e /2x2 H n (x)/ 2 n n!) 3.28 (3.82) H 0 x H x H 2 x H 3 x H 4 x w(x)h m(x)h n (x) = 2 n n! πδ mn (3.83) 3.29 (3.83) H n+ (x) = 2xH n (x) 2nH n (x), H 0 (x) =, H = 2x (3.84) 3.30 (3.84) e 2xt t2 = n=0 n! H n(x)t n (3.85) 3.3 (3.85) 32

37 p 0 (x) d2 2 u(x) + p (x) d u(x) + p 2(x)u(x) = p 0 (x) d2 2 + p (x) d + p 2(x) u(x) = Lu(x) = 0 (4.) L L L L = d2 2 p 0(x) d p (x) + p 2 (x) (4.2) L = p 0 (x) d2 2 + (2p 0(x) p (x)) d + (p 0(x) p (x) + p 2 (x)) (4.3) L = L 2p 0(x) p (x) = p (x) p 0(x) p (x)+p 2 (x) = p 2 (x) p 0(x) = p (x) (4.4) L = L p 0 (x) = p(x) p 2 (x) = q(x) (4.) Lu(x) = Lu(x) = d p(x) du(x) + q(x)u(x) (4.5) p 0(x) exp x p(t) p 0(t) dt ( ) x p 0 (x) exp p (t) p 0 (t) dt Lu(x) x p (t) = exp p 0 (t) dt u (x) + p (x) p 0 (x) exp x p (t) p 0 (t) dt u (x) + p x 2(x) p 0 (x) exp p (t) p 0 (t) dt u(x) { } d x exp p(t) p dt 0(t) u x (x) = exp p(t) p dt 0(t) u (x) + p(x) p exp x p(t) 0(x) p dt 0(t) u (x) x p 0 (x) exp p (t) p 0 (t) dt Lu(x) = d { x p (t) exp p 0 (t) dt du(x) } + p x 2(x) p 0 (x) exp p (t) p 0 (t) dt u(x) 33

38 4.2 (Sturm-Liouville) a, b p(x) q(x) w(x) x p(x) > 0 w(x) > 0 d p(x) du(x) + q(x)u(x) + λ n w(x)u(x) = 0 (4.6) λ n 2 2 A A 2 B B 2 A u(a) + A 2 u (a) = 0 B u(b) + B 2 u (b) = 0 λ n λ n (4.7) 4.2 ( ) a, b w(x) 2 u (x) u 2 (x) b a w(x)u (x)u 2 (x) = 0 (4.8) L 2 u(x) v(x) b v (x)lu(x) = b a a u(x)lv (x) (4.9) 4.3 (4.9) b a f (x)g(x) (f, g) (4.9) (v, Lu) = ( Lv, u) = (Lv, u) A 2 v u (v, Au) = ( t A v, u) = (Av, u) 34

39 A L A = t A L = L ϕ n (x) = K n w(x) Dn w(x)x(x) n (4.0) X(x) x 2 (4.0) X(x) d2 u 2 + K ϕ (x) du + λ nu = 0 λ n = n(k a + n X (x)) 2 (4.) a ϕ (x) x w(x) K ϕ (x)w(x) = Dw(x)X(x) d w(x)x(x) du + λ n w(x)u = 0 (4.2) w(x) 4.4 (4.) ( ) n+ D n+ XD wx n = n+c k D k X D n+ k D wx n k=0 k 0 2 ( X 2 ) = XD n+2 wx n + (n + )X D n+ wx n (n + )n + X D n wx n 2 = XD 2 D n wx n + (n + )X D D n wx n (n + )n + X D n wx n 2 { D n wx n = K n wϕ n } = K n XD 2 wϕ n + (n + )X (n + )n D wϕ n + X wϕ n () 2 D n+ XDwX n = D n+ XDwX X n = D n+ X n DwX + (n )X n wx DwX = K wϕ = D n+ X n K wϕ + (n )X wx n = D n+ {K ϕ + (n )X }wx n n+ = n+c k D k K ϕ + (n )X D n+ k wx n k=0 k = 0, = {K ϕ + (n )X }D n+ wx n + (n + ){K ϕ + (n )X }D n wx n 35

40 D n wx n = K n wϕ n = K n {K ϕ + (n )X }Dwϕ n + (n + ){K ϕ + (n )X }wϕ n (2) ()=(2) ( XD 2 wϕ n + (2X K ϕ )Dwϕ n (n + ) K ϕ + n 2 ) X wϕ n = 0 2 Dwϕ n = wϕ n + w ϕ n D 2 wϕ n = wϕ n + 2w ϕ n + w ϕ n wxϕ n + (2w X + 2wX K wϕ )ϕ n ( + w X + 2w X K w ϕ (n + ) K ϕ + n 2 ) X w ϕ n = 0 2 K wϕ = wx + w X K (w ϕ + wϕ ) = w { X + 2w X + wx X d2 2 ϕ d n + K ϕ ϕ n + λ n ϕ n = 0, λ n = n K ϕ + n } { X = n K a + n } X 2 2 λ n {Pn α,β (x)} d ( x 2 ) d2 u du + {β α (α + β + 2)x} + n(n + α + β + )u = 0 (4.3) 2 ( x) α+ ( + x) β+ du + n(n + α + β + )( x) α ( + x) β u = 0 (4.4) {P n (x)} ( x 2 ) d2 u 2 2xdu + n(n + )u = 0 (4.5) d ( x 2 ) du + n(n + )u = 0 (4.6) {T n (x)} ( x 2 ) d2 u 2 xdu + n2 u = 0 (4.7) d x 2 du + n 2 x 2 u = 0 (4.8) 36

41 {S α n (x)} x d2 u + (α + x)du + nu = 0 (4.9) 2 d e x x α+ du + ne x x α u = 0 (4.20) {L m n (x)} x d2 u + (m + x)du + (n m)u = 0 (4.2) 2 d e x x m+ du + (n m)e x x m u = 0 (4.22) {H n (x)} d 2 u 2 2xdu + 2nu = 0 (4.23) d e x2 du + 2ne x2 u = 0 (4.24) Lu = p 0 (x) d2 u 2 + p (x) du + p 2(x)u = 0 (4.25) u(n, x) Lu = 0 Lu(n, x) = f(n, x) d + g(n, x) f(n, x) d + g(n, x) u(n, x) + c(n)u(n, x) (4.26) = f(n ± l, x) d + g(n ± l, x) f(n ± l, x) d + g(n ± l, x) u(n, x) + c(n ± l)u(n, x) (4.27) 2 T = f(n, x) d + g(n, x) T = f(n ± l, x) d (4.28) + g(n ± l, x) 37

