1 Introduction 1 (1) (2) (3) () {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a, b] lim f n (x) f(x) (1) f(x)? (2) () f(x)? b lim a f n (x)dx = b

Size: px
Start display at page:

Download "1 Introduction 1 (1) (2) (3) () {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a, b] lim f n (x) f(x) (1) f(x)? (2) () f(x)? b lim a f n (x)dx = b"

Transcription

1 1 Introduction σ Fubini,,. 1

2 1 Introduction 1 (1) (2) (3) () {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a, b] lim f n (x) f(x) (1) f(x)? (2) () f(x)? b lim a f n (x)dx = b a f(x)dx (1.1) (1) f(x) (2) b a f(x)dx (1.1) f n(x) f(x) (1.1) : 2

3 A i (i = 1, 2,...) R 2 (1) E = [a, b] [c, d] A i E (2) i j A i A j = i=1 A i? i=1a i = A i () i=1? (a priori, ) (1 ) i=1 A i (1) ( ) (2) ( ) R n [a, b] f(x) ( ) (1) [a, b] : a = a 0 < a n = b I(f, {ξ i }, ) = n f (ξ i ) (a i a i 1 ) (a i ξ i a i+1 ) i=1 3

4 lim 0 I(f, {ξ i }, ) = max i (a i a i 1 ). (2) f(x) [α, β] [α, β] Ĩ(f, ) = : α = α 0 < α m = β m α i 1 {x α i 1 f(x) < α i } i=1 lim 0 Ĩ(f, ) {x α i 1 f(x) < α i } [a, b] {x α i 1 f(x) < α i } (3) {x 1,..., x n } = x i p i : n E[] = x i p i i=1 [1],, [2],, [3],, [4],, [5],, [6],, [7],, [8],, [9],, ( ) [1, 2, 3] 1980 [4] 1980 [5, 6, 7, 8] 2000 [1, 4] [7, 4] [7] Stieltjes [6] R n [3] 1 [5] [9] 4

5 ( ) E = {(x, y) x [a, b], y [c, d]} f(x, y) E f(x, y)dxdy 2.1 E E : a = x 0 < x 1 < < x n = b, c = y 0 < y 1 < < y m = d S(f, ) = s(f, ) = sup {f(x, y) x i 1 x x i, y j 1 y y j } (x i x i 1 )(y j y j 1 ) 1 i n,1 j m 1 i n,1 j m inf {f(x, y) x i 1 x x i, y j 1 y y j } (x i x i 1 )(y j y j 1 ). S(f) = inf {S(f, ) } s(f) = sup {s(f, ) } S(f), s(f) Darboux 2.2 = max{x i x i 1, y j y j 1 1 i n, 1 j m} lim S(f, ) = S(f), lim s(f, ) = s(f) S(f) = s(f) f(x, y) E E f(x, y)dxdy 2.4 (1) f(x, y) f(x, y) 6.2 (2)f(x, y) Darboux ξ i,j [x i 1, x i ] [y j 1, y j ] E f(x, y)dxdy = lim 0 1 i n,1 j m f(ξ i,j )(x i x i 1 )(y j y j 1 ) f(x, y) Darboux 5

6 2.2 A R 2 1 A A 1 (x, y) A 1 A (x, y) = (2.1) 0 (x, y) A c 2.5 (A ) A E 1 A E A = 1 A (x, y)dxdy. (2.2) E E 1 A A E 1 A E 1 A (x, y)dxdy = E 1 A (x, y)dxdy E A A E 2.6 S(1 A ) m J (A), s(1 A ) m J (A) A Jordan Jordan A A Jordan m J (A) S(1 A ), s(1 A ) A E E m J (A) = m J (A) A A A Jordan 2.7 (1) c(t) = (x(t), y(t)) C 1 (c(0) = c(1) t t c(t) c(t )) A (2) A E = [0, 1] 2 x y m J (A) = 0, m J (A) = 1 Jordan 2.8 A, A i (1) m J (A) m J (A). (2) (Jordan )A 1, A 2 Jordan A 1 A 2, A 1 A 2 Jordan m J (A 1 A 2 ) = m J (A 1 ) + m J (A 2 ) m J (A 1 A 2 ). (3) {A i } n i=1 Jordan n i=1 A i Jordan m J ( n i=1a i ) n m J (A i ). i=1 6

7 (4) A E (E ) m J (A) = E m J (A c E). A Jordan A c E Jordan 2.9 A R 2 1 A A A A A = { P R 2 ε > 0 B ε (P ) A, B ε (P ) A c }. (2.3) P = (p, q) B ε (P ) = {(x, y) (x p) 2 + (y q) 2 < ε} A R 2 A Jordan R I = [0, 1] (i) I 1 3 (ii) (i) I 1, I 2 I 1 ( ) I2 ( 1 2 3) (iii) (ii) I 1,1, I 1,2, I 2,1, I 2,2 ( 1 3) 3 C Cantor m J (C) = 0 n r n (0 < r < 1 3 ) C r C r Jordan (2) A E 0 Jordan 0 Jordan A R n A m L (A) m L (A) { = inf I i I i R n ( } n i=1 [a i, b i ] ) A i=1 I i i=1 (2.4) 7

8 2.13 () (1) A R n m L (A) 0. (2) A B m L (A) m L (B) (3) A, B R n m L (A B) m L (A) + m L (B) (4) A i R n (i = 1, 2,..., ) m L ( i=1a i ) m L (A i ). i= (1) R n R n m L ( ) = 0 0 (2) N A i R n (1 n N) (4) N i=1a i = {x R n 1 i N x A i } i=1a i = {x R n 1 i < x A i } A n a i lim a i a 1 + a a i=1 i=1 (1)-(4) ( ) (5) 2.15 (1) A i i=1 A i (2) A m L (A) = 0. (3) A m L (A) m J (A). (4) A A 0 Jordan 0 (5) E R n m L (E) E E 2.16 A R n (i) E m L (A E) + m L (A c E) m L (E). 8

9 (ii) B m L (A B) + m L (A c B) m L (B) (3) 2.17 A R n R n B m L (A B) + m L (A c B) = m L (B) (2.5) A m L (A) A m L (A) R n B L (R n ) 2.18 A E A E B = E (2.5) m L (A) = E m L (A c E) (2.6) 2.8 (4) A Jordan 2.19 R n A Jordan A m J (A) = m L (A) (2) E m L (A E) E m L (A c E) (2.7) m L (A E) m J (A E) ( 2.15 (3)) (2.8) E m J (A c E) (A Jordan 2.8 (4)) (2.9) E m L (A c E) ( 2.15 (3)) (2.10) (2.7) (2.7) m L (A) = m J (A) 2.20 (3), (4) 2.20 (, ) (1) R n, B L (R n ). (2) A B L (R n ) A c B L (R n ). (3) A i B L (R n ) (i N) i=1 A i B L (R n ). (4) () A i B L (R n ) (i N) i j A i A j = m L ( i=1a i ) = m L (A i ). (2.11) i=1 9

10 Carathéodory (2.5) A 2.16 (2) Carathéodory. R n ( ) A A 2 i=1 A i notation 3.2 (1) A i (i N) i=1a i = {x i N x A i } (3.1) i=1a i = {x i N x A i } (3.2) (2) S N A i (i S) i S A i = {x i S x A i } (3.3) i S A i = {x i S x A i } (3.4) 3.3 A, B A \ B = A B c B c B (complementary set) 10

11 3.4 (1) (de Morgan ) A i i = 1, 2,... (2) (, ) ( i=1a i ) c = i=1a c i, ( i=1a i ) c = i=1a c i. ( i=1 A i ) B = i=1(a i B) (3.5) ( i=1a i ) B = i=1(a i B) (3.6) 3.5 ( i=1a i ) ( i=1b i ) = i=1(a i B i )? 3.6 () F 2 ( F ) (, F) (1), F. (2) A F A c F. (3) A n F (n = 1, 2,...) n=1 A n F. (1), (2), (3) σ-algebra, σ-field,σ-, σ- 3.7 (, 2 ) 3.8 (, F) (1) (3) : (3) A n F (n = 1, 2,...) N n=1 A n F (N N). (2) A n F (n = 1, 2,...) n i=1 A i F ( n), i=1 A i F. (1) 3.6 (2) A n = (n = N + 1, N + 2,...) (2) n i=1 A i = ( n i=1 Ac i )c (1) σ- (2) i=1 A i (1), (2) (3) σ () (, F) m F m m (, F, m) (1) A F 0 m(a) + m( ) = 0. (2) (, ) A n F A n A m = (n m) m( n=1a n ) = 11 m(a n ). (3.7) n=1

