四変数基本対称式の解放

Size: px
Start display at page:

Download "四変数基本対称式の解放"

Transcription

1 Solving the simultaneous equation of the symmetric tetravariate polynomials and The roots of a quartic equation Oomori, Yasuhiro in Himeji City, Japan Dec.1, 2011 Abstract 1. S 4 2.

2 1. {α, β, γ, δ} (1) s 1 a 1 = s2 = a 2 s = a a n C: (1) s 4 = a 4 s 1 = α + β + γ + δ s 2 = αβ + αγ + αδ + βγ + βδ + γδ s (1.2) = αβγ + αβδ + αγδ + βγδ s4 = αβγδ 1. (1.2) (1) 2. Ex.1 (2) φ α + β + γ + δ αβ + βγ + γδ C αβγ + βγδ 4 [Φ]Φ = {α, β, γ, δ} αβγδ C 4 [α, β, ]: C[α, β, ]Descartes C[α, β, ]: C C: Ex.1 α β φ: = γ (2) δ

3 Fig.1 S 4 S 4 α sss 1 (α, β, γ, δ) β φ = γ T sss sss 2 (α, β, γ, δ) = φ sss (α, β, γ, δ) sss δ sss 4 (α, β, γ, δ) pppp 1 (s 1, s 2, s, s 4 ) sss 1 (s 1, s 2, s, s 4 ) α Change of variables by eq.(1) pppp 2 (s 1, s 2, s, s 4 ) T 1 sss the fffffffffff theeeee = φ oo ef ssssetesc pefsfessff pppp (s 1, s 2, s, s 4 ) sss sss 2 (s 1, s 2, s, s 4 ) β = sss (s 1, s 2, s, s 4 ) γ pppp 4 (s 1, s 2, s, s 4 ) sss 4 (s 1, s 2, s, s 4 ) δ T sym sym n poly n sol n Change of variables by eq(1) (1) the fundamental theorem of symmetric polynomial Fig.1 Ex.2 Ex. L A P n α A 11 α + A 12 β + A 1 γ + A 14 δ A 11 A 12 A 1 A 14 L β A A (φ) = A γ = 21 α + A 22 β + A 2 γ + A 24 δ A A = 21 A 22 A 2 A 24 A 1 α + A 2 β + A γ + A 4 δ A 1 A 2 A A 4 δ A 41 α + A 42 α + A 4 γ + A 44 δ A 41 A 42 A 4 A 44 L A A Ex.2

4 α α α n β β β (φ) = γ γ = n γ n : = φn n N: δ δ δ n P n n ʘ:Hadamard P n : Ex. L P n. A Ex.2 A L A 4. Ex. P n ψ P n ψ Ex.4 C ψa, C ψb {ψ ψ C 4 [Φ]} {ψ ψ C 4 [Φ]} α α α 2 αβ αβ P ψ a = αβγ, ψ a2 = αβγ, ψ a 2 ψ 2 α a = 2 β 2 un invetible α 2 β 2 γ 2 γδ γδ γ 2 δ 2 C ψa = ψ = ψ a, ψ a2 ψ 2 = ψ a 2 C ψb = ψ = ψ b, ψ b2 ψ 2 = ψ b 2 extension of definition P2 ψ a 2 ψ b 2 C 4 [Φ] = C ψa C ψb, C ψi C ψj = if i j Ex.4

5 5. Fig. C 4 [Φ] ψ a, ψ a P n ψ a ψ a ~ n C 4 [Φ] ψ a ψ a [ψ a ] n C 4 [Φ] n C 4 [Φ] n C 4 [Φ] n P n (C 4 [Φ]) C 4 [Φ] n n P n P P n ψ a n ψ a : ψ n a = ψ n a ψ a, ψ a C 4 [Φ] Φ = {α, β, γ, δ} n P P n(c 4 [Φ]) C 4 [Φ] n ; ψn a [ψ a ] n C 4 [Φ] n : = {[ψ] n ψ C 4 [Φ]} n P = full inverse of P n Fig. [ψ a ] n : = {ψ C 4 [Φ] ψ n ψ a } P n C 4 [Φ] C 4 [Φ] ; ψ a ψn a 5. φ S 4 Tab.1 S 4 Tab.1.2 S 4 Schönflies S 4 T d = {E, 8C, C 2, 6S 4, 6σ d } φ

6 Class S 4 Normal subgroup 1 α β γ δ = e α β γ δ (ab)(cd) α β γ δ β α δ γ α β γ δ γ δ α β α β γ δ δ γ β α V K α β γ δ β γ δ α α γ δ β α δ β γ α β γ δ β γ δ α γ β δ α δ β α γ, A 4 (abc) α β γ δ β γ δ α β δ γ α δ α γ β α β γ δ β γ δ α β γ α δ γ α β δ α β γ δ α γ β δ α β γ δ δ β γ α α β γ δ α β δ γ α β γ δ β α γ δ, (ab) α β γ δ α δ γ β α β γ δ γ β α δ α β γ δ β δ α γ α β γ δ γ α δ β α β γ δ δ γ α β α β γ δ γ δ β α, (abcd) α β γ δ β γ δ α α β γ δ δ α β γ a b c d a,b,c,d {α,β,γ,δ} Tab.1

7 T d S 4 class Permutation representation of S 4 with skeletal fomulae [E] α β γ δ α β γ δ [C 2 ] α β γ δ β α δ γ φ α β γ δ γ δ α β α β γ δ δ γ β α,φ,φ [C ] α β γ δ α γ δ β φ α β γ δ α δ β γ φ α β γ δ γ β δ α,φ α β γ δ δ β α γ φ α β γ δ β δ γ α φ α β γ δ δ α γ β φ α β γ δ β γ α δ,φ α β γ δ γ α β δ φ [σ d ] α β γ δ α γ β δ φ α β γ δ δ β γ α α β γ δ α β δ γ α β γ δ β α γ δ,φ,φ,φ, α β γ δ α δ γ β φ α β γ δ γ β α δ,φ [S 4 ] α β γ δ β δ α γ φ α β γ δ γ α δ β α β γ δ δ γ α β α β γ δ γ δ β α,φ,φ,φ, α β γ δ β γ δ α φ α β γ δ δ α β γ,φ φ = : Schönflies notation Tab.1.2

8 φ S 4 Ex.5 α β γ δ β γ S 4 α δ γ, δ α, S β 4 ooooo δ γ β α , Ex.5 0 1, α 1 0 β 0 0 γ = R φ (S 4 )φ 0 0 δ S 4 S 4 6. Ex.6 S 4 ψs 4 ψ ψ s S 4 R ψ(s) S 4 R ψ (S 4 ) α 2 + β 2 α 2 β 2 α β γ δ γ 2 + δ α 2 + β 2 γ δ α β S 4 γ 2 γ 2 δ α α 2 β γ 2 δ 2 β δ 2 Ex.6 φ S 4 R φ(s) s S 4 Tab.1.

9 T d class [E] = I = R φ (e) R φ (s)s S 4 T d [C 2 ] [C ] Normal subgroup V K abelian A 4 [σ d ] [S 4 ] , Tab.1.

10 Fig.4 S 4 φ R φ (s) =,, T sss, s S α β φ = γ δ sss 1 (α, β, γ, δ) sss 2 (α, β, γ, δ) = φ sss (α, β, γ, δ) sss sss 4 (α, β, γ, δ) Fig.4 T sss step1 φ(2) S 4 R φ (s) ; s S 4 α β φ = γ (2) δ 7. Ex.7 A A Λ(A) A A 11 A 12 A 1 A 14 λ Λ(A) = Λ λ Λ λ AΛ 1 A λ = Λ λ 21 A 22 A 2 A 24 Λ A 1 A 2 A A 1 0 λ λ = Ad λ 0 Λλ (A) A 41 A 42 A 4 A λ 4 Ex.7

11 S 4 Fig.5 [E] [C 2 ] «Klein V K» R φ (V K ) () H H φ (4) H «4 Hadamard» R φ (V K ) = R φ ([E], [C 2 ]) =,,, Fig Λ(R φ (V K )) H = = H H 4 4Hadamard () α α + β + γ + δ L β α β + γ δ H (φ) = H γ = = φ α + β γ δ 1 (4) δ α β γ + δ φ 1 (4) S 4 R φ1 (s); s S 4 Tab.2 Klein V K step1 R φ1 (s) ; s S 4 R φ (s); s S 4 R φ1 (s); s S 4 (4.2)

12 T d class [E] = I = R φ1 (e) R φ1 (s)s S 4 T d [C 2 ] [C ] , Normal subgroup V K abelian A 4 [σ d ] [S 4 ] , , Tab.2 R φ (s) L H R φ1 (s) = H 4 R φ (s)h 4 1 = Ad H4 R φ (s) s S 4 (4.2) H 4 1 = 1 4 H 4 H 4 :Hadamard matrix of order 4

13 8. Ex.8 Ex : rrrrrrr, ssssssss Ex bbbbbb, rrrrrrr, sssssess Ex.9 step2 step1 φ 1 (4) R φ 1 (V K ) R φ1 (s); s S 4 R φ1 (s); s S 4 ±1 step1 φ 1 (4) n n=1 P 2 φ 1 () φ 2 (5) P 2 (φ 1 ) = (α + β + γ + δ) 2 (α β + γ δ) 2 (α + β γ δ) 2 = φ2 (5) (α β γ + δ) 2 φ 2 (5) S 4 R φ1 (s); s S 4 Tab. φ 2 R φ1 (s); s S 4 R φ2 (s); s S 4 (5.2)

14 T d class [E] = I = R φ2 (e) R φ2 (s)s S 4 T d [C 2 ] [C ] , Normal subgroup V K abelian A 4 [σ d ] [S 4 ] , , Tab. R φ1 (s) P2 R φ2 (s) = R φ1 (s) R φ1 (s)s S 4 (5.2) ʘ: Hadamard product sign