42 T u(n, x) = λ n u(n l, x) T u(n, x) = λ n u(n ± l, x) (4.29) λ n λ n u(n, x) T T ± l l ( ) (4.26) T f(n, x) d + g(n, x) f(n, x) d + g(n, x) T u(n, x) + c(n)t u(n, x) = 0 (4.30) (4.27) n n l f(n, x) d + g(n, x) f(n, x) d + g(n, x) u(n l, x) + c(n)u(n l, x) = 0 (4.3) T u(n, x) u(n l, x) (4.32) T u(n, x) u(n ± l, x) Lu = p 0 (x) d2 u + p 2 (x) du + p 2(x)u = 0 ( Lu = f d ) ( + g f d + g ) u + cu ( ) ( Lu = ff d2 u 2 + df du fg + gf + f + gg + ff = p 0 fg + gf + gg + f df = p f dg = p 2 c ) dg f u f f = p 0 /f 2 3 g = { p p ( 0 g + df )} f f 3 g Riccati G = g/f ( dg g2 f + p ) df g = f (p 2 c) (4.33) p 0 f p 0 dg G2 + p p 0 G = p 2 c p 0 (4.34) 3 38

43 4.5.3 {P n (x)} (4.5) x 2 (4.25) ( x 2 ) 2 d2 u 2 2x( x2 ) du + n(n + )( x2 )u = 0 (4.35) p 0 = ( x 2 ) 2, p = 2x( x 2 ), p 2 = n(n + )( x 2 ) (4.26) (4.27) f(n, x) = f(n, x) = x 2 g(n, x) (4.33) g(n, x) ( x 2 )g g 2 = n(n + )( x 2 ) c x 2 g g = ax + b b = 0, a = n, c = n 2 b 2 = 0, a 2 = (n + ), c 2 = (n + ) 2 g = nx, g 2 = (n + )x 2 c 2 (n) = c (n + ) g g 2 (4.26) (4.27) g = g(n, x), g 2 = g(n +, x) (4.35) = ( x 2 ) d nx ( x 2 ) d + (n + )x ( x 2 ) d + nx u + n 2 u (4.36) ( x 2 ) d (n + )x u + (n + ) 2 u (4.37) ( x 2 ) d + nx P n (x) = λ n P n (x) (4.38) ( x 2 ) d (n + )x P n (x) = λ n P n+ (x) (4.39) λ n λ n P n (x) = (2n)! 2 n n!n! xn (2n 2)! 2 n (n )!(n 2)! xn P n (x) = (2n 2)! 2 n (n )!(n )! xn +... P n+ (x) = (2n + 2)! 2 n+ (n + )!(n + )! xn (4.40) (4.38) x n λ n = n (4.39) x n + λ n = (n + ) 39

44 ( x 2 ) d + nx P n (x) = np n (x) (4.4) ( x 2 ) d (n + )x P n (x) = (n + )P n+ (x) (4.42) (4.4) (4.42) 3 (3.45) {T n (x)} (4.7) x 2 ( x 2 ) 2 d2 u 2 x( x2 ) du + n2 ( x 2 )u = 0 = (n )x ( x 2 ) d ( x 2 ) d + (n + )x ( x 2 ) d + nx u + n(n )u (4.43) ( x 2 ) d nx u + n(n + )u (4.44) ( x 2 ) d nx T n (x) = nt n+ (x) (4.45) ( x 2 ) d + nx T n (x) = nt n (x) (4.46) (4.45) (4.46) 3 (3.56) {S α n (x)} (4.9) x x 2 d2 u + (α + x)du 2 + nxu = 0 = x d x d n x + n + α x d n x d x + n + + α u n(n + α)u (4.47) u (n + )(n + + α)u (4.48) 40

45 x d n Sn α (x) = (n + α)sn (x) α (4.49) Sn α (x) = (n + )Sn+(x) α (4.50) x d x + n + α + (4.49) (4.50) 3 (3.65) {H n (x)} (4.23) ( ) ( ) d d d d 2x + 2n u = 2x + 2(n + ) u = 0 (4.5) d H n(x) = 2nH n (x) (4.52) ( ) d 2x H n (x) = H n+ (x) (4.53) (4.52) (4.53) 3 (3.84) P m n (x) = ( ) m ( x 2 ) m/2 dm P n (x) m (4.54) (3.42) m 0 m n Pn m (x) = ( )n+m 2 n ( x 2 m/2 dn+m ) n! n+m ( x2 ) n (4.55) Pn m m (n m)! (x) = ( ) (n + m)! P n m (x) (4.56) n m n Pn m (x)pl m (x) = (n + m)! 2 (n m)! 2n + δ nl (4.57) 4

46 (n m + )P m n+(x) (2n + )xp m n (x) + (n + m)p m n (x) = 0 (4.58) (cos θ + i sin θ cos ϕ) n = P n (cos θ) + 2 (4.5) n m= n! (n + m)! cos ϕp m n (cos θ) (4.59) } ( x 2 ) d2 u {n(n 2 2xdu + + ) m2 x 2 u = 0 (4.60) x = cos θ d = d sin θ dθ ( d sin θ d ) m2 sin θ dθ dθ sin 2 + n(n + ) u = 0 (4.6) θ P m n (cos θ) Yl m (θ, ϕ) = ( ) (m+ m ) 2 2l + 4π /2 (l m )! P m l (cos θ)e imϕ (4.62) (l + m )! ( d sin θ d ) + d 2 sin θ dθ dθ sin 2 + n(n + ) u = 0 (4.63) θ dϕ2 2 ( = d2 2 + d2 dy 2 + d2 dz 2 ) ( u = 0) ( u = k 2 u) 2π π 0 0 Y m l (θ, ϕ)y m l (θ, ϕ)dθdϕ = δ ll δ mm (4.64) l l = ir ( ħ l = iħr ) l x = i(y d dz z d dy ) (4.65) l y = i(z d x d dz ) (4.66) l z = i(x d dy y d ) (4.67) 42