12 (i) m( n ) < (n N) = n=1 n σ- (ii)m() < (iii) m() = 1 (m ) 3.11 (1) A 2, (, A, m) (i) A (ii) A A 0 m(a) + m( ) = 0. (iii) A i A (1 i n, n N), A i A j = m( n i=1 A i) = n i=1 m(a i). Jordan 3.12 (1) F = 2 A A m(a) = + A. (3.8) (2) = R n, F B L (R n ),,m(a) A (R n, B L (R n ), m L ). = {w : [0, ) R n w(0) = 0 w(t) t } (3.9) = [0, 1] N (3.10) () σ (, F, m) (1) A i F (1 i n) n i=1 A i. A i A j = m( n i=1 A i) = n i=1 m(a i). (2) A, B F A B m(a) m(b). m(b) < m(a) < m(b \ A) = m(b) m(a). (3) A n A n+1, A n F (n = 1, 2,...) lim m(a n) = m ( n=1a n ). (3.11) (4) A n F (n = 1, 2,...) m ( n=1 A n) n=1 m(a n). (5) A n A n+1, A n F (n = 1, 2,...) n 0 m(a n0 ) < lim m(a n) = m( n=1a n ). (3.12) (6) A B := (A\B) (B\A) m(a) <, m(b) < m(a) m(b) m (A B). 12

13 (1) 3.10 A n+1 = A n+2 = = (2) B = A (B \ A) A (B \ A) =. B \ A = B A c (1) m(b) = m(a) + m(b \ A) m(a). m(b) < m(a) < m(b \ A) = m(b) m(a). (3) B n = A n \ A n 1 (n 1, A 0 = ) 1. A N = N n=1 A n = N n=1 B n (N N + ) 2. n > m B n B m A c n 1 A m =. (1) (4) m ( n=1a n ) = m ( n=1b n ) = lim N N n=1 m(b n ) = lim N m ( N n=1b n ) = lim N m(a N). (3.13) m ( N ) N n=1a n m(a n ) (3.14) (i) N = 2 A 1 A 2 = A 1 (A 2 \ A 1 ) m(a 1 A 2 ) = m(a 1 ) + m(a 2 \ A 1 ) m(a 1 ) + m(a 2 ). (ii) N OK N = 2 ( ) m N+1 n=1 A n = m ( ( N ) n=1a n ) A N+1 n=1 m ( N n=1a n ) + m(an+1 ) N+1 n=1 m(a n ). (3.15) (3.14) N (3) (5) A n \ A n+1 = B n, n=1 A n = C n > m B n B m A n A c m+1 =. A n0 \ C = n=n 0 B n. (3.16) (2) m(c) <, m(a n ) < n n 0 N m(a n0 ) m(c) = m(b n ) = lim (m(a n ) m(a n+1 )) N n=n 0 n=n 0 = lim (m(a n 0 ) m(a N+1 )). (3.17) N m(c) = lim N m(a N ). (3.16) (i) x A n0 \ C n n 0 x A n x / A n+1. x A n \ A n+1 = B n. 13

14 (ii) x n=n0 B n n n 0 x B n = A n \ A n+1. x A n0 x / C. (6) m(a) = m(a B)+m(A B c ), m(b) = m(a B)+m(B A c ). m(a) m(b) = m(a B c ) m(b A c ) m(a B c ) + m(b A c ) = m(a B) lim sup A n = n=1 { i=na i } (3.18) lim inf n = n=1 { i=na i } (3.19) lim inf A n = lim sup A n lim A n (1) lim inf A n lim sup A n. (2) m(lim inf A n ) lim inf m(a n ). (3) n 0 N m ( ) n=n 0 A n < ( lim sup m(a n ) m ) lim sup A n. (3.20) (4) n 0 N m ( ) n=n 0 A n < lim A n ( ) lim m(a n) = m lim A n. (3.21) (1) x lim inf A n n 0 x i=n0 A i. n x i=n A i. x lim sup A n. (2) B n = i=n A i lim inf A n = n=1 B n B 1 B 2 B (3) ( ) m lim inf A n = m ( n=1b n ) = lim n) = lim inf n) lim inf n) (3.22) (3) C n = i=n A i lim sup A n = n=1 C n C 1 C 2 C 3, m(c n0 ) < 3.13 (5) m (lim sup A n ) = m ( n=1c n ) (4) (2),(3) ( ) m lim inf A n lim inf m(a n) lim sup = lim n) = lim sup m(c n ) lim sup m(a n ). (3.23) 14 ( m(a n ) m ) lim sup A n. (3.24)

15 3.15 A i (i N) i=1a i = lim n i=1a i, i=1a i = lim n i=1a i lim sup A n = { x n(1, x) < n(2, x) < < n(k, x) < x k=1 A } n(k,x) (3.25) lim inf A n = { } x n(x) x n=n(x) A n (3.26) 3.18 {f n (x)} n=1, f(x) [0, + ] n x f n(x) f n+1 (x) lim f n (x) = f(x) a, b 0 a < b + lim A n = A A n = {x a < f n (x) b} (3.27) A = {x a < f(x) b} (3.28) 3.14 (2) 3.18 ( 5.14) 3.2 σ- σ- 2 (1) (3)? 3.19 C 1, C 2 2 C 1 C 2 C 1 C 2 (C 2 C 1 ) () 3.20 C 2 σ(c) = λ Λ F λ {F λ λ Λ} C F λ σ- F λ σ(c) C σ- 15

16 2 σ- C F λ C σ(c) (i) σ(c) σ- (ii) F σ- C F σ(c) F (i) 3.6 (1)-(3) (1) λ, F λ, σ(c). (2) A σ(c) λ Λ A F λ. F λ σ- A c F λ λ Λ. A c σ(c). (3) A n σ(c) (n = 1, 2,...) A n F λ n A n F λ. λ n A n σ(c). σ(c) σ- (ii) C F F {F λ } σ(c) F σ(c) C σ- σ- R n Borel( ) 3.22 = R n C = {O R n O R n } σ(c) B(R n ) R n B(R n ) (?) B(R n ) B L (R n ) B L (R n ) 2 S σ- Borel B(S) S (3.9), (3.10) 3.23 = R n C i (i = 1,..., 5) σ(c i ) B(R n ) (1) C 1 = {R n } (2) C 2 = { n i=1 [a i, b i ] < a i < b i < } (3) C 3 = { n i=1 [a i, b i ) < a i < b i < } (4) C 4 = { n i=1 (a i, b i ] < a i < b i < } (5) C 5 = {B r (a) r a R n a }. B r (a) = {x R n d(x, a) < r}. 4 ( ) (1) 4.1, Y f : Y A f(a) := {f(x) x A} A f B Y f 1 (B) := {x f(x) B} B f 16

17 (1) B n Y (n = 1, 2,...) f 1 ( n=1b n ) = n=1f 1 (B n ) (4.1) f 1 ( n=1b n ) = n=1f 1 (B n ). (4.2) (2) A n (n = 1, 2,...) f ( n=1 A n) = n=1 f(a n), f ( n=1 A n) n=1 f(a n) (3) B Y f 1 (B c ) = ( f 1 (B) ) c. 4.1, () (1) (, F) f : [, + ] F- (F-measurable function) ( F- ) a R f 1 ((a, + ]) := {x f(x) > a} F. (2) = R n F = B(R n ), B L (R n ), R ( +, ) 4.3 (1) F (2) f : R n R (?) (3) A F A f : A [, + ] a R {x A f(x) > a} F F- 4.4 f : R n R f f : R n R f 1 ((a, + ]) B(R n )- 4.5 f : [, + ] f 1 (R), f 1 ({+ }), f 1 ({ }) F f 1 ({+ }) = f 1 ( n=1(n, + ]) = n=1f 1 ((n, + ]) f 1 ({ }) = f 1 ( n=1[, n]) = n=1f 1 ([, n]) = n=1 ( f 1 (( n, + ]) ) c. f 1 ((a, + ]) F (2), (3) f 1 ({+ }), f 1 ({ }) F. f 1 (R) = \ ( f 1 ({± }) ) F

18 4.6 (, F) f : [, + ] 4 (1), (2), (3), (4) (1) f(x) a R {x f(x) > a} F. (2) a R {x f(x) a} F. (3) a R {x f(x) a} F. (4) a R {x f(x) < a} F. (1) (2) (3) (4), (1) (3) F σ- 4.1 (1) (2): f 1 ([, a]) = f 1 ((a, + ]) c F. (2) (1): f 1 ((a, + ]) = f 1 ([, a] c ) = f 1 ([, a]) c F. (3) (4): f 1 ([, a)) = f 1 ([a, + ] c ) = f 1 ([a, + ]) c F. (4) (3): (1) (3): (3) (1): f 1 ([a, + ]) = f 1 ([, a) c ) = f 1 ([, a)) c F. f 1 ([a, + ]) = f 1 ( n=1(a 1 n, + ] ) = n=1f 1 ( (a 1 n, + ] ) F. f 1 ((a, + ]) = f 1 ( n=1[a + 1 n, + ) ) = n=1f 1 ( [a + 1 n, ) ). 4.7 (, F) f : [, + ] (1), (2), (3) (1) f(x) (2) f 1 ({+ }), f 1 ({ }) F R C (i) σ(c) = B(R). (ii) A C f 1 (A) F. (3) f 1 ({+ }) F A B(R) f 1 (A) F. (1) (2) (3) (1) (1) (2) : f 1 ({+ }), f 1 ({ }) F C = {(a, b] < a < b < + } 3.23 (4) σ(c) = B(R)., f 1 ((a, b]) = f 1 ((a, + ]) ( f 1 ((b, + ]) ) c F (ii) C (2) (2) (3) H = { A A R f 1 (A) F } B(R) H H 18