15 φ 2 (5) S 4 R φ2 (S 4 ) Tab..2 R φ2 (S 4 ) S S 4 /V 4 step step2 φ 2 (5) S 4 R φ2 (S 4 ) S Tab..2 Tab. [E], [C 2 ] [C ] 4 A 4 R φ2 (A 4 ) R φ2 (S 4 ) R φ 2 (A 4 ) A (6) H φ 2 H φ (7) H (6) «Hadamard» I 1 : Λ(R φ2 (A 4 )) H = 0 1 ω ω 2 = I 1 H H : Hadamard (6) 0 1 ω 2 ω ω: ω 2 + ω + 1 = 0 (α + β + γ + δ) 2 L (α β + γ δ) H (φ 2 ) 2 = H (α + β γ δ) 2 (α β γ + δ) 2 (α + β + γ + δ) 2 (α β + γ δ) = 2 + (α + β γ δ) 2 + (α β γ + δ) 2 (α β + γ δ) 2 + ω(α + β γ δ) 2 + ω 2 (α β γ + δ) 2 = φ (7) (α β + γ δ) 2 + ω 2 (α + β γ δ) 2 + ω(α β γ + δ) 2 φ (7) S 4 R φ (s) s S 4 Tab.4 R φ2 (s) s S 4 R φ (s) s S 4 (7.2) A R φ (s) s A 4 R φ (S 4 ) Tab.4.2

16 C₃ v class [E] = I = R φ2 (e) R φ2 (S 4 ) S C Normal subgroup [C ] [σ v ] ,, A abelian Tab..2

17 T d class [E] = I = R φ (e) R φ (s)s S 4 T d [C 2 ] [C ] ω ω ω ω 2, ω ω ω ω ω ω ω ω ω ω ω ω Normal subgroup V K abelian A 4 [σ d ] [S 4 ] ω ω 2, ω ω 0 0 ω ω ω ω ω ω 2, ω ω 0 0 ω ω ω ω Tab.4 ω: cubic rootω 2 +ω+1=0 R φ2 (s) L H R φ (s) = H R φ2 (s)h 1 = Ad H R φ2 (s) s S 4 H : I 1 H H 1 = I 1 1 H (7.2) H 1 = I 1 1 H I 1 :Identity matrix of order 1 H :Complex Hadamard matrix of order

18 C₃ v class [E] = I = R φ (e) R φ (S 4 ) S C Normal subgroup [C ] [σ v ] 0 0 ω ω 0 0 ω ω ω 2, 0 0 ω 0, ω 0 0 ω A abelian Tab.4.2 ω: cubic rootω 2 +ω+1=0

19 step4 step φ (7) S 4 R φ (S 4 ) 1 1 step φ (7) n=1 P φ (7) 6 φ 4 (8) (α + β + γ + δ) 6 P {(α β + γ δ) (φ ) 2 + (α + β γ δ) 2 + (α β γ + δ) 2 } = {(α β + γ δ) 2 + ω(α + β γ δ) 2 + ω 2 (α β γ + δ) 2 } = φ4 (8) {(α β + γ δ) 2 + ω 2 (α + β γ δ) 2 + ω(α β γ + δ) 2 } φ 4 (8) S 4 R φ4 (s) s S 4 Tab.5 φ 4 R φ (s) s S 4 R φ4 (s) ; s S 4 (8.2) φ 4 (8) S 4 R φ 4 (S 4 )Tab.5.2 R φ4 (S 4 ) S 2 S /A step5 step4 φ 4 (8) S 4 R φ4 (S 4 ) S 2 Tab.5.2 R φ 4 (S 4 ) (9) H φ 4 H φ 5 (10) H (9) «2 Hadamard» Λ(R φ4 (S 4 )) H = = I H 2 I 2: 2 (9) H 2 : 2 Hadamard

20 T d class [E] = I = R φ4 (e) R φ4 (s)s S 4 T d [C 2 ] [C ] , Normal subgroup V K abelian A 4 [σ d ] [S 4 ] , , Tab.5 R φ (s) P R φ4 (s)r φ (s) R φ (s) R φ (s)s S 4 (8.2) ʘ:Hadamard product sign

21 C s class [E] = I = R φ4 (e) R φ4 (S 4 ) S 2 C s Normal subgroup [σ] Tab.5.2

22 L H (φ 4 ) = H φ 4 (α + β + γ + δ) 6 {(α β + γ δ) 2 + (α + β γ δ) 2 + (α β γ + δ) 2 } [{(α β + γ δ) 2 + ω(α + β γ δ) 2 + ω 2 (α β γ + δ) 2 } = +{(α β + γ δ) + ω 2 (α + β γ δ) 2 + ω(α β γ + δ) 2 } ] = φ 5 (10) [{(α β + γ δ) 2 + ω(α + β γ δ) 2 + ω 2 (α β γ + δ) 2 } {(α β + γ δ) 2 + ω 2 (α + β γ δ) 2 + ω(α β γ + δ) 2 } ] φ 5 (10) S R φ5 (s); s S 4 Tab.6 R φ4 (s); s S 4 R φ5 (s); s S 4 (10.2) R φ5 (s); s S 4 R φ5 (S 4 ) Tab.6.2 step6 step5 φ 5 (10) S 4 R φ5 (s); s S 4 I 4 R φ5 ; (S 4 ) ±1 step5 φ 5 (10) n=1 P 2 φ 5 (10) 12 φ sss (11) P 2 (φ 5 ) = (α + β + γ + δ) 12 {(α β + γ δ) 2 + (α + β γ δ) 2 + (α β γ + δ) 2 } 6 [{(α β + γ δ) 2 + ω(α + β γ δ) 2 + ω 2 (α β γ + δ) 2 } + {(α β + γ δ) 2 + ω 2 (α + β γ δ) 2 + ω(α β γ + δ) 2 } ] 2 = φ sss (11) [{(α β + γ δ) 2 + ω(α + β γ δ) 2 + ω 2 (α β γ + δ) 2 } {(α β + γ δ) 2 + ω 2 (α + β γ δ) 2 + ω(α β γ + δ) 2 } ] 2 step1 step6 12 φ sss (11) S 4 R φsss (s); s S 4 Tab.7 R φsss (S 4 )Tab. 7.2 R φsss (s); s S 4 R φ5 (s); s S 4 (11.2) φ(2) S 4 φ sss (11)

23 T d class [E] = I = R φ5 (e) R φ5 (s)s S 4 T d [C 2 ] [C ] Normal subgroup V K abelian A 4 [σ d ] [S 4 ] , , Tab.6 R φ4 (s) L H" R φ5 (s) = H R φ4 (s)h 1 = Ad H R φ4 (s) s S 4 H : I 2 H 2 (10.2) H 1 = I H 2 I 2 :Identity matrix of order 2 H 2 :Hadamard matrix of order 2

24 C s class [E] = I = R φ5 (e) R φ5 (S 4 ) S 2 C s Normal subgroup [σ] Tab.6.2

25 T d class [E] = I = R φsss (e) R φsss (s)s S 4 T d [C 2 ] [C ] , Normal subgroup V K abelian A 4 [σ d ] [S 4 ] , , Tab.7 R φ5 (s) P2 R (s) = R φsss φ 5 (s) R φ5 (s)s S 4 (11.2) ʘ: Hadamard product sign

26 R φsss (S 4 ) {e} = I Tab.7.2

27 step7 12 φ sss (11) s n φ sss (11) φ o (12) o 1 o 2 φ o = o = o 4 o 1 (α, β, γ, δ) o 12 1 (α, β, γ, δ) o 2 (α, β, γ, δ) o = φ o (α, β, γ, δ) o φ sss : = 6 2 (α, β, γ, δ) o (α, β, γ, δ) (12) o 4 (α, β, γ, δ) o 4 (α, β, γ, δ) α + β + γ + δ (α β + γ δ) 2 + (α + β γ δ) 2 + (α β γ + δ) 2 [{(α β + γ δ) 2 + ω(α + β γ δ) 2 + ω 2 (α β γ + δ) 2 } + {(α β + γ δ) 2 + ω 2 (α + β γ δ) 2 + ω(α β γ + δ) 2 } ] [{(α β + γ δ) 2 + ω(α + β γ δ) 2 + ω 2 (α β γ + δ) 2 } {(α β + γ δ) 2 + ω 2 (α + β γ δ) 2 + ω(α β γ + δ) 2 } ] 2 (12.2) ω: ω 2 + ω + 1 = 0 φ o (12.2) {o 1, o 2, o, o 4 }(1) {s 1, s 2, s, s 4 } Fig.6 (1 ) Change of variables by eq.(1) o n the fffffffffff theeeee oo ø n o n (s 1, s 2, s, s 4 ) ef ssssetesc pefsfessff Fig.6

28 ø 1(s 1, s 2, s, s 4 ) = o 1 = α + β + γ + δ ø 2 (s 1, s 2, s, s 4 ) = o 2 = (α β + γ δ) 2 + (α + β γ δ) 2 + (α β γ + δ) 2 ø (s 1, s 2, s, s 4 ) = o = {(α β + γ δ) 2 + ω(α + β γ δ) 2 + ω 2 (α β γ + δ) 2 } +{(α β + γ δ) 2 + ω 2 (α + β γ δ) 2 + ω(α β γ + δ) 2 } (1) ø 4 (s 1, s 2, s, s 4 ) = o 4 = [{(α β + γ δ) 2 + ω(α + β γ δ) 2 + ω 2 (α β γ + δ) 2 } {(α β + γ δ) 2 + ω 2 (α + β γ δ) 2 + ω(α β γ + δ) 2 } ] 2 ø 1 = s 1 ø 2 = ø 2 1 8s 2 (1.2) ø = ø 2 c d ø 4 = ø 2 4c c = ø ø (s s 2 1 s s 1 s 256s 4 ) (1.) d = ø 2 27(s 1 4s 1 s 2 + 8s ) 2 (1) (1) φ sss (11) (1 2) (1) (1) (1) (1)(1.2), (1.2) (1 4) (1 ) s 1 a 1 = s2 = a 2 s = a a n Q (1) s 4 = a 4 O n ø n (s n = a n ) b 1 c(s n = a n ) (14) b 2 d (s n = a n ) (1 ) (14)(1 5) (14) (1 5) {α, β, γ, δ} (1 5) (1) (1)