47 l 2 = sin θ ( ) d dθ sin θ d dθ + sin 2 θ d 2 dϕ l 2 x = i ϕ l 2 Yl m (θ, ϕ) = l(l + )Yl m (θ, ϕ) (4.68) l z Yl m (θ, ϕ) = myl m (θ, ϕ) (4.69) ( l ± = l x ± il y = e ±iϕ ± θ + i cot θ ) ϕ l ± m (4.70) l ± Y m l (θ, ϕ) = l(l + ) m(m ± )Y m+ l (θ, ϕ) (4.7) Y0 0 =, 4π 3 Y 0 = Y 0 2 = ± 3 cos θ, Y = 4π 4π sin θe±iϕ, 5 5 6π (3 cos2 θ ), Y 2 ± = 32π sin θ cos θe±iϕ, Y 2 ±2 = 5 32π sin2 θe ±2iϕ Y lm l= s p d f l = 2 l = 2 { Y lm = 2 ( ) m Yl m + Y m } { l Yl m = i 2 ( ) m Yl m Y m } l l 3 Y 00 s 4π 4π 3 3 Y sin θ sin ϕ 4π 4π y p y 3 3 Y 0 4π cos θ 4π z p z 3 3 Y sin θ cos ϕ 4π 4π x p x 5 5 Y 2 2 6π sin2 θ sin 2ϕ 4π xy d xy 5 5 Y 2 sin θ cos θ sin ϕ 4π 4π yz d yz 5 5 Y 20 6π (3 cos2 θ ) 6π (3z2 ) 5 5 Y 2 sin θ cos θ cos ϕ 4π 4π zx d zx Y π sin2 θ cos 2ϕ 43 d 3z2 5 6π (x2 y 2 ) d x 2 y 2

48 Y 00 Y Y 0 Y Y 2 2 Y 2 Y 20 Y 2 Y 22 44

49 A cos nπ = ( ) n, sin nπ = 0 (n : ) sin α sin β = {cos(α + β) cos(α β)} 2 sin α cos β = {sin(α + β) + sin(α β)} 2 cos α cos β = {cos(α + β) + cos(α β)} 2 e ix = cos x + i sin x (x n ) = nx n, x n = xn+ + C (n ) n + (log x) = x, = log x + C x (sin ax) cos ax = a cos ax, sin ax = + C a (cos ax) sin ax = a sin ax, cos ax = + C a (e ax ) = ae ax, e ax = eax a + C π e ax2 = a f(x)g (x) = f(x)g(x) f (x)g(x) n D n f(x)g(x) = nc k D n k f(x)d k g(x) D = d k=0 2 n (a + b) n = nc k a n k b k k=0 45

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2 II No.1 [n/] [1]H n x) H n x) = 1) r n! r!n r)! x)n r r= []H n x) n,, H n x) = 1) n H n x) [3] H n x) = 1) n dn x e dx n e x [4] H n+1 x) = xh n x) nh n 1 x) ) d dx x H n x) = H n+1 x) d dx H nx) = nh

More information

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google I4 - : April, 4 Version :. Kwhir, Tomoki TA (Kondo, Hirotk) Google http://www.mth.ngoy-u.c.jp/~kwhir/courses/4s-biseki.html pdf 4 4 4 4 8 e 5 5 9 etc. 5 6 6 6 9 n etc. 6 6 6 3 6 3 7 7 etc 7 4 7 7 8 5 59

More information

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y [ ] 7 0.1 2 2 + y = t sin t IC ( 9) ( s090101) 0.2 y = d2 y 2, y = x 3 y + y 2 = 0 (2) y + 2y 3y = e 2x 0.3 1 ( y ) = f x C u = y x ( 15) ( s150102) [ ] y/x du x = Cexp f(u) u (2) x y = xey/x ( 16) ( s160101)

More information

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a =

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a = II 6 ishimori@phys.titech.ac.jp 6.. 5.4.. f Rx = f Lx = fx fx + lim = lim x x + x x f c = f x + x < c < x x x + lim x x fx fx x x = lim x x f c = f x x < c < x cosmx cosxdx = {cosm x + cosm + x} dx = [

More information

2011de.dvi

2011de.dvi 211 ( 4 2 1. 3 1.1............................... 3 1.2 1- -......................... 13 1.3 2-1 -................... 19 1.4 3- -......................... 29 2. 37 2.1................................ 37

More information

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s ... x, y z = x + iy x z y z x = Rez, y = Imz z = x + iy x iy z z () z + z = (z + z )() z z = (z z )(3) z z = ( z z )(4)z z = z z = x + y z = x + iy ()Rez = (z + z), Imz = (z z) i () z z z + z z + z.. z

More information

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4 1. k λ ν ω T v p v g k = π λ ω = πν = π T v p = λν = ω k v g = dω dk 1) ) 3) 4). p = hk = h λ 5) E = hν = hω 6) h = h π 7) h =6.6618 1 34 J sec) hc=197.3 MeV fm = 197.3 kev pm= 197.3 ev nm = 1.97 1 3 ev

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ = 1 1.1 ( ). z = + bi,, b R 0, b 0 2 + b 2 0 z = + bi = ( ) 2 + b 2 2 + b + b 2 2 + b i 2 r = 2 + b 2 θ cos θ = 2 + b 2, sin θ = b 2 + b 2 2π z = r(cos θ + i sin θ) 1.2 (, ). 1. < 2. > 3. ±,, 1.3 ( ). A

More information

Sturm-Liouville Green KEN ZOU Hermite Legendre Laguerre L L [p(x) d2 dx 2 + q(x) d ] dx + r(x) u(x) = Lu(x) = 0 (1) L = p(x) d2 dx

Sturm-Liouville Green KEN ZOU Hermite Legendre Laguerre L L [p(x) d2 dx 2 + q(x) d ] dx + r(x) u(x) = Lu(x) = 0 (1) L = p(x) d2 dx Sturm-Liouville Green KEN ZOU 2006 4 23 1 Hermite Legendre Lguerre 1 1.1 2 L L p(x) d2 2 + q(x) d + r(x) u(x) = Lu(x) = 0 (1) L = p(x) d2 2 + q(x) d + r(x) (2) L = d2 2 p(x) d q(x) + r(x) (3) 2 (Self-Adjoint

More information

30

30 3 ............................................2 2...........................................2....................................2.2...................................2.3..............................