19 (a) C H, (b) H σ-. B(R) = σ(c) H (a) (ii) (b) (1) R, H: f 1 (R) =, f 1 ( ) = OK (2) A H A c H: f 1 (A c ) = (f 1 (A)) c F OK (3) A n H (n = 1, 2,...) n=1 A n H: f 1 ( n=1 A n) = n=1 f 1 (A n ) F OK H σ- (3) (1) a R f 1 ((a, + ]) = f 1 ((a, )) f 1 ({+ }) F. 4.8 f(x), g(x) +, φ : R 2 R h(x) = φ(f(x), g(x)) a R φ S a = {(x, y) φ(x, y) > a} S a S a H = {(α, β) (γ, δ) α, β, γ, δ (α, β) (γ, δ) S a. } (α, β) (α, β) = {x α < x < β} H = {I i J i i = 1, 2,...} I i = (α i, β i ), J i = (γ i, δ i ). S a = i=1 I i J i {x h(x) > a} = {x φ(f(x), g(x)) > a} = {x (f(x), g(x)) S a } = i=1{x (f(x), g(x)) I i J i } = i=1 ( f 1 (I i ) f 1 (J i ) ) F f n : [, + ] (n = 1, 2,...) (1) sup n N f n (x), inf n N f n (x) (2) lim sup f n (x), lim inf f n (x) x lim f n (x) (+, ) (1) {x sup f n (x) a} = n=1{x f n (x) a} F, n N {x inf n(x) a} n N = n=1{x f n (x) a} F. 4.6 (2) lim sup f n (x) = inf n { supm n f m (x) }, lim inf f n (x) = sup n {inf m n f m (x)} (1) 19

20 4.10 f, g : [, + ] A = {x f(x) g(x)} 4.11 f n (x) (n = 1, 2,...) R (, F) 0 F 0 = {x lim f n (x) } 4.12 f(x) [0, 1] f(x) (1) f : R F f := {f 1 (A) A B(R)} F f σ- F f F (2) σ- G (i) G F. (ii) f G- ( 3.19 ) F f σ- F f σ(f) f σ ( i, F i ) (i = 1, 2) f : 1 2 F 1 /F 2 - : A F 2 f 1 (A) F (, F) S S σ- ( S ) B(S) (S, B(S)) f : S F/B(S) = R, F 2 = B(R) F 1 /F F f(x) = (f 1 (x),..., f n (x)) : R n (1), (2) (1) f F/B(R n )- (2) i f i : R 4.2 F (, F) f : R (simplefunction) (1) f (2) f(x) 20

21 5.2 A I A (x) 1 if x A, I A (x) = (5.1) 0 if x A c A (indicator function) 5.3 f(x) f {a 1,..., a n } E i = f 1 ({a i }) (1) E i F. i j E i E j = n i=1 E i =. (2) f(x) = n i=1 a ii Ei (x). (2) a i = 0 a i I Ei (x) = f(x) 5.4 f(x) α i (i = 1,..., n) E i F f(x) = n i=1 α ii Ei (x). 5.5 f f(x) = n i=1 a ii Ei (x) f f(x)dm(x) = 0 = f(x) n a i m(e i ) (5.2) i=1 f(x) = n α i I Ei (x) (5.3) i=1 i j E i E j =, i E i =, α i 0 (i = 1,..., n) f(x)dm(x) = n i=1 α im(e i ). i j α i α j (5.3) {α 1,..., α n } {β 1,..., β m } N j = {i α i = β j, 1 i n} {N j } m j=1 {1,..., n} f(x) = m β j I i Nj E i j=1 21

22 f f(x)dm(x) = = = = m β j m ( ) i Nj E i j=1 m β j m(e i ) i N j m α i m(e i ) i N j n α i m(e i ) (5.4) j=1 j=1 i=1 5.7 (1) α, β 0 (αf(x) + βg(x))dm(x) = α f(x)dm(x) + β g(x)dm(x). (5.5) (2) f(x) = n i=1 α ii Ai (x) (α i 0 1 i n, ) fdm = n i=1 α im(a i ). (3) 0 f(x) g(x) fdm gdm. (5.6) (1) f(x) = n i=1 a ii Ei (x), g(x) = m j=1 b ji Fj (x) I Ei = 1 j m I E i F j, I Fj = 1 i n I E i F j f(x) = i,j a ii Ei F j (x), g(x) = i,j b ji Ei F j (x). (i, j 1 i n, 1 j m ) f(x) + g(x) = i,j (a i + b j )I Ei F j (x). i,j (E i F j ) = (i, j) (i, j ) (E i F j ) (E i F j ) = g(x))dm(x) = (f(x) (a i + b j )m (E i F j ) i,j = i,j a i m (E i F j ) + i,j b j m (E i F j ) = i = (2) α ii Ai dm = α i m(a i ) (1) a i m (E i ) + b j m (F j ) j f(x)dm(x) + g(x)dm(x). 22

23 (3) (1) f(x) = i,j a ii Ei F j (x), g(x) = i,j b ji Ei F j (x) x f(x) g(x) E i F j a i b j. (i, j) (i, j ) (E i F j ) (E i F j ) = fdm = i,j = i,j a i m (E i F j ) b j m (E i F j ) gdm. (5.7) [0, ] φ N (t) N N. 0 0 t 1 2 N φ N (t) = k k < t k+1, 0 < k 2 N N 1 2 N 2 N 2 N N t > N (5.8) 5.9 f(x), g(x) [0, + ] (1) φ N (f(x)) = 2 N N k=0 k 2 N I E N,k (x), (5.9) E N,k = f 1 ( ( k 2 N, k+1 2 N ] ) (0 k 2 N N 1), E N,2 N N = f 1 ((N, ]). φ N (f(x)) (2) N N, x φ N (f(x)) φ N+1 (f(x)). (3) x lim N φ N (f(x)) = f(x). (4) f(x) g(x) φ N (f(x)) φ N (g(x)). Lemma φ N (f(x)) f(x) φ N (f(x)) 5.9 (2) 5.7 (3) 0 φ N(f(x))dm(x) φ N+1(f(x))dm(x) I(f) f(x) f(x) f N (x) = 2 N N k=0 E N,k := f 1 ( [ k 2 N, k N ) k 2 N I E N,k (x) (5.10) ) (0 k 2 N N 1) (5.11) E N,2 N N := f 1 ([N, ]). (5.12) 23

24 5.10 [0, + ] f(x) I N (f) = φ N (f(x))dm(x) (5.13) I(f) = lim N I N(f). (5.14) 5.11 f(x) (, F, m) I(f) = f(x)dm(x). f(x) = n i=1 a ii Ei (x) φ N (f(x)) = n i=1 φ N(a i )I Ei (x). I N (f) = φ N(f(x))dm(x) = n i=1 φ N(a i )m(e i ). lim N φ N (a i ) = a i I(f) = lim N I N (f) = n i=1 a im(e i ) = f(x)dm(x). f I(f) I(f) [0, + ] 5.12 [0, + ] f(x) f(x)dm(x) := I(f). (5.15) [0, + ] ( ) f(x) g(x) ( x ) f(x)dm(x) g(x)dm(x). f(x) g(x) φ N (f(x)) φ N (g(x)) φ N(f(x))dm(x) φ N(g(x))dm(x). N 5.14 ( (Monotone convergence theorem,mct )) f(x) [0, + ] [0, + ] {f n (x)} n=1 (1) f 1 (x) f 2 (x)... f n (x)... (2) lim f n (x) = f(x). lim f n(x)dm(x) = f(x)dm(x) 5.13 f n(x)dm(x) lim f n(x)dm(x) f(x)dm(x) I N (f n ), I N (f) I N (f n ) = I N (f) = 2 N N k=1 2 N N k=1 k ( 2 N m E (n) N,k ) (5.16) k 2 N m (E N,k). (5.17) 24

25 E (n) E (n) N,k = { x k 2 N < f n(x) k + 1 } 2 N (1 k 2 N N 1) (5.18) N,2 N N = {x f n(x) > N} (5.19) { k E N,k = x 2 N < f(x) k + 1 } 2 N (1 k 2 N N 1) (5.20) E N,2 N N = {x f(x) > N}. (5.21) f n (x) lim f n (x) = f(x) 3.18 lim E (n) N,k = E N,k (2) m(e N,k ) lim inf m(e (n) N,k ). I N(f n ) n lim I N (f n ) lim I N(f n ) = lim inf I N(f n ) 2 N N k=1 2 N N k=1 f n(x)dm(x) I N (f n ) k ( lim inf 2N m E (n) N,k ) k 2 N m (E N,k) = I N (f). (5.22) lim f n (x)dm(x) I N (f). (5.23) lim f n(x)dm(x) lim N I N (f) = f(x)dm(x) a n 0, b n 0 (n = 1, 2,...) lim inf (a n + b n ) lim inf a n + lim inf b n 5.12 f(x) MCT 5.16 f [0, + ] { } f(x)dm(x) = sup g(x)dm(x) g x 0 g(x) f(x). (5.24) 25