29 a 1 = a α, β, γ, δ 2 = a = a 4 = α + β + γ + δ αβ + αγ + αδ + βγ + βδ + γδ αβγ + αβδ + αγδ + βγδ αβγδ 1 O O O 2 + O 4 1 O O O 2 + O 4 = 1 O O O 2 + O 4 1 O O O 2 + O O 2 O O 2 + ω 1 2 O + O O 2 + ω 2 1 O 2 + O O 2 O O 2 + ω 1 2 O + O 4 1 O 2 + ω 2 1 O 2 + O O 2 O 4 1 O 2 + ω 1 2 O + O 4 1 O 2 + ω 2 1 O 2 + O O 2 O 4 1 O 2 + ω 1 2 O + O O 2 + ω 2 1 O 2 + O 4 + ω 2 1 O 2 O 4 + ω 1 O 2 O 4 + ω 2 1 O 2 O 4 + ω 1 O 2 O 4 + ω 2 1 O 2 O 4 + ω 1 O 2 O 4 + ω 2 1 O 2 O 4,, + ω 1 O 2 O 4 ω: ccccc rrrr ω 2 + ω + 1 = 0 (15) O 1 = a 1 O 2 = O 2 1 8a 2 (15 2) O = O 2 b 1 b 2 O 4 = O 2 4b 1 b 1 = O O (a a 2 1 a a 1 a 256a 4 ) (15 ) b 2 = O 2 27(a 1 4a 1 a 2 + 8a ) 2,

30 step1 step6 9. L Λ P n O n Λ: = P n L Λ step1 step2step step4step5 step6 (1 6) O 2 H: = P 2 LH : = P LH (16) 2 : = P 2 LH" O H O H" 10. φ φ sss step1 step6 (17) T o : = O2 H" OH 2 OH (17) T o T sss step1 step6 Fig.6 Fig.6-2 S 4 Schönflies S Mulliken S 4 5 χ 4 S 1, χ 4 S 2, χ 4 S, χ 4 S 4, χ 4 5 Tab.8

31 φ ee.(2) T o O 2 H O H φ O2 H" 4 φ sss φ ee.(1) o ee.(5) ee.(8) ee.(11) ee.(12.2) φ 2 s 1 SSSSSSSS of ee.(1) ø 2 1 8s 2 φ o = ø 2 c d ee. (16) ø 2 4c ee. (1.2) VVVVVV tttttttttttttt O 2 H O H O H" φ 2 φ 4 S R φ4 (S 4 ) Tab.5.2 φ R φ (S 4 ) S 4 R φ2 (S 4 ) Tab.1. Tab..2 R φ2 (A 4 ) A R φ (S 4 ) D φ (V K ) R φ2 (S 4 ) R φ2 (A 4 ) MMMMMM rrrrrrrrrrrrrr eeeeeeeee kerr φ2 V K oos 4 kerr φ4 A 4 oos 4 R φ (S 4 ) R φ(s 4 ) R φ (V 4 ) R φ 2 (S 4 ) R φ 2 (S 4 ) R φ2 (A 4 ) R φ 4 (S 4 ) 2 φ sss S 2 R φsss (S 4 ) Tab.7.2 = {E 4 } Λ(R φ (V K )) H = = H H 4 4Hadamard () H 1 = 1 4 H 4 I 1 : Λ(R φ2 (A 4 )) H = 0 1 ω ω 2 = I 1 H H : Hadamard (6) 0 1 ω 2 ω ω: ω 2 + ω + 1 = 0 H 1 = I 1 1 H Λ R φ4 (S 4 ) H = = I H 2 I 2: 2 (9) H 2 : 2 Hadamard H 1 = I 2 1 H 2 2 Fig.6

32 φ R φ (S 4 ) T d Tab.1. O 2 H φ 2 R φ2 (S 4 ) C v Tab..2 O H φ 4 R φ4 (S 4 ) C s Tab.5.2 O2 H" φ sss R φsss (S 4 ) {e} Tab Td R φ (S 4 ) L H P 2 0A Cv R φ2 (S 4 ) L H P 0A A Cs R φ4 (S 4 ) L H" P 2 0A A A A 1 0 R φsss (S 4 ) = 4(A 1 ) 0A T R φ1 (S 4 ) 0A A E R φ (S 4 ) 0A A A A 2 0 R φ5 (S 4 ) = (A 1 ) (T 1 ) = 2(A 1 ) (E) = (A 1 ) (A 2 ) (A 1 ) = {(1)} (A 2 ) = {(1), ( 1)} (E) = ω2, 0, ω ω2, 0 ω 0, 0 0 ω ω2, 0 ω ω 2 0 (T 1 ) = , 0 0 1, 1 0 0, 0 0 1, 1 0 0, 0 1 0, , 0 0 1, 1 0 0, 0 0 1, 1 0 0, 0 1 0, , 0 0 1, 1 0 0, 0 0 1, 1 0 0, 0 1 0, , 0 0 1, 1 0 0, 0 0 1, 1 0 0, Fig.6.2

33 character Irreducible representation of S 4 martix groups χ 1 S 4 = ( ) R χ1 S4 (S 4) = {(A 1 )} χ 2 S 4 = ( ) R χ2 S4 (S 4) = {(A 2 )} χ S 4 = ( ) R χ S4 (S 4) (E) χ 4 S 4 = ( ) R χ4 S4 (S 4) (T 1 ) χ 5 S 4 = ( ) R χ5 S4 (S 4) χ S 4(ψ) = (trr ψ (E) trr ψ (C ) trr ψ (C 2 ) trr ψ (S 4 ) trr ψ (σ d )) S 4 T d = {E, 8C, C 2, 6S 4, 6σ d } ψ C n [Φ] Φ = {α, β, γ, δ} χ = {ψ C n [Φ]χ S 4(ψ) = χχ C 5 } Tab.8

34 2. 1. (2 1) f(x) = x 4 + ox + px 2 + qq + r = 0o, p, q, r C(2 1) f(x) (2 1) f(x) = (x α)(x β)(x γ)(x δ) (2 2) Fundamental theorem of algebra α, β, γ, δ {ρ C f(ρ) = 0} (2 2) (2 1) (2 ) o = p = q = r = (α + β + γ + δ) αβ + αγ + αδ + βγ + βδ + γδ (αβγ + αβδ + αγδ + βγδ ) αβγδ Relation between coefficients and roots of a polynomial (2 ) (2 «) 4Viéta» «4 Viéta»(2 ) (2 1) (2 ) 1. (1.2)(1)(1.1)(1.2) (2 4) o = s 1 = α + β + γ + δ p = s 2 = αβ + αγ + αδ + βγ + βδ + γδ q = s = αβγ + αβδ + αγδ + βγδ r = s 4 = αβγδ (2.2) (2 )(2.2)(2 4.4) (2 5) (2 4) (2 6) (2 7) (2 1) (2 7)

35 o 1(α, β, γ, δ) = ø 1 (s 1, s 2, s, s 4 ) o 2 (α, β, γ, δ) = ø 2 (s 1, s 2, s, s 4 ) (2 4) o (α, β, γ, δ) = ø (s 1, s 2, s, s 4 ) o 4 (α, β, γ, δ) = ø 4 (s 1, s 2, s, s 4 ) s 1 s 2 s s4 = α + β + γ + δ = αβ + αγ + αδ + βγ + βδ + γδ = αβγ + αβδ + αγδ + βγδ = αβγδ (2 4.2) o 1 = α + β + γ + δ o 2 = (α β + γ δ) 2 + (α + β γ δ) 2 + (α β γ + δ) 2 o = {(α β + γ δ) 2 + ω(α + β γ δ) 2 + ω 2 (α β γ + δ) 2 } +{(α β + γ δ) 2 + ω 2 (α + β γ δ) 2 + ω(α β γ + δ) 2 } (2 4.) o 4 = [{(α β + γ δ) 2 + ω(α + β γ δ) 2 + ω 2 (α β γ + δ) 2 } {(α β + γ δ) 2 + ω 2 (α + β γ δ) 2 + ω(α β γ + δ) 2 } ] 2 ø 1 = s 1 ø 2 = s 2 1 8s 2 (2 4.4) ø = ø 2 c d ø 4 = ø 2 4c c = ø ø (s s 2 1 s s 1 s 256s 4 ) ( ) d = ø 2 27(s 1 4s 1 s 2 + 8s ) 2 Ø n ø n (s 1 = o, s 2 = p, s = q, s 4 = r) C c(s 1 = o, s 2 = p, s = q, s 4 = r) (2 5) D d (s 1 = o, s 2 = p, s = q, s 4 = r) Ø 1 = α + β + γ + δ Ø 2 = (α β + γ δ) 2 + (α + β γ δ) 2 + (α β γ + δ) 2 Ø = {(α β + γ δ) 2 + ω(α + β γ δ) 2 + ω 2 (α β γ + δ) 2 } +{(α β + γ δ) 2 + ω 2 (α + β γ δ) 2 + ω(α β γ + δ) 2 } (2 6) Ø 4 = [{(α β + γ δ) 2 + ω(α + β γ δ) 2 + ω 2 (α β γ + δ) 2 } {(α β + γ δ) 2 + ω 2 (α + β γ δ) 2 + ω(α β γ + δ) 2 } ] 2