More information

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2 filename=mathformula58.tex ax + bx + c =, x = b ± b 4ac, (.) a x + x = b a, x x = c a, (.) ax + b x + c =, x = b ± b ac. a (.3). sin(a ± B) = sin A cos B ± cos A sin B, (.) cos(a ± B) = cos A cos B sin

More information

n Y 1 (x),..., Y n (x) 1 W (Y 1 (x),..., Y n (x)) 0 W (Y 1 (x),..., Y n (x)) = Y 1 (x)... Y n (x) Y 1(x)... Y n(x) (x)... Y n (n 1) (x) Y (n 1)

n Y 1 (x),..., Y n (x) 1 W (Y 1 (x),..., Y n (x)) 0 W (Y 1 (x),..., Y n (x)) = Y 1 (x)... Y n (x) Y 1(x)... Y n(x) (x)... Y n (n 1) (x) Y (n 1) D d dx 1 1.1 n d n y a 0 dx n + a d n 1 y 1 dx n 1 +... + a dy n 1 dx + a ny = f(x)...(1) dk y dx k = y (k) a 0 y (n) + a 1 y (n 1) +... + a n 1 y + a n y = f(x)...(2) (2) (2) f(x) 0 a 0 y (n) + a 1 y

More information

M3 x y f(x, y) (= x) (= y) x + y f(x, y) = x + y + *. f(x, y) π y f(x, y) x f(x + x, y) f(x, y) lim x x () f(x,y) x 3 -

M3 x y f(x, y) (= x) (= y) x + y f(x, y) = x + y + *. f(x, y) π y f(x, y) x f(x + x, y) f(x, y) lim x x () f(x,y) x 3 - M3............................................................................................ 3.3................................................... 3 6........................................... 6..........................................

More information

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n (

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n ( 3 n nc k+ k + 3 () n C r n C n r nc r C r + C r ( r n ) () n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (4) n C n n C + n C + n C + + n C n (5) k k n C k n C k (6) n C + nc

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt S I. x yx y y, y,. F x, y, y, y,, y n http://ayapin.film.s.dendai.ac.jp/~matuda n /TeX/lecture.html PDF PS yx.................................... 3.3.................... 9.4................5..............

More information

X G P G (X) G BG [X, BG] S 2 2 2 S 2 2 S 2 = { (x 1, x 2, x 3 ) R 3 x 2 1 + x 2 2 + x 2 3 = 1 } R 3 S 2 S 2 v x S 2 x x v(x) T x S 2 T x S 2 S 2 x T x S 2 = { ξ R 3 x ξ } R 3 T x S 2 S 2 x x T x S 2

More information

1.2 y + P (x)y + Q(x)y = 0 (1) y 1 (x), y 2 (x) y 1 (x), y 2 (x) (1) y(x) c 1, c 2 y(x) = c 1 y 1 (x) + c 2 y 2 (x) 3 y 1 (x) y 1 (x) e R P (x)dx y 2

1.2 y + P (x)y + Q(x)y = 0 (1) y 1 (x), y 2 (x) y 1 (x), y 2 (x) (1) y(x) c 1, c 2 y(x) = c 1 y 1 (x) + c 2 y 2 (x) 3 y 1 (x) y 1 (x) e R P (x)dx y 2 1 1.1 R(x) = 0 y + P (x)y + Q(x)y = R(x)...(1) y + P (x)y + Q(x)y = 0...(2) 1 2 u(x) v(x) c 1 u(x)+ c 2 v(x) = 0 c 1 = c 2 = 0 c 1 = c 2 = 0 2 0 2 u(x) v(x) u(x) u (x) W (u, v)(x) = v(x) v (x) 0 1 1.2

More information

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a =

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a = [ ] 9 IC. dx = 3x 4y dt dy dt = x y u xt = expλt u yt λ u u t = u u u + u = xt yt 6 3. u = x, y, z = x + y + z u u 9 s9 grad u ux, y, z = c c : grad u = u x i + u y j + u k i, j, k z x, y, z grad u v =

More information

A

A A 2563 15 4 21 1 3 1.1................................................ 3 1.2............................................. 3 2 3 2.1......................................... 3 2.2............................................

More information

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d S I.. http://ayapin.film.s.dendai.ac.jp/~matuda /TeX/lecture.html PDF PS.................................... 3.3.................... 9.4................5.............. 3 5. Laplace................. 5....

More information

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5. A 1. Boltzmann Planck u(ν, T )dν = 8πh ν 3 c 3 kt 1 dν h 6.63 10 34 J s Planck k 1.38 10 23 J K 1 Boltzmann u(ν, T ) T ν e hν c = 3 10 8 m s 1 2. Planck λ = c/ν Rayleigh-Jeans u(ν, T )dν = 8πν2 kt dν c

More information

f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f

f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f 22 A 3,4 No.3 () (2) (3) (4), (5) (6) (7) (8) () n x = (x,, x n ), = (,, n ), x = ( (x i i ) 2 ) /2 f(x) R n f(x) = f() + i α i (x ) i + o( x ) α,, α n g(x) = o( x )) lim x g(x) x = y = f() + i α i(x )

More information

4................................. 4................................. 4 6................................. 6................................. 9.................................................... 3..3..........................

More information

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y)

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 1 1977 x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) ( x 2 y + xy 2 x 2 2xy y 2) = 15 (x y) (x + y) (xy

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

(Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fou

(Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fou (Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fourier) (Fourier Bessel).. V ρ(x, y, z) V = 4πGρ G :.

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

newmain.dvi

newmain.dvi 数論 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/008142 このサンプルページの内容は, 第 2 版 1 刷発行当時のものです. Daniel DUVERNEY: THÉORIE DES NOMBRES c Dunod, Paris, 1998, This book is published

More information

chap1.dvi

chap1.dvi 1 1 007 1 e iθ = cos θ + isin θ 1) θ = π e iπ + 1 = 0 1 ) 3 11 f 0 r 1 1 ) k f k = 1 + r) k f 0 f k k = 01) f k+1 = 1 + r)f k ) f k+1 f k = rf k 3) 1 ) ) ) 1+r/)f 0 1 1 + r/) f 0 = 1 + r + r /4)f 0 1 f

More information

IA hara@math.kyushu-u.ac.jp Last updated: January,......................................................................................................................................................................................

More information

f(x) = x (1) f (1) (2) f (2) f(x) x = a y y = f(x) f (a) y = f(x) A(a, f(a)) f(a + h) f(x) = A f(a) A x (3, 3) O a a + h x 1 f(x) x = a

f(x) = x (1) f (1) (2) f (2) f(x) x = a y y = f(x) f (a) y = f(x) A(a, f(a)) f(a + h) f(x) = A f(a) A x (3, 3) O a a + h x 1 f(x) x = a 3 3.1 3.1.1 A f(a + h) f(a) f(x) lim f(x) x = a h 0 h f(x) x = a f 0 (a) f 0 (a) = lim h!0 f(a + h) f(a) h = lim x!a f(x) f(a) x a a + h = x h = x a h 0 x a 3.1 f(x) = x x = 3 f 0 (3) f (3) = lim h 0 (

More information

(1) (2) (1) (2) 2 3 {a n } a 2 + a 4 + a a n S n S n = n = S n

(1) (2) (1) (2) 2 3 {a n } a 2 + a 4 + a a n S n S n = n = S n . 99 () 0 0 0 () 0 00 0 350 300 () 5 0 () 3 {a n } a + a 4 + a 6 + + a 40 30 53 47 77 95 30 83 4 n S n S n = n = S n 303 9 k d 9 45 k =, d = 99 a d n a n d n a n = a + (n )d a n a n S n S n = n(a + a n