26 5.17 (1) 3.13 (3) {A n }, A f n (x) = I An (x), f(x) = I A (x) MCT lim m(a n ) = m(a) MCT 3.13 (3) (2) 5.12 ( f N ) (i) f f n (x) f n+1 (x) (n 1, x ), lim f n (x) = f(x) lim f n(x)dm(x) f(x)dm(x) (ii) (iii) (i) {f n } (i), (ii) I N (f) (ii) (iii) (5.24) [0, + ] f 5.3 f(x) 5.18 (1) f(x) (, F, m) f + (x) := max (f(x), 0), f (x) := max ( f(x), 0) f + (x)dm(x) < f(x) f(x)dm(x) := f (x)dm(x) < (5.25) f + (x)dm(x) f (x)dm(x) (5.26) (2) A F f(x) A f(x) A (A, F A, m A ) A f(x)dm(x) F A = {B F B A}, m A (B) = m(b) 5.19 f +(x)dm(x) = f (x)dm(x) < f(x)dm(x) = +. f +(x)dm(x) < f (x)dm(x) = f(x)dm(x) = (1), (2) (1) f (5.25) (2) f(x) dm(x) <. 26

27 φ N ( f(x) ) = φ N (f + (x)) + φ N (f (x)) f () L 1 (, F, m) f(x) dm(x) f L 1 (,F,m), f L 1 f L (1) x f(x) 0, g(x) 0 α 0, β 0 (αf(x) + βg(x))dm(x) = α f(x)dm(x) + β g(x)dm(x). (5.27) (2) x f(x) 0, g(x) 0 f, g L 1 h(x) := f(x) g(x) L 1 h(x)dm(x) = f(x)dm(x) g(x)dm(x). (5.28) (3) f, g L 1, α, β R αf(x) + βg(x) L 1 (αf(x) + βg(x))dm(x) = α f(x)dm(x) + β g(x)dm(x). (5.29) (1) f n (x), g n (x) f(x), g(x) αf n (x)+ βg n (x) αf(x) + βg(x) (αf + βg)dm = lim (αf n + βg n )dm { } = lim α f n dm + β g n dm = α fdm + β gdm. (5.30) (2) h(x) = h + (x) h (x) = f(x) g(x) h + (x) + g(x) = f(x) + h (x). h + (x) f(x) h (x) g(x). h +, h L 1. f g L 1. (1) h + dm + gdm = fdm + h dm. (5.31) hdm = h + dm h dm = fdm gdm. (5.32) fdm. (3) α, β 0 (3) f L 1 ( f)dm = αf(x) + βg(x) = (αf + (x) + βg + (x)) (αf (x) + βg (x)). αf + + βg +, αf + βg L 1 (2) αf + βg L 1 (αf + βg)dm = (αf + + βg + )dm (αf + βg )dm ( ) ( ) = α f + f dm + β f + dm f dm = α fdm + β gdm. (5.33) 27

28 5.23 (1) x f(x) g(x) g L 1 fdm f(x) dm(x) g(x)dm(x). (5.34) f, f L 1. (2) f, g L 1 x f(x) g(x) fdm gdm. (1) 5.13, 5.20 fdm = f + dm f dm f dm gdm. (2) 0 f(x) g(x) (3) gdm fdm = (g f)dm 0 (4) 5.24 f(x), g(x) m ({x f(x) g(x)}) = 0 f(x) g(x) x a.e. x, m a.s. x, a.s. x, a.a. x f(x) = g(x) m a.e. x. (5.35) 5.25 f(x), g(x) f(x) = g(x) a.e. x fdm = gdm. (5.36) N = {x f(x) g(x)} m(n) = 0 f, g f(x) = n i=1 α ii Ei (x) g(x) = m j=1 β ji Fj (x) f 1 (x) = n i=1 α ii Ei N c(x), f 2(x) = n i=1 α ii Ei N(x) g 1 (x) = m j=1 β ji Fj N c(x), g 2(x) = m j=1 β ji Fj N(x) f(x)i N c(x) = f 1 (x), f(x)i N (x) = f 2 (x), g(x)i N c(x) = g 1 (x), g(x)i N (x) = g 2 (x) f(x)i N c(x) = g(x)i N c(x) x N 0 f(x)dm(x) = f(x)i N c(x)dm(x) + f(x)i N (x)dm(x) = = = = = g(x)i N c(x)dm(x) + g(x)i N c(x)dm(x) g(x)i N c(x)dm(x) + n α i m(e i N) i=1 m β j m(f j N) j=1 g(x)i N c(x)dm(x) + g(x)dm(x) g(x)i N (x)dm(x) 28

29 5.26 (1) f, g f = g a.e.x fdm = gdm. (2) f L 1 f = g a.e. x g L 1 gdm = fdm. (3) f f = 0 a.e. x fdm = 0 (1) N = {x f(x) g(x)} m(n) = 0 f n f MCT f n dm = fdm. lim f n (x) = f n (x)i N c(x) f n f(x)i N c(x) lim f n dm = fi N cdm f ndm = f n dm. fdm = fi N cdm. gdm = gi N cdm. x f(x)i N c(x) = g(x)i N c(x) fdm = gdm. (2) f = g a.e. x f + = g + a.e. x f = g a.e. x. f ±dm = g ±dm. (3) f = 0 a.e. x = fdm = 0 (1) A = {x f(x) > 0} m(a) = 0 A n = {x f(x) > 1/n} A n A n+1 (n = 1, 2,...) A = n=1 A n. m(a) = lim m(a n ). m(a) > 0 n m(a n ) > 0. fdm m(a) = 0 fi An dm 1 n I An dm = m(a n) n 5.27 (1) f(x) [a, b] b a f(x)dx = 0 f(x) = 0 x [a, b] (3) (2) N F N c ( ) N c f(x)dm(x) f(x)dm(x) Fubini. > 0. 6 R R- f(x)dx, A L- f(x)dx A 29

30 sin x ( 1, dx ) 0 x 6.1 f(x) I = [0, 1] f(x) L- f(x)dx = R- f(x)dx. I I f(x) f + (x), f (x) = +, S(f, ) s(f, ) S(f, ) s(f, ) Darboux f(x) 0 x [0, 1] f(x) f N (x) := f N (x) := F N,k = 2 N 1 k=0 2 N 1 k=0 sup{f(x) inf{f(x) [ k 2 N, k + 1 ) 2 N k 2 N x k N }I F N,k (x) k 2 N x k N }I F N,k (x) ( k = 2 N 1 ) (1) f N (x), f N (x) (2) N f N (x) f N+1 (x) f N+1 (x) f N (x). (3) (Darboux ) lim R N I f N (x)dx = lim R f N (x)dx = R f(x)dx. (6.1) N I I f N (x) f(x) f N (x) f(x) (f N ) L f(x)dx = L f(x)dx = R f(x)dx. (6.2) x I (6.2) 5.26 (3) I I f(x) f(x) f(x). f(x) = f(x) = f(x) a.e. x I. f(x), f(x) 8.3 f(x) 5.26 L f(x)dx = L I I f(x)dx = L f(x)dx I 30 I

31 6.2 f(x) = f(x) = f(x) a.e. x I f(x) x (Fatou ) f n (x) lim inf f n(x)dm(x) lim inf f n (x)dm(x). (7.1) g n (x) = inf k n f k (x) x lim inf f n (x) = lim g n (x) g 1 (x) g 2 (x) g n (x). lim inf f n(x)dm(x) = lim g n(x)dm(x) = lim g n (x)dm(x). g n(x)dm(x) f n(x)dm(x) 7.2 f n (x) x f(x) sup n f n L 1 < f L 1 f L 1 lim inf f n L ( (Lebesgue s dominated convergence theorem)) {f n (x)} (1), (2) (1) lim f n(x) = f(x) (x ) (2) g L 1 (, m) f n (x) g(x) (x ). lim f n (x)dm(x) = f(x)dx. (2) f n L 1 (, m) (1),(2) f(x) g(x) ( x ) f L 1 (, m) h n (x) = g(x)+f n (x) h n (x) 0 ( x ) lim h n (x) = g(x) + f(x). Fatou (g(x) + f(x)) dm(x) lim inf h n (x)dm(x) = g(x)dm(x) + lim inf f(x)dm(x) lim inf f n, f f n, f f(x)dm(x) lim sup 31 f n (x)dm(x). (7.2) f n (x)dm(x). (7.3) f n (x)dm(x).