36 {α, β, γ, δ} = {ρ C f(ρ) = ρ 4 + oρ + pρ 2 + qρ + r = 0} 1 Ø Ø Ø 2 + Ø 4 1 Ø Ø Ø 2 + Ø 4 = 1 Ø Ø Ø 2 + Ø 4 1 Ø Ø Ø 2 + Ø Ø 2 Ø Ø 2 + ω 1 2 Ø + Ø Ø 2 + ω 2 1 Ø 2 + Ø Ø 2 Ø Ø 2 + ω 1 2 Ø + Ø 4 1 Ø 2 + ω 2 1 Ø 2 + Ø Ø 2 Ø 4 1 Ø 2 + ω 1 2 Ø + Ø 4 1 Ø 2 + ω 2 1 Ø 2 + Ø Ø 2 Ø 4 1 Ø 2 + ω 1 2 Ø + Ø Ø 2 + ω 2 1 Ø 2 + Ø 4 + ω 2 1 Ø 2 Ø 4 + ω 1 Ø 2 Ø 4 + ω 2 1 Ø 2 Ø 4 + ω 1 Ø 2 Ø 4 + ω 2 1 Ø 2 Ø 4 + ω 1 Ø 2 Ø 4 + ω 2 1 Ø 2 Ø 4,, + ω 1 Ø 2 Ø 4 ω: ccccc rrrr ω 2 + ω + 1 = 0 (2 7) Ø 1 = o Ø 2 = Ø 2 1 8p (2 7.2) Ø = Ø 2 C D Ø 4 = Ø 2 4C, C = Ø 2 2 C 2 D = Ø 2 27D 2 (2 7.) 2 C 2 = 1 Ø (o4 16o 2 p + 64oo 256r) (2 7.4) D 2 = o 4oo + 8q

37 f(x) (2 1) (2 7) Tab.2-1 Tab.2-1 ΔΔ Δ (2 1) f(x) f(x) = x 4 + ox + px 2 + qq + r = 0(2 1) Δ = {(α β)(α γ)(α δ)(β γ)(β δ)(γ δ)} 2 : f(x) Ø 4 = Ø 2 4C = 4 6 Δ f (x) = 4x + ox 2 + 2pp + q(2 8) Δ = 1 4 ( o q o 2 p ooo 2 5 p 2 2 q 2 ) f (x) D = Ø 2 27D 2 2 = 4 5 Δ f (x) = 12x 2 + 6oo + 2p(2 9) Δ = 1 12 (o2 8p) f (x) Ø 2 = Ø 2 1 8p = 12Δ f(x) Δ Δ f(x)

38 Multiplicity Discriminant Roots of f(x) double Ø 4 = 0 triple Ø 4 = 0 Ø = 0 two double Ø 4 = 0 Ø = 2Ø 2 quadruple Δ = 0 C = 0 Δ = 0 or C = 0 Δ = 0 C = 0 D = 0 C 2 = 0 D 2 = 0 1 Ø Ø Ø Ø 2 1 Ø 2, 1 Ø Ø Ø 2, 1 Ø Ø Ø Ø 2 1 Ø 2, 1 Ø Ø Ø 2 1 Ø Ø 2, 1 Ø Ø Ø 1 1 Ø 2 1 Ø Ø 2 1 Ø Ø 2, 1 Ø 4 1 Ø 2 1 Ø 4 1 Ø 2 1 Ø Ø 2 Ø 4 = 0 Ø = 0 Ø 2 = 0 Δ = 0 Δ = 0 Δ = 0 Δ: Discriminant of f(x) Δ : Discriminant of f (x) Δ : Discriminant of f (x) 1 Ø Ø Ø Ø 4 1 C = (o 2 8p) 2 C 2 C 2 = 1(o2 8p) (o4 16o 2 p + 64oo 256r) 4 4 D 2 = o 4oo + 8q Tab.2-1

39 Reference

四変数基本対称式の解放

四変数基本対称式の解放 The second-thought of the Galois-style way to solve a quartic equation Oomori, Yasuhiro in Himeji City, Japan Jan.6, 013 Abstract v ρ (v) Step1.5 l 3 1 6. l 3 7. Step - V v - 3 8. Step1.3 - - groupe groupe

More information

CVMに基づくNi-Al合金の

CVMに基づくNi-Al合金の CV N-A (-' by T.Koyama ennard-jones fcc α, β, γ, δ β α γ δ = or α, β. γ, δ α β γ ( αβγ w = = k k k ( αβγ w = ( αβγ ( αβγ w = w = ( αβγ w = ( αβγ w = ( αβγ w = ( αβγ w = ( αβγ w = ( βγδ w = = k k k ( αγδ

More information

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 第 2 版 1 刷発行時のものです. 医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/009192 このサンプルページの内容は, 第 2 版 1 刷発行時のものです. i 2 t 1. 2. 3 2 3. 6 4. 7 5. n 2 ν 6. 2 7. 2003 ii 2 2013 10 iii 1987

More information

y = x x R = 0. 9, R = σ $ = y x w = x y x x w = x y α ε = + β + x x x y α ε = + β + γ x + x x x x' = / x y' = y/ x y' =

y = x x R = 0. 9, R = σ $ = y x w = x y x x w = x y α ε = + β + x x x y α ε = + β + γ x + x x x x' = / x y' = y/ x y' = y x = α + β + ε =,, ε V( ε) = E( ε ) = σ α $ $ β w ( 0) σ = w σ σ y α x ε = + β + w w w w ε / w ( w y x α β ) = α$ $ W = yw βwxw $β = W ( W) ( W)( W) w x x w x x y y = = x W y W x y x y xw = y W = w w

More information

1 Abstract 2 3 n a ax 2 + bx + c = 0 (a 0) (1) ( x + b ) 2 = b2 4ac 2a 4a 2 D = b 2 4ac > 0 (1) 2 D = 0 D < 0 x + b 2a = ± b2 4ac 2a b ± b 2

1 Abstract 2 3 n a ax 2 + bx + c = 0 (a 0) (1) ( x + b ) 2 = b2 4ac 2a 4a 2 D = b 2 4ac > 0 (1) 2 D = 0 D < 0 x + b 2a = ± b2 4ac 2a b ± b 2 1 Abstract n 1 1.1 a ax + bx + c = 0 (a 0) (1) ( x + b ) = b 4ac a 4a D = b 4ac > 0 (1) D = 0 D < 0 x + b a = ± b 4ac a b ± b 4ac a b a b ± 4ac b i a D (1) ax + bx + c D 0 () () (015 8 1 ) 1. D = b 4ac

More information

第86回日本感染症学会総会学術集会後抄録(I)

第86回日本感染症学会総会学術集会後抄録(I) κ κ κ κ κ κ μ μ β β β γ α α β β γ α β α α α γ α β β γ μ β β μ μ α ββ β β β β β β β β β β β β β β β β β β γ β μ μ μ μμ μ μ μ μ β β μ μ μ μ μ μ μ μ μ μ μ μ μ μ β

More information

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

I A A441 : April 15, 2013 Version : 1.1 I   Kawahira, Tomoki TA (Shigehiro, Yoshida ) I013 00-1 : April 15, 013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida) http://www.math.nagoya-u.ac.jp/~kawahira/courses/13s-tenbou.html pdf * 4 15 4 5 13 e πi = 1 5 0 5 7 3 4 6 3 6 10 6 17

More information

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2 2005 9/8-11 2 2.2 ( 2-5) γ ( ) γ cos θ 2πr πρhr 2 g h = 2γ cos θ ρgr (2.1) γ = ρgrh (2.2) 2 cos θ θ cos θ = 1 (2.2) γ = 1 ρgrh (2.) 2 2. p p ρgh p ( ) p p = p ρgh (2.) h p p = 2γ r 1 1 (Berry,1975) 2-6

More information

25 7 18 1 1 1.1 v.s............................. 1 1.1.1.................................. 1 1.1.2................................. 1 1.1.3.................................. 3 1.2................... 3

More information

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i July 8, 4. H H H int H H H int H int (x)d 3 x Schrödinger Picture Ψ(t) S e iht Ψ H O S Heisenberg Picture Ψ H O H (t) e iht O S e iht Interaction Picture Ψ(t) D e iht Ψ(t) S O D (t) e iht O S e ih t (Dirac

More information

F = 0 F α, β F = t 2 + at + b (t α)(t β) = t 2 (α + β)t + αβ G : α + β = a, αβ = b F = 0 F (t) = 0 t α, β G t F = 0 α, β G. α β a b α β α β a b (α β)

F = 0 F α, β F = t 2 + at + b (t α)(t β) = t 2 (α + β)t + αβ G : α + β = a, αβ = b F = 0 F (t) = 0 t α, β G t F = 0 α, β G. α β a b α β α β a b (α β) 19 7 12 1 t F := t 2 + at + b D := a 2 4b F = 0 a, b 1.1 F = 0 α, β α β a, b /stlasadisc.tex, cusp.tex, toileta.eps, toiletb.eps, fromatob.tex 1 F = 0 F α, β F = t 2 + at + b (t α)(t β) = t 2 (α + β)t

More information

I

I I 6 4 10 1 1 1.1............... 1 1................ 1 1.3.................... 1.4............... 1.4.1.............. 1.4................. 1.4.3........... 3 1.4.4.. 3 1.5.......... 3 1.5.1..............