More information

DVIOUT

DVIOUT A. A. A-- [ ] f(x) x = f 00 (x) f 0 () =0 f 00 () > 0= f(x) x = f 00 () < 0= f(x) x = A--2 [ ] f(x) D f 00 (x) > 0= y = f(x) f 00 (x) < 0= y = f(x) P (, f()) f 00 () =0 A--3 [ ] y = f(x) [, b] x = f (y)

More information

r 1 m A r/m i) t ii) m i) t B(t; m) ( B(t; m) = A 1 + r ) mt m ii) B(t; m) ( B(t; m) = A 1 + r ) mt m { ( = A 1 + r ) m } rt r m n = m r m n B

r 1 m A r/m i) t ii) m i) t B(t; m) ( B(t; m) = A 1 + r ) mt m ii) B(t; m) ( B(t; m) = A 1 + r ) mt m { ( = A 1 + r ) m } rt r m n = m r m n B 1 1.1 1 r 1 m A r/m i) t ii) m i) t Bt; m) Bt; m) = A 1 + r ) mt m ii) Bt; m) Bt; m) = A 1 + r ) mt m { = A 1 + r ) m } rt r m n = m r m n Bt; m) Aert e lim 1 + 1 n 1.1) n!1 n) e a 1, a 2, a 3,... {a n

More information

A 2008 10 (2010 4 ) 1 1 1.1................................. 1 1.2..................................... 1 1.3............................ 3 1.3.1............................. 3 1.3.2..................................

More information

main.dvi

main.dvi 9 5.4.3 9 49 5 9 9. 9.. z (z) = e t t z dt (9.) z z = x> (x +)= e t t x dt = e t t x e t t x dt = x(x) (9.) t= +x x n () = (n +) =!= e t dt = (9.3) z

More information

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1)

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1) 1. 1.1...,. 1.1.1 V, V x, y, x y x + y x + y V,, V x α, αx αx V,, (i) (viii) : x, y, z V, α, β C, (i) x + y = y + x. (ii) (x + y) + z = x + (y + z). 1 (iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y

More information

i 6 3 ii 3 7 8 9 3 6 iii 5 8 5 3 7 8 v...................................................... 5.3....................... 7 3........................ 3.................3.......................... 8 3 35

More information

i

i i 3 4 4 7 5 6 3 ( ).. () 3 () (3) (4) /. 3. 4/3 7. /e 8. a > a, a = /, > a >. () a >, a =, > a > () a > b, a = b, a < b. c c n a n + b n + c n 3c n..... () /3 () + (3) / (4) /4 (5) m > n, a b >, m > n,

More information

1. 1 BASIC PC BASIC BASIC BASIC Fortran WS PC (1.3) 1 + x 1 x = x = (1.1) 1 + x = (1.2) 1 + x 1 = (1.

1. 1 BASIC PC BASIC BASIC BASIC Fortran WS PC (1.3) 1 + x 1 x = x = (1.1) 1 + x = (1.2) 1 + x 1 = (1. Section Title Pages Id 1 3 7239 2 4 7239 3 10 7239 4 8 7244 5 13 7276 6 14 7338 7 8 7338 8 7 7445 9 11 7580 10 10 7590 11 8 7580 12 6 7395 13 z 11 7746 14 13 7753 15 7 7859 16 8 7942 17 8 Id URL http://km.int.oyo.co.jp/showdocumentdetailspage.jsp?documentid=

More information

1

1 1 1 7 1.1.................................. 11 2 13 2.1............................ 13 2.2............................ 17 2.3.................................. 19 3 21 3.1.............................

More information

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c) yoshioka/education-09.html pdf 1

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c)   yoshioka/education-09.html pdf 1 2009 1 ( ) ( 40 )+( 60 ) 1 1. 2. Schrödinger 3. (a) (b) (c) http://goofy.phys.nara-wu.ac.jp/ yoshioka/education-09.html pdf 1 1. ( photon) ν λ = c ν (c = 3.0 108 /m : ) ɛ = hν (1) p = hν/c = h/λ (2) h

More information

(1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10)

(1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10) 2017 12 9 4 1 30 4 10 3 1 30 3 30 2 1 30 2 50 1 1 30 2 10 (1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10) (1) i 23 c 23 0 1 2 3 4 5 6 7 8 9 a b d e f g h i (2) 23 23 (3) 23 ( 23 ) 23 x 1 x 2 23 x

More information

20 4 20 i 1 1 1.1............................ 1 1.2............................ 4 2 11 2.1................... 11 2.2......................... 11 2.3....................... 19 3 25 3.1.............................

More information

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x [ ] IC. f(x) = e x () f(x) f (x) () lim f(x) lim f(x) x + x (3) lim f(x) lim f(x) x + x (4) y = f(x) ( ) ( s46). < a < () a () lim a log xdx a log xdx ( ) n (3) lim log k log n n n k=.3 z = log(x + y ),

More information

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4 35-8585 7 8 1 I I 1 1.1 6kg 1m P σ σ P 1 l l λ λ l 1.m 1 6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m

More information

4 5.............................................. 5............................................ 6.............................................. 7......................................... 8.3.................................................4.........................................4..............................................4................................................4.3...............................................

More information

20 9 19 1 3 11 1 3 111 3 112 1 4 12 6 121 6 122 7 13 7 131 8 132 10 133 10 134 12 14 13 141 13 142 13 143 15 144 16 145 17 15 19 151 1 19 152 20 2 21 21 21 211 21 212 1 23 213 1 23 214 25 215 31 22 33

More information

() Remrk I = [0, ] [x i, x i ]. (x : ) f(x) = 0 (x : ) ξ i, (f) = f(ξ i )(x i x i ) = (x i x i ) = ξ i, (f) = f(ξ i )(x i x i ) = 0 (f) 0.