32 (7.3), (7.4) f(x)dm(x) lim sup f n (x)dm(x). (7.4) (3) 3.13 (5) 7.5 {x n n = 1, 2,...} t [0, 1] lim e 1tx n = 1 lim x n = f(x) [a, b] F (x) = [a,x] f(t)dm L(t) F (x) x {f n (x)} g(x) n=1 f n(x) g(x) (x ) n=1 f n(x) f n (x)dm(x) = n=1 n=1 f n (x)dm(x). ( ) n=1 a n < +, a n 0 ( n) f(t, n) (t 0, n N) (1), (2) (1) lim f(t, n) = α n. (2) t, n f(t, n) a n. n=1 f(t, n), n=1 α n lim t n=1 7.9 n=1 a 1 n <, a n 0 ( n) lim t t f(t, n) = α n. n=1 log(1 + a n t) = () f(t, x) (a t b, x ) (1) f(t, x) t C 1 (2) t f(t, ) L 1 (, m). (3) g L 1 (, m) (t, x) f(t, x) t g(x). F (t) = f(t, x)dm(x) t C1 F (t) = f(t, x)dm(x). t n=1 32

33 lim h 0 F (t + h) F (t) f(t + h, x) f(t, x) = dm(x) (7.5) h h f(t + h) f(t) = f(t, x) (7.6) h t = f (t + θh, x) t g(x). (7.7) f(t + h, x) f(t, x) h F (t) = f t (t, x)dm(x). F (t) x lim f n (x) = f(x) ( x ) x lim f n (x) = f(x) x lim f n (x) = f(x) f n (x) f(x) 7.11 (1) (, F, m) f n (x) f(x) m ({ x }) lim f n(x) f(x) = 0 N = {x lim f n (x) f(x)} (2) m ({x f(x) > g(x)}) = 0 f(x) g(x) a.e. x ( ( )) {f n (x)} (1), (2) (1) lim f n(x) = f(x) a.e. x. (2) g L 1 (, m) f n (x) g(x) a.e. x. lim f n (x)dm(x) = f(x)dx. { } N = x lim f n(x) f(x) N k = {x f k (x) > g(x)} (k = 1, 2,...) 33

34 m(n) = m(n k ) = 0 (k = 1, 2,...). Ñ = N ( k=1 N k) m(ñ) = 0(!). fn (x) = f n (x)iñ c(x), f(x) = f(x)iñ c(x) lim fn (x) = f(x) ( x ) f n (x) g(x) ( x ). 7.3 lim f n (x)dm(x) = f(x)dm(x). (7.8) f n (x) = f n (x) a.e. x, f(x) = f(x) a.e. x 5.26 (2) f n(x)dm(x) = f n (x)dm(x), f(x)dm(x) = x f(x)dm(x). (7.8) a.e (1) f(x) = g(x) a.e. x g(x) = h(x) a.e. x f(x) = h(x) a.e. x. (2) f 1 (x) = g 1 (x) a.e. x f 2 (x) = g 2 (x) a.e. x f 1 (x) + f 2 (x) = g 1 (x) + g 2 (x) a.e. x. 8 (1) (2) L p - (3) (1) 8.1 ε A G F F A G m L (G \ A) ε, m L (A \ F ) ε (1) A m L (A) < {I i } i=1 A i=1 I i, i=1 m L(I i ) m L (A) + ε 2 I i = n l=1 [a(i) l, b (i) l ] 0 {ε l } J i = n l=1 (a(i) l ε l, b (i) l + ε l ) A i=1 J i m L (J i ) m L (A) + ε. (8.1) i=1 G = j=1 J i G m L (G \ A) = m L (G) m L (A) m L (J i ) m L (A) ε. i=1 34

35 A E E B = E \ A B G B G m L (G \ B) ε F = E G c F F A m L (A \ F ) = m L (A) m L (F ) = m L (E) m L (B) (m L (E) m L (G E)) = m L (G E) m L (B) m L (G) m L (B) = m L (G \ B) ε. (8.2) (2) A n B n (B 0 = ) A n = A (B n ) B c n 1 A n A = n=1 A n. A n (1) () 8.2 A B, C C A B m L (B \A) = m L (A \ C) = (1) f(x) R n g(x) f(x) = g(x) m L a.e. x. (8.3) (2) (1) f(x) f N (x) = E N,k = 2 N N k=0 k 2 N I E N,k (x) { x R n E N,2 N N = f 1 ((N, + )) k 2 N < f(x) k N } (0 k 2 N N 1) lim N f N (x) = f(x) (x R n ). E N,k Ẽ N,k ẼN,k E N,k m L (E N,k \ ẼN,k) = 0 f N (x) = 2 N N k k=0 2 N IẼN,k f N (x) f N (x) = f N (x) m L a.e. x. N=1 { f N (x) f N (x)} f N (x) = f N (x) lim N fn (x) = f(x) f(x) lim sup N fn (x) lim sup N fn (x) < + f(x) = 0 lim sup N fn (x) = + Borel f(x) = f(x) m L a.e. x (8.4) 35

36 (2) f(x) g(x) m L ({f(x) g(x)}) = 0 N = {x R n f(x) g(x)} a R {x R n f(x) > a} = ({f(x) > a} N c ) ({f(x) > a} N) = ({g(x) > a} \ ({g(x) > a} N)) ({f(x) > a} N). (8.5) (8.5) 3 f(x) (2) L p C 0 (R n ) = {f : R n R f(x) R n {x R n f(x) 0} }. (8.6) 8.4 f L p (R n, m L ) (p 1) ε > 0 f ε C 0 (R n ) f f ε L p ε. (3) 8.5 A R n R n v O(n) T A+v := {x+ v x A}, T A := {T x x A} m L (A) = m L (A + v), m L (T A) = m L (A). 36

8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) Carathéodory 10.3 Fubini 1 Introduction 1 (1) (2) {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a

8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) Carathéodory 10.3 Fubini 1 Introduction 1 (1) (2) {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a % 100% 1 Introduction 2 (100%) 2.1 2.2 2.3 3 (100%) 3.1 3.2 σ- 4 (100%) 4.1 4.2 5 (100%) 5.1 5.2 5.3 6 (100%) 7 (40%) 8 Fubini (90%) 2007.11.5 1 8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) 10.1 10.2 Carathéodory

More information

8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) 10.1 10.2 Carathéodory 10.3 Fubini 1 Introduction [1],, [2],, [3],, [4],, [5],, [6],, [7],, [8],, [1, 2, 3] 1980

8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) 10.1 10.2 Carathéodory 10.3 Fubini 1 Introduction [1],, [2],, [3],, [4],, [5],, [6],, [7],, [8],, [1, 2, 3] 1980 % 100% 1 Introduction 2 (100%) 2.1 2.2 2.3 3 (100%) 3.1 3.2 σ- 4 (100%) 4.1 4.2 5 (100%) 5.1 5.2 5.3 6 (100%) 7 (40%) 8 Fubini (90%) 2006.11.20 1 8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) 10.1 10.2 Carathéodory

More information

B [ 0.1 ] x > 0 x 6= 1 f(x) µ 1 1 xn 1 + sin sin x 1 x 1 f(x) := lim. n x n (1) lim inf f(x) (2) lim sup f(x) x 1 0 x 1 0 (

B [ 0.1 ] x > 0 x 6= 1 f(x) µ 1 1 xn 1 + sin sin x 1 x 1 f(x) := lim. n x n (1) lim inf f(x) (2) lim sup f(x) x 1 0 x 1 0 ( . 28 4 14 [.1 ] x > x 6= 1 f(x) µ 1 1 xn 1 + sin + 2 + sin x 1 x 1 f(x) := lim. 1 + x n (1) lim inf f(x) (2) lim sup f(x) x 1 x 1 (3) lim inf x 1+ f(x) (4) lim sup f(x) x 1+ [.2 ] [, 1] Ω æ x (1) (2) nx(1

More information

untitled

untitled 1 kaiseki1.lec(tex) 19951228 19960131;0204 14;16 26;0329; 0410;0506;22;0603-05;08;20;0707;09;11-22;24-28;30;0807;12-24;27;28; 19970104(σ,F = µ);0212( ); 0429(σ- A n ); 1221( ); 20000529;30(L p ); 20050323(

More information

Lebesgue Fubini L p Banach, Hilbert Höld

Lebesgue Fubini L p Banach, Hilbert Höld II (Analysis II) Lebesgue (Applications of Lebesgue Integral Theory) 1 (Seiji HIABA) 1 ( ),,, ( ) 1 1 1.1 1 Lebesgue........................ 1 1.2 2 Fubini...................... 2 2 L p 5 2.1 Banach, Hilbert..............................

More information

B2 ( 19 ) Lebesgue ( ) ( ) 0 This note is c 2007 by Setsuo Taniguchi. It may be used for personal or classroom purposes, but not for commercia

B2 ( 19 ) Lebesgue ( ) ( ) 0 This note is c 2007 by Setsuo Taniguchi. It may be used for personal or classroom purposes, but not for commercia B2 ( 19) Lebesgue ( ) ( 19 7 12 ) 0 This note is c 2007 by Setsuo Taniguchi. It may be used for personal or classroom purposes, but not for commercial purposes. i Riemann f n : [0, 1] R 1, x = k (1 m

More information

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ = 1 1.1 ( ). z = + bi,, b R 0, b 0 2 + b 2 0 z = + bi = ( ) 2 + b 2 2 + b + b 2 2 + b i 2 r = 2 + b 2 θ cos θ = 2 + b 2, sin θ = b 2 + b 2 2π z = r(cos θ + i sin θ) 1.2 (, ). 1. < 2. > 3. ±,, 1.3 ( ). A

More information

I (Analysis I) Lebesgue (Lebesgue Integral Theory) 1 (Seiji HIRABA) 1 ( ),,, ( )

I (Analysis I) Lebesgue (Lebesgue Integral Theory) 1 (Seiji HIRABA) 1 ( ),,, ( ) I (Analysis I) Lebesgue (Lebesgue Integral Theory) 1 (Seiji HIRABA) 1 ( ),,, ( ) 1 (Introduction) 1 1.1... 1 1.2 Riemann Lebesgue... 2 2 (Measurable sets and Measures) 4 2.1 σ-... 4 2.2 Borel... 5 2.3...