More information

Dynkin Serre Weyl

Dynkin Serre Weyl Dynkin Naoya Enomoto 2003.3. paper Dynkin Introduction Dynkin Lie Lie paper 1 0 Introduction 3 I ( ) Lie Dynkin 4 1 ( ) Lie 4 1.1 Lie ( )................................ 4 1.2 Killing form...........................................

More information

7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ±

7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ± 7 7. ( ) SU() SU() 9 ( MeV) p 98.8 π + π 0 n 99.57 9.57 97.4 497.70 δm m 0.4%.% 0.% 0.8% π 9.57 4.96 Σ + Σ 0 Σ 89.6 9.46 K + K 0 49.67 (7.) p p = αp + βn, n n = γp + δn (7.a) [ ] p ψ ψ = Uψ, U = n [ α

More information

さくらの個別指導 ( さくら教育研究所 ) 1 φ = φ 1 : φ [ ] a [ ] 1 a : b a b b(a + b) b a 2 a 2 = b(a + b). b 2 ( a b ) 2 = a b a/b X 2 X 1 = 0 a/b > 0 2 a

さくらの個別指導 ( さくら教育研究所 ) 1 φ = φ 1 : φ [ ] a [ ] 1 a : b a b b(a + b) b a 2 a 2 = b(a + b). b 2 ( a b ) 2 = a b a/b X 2 X 1 = 0 a/b > 0 2 a φ + 5 2 φ : φ [ ] a [ ] a : b a b b(a + b) b a 2 a 2 b(a + b). b 2 ( a b ) 2 a b + a/b X 2 X 0 a/b > 0 2 a b + 5 2 φ φ : 2 5 5 [ ] [ ] x x x : x : x x : x x : x x 2 x 2 x 0 x ± 5 2 x x φ : φ 2 : φ ( )

More information

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e 3 3 5 5 5 3 3 7 5 33 5 33 9 5 8 > e > f U f U u u > u ue u e u ue u ue u e u e u u e u u e u N cos s s cos ψ e e e e 3 3 e e 3 e 3 e 3 > A A > A E A f A A f A [ ] f A A e > > A e[ ] > f A E A < < f ; >

More information

1. 1 A : l l : (1) l m (m 3) (2) m (3) n (n 3) (4) A α, β γ α β + γ = 2 m l lm n nα nα = lm. α = lm n. m lm 2β 2β = lm β = lm 2. γ l 2. 3

1. 1 A : l l : (1) l m (m 3) (2) m (3) n (n 3) (4) A α, β γ α β + γ = 2 m l lm n nα nα = lm. α = lm n. m lm 2β 2β = lm β = lm 2. γ l 2. 3 1. 1 A : l l : (1) l m (m 3) (2) m (3) n (n 3) (4) A 2 1 2 1 2 3 α, β γ α β + γ = 2 m l lm n nα nα = lm. α = lm n. m lm 2β 2β = lm β = lm 2. γ l 2. 3 4 P, Q R n = {(x 1, x 2,, x n ) ; x 1, x 2,, x n R}

More information

Akito Tsuboi June 22, T ϕ T M M ϕ M M ϕ T ϕ 2 Definition 1 X, Y, Z,... 1

Akito Tsuboi June 22, T ϕ T M M ϕ M M ϕ T ϕ 2 Definition 1 X, Y, Z,... 1 Akito Tsuboi June 22, 2006 1 T ϕ T M M ϕ M M ϕ T ϕ 2 Definition 1 X, Y, Z,... 1 1. X, Y, Z,... 2. A, B (A), (A) (B), (A) (B), (A) (B) Exercise 2 1. (X) (Y ) 2. ((X) (Y )) (Z) 3. (((X) (Y )) (Z)) Exercise

More information

2 1 1 α = a + bi(a, b R) α (conjugate) α = a bi α (absolute value) α = a 2 + b 2 α (norm) N(α) = a 2 + b 2 = αα = α 2 α (spure) (trace) 1 1. a R aα =

2 1 1 α = a + bi(a, b R) α (conjugate) α = a bi α (absolute value) α = a 2 + b 2 α (norm) N(α) = a 2 + b 2 = αα = α 2 α (spure) (trace) 1 1. a R aα = 1 1 α = a + bi(a, b R) α (conjugate) α = a bi α (absolute value) α = a + b α (norm) N(α) = a + b = αα = α α (spure) (trace) 1 1. a R aα = aα. α = α 3. α + β = α + β 4. αβ = αβ 5. β 0 6. α = α ( ) α = α

More information

.1 A cos 2π 3 sin 2π 3 sin 2π 3 cos 2π 3 T ra 2 deta T ra 2 deta T ra 2 deta a + d 2 ad bc a 2 + d 2 + ad + bc A 3 a b a 2 + bc ba + d c d ca + d bc +

.1 A cos 2π 3 sin 2π 3 sin 2π 3 cos 2π 3 T ra 2 deta T ra 2 deta T ra 2 deta a + d 2 ad bc a 2 + d 2 + ad + bc A 3 a b a 2 + bc ba + d c d ca + d bc + .1 n.1 1 A T ra A A a b c d A 2 a b a b c d c d a 2 + bc ab + bd ac + cd bc + d 2 a 2 + bc ba + d ca + d bc + d 2 A a + d b c T ra A T ra A 2 A 2 A A 2 A 2 A n A A n cos 2π sin 2π n n A k sin 2π cos 2π

More information

量子力学 問題

量子力学 問題 3 : 203 : 0. H = 0 0 2 6 0 () = 6, 2 = 2, 3 = 3 3 H 6 2 3 ϵ,2,3 (2) ψ = (, 2, 3 ) ψ Hψ H (3) P i = i i P P 2 = P 2 P 3 = P 3 P = O, P 2 i = P i (4) P + P 2 + P 3 = E 3 (5) i ϵ ip i H 0 0 (6) R = 0 0 [H,

More information

BD = a, EA = b, BH = a, BF = b 3 EF B, EOA, BOD EF B EOA BF : AO = BE : AE, b : = BE : b, AF = BF = b BE = bb. () EF = b AF = b b. (2) EF B BOD EF : B

BD = a, EA = b, BH = a, BF = b 3 EF B, EOA, BOD EF B EOA BF : AO = BE : AE, b : = BE : b, AF = BF = b BE = bb. () EF = b AF = b b. (2) EF B BOD EF : B 2000 8 3.4 p q θ = 80 B E a H F b θ/2 O θ/2 D A B E BD = a, EA = b, BH = a, BF = b 3 EF B, EOA, BOD EF B EOA BF : AO = BE : AE, b : = BE : b, AF = BF = b BE = bb. () EF = b AF = b b. (2) EF B BOD EF :

More information

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google I4 - : April, 4 Version :. Kwhir, Tomoki TA (Kondo, Hirotk) Google http://www.mth.ngoy-u.c.jp/~kwhir/courses/4s-biseki.html pdf 4 4 4 4 8 e 5 5 9 etc. 5 6 6 6 9 n etc. 6 6 6 3 6 3 7 7 etc 7 4 7 7 8 5 59

More information

Lecture 12. Properties of Expanders

Lecture 12. Properties of Expanders Lecture 12. Properties of Expanders M2 Mitsuru Kusumoto Kyoto University 2013/10/29 Preliminalies G = (V, E) L G : A G : 0 = λ 1 λ 2 λ n : L G ψ 1,..., ψ n : L G µ 1 µ 2 µ n : A G ϕ 1,..., ϕ n : A G (Lecture

More information

E1 (4/12)., ( )., 3,4 ( ). ( ) Allen Hatcher, Vector bundle and K-theory ( HP ) 1

E1 (4/12)., ( )., 3,4 ( ). ( ) Allen Hatcher, Vector bundle and K-theory ( HP ) 1 E1 (4/12)., ( )., 3,4 ( ). ( ) Allen Hatcher, Vector bundle and K-theory ( HP ) 1 (4/12) 1 1.. 2. F R C H P n F E n := {((x 0,..., x n ), [v 0 : : v n ]) F n+1 P n F n x i v i = 0 }. i=0 E n P n F P n

More information

(2) Fisher α (α) α Fisher α ( α) 0 Levi Civita (1) ( 1) e m (e) (m) ([1], [2], [13]) Poincaré e m Poincaré e m Kähler-like 2 Kähler-like

(2) Fisher α (α) α Fisher α ( α) 0 Levi Civita (1) ( 1) e m (e) (m) ([1], [2], [13]) Poincaré e m Poincaré e m Kähler-like 2 Kähler-like () 10 9 30 1 Fisher α (α) α Fisher α ( α) 0 Levi Civita (1) ( 1) e m (e) (m) ([1], [], [13]) Poincaré e m Poincaré e m Kähler-like Kähler-like Kähler M g M X, Y, Z (.1) Xg(Y, Z) = g( X Y, Z) + g(y, XZ)

More information

Step 2 O(3) Sym 0 (R 3 ), : a + := λ 1 λ 2 λ 3 a λ 1 λ 2 λ 3. a +. X a +, O(3).X. O(3).X = O(3)/O(3) X, O(3) X. 1.7 Step 3 O(3) Sym 0 (R 3 ),

Step 2 O(3) Sym 0 (R 3 ), : a + := λ 1 λ 2 λ 3 a λ 1 λ 2 λ 3. a +. X a +, O(3).X. O(3).X = O(3)/O(3) X, O(3) X. 1.7 Step 3 O(3) Sym 0 (R 3 ), 1 1 1.1,,. 1.1 1.2 O(2) R 2 O(2).p, {0} r > 0. O(3) R 3 O(3).p, {0} r > 0.,, O(n) ( SO(n), O(n) ): Sym 0 (R n ) := {X M(n, R) t X = X, tr(x) = 0}. 1.3 O(n) Sym 0 (R n ) : g.x := gxg 1 (g O(n), X Sym 0