() Remrk I = [0, ] [x i, x i ]. (x : ) f(x) = 0 (x : ) ξ i, (f) = f(ξ i )(x i x i ) = (x i x i ) = ξ i, (f) = f(ξ i )(x i x i ) = 0 (f) 0. () 6 f(x) [, b] 6. Riemnn [, b] f(x) S f(x) [, b] (Riemnn) = x 0 < x < x < < x n = b. I = [, b] = {x,, x n } mx(x i x i ) =. i [x i, x i ] ξ i n (f) = f(ξ i )(x i x i ) i=. (ξ i ) (f) 0( ), ξ i, S, ε >

More information

5. [1 ] 1 [], u(x, t) t c u(x, t) x (5.3) ξ x + ct, η x ct (5.4),u(x, t) ξ, η u(ξ, η), ξ t,, ( u(ξ,η) ξ η u(x, t) t ) u(x, t) { ( u(ξ, η) c t ξ ξ { (

5. [1 ] 1 [], u(x, t) t c u(x, t) x (5.3) ξ x + ct, η x ct (5.4),u(x, t) ξ, η u(ξ, η), ξ t,, ( u(ξ,η) ξ η u(x, t) t ) u(x, t) { ( u(ξ, η) c t ξ ξ { ( 5 5.1 [ ] ) d f(t) + a d f(t) + bf(t) : f(t) 1 dt dt ) u(x, t) c u(x, t) : u(x, t) t x : ( ) ) 1 : y + ay, : y + ay + by : ( ) 1 ) : y + ay, : yy + ay 3 ( ): ( ) ) : y + ay, : y + ay b [],,, [ ] au xx

More information

量子力学 問題

量子力学 問題 3 : 203 : 0. H = 0 0 2 6 0 () = 6, 2 = 2, 3 = 3 3 H 6 2 3 ϵ,2,3 (2) ψ = (, 2, 3 ) ψ Hψ H (3) P i = i i P P 2 = P 2 P 3 = P 3 P = O, P 2 i = P i (4) P + P 2 + P 3 = E 3 (5) i ϵ ip i H 0 0 (6) R = 0 0 [H,

More information

00 3 9 ........................................................................................................................................... 4..3................................. 5.3.......................................

More information

入試の軌跡

入試の軌跡 4 y O x 4 Typed by L A TEX ε ) ) ) 6 4 ) 4 75 ) http://kumamoto.s.xrea.com/plan/.. PDF) Ctrl +L) Ctrl +) Ctrl + Ctrl + ) ) Alt + ) Alt + ) ESC. http://kumamoto.s.xrea.com/nyusi/kumadai kiseki ri i.pdf

More information

09 8 9 3 Chebyshev 5................................. 5........................................ 5.3............................. 6.4....................................... 8.4...................................

More information

pdf

pdf http://www.ns.kogakuin.ac.jp/~ft13389/lecture/physics1a2b/ pdf I 1 1 1.1 ( ) 1. 30 m µm 2. 20 cm km 3. 10 m 2 cm 2 4. 5 cm 3 km 3 5. 1 6. 1 7. 1 1.2 ( ) 1. 1 m + 10 cm 2. 1 hr + 6400 sec 3. 3.0 10 5 kg

More information

n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................

More information

Chap11.dvi

Chap11.dvi . () x 3 + dx () (x )(x ) dx + sin x sin x( + cos x) dx () x 3 3 x + + 3 x + 3 x x + x 3 + dx 3 x + dx 6 x x x + dx + 3 log x + 6 log x x + + 3 rctn ( ) dx x + 3 4 ( x 3 ) + C x () t x t tn x dx x. t x

More information

phs.dvi

phs.dvi 483F 3 6.........3... 6.4... 7 7.... 7.... 9.5 N (... 3.6 N (... 5.7... 5 3 6 3.... 6 3.... 7 3.3... 9 3.4... 3 4 7 4.... 7 4.... 9 4.3... 3 4.4... 34 4.4.... 34 4.4.... 35 4.5... 38 4.6... 39 5 4 5....

More information

Z: Q: R: C:

Z: Q: R: C: 0 Z: Q: R: C: 3 4 4 4................................ 4 4.................................. 7 5 3 5...................... 3 5......................... 40 5.3 snz) z)........................... 4 6 46 x

More information

20 6 4 1 4 1.1 1.................................... 4 1.1.1.................................... 4 1.1.2 1................................ 5 1.2................................... 7 1.2.1....................................

More information

ii p ϕ x, t = C ϕ xe i ħ E t +C ϕ xe i ħ E t ψ x,t ψ x,t p79 やは時間変化しないことに注意 振動 粒子はだいたい このあたりにいる 粒子はだいたい このあたりにいる p35 D.3 Aψ Cϕdx = aψ ψ C Aϕ dx

ii p ϕ x, t = C ϕ xe i ħ E t +C ϕ xe i ħ E t ψ x,t ψ x,t p79 やは時間変化しないことに注意 振動 粒子はだいたい このあたりにいる 粒子はだいたい このあたりにいる p35 D.3 Aψ Cϕdx = aψ ψ C Aϕ dx i B5 7.8. p89 4. ψ x, tψx, t = ψ R x, t iψ I x, t ψ R x, t + iψ I x, t = ψ R x, t + ψ I x, t p 5.8 π π π F e ix + F e ix + F 3 e 3ix F e ix + F e ix + F 3 e 3ix dx πψ x πψx p39 7. AX = X A [ a b c d x

More information

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT I (008 4 0 de Broglie (de Broglie p λ k h Planck ( 6.63 0 34 Js p = h λ = k ( h π : Dirac k B Boltzmann (.38 0 3 J/K T U = 3 k BT ( = λ m k B T h m = 0.067m 0 m 0 = 9. 0 3 kg GaAs( a T = 300 K 3 fg 07345

More information

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10% 1 2006.4.17. A 3-312 tel: 092-726-4774, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office hours: B A I ɛ-δ ɛ-δ 1. 2. A 1. 1. 2. 3. 4. 5. 2. ɛ-δ 1. ɛ-n

More information

2009 IA I 22, 23, 24, 25, 26, a h f(x) x x a h

2009 IA I 22, 23, 24, 25, 26, a h f(x) x x a h 009 IA I, 3, 4, 5, 6, 7 7 7 4 5 h fx) x x h 4 5 4 5 1 3 1.1........................... 3 1........................... 4 1.3..................................... 6 1.4.............................. 8 1.4.1..............................

More information

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2) 3 215 4 27 1 1 u u(x, t) u tt a 2 u xx, a > (1) D : {(x, t) : x, t } u (, t), u (, t), t (2) u(x, ) f(x), u(x, ) t 2, x (3) u(x, t) X(x)T (t) u (1) 1 T (t) a 2 T (t) X (x) X(x) α (2) T (t) αa 2 T (t) (4)

More information

i I II I II II IC IIC I II ii 5 8 5 3 7 8 iii I 3........................... 5......................... 7........................... 4........................ 8.3......................... 33.4...................