More information

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x [ ] IC. f(x) = e x () f(x) f (x) () lim f(x) lim f(x) x + x (3) lim f(x) lim f(x) x + x (4) y = f(x) ( ) ( s46). < a < () a () lim a log xdx a log xdx ( ) n (3) lim log k log n n n k=.3 z = log(x + y ),

More information

ルベーグ積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

ルベーグ積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. ルベーグ積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/005431 このサンプルページの内容は, 初版 1 刷発行時のものです. Lebesgue 1 2 4 4 1 2 5 6 λ a

More information

,,,,., = (),, (1) (4) :,,,, (1),. (2),, =. (3),,. (4),,,,.. (1) (3), (4).,,., () : = , ( ) : = F 1 + F 2 + F 3 + ( ) : = i Fj j=1 2

,,,,., = (),, (1) (4) :,,,, (1),. (2),, =. (3),,. (4),,,,.. (1) (3), (4).,,., () : = , ( ) : = F 1 + F 2 + F 3 + ( ) : = i Fj j=1 2 6 2 6.1 2 2, 2 5.2 R 2, 2 (R 2, B, µ)., R 2,,., 1, 2, 3,., 1, 2, 3,,. () : = 1 + 2 + 3 + (6.1.1).,,, 1 ,,,,., = (),, (1) (4) :,,,, (1),. (2),, =. (3),,. (4),,,,.. (1) (3), (4).,,., () : = 1 + 2 + 3 +,

More information

() Remrk I = [0, ] [x i, x i ]. (x : ) f(x) = 0 (x : ) ξ i, (f) = f(ξ i )(x i x i ) = (x i x i ) = ξ i, (f) = f(ξ i )(x i x i ) = 0 (f) 0.

() Remrk I = [0, ] [x i, x i ]. (x : ) f(x) = 0 (x : ) ξ i, (f) = f(ξ i )(x i x i ) = (x i x i ) = ξ i, (f) = f(ξ i )(x i x i ) = 0 (f) 0. () 6 f(x) [, b] 6. Riemnn [, b] f(x) S f(x) [, b] (Riemnn) = x 0 < x < x < < x n = b. I = [, b] = {x,, x n } mx(x i x i ) =. i [x i, x i ] ξ i n (f) = f(ξ i )(x i x i ) i=. (ξ i ) (f) 0( ), ξ i, S, ε >

More information

n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................

More information

III III 2010 PART I 1 Definition 1.1 (, σ-),,,, Borel( ),, (σ-) (M, F, µ), (R, B(R)), (C, B(C)) Borel Definition 1.2 (µ-a.e.), (in µ), (in L 1 (µ)). T

III III 2010 PART I 1 Definition 1.1 (, σ-),,,, Borel( ),, (σ-) (M, F, µ), (R, B(R)), (C, B(C)) Borel Definition 1.2 (µ-a.e.), (in µ), (in L 1 (µ)). T III III 2010 PART I 1 Definition 1.1 (, σ-),,,, Borel( ),, (σ-) (M, F, µ), (R, B(R)), (C, B(C)) Borel Definition 1.2 (µ-a.e.), (in µ), (in L 1 (µ)). Theorem 1.3 (Lebesgue ) lim n f n = f µ-a.e. g L 1 (µ)

More information

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω ω α 3 3 2 2V 3 33+.6T m T 5 34m Hz. 34 3.4m 2 36km 5Hz. 36km m 34 m 5 34 + m 5 33 5 =.66m 34m 34 x =.66 55Hz, 35 5 =.7 485.7Hz 2 V 5Hz.5V.5V V

More information

数学概論I

数学概論I {a n } M >0 s.t. a n 5 M for n =1, 2,... lim n a n = α ε =1 N s.t. a n α < 1 for n > N. n > N a n 5 a n α + α < 1+ α. M := max{ a 1,..., a N, 1+ α } a n 5 M ( n) 1 α α 1+ α t a 1 a N+1 a N+2 a 2 1 a n

More information

2012 IA 8 I p.3, 2 p.19, 3 p.19, 4 p.22, 5 p.27, 6 p.27, 7 p

2012 IA 8 I p.3, 2 p.19, 3 p.19, 4 p.22, 5 p.27, 6 p.27, 7 p 2012 IA 8 I 1 10 10 29 1. [0, 1] n x = 1 (n = 1, 2, 3,...) 2 f(x) = n 0 [0, 1] 2. 1 x = 1 (n = 1, 2, 3,...) 2 f(x) = n 0 [0, 1] 1 0 f(x)dx 3. < b < c [, c] b [, c] 4. [, b] f(x) 1 f(x) 1 f(x) [, b] 5.

More information

newmain.dvi

newmain.dvi 数論 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/008142 このサンプルページの内容は, 第 2 版 1 刷発行当時のものです. Daniel DUVERNEY: THÉORIE DES NOMBRES c Dunod, Paris, 1998, This book is published

More information

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t 6 6.1 6.1 (1 Z ( X = e Z, Y = Im Z ( Z = X + iy, i = 1 (2 Z E[ e Z ] < E[ Im Z ] < Z E[Z] = E[e Z] + ie[im Z] 6.2 Z E[Z] E[ Z ] : E[ Z ] < e Z Z, Im Z Z E[Z] α = E[Z], Z = Z Z 1 {Z } E[Z] = α = α [ α ]

More information

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A .. Laplace ). A... i),. ω i i ). {ω,..., ω } Ω,. ii) Ω. Ω. A ) r, A P A) P A) r... ).. Ω {,, 3, 4, 5, 6}. i i 6). A {, 4, 6} P A) P A) 3 6. ).. i, j i, j) ) Ω {i, j) i 6, j 6}., 36. A. A {i, j) i j }.

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

1 a b = max{a, b}, a b = mi{a, b} a 1 a 2 a a 1 a = max{a 1,... a }, a 1 a = mi{a 1,... a }. A sup A, if A A A A A sup A sup A = + A if A = ± y = arct

1 a b = max{a, b}, a b = mi{a, b} a 1 a 2 a a 1 a = max{a 1,... a }, a 1 a = mi{a 1,... a }. A sup A, if A A A A A sup A sup A = + A if A = ± y = arct 27 6 2 1 2 2 5 3 8 4 13 5 16 6 19 7 23 8 27 N Z = {, ±1, ±2,... }, R =, R + = [, + ), R = [, ], C =. a b = max{a, b}, a b = mi{a, b}, a a, a a. f : X R [a < f < b] = {x X; a < f(x) < b}. X [f] = [f ],

More information

r 1 m A r/m i) t ii) m i) t B(t; m) ( B(t; m) = A 1 + r ) mt m ii) B(t; m) ( B(t; m) = A 1 + r ) mt m { ( = A 1 + r ) m } rt r m n = m r m n B

r 1 m A r/m i) t ii) m i) t B(t; m) ( B(t; m) = A 1 + r ) mt m ii) B(t; m) ( B(t; m) = A 1 + r ) mt m { ( = A 1 + r ) m } rt r m n = m r m n B 1 1.1 1 r 1 m A r/m i) t ii) m i) t Bt; m) Bt; m) = A 1 + r ) mt m ii) Bt; m) Bt; m) = A 1 + r ) mt m { = A 1 + r ) m } rt r m n = m r m n Bt; m) Aert e lim 1 + 1 n 1.1) n!1 n) e a 1, a 2, a 3,... {a n

More information

1 I

1 I 1 I 3 1 1.1 R x, y R x + y R x y R x, y, z, a, b R (1.1) (x + y) + z = x + (y + z) (1.2) x + y = y + x (1.3) 0 R : 0 + x = x x R (1.4) x R, 1 ( x) R : x + ( x) = 0 (1.5) (x y) z = x (y z) (1.6) x y =

More information

1 n A a 11 a 1n A =.. a m1 a mn Ax = λx (1) x n λ (eigenvalue problem) x = 0 ( x 0 ) λ A ( ) λ Ax = λx x Ax = λx y T A = λy T x Ax = λx cx ( 1) 1.1 Th

1 n A a 11 a 1n A =.. a m1 a mn Ax = λx (1) x n λ (eigenvalue problem) x = 0 ( x 0 ) λ A ( ) λ Ax = λx x Ax = λx y T A = λy T x Ax = λx cx ( 1) 1.1 Th 1 n A a 11 a 1n A = a m1 a mn Ax = λx (1) x n λ (eigenvalue problem) x = ( x ) λ A ( ) λ Ax = λx x Ax = λx y T A = λy T x Ax = λx cx ( 1) 11 Th9-1 Ax = λx λe n A = λ a 11 a 12 a 1n a 21 λ a 22 a n1 a n2

More information

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C 8 ( ) 8 5 4 I II III A B C( ),,, 5 I II A B ( ),, I II A B (8 ) 6 8 I II III A B C(8 ) n ( + x) n () n C + n C + + n C n = 7 n () 7 9 C : y = x x A(, 6) () A C () C P AP Q () () () 4 A(,, ) B(,, ) C(,,

More information

App. of Leb. Integral Theory (S. Hiraba) Lebesgue (X, F, µ) (measure space)., X, 2 X, F 2 X σ (σ-field), i.e., (1) F, (2) A F = A c F, (3)

App. of Leb. Integral Theory (S. Hiraba) Lebesgue (X, F, µ) (measure space)., X, 2 X, F 2 X σ (σ-field), i.e., (1) F, (2) A F = A c F, (3) Lebesgue (Applications of Lebesgue Integral Theory) (Seiji HIABA) 1 1 1.1 1 Lebesgue........................ 1 1.2 2 Fubini...................... 2 2 L p 5 2.1 Banach, Hilbert..............................