More information

/ 2 n n n n x 1,..., x n 1 n 2 n R n n ndimensional Euclidean space R n vector point R n set space R n R n x = x 1 x n y = y 1 y n distance dx,

/ 2 n n n n x 1,..., x n 1 n 2 n R n n ndimensional Euclidean space R n vector point R n set space R n R n x = x 1 x n y = y 1 y n distance dx, 1 1.1 R n 1.1.1 3 xyz xyz 3 x, y, z R 3 := x y : x, y, z R z 1 3. n n x 1,..., x n x 1. x n x 1 x n 1 / 2 n n n n x 1,..., x n 1 n 2 n R n n ndimensional Euclidean space R n vector point 1.1.2 R n set

More information

セアラの暗号

セアラの暗号 1 Cayley-Purser 1 Sarah Flannery 16 1 [1] [1] [1]314 www.cayley-purser.ie http://cryptome.org/flannery-cp.htm [2] Cryptography: An Investigation of a New Algorithm vs. the RSA(1999 RSA 1999 9 11 2 (17

More information

> > <., vs. > x 2 x y = ax 2 + bx + c y = 0 2 ax 2 + bx + c = 0 y = 0 x ( x ) y = ax 2 + bx + c D = b 2 4ac (1) D > 0 x (2) D = 0 x (3

> > <., vs. > x 2 x y = ax 2 + bx + c y = 0 2 ax 2 + bx + c = 0 y = 0 x ( x ) y = ax 2 + bx + c D = b 2 4ac (1) D > 0 x (2) D = 0 x (3 13 2 13.0 2 ( ) ( ) 2 13.1 ( ) ax 2 + bx + c > 0 ( a, b, c ) ( ) 275 > > 2 2 13.3 x 2 x y = ax 2 + bx + c y = 0 2 ax 2 + bx + c = 0 y = 0 x ( x ) y = ax 2 + bx + c D = b 2 4ac (1) D >

More information

数学の基礎訓練I

数学の基礎訓練I I 9 6 13 1 1 1.1............... 1 1................ 1 1.3.................... 1.4............... 1.4.1.............. 1.4................. 3 1.4.3........... 3 1.4.4.. 3 1.5.......... 3 1.5.1..............

More information

SO(3) 7 = = 1 ( r ) + 1 r r r r ( l ) (5.17) l = 1 ( sin θ ) + sin θ θ θ ϕ (5.18) χ(r)ψ(θ, ϕ) l ψ = αψ (5.19) l 1 = i(sin ϕ θ l = i( cos ϕ θ l 3 = i ϕ

SO(3) 7 = = 1 ( r ) + 1 r r r r ( l ) (5.17) l = 1 ( sin θ ) + sin θ θ θ ϕ (5.18) χ(r)ψ(θ, ϕ) l ψ = αψ (5.19) l 1 = i(sin ϕ θ l = i( cos ϕ θ l 3 = i ϕ SO(3) 71 5.7 5.7.1 1 ħ L k l k l k = iϵ kij x i j (5.117) l k SO(3) l z l ± = l 1 ± il = i(y z z y ) ± (z x x z ) = ( x iy) z ± z( x ± i y ) = X ± z ± z (5.118) l z = i(x y y x ) = 1 [(x + iy)( x i y )

More information

Mathematical Logic I 12 Contents I Zorn

Mathematical Logic I 12 Contents I Zorn Mathematical Logic I 12 Contents I 2 1 3 1.1............................. 3 1.2.......................... 5 1.3 Zorn.................. 5 2 6 2.1.............................. 6 2.2..............................

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

20 4 20 i 1 1 1.1............................ 1 1.2............................ 4 2 11 2.1................... 11 2.2......................... 11 2.3....................... 19 3 25 3.1.............................

More information

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5. A 1. Boltzmann Planck u(ν, T )dν = 8πh ν 3 c 3 kt 1 dν h 6.63 10 34 J s Planck k 1.38 10 23 J K 1 Boltzmann u(ν, T ) T ν e hν c = 3 10 8 m s 1 2. Planck λ = c/ν Rayleigh-Jeans u(ν, T )dν = 8πν2 kt dν c

More information

untitled

untitled C n π/n σ S n π/n v h N tc C S S S S S S S S S S S S S σ v S C σ v C σ v S. O. C / 8 Grou ABCABC EAAEA E AA - A- AE A - N C v EC C σ v σ v σ v 6 C C σ v σ v σ v X X A X - AXB B A B A B B A A C B C A B...

More information

all.dvi

all.dvi 38 5 Cauchy.,,,,., σ.,, 3,,. 5.1 Cauchy (a) (b) (a) (b) 5.1: 5.1. Cauchy 39 F Q Newton F F F Q F Q 5.2: n n ds df n ( 5.1). df n n df(n) df n, t n. t n = df n (5.1) ds 40 5 Cauchy t l n mds df n 5.3: t

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

( ) 2002 1 1 1 1.1....................................... 1 1.1.1................................. 1 1.1.2................................. 1 1.1.3................... 3 1.1.4......................................

More information

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 2 ), ϕ(t) = B 1 cos(ω 1 t + α 1 ) + B 2 cos(ω 2 t

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 3.............................. 3.............................. 4.3 4................... 5.4........................ 6.5........................ 8.6...........................7

More information

2 2 MATHEMATICS.PDF 200-2-0 3 2 (p n ), ( ) 7 3 4 6 5 20 6 GL 2 (Z) SL 2 (Z) 27 7 29 8 SL 2 (Z) 35 9 2 40 0 2 46 48 2 2 5 3 2 2 58 4 2 6 5 2 65 6 2 67 7 2 69 2 , a 0 + a + a 2 +... b b 2 b 3 () + b n a

More information

http://www.ike-dyn.ritsumei.ac.jp/ hyoo/wave.html 1 1, 5 3 1.1 1..................................... 3 1.2 5.1................................... 4 1.3.......................... 5 1.4 5.2, 5.3....................

More information

(Basic of Proability Theory). (Probability Spacees ad Radom Variables , (Expectatios, Meas) (Weak Law

(Basic of Proability Theory). (Probability Spacees ad Radom Variables , (Expectatios, Meas) (Weak Law I (Radom Walks ad Percolatios) 3 4 7 ( -2 ) (Preface),.,,,...,,.,,,,.,.,,.,,. (,.) (Basic of Proability Theory). (Probability Spacees ad Radom Variables...............2, (Expectatios, Meas).............................

More information

A B P (A B) = P (A)P (B) (3) A B A B P (B A) A B A B P (A B) = P (B A)P (A) (4) P (B A) = P (A B) P (A) (5) P (A B) P (B A) P (A B) A B P

A B P (A B) = P (A)P (B) (3) A B A B P (B A) A B A B P (A B) = P (B A)P (A) (4) P (B A) = P (A B) P (A) (5) P (A B) P (B A) P (A B) A B P 1 1.1 (population) (sample) (event) (trial) Ω () 1 1 Ω 1.2 P 1. A A P (A) 0 1 0 P (A) 1 (1) 2. P 1 P 0 1 6 1 1 6 0 3. A B P (A B) = P (A) + P (B) (2) A B A B A 1 B 2 A B 1 2 1 2 1 1 2 2 3 1.3 A B P (A

More information

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,.

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,. 24(2012) (1 C106) 4 11 (2 C206) 4 12 http://www.math.is.tohoku.ac.jp/~obata,.,,,.. 1. 2. 3. 4. 5. 6. 7.,,. 1., 2007 (). 2. P. G. Hoel, 1995. 3... 1... 2.,,. ii 3.,. 4. F. (),.. 5... 6.. 7.,,. 8.,. 1. (75%)

More information

newmain.dvi

newmain.dvi 数論 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/008142 このサンプルページの内容は, 第 2 版 1 刷発行当時のものです. Daniel DUVERNEY: THÉORIE DES NOMBRES c Dunod, Paris, 1998, This book is published

More information

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x Compton Scattering Beaming exp [i k x ωt] k λ k π/λ ω πν k ω/c k x ωt ω k α c, k k x ωt η αβ k α x β diag + ++ x β ct, x O O x O O v k α k α β, γ k γ k βk, k γ k + βk k γ k k, k γ k + βk 3 k k 4 k 3 k

More information

1 M = (M, g) m Riemann N = (N, h) n Riemann M N C f : M N f df : T M T N M T M f N T N M f 1 T N T M f 1 T N C X, Y Γ(T M) M C T M f 1 T N M Levi-Civi

1 M = (M, g) m Riemann N = (N, h) n Riemann M N C f : M N f df : T M T N M T M f N T N M f 1 T N T M f 1 T N C X, Y Γ(T M) M C T M f 1 T N M Levi-Civi 1 Surveys in Geometry 1980 2 6, 7 Harmonic Map Plateau Eells-Sampson [5] Siu [19, 20] Kähler 6 Reports on Global Analysis [15] Sacks- Uhlenbeck [18] Siu-Yau [21] Frankel Siu Yau Frankel [13] 1 Surveys

More information

1

1 1 Borel1956 Groupes linéaire algébriques, Ann. of Math. 64 (1956), 20 82. Chevalley1956/58 Sur la classification des groupes de Lie algébriques, Sém. Chevalley 1956/58, E.N.S., Paris. Tits1959 Sur la classification

More information

[2, 3, 4, 5] * C s (a m k (symmetry operation E m[ 1(a ] σ m σ (symmetry element E σ {E, σ} C s 32 ( ( =, 2 =, (3 0 1 v = x 1 1 +

[2, 3, 4, 5] * C s (a m k (symmetry operation E m[ 1(a ] σ m σ (symmetry element E σ {E, σ} C s 32 ( ( =, 2 =, (3 0 1 v = x 1 1 + 2016 12 16 1 1 2 2 2.1 C s................. 2 2.2 C 3v................ 9 3 11 3.1.............. 11 3.2 32............... 12 3.3.............. 13 4 14 4.1........... 14 4.2................ 15 4.3................