More information

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C 8 ( ) 8 5 4 I II III A B C( ),,, 5 I II A B ( ),, I II A B (8 ) 6 8 I II III A B C(8 ) n ( + x) n () n C + n C + + n C n = 7 n () 7 9 C : y = x x A(, 6) () A C () C P AP Q () () () 4 A(,, ) B(,, ) C(,,

More information

( ) (ver )

( ) (ver ) ver.3.1 11 9 1 1. p1, 1.1 ψx, t,, E, p. = E, p ψx, t,. p, 1.8 p4, 1. t = t ρx, t = m [ψ ψ ψ ψ] ρx, t = mi [ψ ψ ψ ψ] p4, 1.1 = p6, 1.38 p6, 1.4 = fxδ ϵ x = fxδϵx = 1 π fxδ ϵ x dx = fxδ ϵ x dx = [ 1 fϵ π

More information

ii

ii ii iii 1 1 1.1..................................... 1 1.2................................... 3 1.3........................... 4 2 9 2.1.................................. 9 2.2...............................

More information

1

1 016 017 6 16 1 1 5 1.1............................................... 5 1................................................... 5 1.3................................................ 5 1.4...............................................

More information

meiji_resume_1.PDF

meiji_resume_1.PDF β β β (q 1,q,..., q n ; p 1, p,..., p n ) H(q 1,q,..., q n ; p 1, p,..., p n ) Hψ = εψ ε k = k +1/ ε k = k(k 1) (x, y, z; p x, p y, p z ) (r; p r ), (θ; p θ ), (ϕ; p ϕ ) ε k = 1/ k p i dq i E total = E

More information

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 2 ), ϕ(t) = B 1 cos(ω 1 t + α 1 ) + B 2 cos(ω 2 t

More information

IA

IA IA 31 4 11 1 1 4 1.1 Planck.............................. 4 1. Bohr.................................... 5 1.3..................................... 6 8.1................................... 8....................................

More information

ft. ft τfτdτ = e t.5.. fx = x [ π, π] n sinnx n n=. π a π a, x [ π, π] x = a n cosnx cosna + 4 n=. 3, x [ π, π] x 3 π x = n sinnx. n=.6 f, t gt n 3 n

ft. ft τfτdτ = e t.5.. fx = x [ π, π] n sinnx n n=. π a π a, x [ π, π] x = a n cosnx cosna + 4 n=. 3, x [ π, π] x 3 π x = n sinnx. n=.6 f, t gt n 3 n [ ]. A = IC X n 3 expx = E + expta t : n! n=. fx π x π. { π x < fx = x π fx F k F k = π 9 s9 fxe ikx dx, i =. F k. { x x fx = x >.3 ft = cosωt F s = s4 e st ftdt., e, s. s = c + iφ., i, c, φ., Gφ = lim

More information

IA September 25, 2017 ( ) I = [a, b], f (x) I = (a 0 = a < a 1 < < a m = b) I ( ) (partition) S (, f (x)) = w (I k ) I k a k a k 1 S (, f (x)) = I k 2

IA September 25, 2017 ( ) I = [a, b], f (x) I = (a 0 = a < a 1 < < a m = b) I ( ) (partition) S (, f (x)) = w (I k ) I k a k a k 1 S (, f (x)) = I k 2 IA September 5, 7 I [, b], f x I < < < m b I prtition S, f x w I k I k k k S, f x I k I k [ k, k ] I I I m I k I j m inf f x w I k x I k k m k sup f x w I k x I k inf f x w I S, f x S, f x sup f x w I

More information

main.dvi

main.dvi Chapter 6 6. (5.8)(5.9) f(x) c n = a n= a a c n exp(i nx a )= [f(x +)+f(x )]; x [a; a] f (x) exp(i nx )dx (6.) a k n = n a ; k n = k n+ k n = a (6:) (6.) c n c n = k n (6.) a a df()e ikn : a [f (x +)+f(x

More information

No2 4 y =sinx (5) y = p sin(2x +3) (6) y = 1 tan(3x 2) (7) y =cos 2 (4x +5) (8) y = cos x 1+sinx 5 (1) y =sinx cos x 6 f(x) = sin(sin x) f 0 (π) (2) y

No2 4 y =sinx (5) y = p sin(2x +3) (6) y = 1 tan(3x 2) (7) y =cos 2 (4x +5) (8) y = cos x 1+sinx 5 (1) y =sinx cos x 6 f(x) = sin(sin x) f 0 (π) (2) y No1 1 (1) 2 f(x) =1+x + x 2 + + x n, g(x) = 1 (n +1)xn + nx n+1 (1 x) 2 x 6= 1 f 0 (x) =g(x) y = f(x)g(x) y 0 = f 0 (x)g(x)+f(x)g 0 (x) 3 (1) y = x2 x +1 x (2) y = 1 g(x) y0 = g0 (x) {g(x)} 2 (2) y = µ

More information

数学Ⅱ演習(足助・09夏)

数学Ⅱ演習(足助・09夏) II I 9/4/4 9/4/2 z C z z z z, z 2 z, w C zw z w 3 z, w C z + w z + w 4 t R t C t t t t t z z z 2 z C re z z + z z z, im z 2 2 3 z C e z + z + 2 z2 + 3! z3 + z!, I 4 x R e x cos x + sin x 2 z, w C e z+w

More information

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 0 < t < τ I II 0 No.2 2 C x y x y > 0 x 0 x > b a dx

More information

21 2 26 i 1 1 1.1............................ 1 1.2............................ 3 2 9 2.1................... 9 2.2.......... 9 2.3................... 11 2.4....................... 12 3 15 3.1..........

More information

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy z fz fz x, y, u, v, r, θ r > z = x + iy, f = u + iv γ D fz fz D fz fz z, Rm z, z. z = x + iy = re iθ = r cos θ + i sin θ z = x iy = re iθ = r cos θ i sin θ x = z + z = Re z, y = z z = Im z i r = z = z

More information

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A .. Laplace ). A... i),. ω i i ). {ω,..., ω } Ω,. ii) Ω. Ω. A ) r, A P A) P A) r... ).. Ω {,, 3, 4, 5, 6}. i i 6). A {, 4, 6} P A) P A) 3 6. ).. i, j i, j) ) Ω {i, j) i 6, j 6}., 36. A. A {i, j) i j }.

More information

構造と連続体の力学基礎

構造と連続体の力学基礎 II 37 Wabash Avenue Bridge, Illinois 州 Winnipeg にある歩道橋 Esplanade Riel 橋6 6 斜張橋である必要は多分無いと思われる すぐ横に道路用桁橋有り しかも塔基部のレストランは 8 年には営業していなかった 9 9. 9.. () 97 [3] [5] k 9. m w(t) f (t) = f (t) + mg k w(t) Newton

More information

(yx4) 1887-1945 741936 50 1995 1 31 http://kenboushoten.web.fc.com/ OCR TeX 50 yx4 e-mail: yx4.aydx5@gmail.com i Jacobi 1751 1 3 Euler Fagnano 187 9 0 Abel iii 1 1...................................