More information

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K II. () 7 F 7 = { 0,, 2, 3, 4, 5, 6 }., F 7 a, b F 7, a b, F 7,. (a) a, b,,. (b) 7., 4 5 = 20 = 2 7 + 6, 4 5 = 6 F 7., F 7,., 0 a F 7, ab = F 7 b F 7. (2) 7, 6 F 6 = { 0,, 2, 3, 4, 5 },,., F 6., 0 0 a F

More information

I ( ) ( ) (1) C z = a ρ. f(z) dz = C = = (z a) n dz C n= p 2π (ρe iθ ) n ρie iθ dθ 0 n= p { 2πiA 1 n = 1 0 n 1 (2) C f(z) n.. n f(z)dz = 2πi Re

I ( ) ( ) (1) C z = a ρ. f(z) dz = C = = (z a) n dz C n= p 2π (ρe iθ ) n ρie iθ dθ 0 n= p { 2πiA 1 n = 1 0 n 1 (2) C f(z) n.. n f(z)dz = 2πi Re I ( ). ( ) () a ρ. f() d ( a) n d n p π (ρe iθ ) n ρie iθ dθ n p { πia n n () f() n.. n f()d πi es f( k ) k n n. f()d n k k f()d. n f()d πi esf( k ). k I ( ). ( ) () f() p g() f() g()( ) p. f(). f() A

More information

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1)

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1) 1. 1.1...,. 1.1.1 V, V x, y, x y x + y x + y V,, V x α, αx αx V,, (i) (viii) : x, y, z V, α, β C, (i) x + y = y + x. (ii) (x + y) + z = x + (y + z). 1 (iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y

More information

III ϵ-n ϵ-n lim n a n = α n a n α 1 lim a n = 0 1 n a k n n k= ϵ-n 1.1

III ϵ-n ϵ-n lim n a n = α n a n α 1 lim a n = 0 1 n a k n n k= ϵ-n 1.1 III http://www2.mth.kyushu-u.c.jp/~hr/lectures/lectures-j.html 1 1 1.1 ϵ-n ϵ-n lim n = α n n α 1 lim n = 0 1 n k n k=1 0 1.1.7 ϵ-n 1.1.1 n α n n α lim n = α ϵ Nϵ n > Nϵ n α < ϵ 1.1.1 ϵ n > Nϵ n α < ϵ 1.1.2

More information

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y)

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 1 1977 x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) ( x 2 y + xy 2 x 2 2xy y 2) = 15 (x y) (x + y) (xy

More information

, 1 ( f n (x))dx d dx ( f n (x)) 1 f n (x)dx d dx f n(x) lim f n (x) = [, 1] x f n (x) = n x x 1 f n (x) = x f n (x) = x 1 x n n f n(x) = [, 1] f n (x

, 1 ( f n (x))dx d dx ( f n (x)) 1 f n (x)dx d dx f n(x) lim f n (x) = [, 1] x f n (x) = n x x 1 f n (x) = x f n (x) = x 1 x n n f n(x) = [, 1] f n (x 1 1.1 4n 2 x, x 1 2n f n (x) = 4n 2 ( 1 x), 1 x 1 n 2n n, 1 x n n 1 1 f n (x)dx = 1, n = 1, 2,.. 1 lim 1 lim 1 f n (x)dx = 1 lim f n(x) = ( lim f n (x))dx = f n (x)dx 1 ( lim f n (x))dx d dx ( lim f d

More information

untitled

untitled 0. =. =. (999). 3(983). (980). (985). (966). 3. := :=. A A. A A. := := 4 5 A B A B A B. A = B A B A B B A. A B A B, A B, B. AP { A, P } = { : A, P } = { A P }. A = {0, }, A, {0, }, {0}, {}, A {0}, {}.

More information

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s ... x, y z = x + iy x z y z x = Rez, y = Imz z = x + iy x iy z z () z + z = (z + z )() z z = (z z )(3) z z = ( z z )(4)z z = z z = x + y z = x + iy ()Rez = (z + z), Imz = (z z) i () z z z + z z + z.. z

More information

i

i i 3 4 4 7 5 6 3 ( ).. () 3 () (3) (4) /. 3. 4/3 7. /e 8. a > a, a = /, > a >. () a >, a =, > a > () a > b, a = b, a < b. c c n a n + b n + c n 3c n..... () /3 () + (3) / (4) /4 (5) m > n, a b >, m > n,

More information

2011de.dvi

2011de.dvi 211 ( 4 2 1. 3 1.1............................... 3 1.2 1- -......................... 13 1.3 2-1 -................... 19 1.4 3- -......................... 29 2. 37 2.1................................ 37

More information

x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ dt iωζ = ẍ + ω2 x (2.1) ζ ζ = Aωe iωt = Aω cos ωt + iaω sin

x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ dt iωζ = ẍ + ω2 x (2.1) ζ ζ = Aωe iωt = Aω cos ωt + iaω sin 2 2.1 F (t) 2.1.1 mẍ + kx = F (t). m ẍ + ω 2 x = F (t)/m ω = k/m. 1 : (ẋ, x) x = A sin ωt, ẋ = Aω cos ωt 1 2-1 x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ

More information

f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f

f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f 22 A 3,4 No.3 () (2) (3) (4), (5) (6) (7) (8) () n x = (x,, x n ), = (,, n ), x = ( (x i i ) 2 ) /2 f(x) R n f(x) = f() + i α i (x ) i + o( x ) α,, α n g(x) = o( x )) lim x g(x) x = y = f() + i α i(x )

More information

漸化式のすべてのパターンを解説しましたー高校数学の達人・河見賢司のサイト

漸化式のすべてのパターンを解説しましたー高校数学の達人・河見賢司のサイト https://www.hmg-gen.com/tuusin.html https://www.hmg-gen.com/tuusin1.html 1 2 OK 3 4 {a n } (1) a 1 = 1, a n+1 a n = 2 (2) a 1 = 3, a n+1 a n = 2n a n a n+1 a n = ( ) a n+1 a n = ( ) a n+1 a n {a n } 1,

More information

Microsoft Word - 信号処理3.doc

Microsoft Word - 信号処理3.doc Junji OHTSUBO 2012 FFT FFT SN sin cos x v ψ(x,t) = f (x vt) (1.1) t=0 (1.1) ψ(x,t) = A 0 cos{k(x vt) + φ} = A 0 cos(kx ωt + φ) (1.2) A 0 v=ω/k φ ω k 1.3 (1.2) (1.2) (1.2) (1.1) 1.1 c c = a + ib, a = Re[c],

More information

II K116 : January 14, ,. A = (a ij ) ij m n. ( ). B m n, C n l. A = max{ a ij }. ij A + B A + B, AC n A C (1) 1. m n (A k ) k=1,... m n A, A k k

II K116 : January 14, ,. A = (a ij ) ij m n. ( ). B m n, C n l. A = max{ a ij }. ij A + B A + B, AC n A C (1) 1. m n (A k ) k=1,... m n A, A k k : January 14, 28..,. A = (a ij ) ij m n. ( ). B m n, C n l. A = max{ a ij }. ij A + B A + B, AC n A C (1) 1. m n (A k ) k=1,... m n A, A k k, A. lim k A k = A. A k = (a (k) ij ) ij, A k = (a ij ) ij, i,

More information

x i [, b], (i 0, 1, 2,, n),, [, b], [, b] [x 0, x 1 ] [x 1, x 2 ] [x n 1, x n ] ( 2 ). x 0 x 1 x 2 x 3 x n 1 x n b 2: [, b].,, (1) x 0, x 1, x 2,, x n

x i [, b], (i 0, 1, 2,, n),, [, b], [, b] [x 0, x 1 ] [x 1, x 2 ] [x n 1, x n ] ( 2 ). x 0 x 1 x 2 x 3 x n 1 x n b 2: [, b].,, (1) x 0, x 1, x 2,, x n 1, R f : R R,.,, b R < b, f(x) [, b] f(x)dx,, [, b] f(x) x ( ) ( 1 ). y y f(x) f(x)dx b x 1: f(x)dx, [, b] f(x) x ( ).,,,,,., f(x)dx,,,, f(x)dx. 1.1 Riemnn,, [, b] f(x) x., x 0 < x 1 < x 2 < < x n 1

More information

X G P G (X) G BG [X, BG] S 2 2 2 S 2 2 S 2 = { (x 1, x 2, x 3 ) R 3 x 2 1 + x 2 2 + x 2 3 = 1 } R 3 S 2 S 2 v x S 2 x x v(x) T x S 2 T x S 2 S 2 x T x S 2 = { ξ R 3 x ξ } R 3 T x S 2 S 2 x x T x S 2

More information

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10% 1 2006.4.17. A 3-312 tel: 092-726-4774, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office hours: B A I ɛ-δ ɛ-δ 1. 2. A 1. 1. 2. 3. 4. 5. 2. ɛ-δ 1. ɛ-n

More information

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d S I.. http://ayapin.film.s.dendai.ac.jp/~matuda /TeX/lecture.html PDF PS.................................... 3.3.................... 9.4................5.............. 3 5. Laplace................. 5....