More information

gr09.dvi

gr09.dvi .1, θ, ϕ d = A, t dt + B, t dtd + C, t d + D, t dθ +in θdϕ.1.1 t { = f1,t t = f,t { D, t = B, t =.1. t A, tdt e φ,t dt, C, td e λ,t d.1.3,t, t d = e φ,t dt + e λ,t d + dθ +in θdϕ.1.4 { = f1,t t = f,t {

More information

6.1 (P (P (P (P (P (P (, P (, P.101

6.1 (P (P (P (P (P (P (, P (, P.101 (008 0 3 7 ( ( ( 00 1 (P.3 1 1.1 (P.3.................. 1 1. (P.4............... 1 (P.15.1 (P.15................. (P.18............3 (P.17......... 3.4 (P................ 4 3 (P.7 4 3.1 ( P.7...........

More information

O1-1 O1-2 O1-3 O1-4 O1-5 O1-6

O1-1 O1-2 O1-3 O1-4 O1-5 O1-6 O1-1 O1-2 O1-3 O1-4 O1-5 O1-6 O1-7 O1-8 O1-9 O1-10 O1-11 O1-12 O1-13 O1-14 O1-15 O1-16 O1-17 O1-18 O1-19 O1-20 O1-21 O1-22 O1-23 O1-24 O1-25 O1-26 O1-27 O1-28 O1-29 O1-30 O1-31 O1-32 O1-33 O1-34 O1-35

More information

(Basics of Proability Theory). (Probability Spacees ad Radom Variables,, (Ω, F, P ),, X,. (Ω, F, P ) (probability space) Ω ( ω Ω ) F ( 2 Ω ) Ω σ (σ-fi

(Basics of Proability Theory). (Probability Spacees ad Radom Variables,, (Ω, F, P ),, X,. (Ω, F, P ) (probability space) Ω ( ω Ω ) F ( 2 Ω ) Ω σ (σ-fi I (Basics of Probability Theory ad Radom Walks) 25 4 5 ( 4 ) (Preface),.,,,.,,,...,,.,.,,.,,. (,.) (Basics of Proability Theory). (Probability Spacees ad Radom Variables...............2, (Expectatios,

More information

n 2 + π2 6 x [10 n x] x = lim n 10 n n 10 k x 1.1. a 1, a 2,, a n, (a n ) n=1 {a n } n=1 1.2 ( ). {a n } n=1 Q ε > 0 N N m, n N a m

n 2 + π2 6 x [10 n x] x = lim n 10 n n 10 k x 1.1. a 1, a 2,, a n, (a n ) n=1 {a n } n=1 1.2 ( ). {a n } n=1 Q ε > 0 N N m, n N a m 1 1 1 + 1 4 + + 1 n 2 + π2 6 x [10 n x] x = lim n 10 n n 10 k x 1.1. a 1, a 2,, a n, (a n ) n=1 {a n } n=1 1.2 ( ). {a n } n=1 Q ε > 0 N N m, n N a m a n < ε 1 1. ε = 10 1 N m, n N a m a n < ε = 10 1 N

More information

9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x

9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x 2009 9 6 16 7 1 7.1 1 1 1 9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x(cos y y sin y) y dy 1 sin

More information

16 B

16 B 16 B (1) 3 (2) (3) 5 ( ) 3 : 2 3 : 3 : () 3 19 ( ) 2 ax 2 + bx + c = 0 (a 0) x = b ± b 2 4ac 2a 3, 4 5 1824 5 Contents 1. 1 2. 7 3. 13 4. 18 5. 22 6. 25 7. 27 8. 31 9. 37 10. 46 11. 50 12. 56 i 1 1. 1.1..

More information

koji07-01.dvi

koji07-01.dvi 2007 I II III 1, 2, 3, 4, 5, 6, 7 5 10 19 (!) 1938 70 21? 1 1 2 1 2 2 1! 4, 5 1? 50 1 2 1 1 2 2 1?? 2 1 1, 2 1, 2 1, 2, 3,... 3 1, 2 1, 3? 2 1 3 1 2 1 1, 2 2, 3? 2 1 3 2 3 2 k,l m, n k,l m, n kn > ml...?

More information

êUìÆã§ñ¬ÅEÉtÉFÉãÉ~ã§ñ¬.pdf

êUìÆã§ñ¬ÅEÉtÉFÉãÉ~ã§ñ¬.pdf SFG SFG SFG Y. R. Shen.17 (p. 17) SFG g ω β αβγ = ( e3 h ) (r γ ) ng n ω ω ng + iγ (r α ) gn ' (r β ) n 'n (r ) (r ) α n 'n β gn ' ng n ' ω ω n 'g iγ n'g ω + ω n 'n iγ nn ' (1-1) Harris (Chem. Phys. Lett.,

More information

i Version 1.1, (2012/02/22 24),.,..,.,,. R-space,, ( R- space),, Kahler (Kähler C-space)., R-space,., R-space, Hermite,.

i Version 1.1, (2012/02/22 24),.,..,.,,. R-space,, ( R- space),, Kahler (Kähler C-space)., R-space,., R-space, Hermite,. R-space ( ) Version 1.1 (2012/02/29) i Version 1.1, (2012/02/22 24),.,..,.,,. R-space,, ( R- space),, Kahler (Kähler C-space)., R-space,., R-space, Hermite,. ii 1 Lie 1 1.1 Killing................................

More information

6.1 (P (P (P (P (P (P (, P (, P.

6.1 (P (P (P (P (P (P (, P (, P. (011 30 7 0 ( ( 3 ( 010 1 (P.3 1 1.1 (P.4.................. 1 1. (P.4............... 1 (P.15.1 (P.16................. (P.0............3 (P.18 3.4 (P.3............... 4 3 (P.9 4 3.1 (P.30........... 4 3.

More information

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T NHK 204 2 0 203 2 24 ( ) 7 00 7 50 203 2 25 ( ) 7 00 7 50 203 2 26 ( ) 7 00 7 50 203 2 27 ( ) 7 00 7 50 I. ( ν R n 2 ) m 2 n m, R = e 2 8πε 0 hca B =.09737 0 7 m ( ν = ) λ a B = 4πε 0ħ 2 m e e 2 = 5.2977

More information

1. 2 P 2 (x, y) 2 x y (0, 0) R 2 = {(x, y) x, y R} x, y R P = (x, y) O = (0, 0) OP ( ) OP x x, y y ( ) x v = y ( ) x 2 1 v = P = (x, y) y ( x y ) 2 (x

1. 2 P 2 (x, y) 2 x y (0, 0) R 2 = {(x, y) x, y R} x, y R P = (x, y) O = (0, 0) OP ( ) OP x x, y y ( ) x v = y ( ) x 2 1 v = P = (x, y) y ( x y ) 2 (x . P (, (0, 0 R {(,, R}, R P (, O (0, 0 OP OP, v v P (, ( (, (, { R, R} v (, (, (,, z 3 w z R 3,, z R z n R n.,..., n R n n w, t w ( z z Ke Words:. A P 3 0 B P 0 a. A P b B P 3. A π/90 B a + b c π/ 3. +

More information

Dirac 38 5 Dirac 4 4 γ µ p µ p µ + m 2 = ( p µ γ µ + m)(p ν γ ν + m) (5.1) γ = p µ p ν γ µ γ ν p µ γ µ m + mp ν γ ν + m 2 = 1 2 p µp ν {γ µ, γ ν } + m

Dirac 38 5 Dirac 4 4 γ µ p µ p µ + m 2 = ( p µ γ µ + m)(p ν γ ν + m) (5.1) γ = p µ p ν γ µ γ ν p µ γ µ m + mp ν γ ν + m 2 = 1 2 p µp ν {γ µ, γ ν } + m Dirac 38 5 Dirac 4 4 γ µ p µ p µ + m 2 p µ γ µ + mp ν γ ν + m 5.1 γ p µ p ν γ µ γ ν p µ γ µ m + mp ν γ ν + m 2 1 2 p µp ν {γ µ, γ ν } + m 2 5.2 p m p p µ γ µ {, } 10 γ {γ µ, γ ν } 2η µν 5.3 p µ γ µ + mp

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 1 19 3 19.1................... 3 19.............................. 4 19.3............................... 6 19.4.............................. 8 19.5.............................