More information

December 28, 2018

December 28, 2018 e-mail : kigami@i.kyoto-u.ac.jp December 28, 28 Contents 2............................. 3.2......................... 7.3..................... 9.4................ 4.5............. 2.6.... 22 2 36 2..........................

More information

春期講座 ~ 極限 1 1, 1 2, 1 3, 1 4,, 1 n, n n {a n } n a n α {a n } α {a n } α lim n an = α n a n α α {a n } {a n } {a n } 1. a n = 2 n {a n } 2, 4, 8, 16,

春期講座 ~ 極限 1 1, 1 2, 1 3, 1 4,, 1 n, n n {a n } n a n α {a n } α {a n } α lim n an = α n a n α α {a n } {a n } {a n } 1. a n = 2 n {a n } 2, 4, 8, 16, 春期講座 ~ 極限 1 1, 1 2, 1 3, 1 4,, 1 n, n n {a n } n a n α {a n } α {a n } α lim an = α n a n α α {a n } {a n } {a n } 1. a n = 2 n {a n } 2, 4, 8, 16, 32, n a n {a n } {a n } 2. a n = 10n + 1 {a n } lim an

More information

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x (

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x ( II (1 4 ) 1. p.13 1 (x, y) (a, b) ε(x, y; a, b) f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a x a A = f x (a, b) y x 3 3y 3 (x, y) (, ) f (x, y) = x + y (x, y) = (, )

More information

.1 1,... ( )

.1 1,... ( ) 1 δ( ε )δ 2 f(b) f(a) slope f (c) = f(b) f(a) b a a c b 1 213 3 21. 2 [e-mail] nobuo@math.kyoto-u.ac.jp, [URL] http://www.math.kyoto-u.ac.jp/ nobuo 1 .1 1,... ( ) 2.1....................................

More information

i 18 2H 2 + O 2 2H 2 + ( ) 3K

i 18 2H 2 + O 2 2H 2 + ( ) 3K i 18 2H 2 + O 2 2H 2 + ( ) 3K ii 1 1 1.1.................................. 1 1.2........................................ 3 1.3......................................... 3 1.4....................................

More information

2019 1 5 0 3 1 4 1.1.................... 4 1.1.1......................... 4 1.1.2........................ 5 1.1.3................... 5 1.1.4........................ 6 1.1.5......................... 6 1.2..........................

More information

v er.1/ c /(21)

v er.1/ c /(21) 12 -- 1 1 2009 1 17 1-1 1-2 1-3 1-4 2 2 2 1-5 1 1-6 1 1-7 1-1 1-2 1-3 1-4 1-5 1-6 1-7 c 2011 1/(21) 12 -- 1 -- 1 1--1 1--1--1 1 2009 1 n n α { n } α α { n } lim n = α, n α n n ε n > N n α < ε N {1, 1,

More information

1 yousuke.itoh/lecture-notes.html [0, π) f(x) = x π 2. [0, π) f(x) = x 2π 3. [0, π) f(x) = x 2π 1.2. Euler α

1   yousuke.itoh/lecture-notes.html [0, π) f(x) = x π 2. [0, π) f(x) = x 2π 3. [0, π) f(x) = x 2π 1.2. Euler α 1 http://sasuke.hep.osaka-cu.ac.jp/ yousuke.itoh/lecture-notes.html 1.1. 1. [, π) f(x) = x π 2. [, π) f(x) = x 2π 3. [, π) f(x) = x 2π 1.2. Euler dx = 2π, cos mxdx =, sin mxdx =, cos nx cos mxdx = πδ mn,

More information

2.2 ( y = y(x ( (x 0, y 0 y (x 0 (y 0 = y(x 0 y = y(x ( y (x 0 = F (x 0, y(x 0 = F (x 0, y 0 (x 0, y 0 ( (x 0, y 0 F (x 0, y 0 xy (x, y (, F (x, y ( (

2.2 ( y = y(x ( (x 0, y 0 y (x 0 (y 0 = y(x 0 y = y(x ( y (x 0 = F (x 0, y(x 0 = F (x 0, y 0 (x 0, y 0 ( (x 0, y 0 F (x 0, y 0 xy (x, y (, F (x, y ( ( (. x y y x f y = f(x y x y = y(x y x y dx = d dx y(x = y (x = f (x y = y(x x ( (differential equation ( + y 2 dx + xy = 0 dx = xy + y 2 2 2 x y 2 F (x, y = xy + y 2 y = y(x x x xy(x = F (x, y(x + y(x 2

More information

I, II 1, 2 ɛ-δ 100 A = A 4 : 6 = max{ A, } A A 10

I, II 1, 2 ɛ-δ 100 A = A 4 : 6 = max{ A, } A A 10 1 2007.4.13. A 3-312 tel: 092-726-4774, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office hours: B A I ɛ-δ ɛ-δ 1. 2. A 0. 1. 1. 2. 3. 2. ɛ-δ 1. ɛ-n

More information

Z: Q: R: C: 3. Green Cauchy

Z: Q: R: C: 3. Green Cauchy 7 Z: Q: R: C: 3. Green.............................. 3.............................. 5.3................................. 6.4 Cauchy..................... 6.5 Taylor..........................6...............................

More information

n=1 1 n 2 = π = π f(z) f(z) 2 f(z) = u(z) + iv(z) *1 f (z) u(x, y), v(x, y) f(z) f (z) = f/ x u x = v y, u y = v x

n=1 1 n 2 = π = π f(z) f(z) 2 f(z) = u(z) + iv(z) *1 f (z) u(x, y), v(x, y) f(z) f (z) = f/ x u x = v y, u y = v x n= n 2 = π2 6 3 2 28 + 4 + 9 + = π2 6 2 f(z) f(z) 2 f(z) = u(z) + iv(z) * f (z) u(x, y), v(x, y) f(z) f (z) = f/ x u x = v y, u y = v x f x = i f y * u, v 3 3. 3 f(t) = u(t) + v(t) [, b] f(t)dt = u(t)dt

More information

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F F 1 F 2 F, (3) F λ F λ F λ F. 3., A λ λ A λ. B λ λ

More information

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2 No.2 1 2 2 δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i δx j (5) δs 2 = δx i δx i + 2 u i δx i δx j = δs 2 + 2s ij δx i δx j

More information