More information

s = 1.15 (s = 1.07), R = 0.786, R = 0.679, DW =.03 5 Y = 0.3 (0.095) (.708) X, R = 0.786, R = 0.679, s = 1.07, DW =.03, t û Y = 0.3 (3.163) + 0

s = 1.15 (s = 1.07), R = 0.786, R = 0.679, DW =.03 5 Y = 0.3 (0.095) (.708) X, R = 0.786, R = 0.679, s = 1.07, DW =.03, t û Y = 0.3 (3.163) + 0 7 DW 7.1 DW u 1, u,, u (DW ) u u 1 = u 1, u,, u + + + - - - - + + - - - + + u 1, u,, u + - + - + - + - + u 1, u,, u u 1, u,, u u +1 = u 1, u,, u Y = α + βx + u, u = ρu 1 + ɛ, H 0 : ρ = 0, H 1 : ρ 0 ɛ 1,

More information

zz + 3i(z z) + 5 = 0 + i z + i = z 2i z z z y zz + 3i (z z) + 5 = 0 (z 3i) (z + 3i) = 9 5 = 4 z 3i = 2 (3i) zz i (z z) + 1 = a 2 {

zz + 3i(z z) + 5 = 0 + i z + i = z 2i z z z y zz + 3i (z z) + 5 = 0 (z 3i) (z + 3i) = 9 5 = 4 z 3i = 2 (3i) zz i (z z) + 1 = a 2 { 04 zz + iz z) + 5 = 0 + i z + i = z i z z z 970 0 y zz + i z z) + 5 = 0 z i) z + i) = 9 5 = 4 z i = i) zz i z z) + = a {zz + i z z) + 4} a ) zz + a + ) z z) + 4a = 0 4a a = 5 a = x i) i) : c Darumafactory

More information

V 0 = + r pv (H) + qv (T ) = + r ps (H) + qs (T ) = S 0 X n+ (T ) = n S n+ (T ) + ( + r)(x n n S n ) = ( + r)x n + n (d r)s n = ( + r)v n + V n+(h) V

V 0 = + r pv (H) + qv (T ) = + r ps (H) + qs (T ) = S 0 X n+ (T ) = n S n+ (T ) + ( + r)(x n n S n ) = ( + r)x n + n (d r)s n = ( + r)v n + V n+(h) V I (..2) (0 < d < + r < u) X 0, X X = 0 S + ( + r)(x 0 0 S 0 ) () X 0 = 0, P (X 0) =, P (X > 0) > 0 0 H, T () X 0 = 0, X (H) = 0 us 0 ( + r) 0 S 0 = 0 S 0 (u r) X (T ) = 0 ds 0 ( + r) 0 S 0 = 0 S 0 (d r)

More information

21 2 26 i 1 1 1.1............................ 1 1.2............................ 3 2 9 2.1................... 9 2.2.......... 9 2.3................... 11 2.4....................... 12 3 15 3.1..........

More information

1 911 9001030 9:00 A B C D E F G H I J K L M 1A0900 1B0900 1C0900 1D0900 1E0900 1F0900 1G0900 1H0900 1I0900 1J0900 1K0900 1L0900 1M0900 9:15 1A0915 1B0915 1C0915 1D0915 1E0915 1F0915 1G0915 1H0915 1I0915

More information

ax 2 + bx + c = n 8 (n ) a n x n + a n 1 x n a 1 x + a 0 = 0 ( a n, a n 1,, a 1, a 0 a n 0) n n ( ) ( ) ax 3 + bx 2 + cx + d = 0 4

ax 2 + bx + c = n 8 (n ) a n x n + a n 1 x n a 1 x + a 0 = 0 ( a n, a n 1,, a 1, a 0 a n 0) n n ( ) ( ) ax 3 + bx 2 + cx + d = 0 4 20 20.0 ( ) 8 y = ax 2 + bx + c 443 ax 2 + bx + c = 0 20.1 20.1.1 n 8 (n ) a n x n + a n 1 x n 1 + + a 1 x + a 0 = 0 ( a n, a n 1,, a 1, a 0 a n 0) n n ( ) ( ) ax 3 + bx 2 + cx + d = 0 444 ( a, b, c, d

More information

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT I (008 4 0 de Broglie (de Broglie p λ k h Planck ( 6.63 0 34 Js p = h λ = k ( h π : Dirac k B Boltzmann (.38 0 3 J/K T U = 3 k BT ( = λ m k B T h m = 0.067m 0 m 0 = 9. 0 3 kg GaAs( a T = 300 K 3 fg 07345

More information

2 2 1?? 2 1 1, 2 1, 2 1, 2, 3,... 1, 2 1, 3? , 2 2, 3? k, l m, n k, l m, n kn > ml...? 2 m, n n m

2 2 1?? 2 1 1, 2 1, 2 1, 2, 3,... 1, 2 1, 3? , 2 2, 3? k, l m, n k, l m, n kn > ml...? 2 m, n n m 2009 IA I 22, 23, 24, 25, 26, 27 4 21 1 1 2 1! 4, 5 1? 50 1 2 1 1 2 1 4 2 2 2 1?? 2 1 1, 2 1, 2 1, 2, 3,... 1, 2 1, 3? 2 1 3 1 2 1 1, 2 2, 3? 2 1 3 2 3 2 k, l m, n k, l m, n kn > ml...? 2 m, n n m 3 2

More information

n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz

n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz 1 2 (a 1, a 2, a n ) (b 1, b 2, b n ) A (1.1) A = a 1 b 1 + a 2 b 2 + + a n b n (1.1) n A = a i b i (1.2) i=1 n i 1 n i=1 a i b i n i=1 A = a i b i (1.3) (1.3) (1.3) (1.1) (ummation convention) a 11 x

More information

u Θ u u u ( λ + ) v Θ v v v ( λ + ) (.) Θ ( λ + ) (.) u + + v (.),, S ( λ + ) uv,, S uv, SH (.8) (.8) S S (.9),

u Θ u u u ( λ + ) v Θ v v v ( λ + ) (.) Θ ( λ + ) (.) u + + v (.),, S ( λ + ) uv,, S uv, SH (.8) (.8) S S (.9), ML rgr ML ML ML (,, ) σ τ τ u + + τ σ τ v + + τ τ σ + + (.) uv,,,, σ, σ, σ, τ, τ, τ t (Hook) σ λθ + ε, τ γ σ λθ + ε, τ γ σ λθ + ε, τ γ λ, E ν ν λ E, E ( + ν)( ν) ( + ν) Θ Θ ε + ε + ε (.) ε, ε, ε, γ, γ,

More information

85 4

85 4 85 4 86 Copright c 005 Kumanekosha 4.1 ( ) ( t ) t, t 4.1.1 t Step! (Step 1) (, 0) (Step ) ±V t (, t) I Check! P P V t π 54 t = 0 + V (, t) π θ : = θ : π ) θ = π ± sin ± cos t = 0 (, 0) = sin π V + t +V

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120)

m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120) 2.6 2.6.1 mẍ + γẋ + ω 0 x) = ee 2.118) e iωt Pω) = χω)e = ex = e2 Eω) m ω0 2 ω2 iωγ 2.119) Z N ϵω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j 2.120) Z ω ω j γ j f j f j f j sum j f j = Z 2.120 ω ω j, γ ϵω) ϵ

More information

, = = 7 6 = 42, =

, = = 7 6 = 42, = http://www.ss.u-tokai.ac.jp/~mahoro/2016autumn/alg_intro/ 1 1 2016.9.26, http://www.ss.u-tokai.ac.jp/~mahoro/2016autumn/alg_intro/ 1.1 1 214 132 = 28258 2 + 1 + 4 1 + 3 + 2 = 7 6 = 42, 4 + 2 = 6 2 + 8

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

(Onsager )

(Onsager ) 05819311 (Onsager ) 1 2 2 Onsager 4 3 11 3.1................ 11 3.2............ 14 3.3................... 16 4 18 4.1........... 18 4.2............. 20 5 25 A 27 A.1................. 27 A.2..............

More information

1 a b = max{a, b}, a b = mi{a, b} a 1 a 2 a a 1 a = max{a 1,... a }, a 1 a = mi{a 1,... a }. A sup A, if A A A A A sup A sup A = + A if A = ± y = arct

1 a b = max{a, b}, a b = mi{a, b} a 1 a 2 a a 1 a = max{a 1,... a }, a 1 a = mi{a 1,... a }. A sup A, if A A A A A sup A sup A = + A if A = ± y = arct 27 6 2 1 2 2 5 3 8 4 13 5 16 6 19 7 23 8 27 N Z = {, ±1, ±2,... }, R =, R + = [, + ), R = [, ], C =. a b = max{a, b}, a b = mi{a, b}, a a, a a. f : X R [a < f < b] = {x X; a < f(x) < b}. X [f] = [f ],

More information

基礎から学ぶトラヒック理論 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

基礎から学ぶトラヒック理論 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 基礎から学ぶトラヒック理論 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/085221 このサンプルページの内容は, 初版 1 刷発行時のものです. i +α 3 1 2 4 5 1 2 ii 3 4 5 6 7 8 9 9.3 2014 6 iii 1 1 2 5 2.1 5 2.2 7

More information

ρ /( ρ) + ( q, v ) : ( q, v ), L < q < q < q < L 0 0 ( t) ( q ( t), v ( t)) dq ( t) v ( t) lmr + 0 Φ( r) dt lmr + 0 Φ ( r) dv ( t) Φ ( q ( t) q ( t)) + Φ ( q+ ( t) q ( t)) dt ( ) < 0 ( q (0), v (0)) (

More information

positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) MeV : thermalization m psec 100

positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) MeV : thermalization m psec 100 positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) 0.5 1.5MeV : thermalization 10 100 m psec 100psec nsec E total = 2mc 2 + E e + + E e Ee+ Ee-c mc

More information

: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j =

: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j = 72 Maxwell. Maxwell e r ( =,,N Maxwell rot E + B t = 0 rot H D t = j dv D = ρ dv B = 0 D = ɛ 0 E H = μ 0 B ρ( r = j( r = N e δ( r r = N e r δ( r r = : 2005 ( 2006.8.22 73 207 ρ t +dv j =0 r m m r = e E(

More information

: , 2.0, 3.0, 2.0, (%) ( 2.

: , 2.0, 3.0, 2.0, (%) ( 2. 2017 1 2 1.1...................................... 2 1.2......................................... 4 1.3........................................... 10 1.4................................. 14 1.5..........................................

More information

201711grade1ouyou.pdf

201711grade1ouyou.pdf 2017 11 26 1 2 52 3 12 13 22 23 32 33 42 3 5 3 4 90 5 6 A 1 2 Web Web 3 4 1 2... 5 6 7 7 44 8 9 1 2 3 1 p p >2 2 A 1 2 0.6 0.4 0.52... (a) 0.6 0.4...... B 1 2 0.8-0.2 0.52..... (b) 0.6 0.52.... 1 A B 2

More information