More information

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2 II No.1 [n/] [1]H n x) H n x) = 1) r n! r!n r)! x)n r r= []H n x) n,, H n x) = 1) n H n x) [3] H n x) = 1) n dn x e dx n e x [4] H n+1 x) = xh n x) nh n 1 x) ) d dx x H n x) = H n+1 x) d dx H nx) = nh

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

http://www2.math.kyushu-u.ac.jp/~hara/lectures/lectures-j.html 2 N(ε 1 ) N(ε 2 ) ε 1 ε 2 α ε ε 2 1 n N(ɛ) N ɛ ɛ- (1.1.3) n > N(ɛ) a n α < ɛ n N(ɛ) a n

http://www2.math.kyushu-u.ac.jp/~hara/lectures/lectures-j.html 2 N(ε 1 ) N(ε 2 ) ε 1 ε 2 α ε ε 2 1 n N(ɛ) N ɛ ɛ- (1.1.3) n > N(ɛ) a n α < ɛ n N(ɛ) a n http://www2.math.kyushu-u.ac.jp/~hara/lectures/lectures-j.html 1 1 1.1 ɛ-n 1 ɛ-n lim n a n = α n a n α 2 lim a n = 1 n a k n n k=1 1.1.7 ɛ-n 1.1.1 a n α a n n α lim n a n = α ɛ N(ɛ) n > N(ɛ) a n α < ɛ

More information

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4 1. k λ ν ω T v p v g k = π λ ω = πν = π T v p = λν = ω k v g = dω dk 1) ) 3) 4). p = hk = h λ 5) E = hν = hω 6) h = h π 7) h =6.6618 1 34 J sec) hc=197.3 MeV fm = 197.3 kev pm= 197.3 ev nm = 1.97 1 3 ev

More information

body.dvi

body.dvi ..1 f(x) n = 1 b n = 1 f f(x) cos nx dx, n =, 1,,... f(x) sin nx dx, n =1,, 3,... f(x) = + ( n cos nx + b n sin nx) n=1 1 1 5 1.1........................... 5 1.......................... 14 1.3...........................

More information

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi) 0. A A = 4 IC () det A () A () x + y + z = x y z X Y Z = A x y z ( 5) ( s5590) 0. a + b + c b c () a a + b + c c a b a + b + c 0 a b c () a 0 c b b c 0 a c b a 0 0. A A = 7 5 4 5 0 ( 5) ( s5590) () A ()

More information

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt S I. x yx y y, y,. F x, y, y, y,, y n http://ayapin.film.s.dendai.ac.jp/~matuda n /TeX/lecture.html PDF PS yx.................................... 3.3.................... 9.4................5..............

More information

Riemann-Stieltjes Poland S. Lojasiewicz [1] An introduction to the theory of real functions, John Wiley & Sons, Ltd., Chichester, 1988.,,,,. Riemann-S

Riemann-Stieltjes Poland S. Lojasiewicz [1] An introduction to the theory of real functions, John Wiley & Sons, Ltd., Chichester, 1988.,,,,. Riemann-S Riemnn-Stieltjes Polnd S. Lojsiewicz [1] An introduction to the theory of rel functions, John Wiley & Sons, Ltd., Chichester, 1988.,,,, Riemnn-Stieltjes 1 2 2 5 3 6 4 Jordn 13 5 Riemnn-Stieltjes 15 6 Riemnn-Stieltjes

More information

2016 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 1 16 2 1 () X O 3 (O1) X O, O (O2) O O (O3) O O O X (X, O) O X X (O1), (O2), (O3) (O2) (O3) n (O2) U 1,..., U n O U k O k=1 (O3) U λ O( λ Λ) λ Λ U λ O 0 X 0 (O2) n =

More information

December 28, 2018

December 28, 2018 e-mail : kigami@i.kyoto-u.ac.jp December 28, 28 Contents 2............................. 3.2......................... 7.3..................... 9.4................ 4.5............. 2.6.... 22 2 36 2..........................

More information

³ÎΨÏÀ

³ÎΨÏÀ 2017 12 12 Makoto Nakashima 2017 12 12 1 / 22 2.1. C, D π- C, D. A 1, A 2 C A 1 A 2 C A 3, A 4 D A 1 A 2 D Makoto Nakashima 2017 12 12 2 / 22 . (,, L p - ). Makoto Nakashima 2017 12 12 3 / 22 . (,, L p

More information

ad bc A A A = ad bc ( d ) b c a n A n A n A A det A A ( ) a b A = c d det A = ad bc σ {,,,, n} {,,, } {,,, } {,,, } ( ) σ = σ() = σ() = n sign σ sign(

ad bc A A A = ad bc ( d ) b c a n A n A n A A det A A ( ) a b A = c d det A = ad bc σ {,,,, n} {,,, } {,,, } {,,, } ( ) σ = σ() = σ() = n sign σ sign( I n n A AX = I, YA = I () n XY A () X = IX = (YA)X = Y(AX) = YI = Y X Y () XY A A AB AB BA (AB)(B A ) = A(BB )A = AA = I (BA)(A B ) = B(AA )B = BB = I (AB) = B A (BA) = A B A B A = B = 5 5 A B AB BA A

More information

IA 2013 : :10722 : 2 : :2 :761 :1 (23-27) : : ( / ) (1 /, ) / e.g. (Taylar ) e x = 1 + x + x xn n! +... sin x = x x3 6 + x5 x2n+1 + (

IA 2013 : :10722 : 2 : :2 :761 :1 (23-27) : : ( / ) (1 /, ) / e.g. (Taylar ) e x = 1 + x + x xn n! +... sin x = x x3 6 + x5 x2n+1 + ( IA 2013 : :10722 : 2 : :2 :761 :1 23-27) : : 1 1.1 / ) 1 /, ) / e.g. Taylar ) e x = 1 + x + x2 2 +... + xn n! +... sin x = x x3 6 + x5 x2n+1 + 1)n 5! 2n + 1)! 2 2.1 = 1 e.g. 0 = 0.00..., π = 3.14..., 1

More information

2 (2016 3Q N) c = o (11) Ax = b A x = c A n I n n n 2n (A I n ) (I n X) A A X A n A A A (1) (2) c 0 c (3) c A A i j n 1 ( 1) i+j A (i, j) A (i, j) ã i

2 (2016 3Q N) c = o (11) Ax = b A x = c A n I n n n 2n (A I n ) (I n X) A A X A n A A A (1) (2) c 0 c (3) c A A i j n 1 ( 1) i+j A (i, j) A (i, j) ã i [ ] (2016 3Q N) a 11 a 1n m n A A = a m1 a mn A a 1 A A = a n (1) A (a i a j, i j ) (2) A (a i ca i, c 0, i ) (3) A (a i a i + ca j, j i, i ) A 1 A 11 0 A 12 0 0 A 1k 0 1 A 22 0 0 A 2k 0 1 0 A 3k 1 A rk

More information

20 9 19 1 3 11 1 3 111 3 112 1 4 12 6 121 6 122 7 13 7 131 8 132 10 133 10 134 12 14 13 141 13 142 13 143 15 144 16 145 17 15 19 151 1 19 152 20 2 21 21 21 211 21 212 1 23 213 1 23 214 25 215 31 22 33

More information

A S hara/lectures/lectures-j.html ϵ-n 1 ϵ-n lim n a n = α n a n α 2 lim a n = 0 1 n a k n n k= ϵ

A S hara/lectures/lectures-j.html ϵ-n 1 ϵ-n lim n a n = α n a n α 2 lim a n = 0 1 n a k n n k= ϵ A S1-20 http://www2.mth.kyushu-u.c.jp/ hr/lectures/lectures-j.html 1 1 1.1 ϵ-n 1 ϵ-n lim n n = α n n α 2 lim n = 0 1 n k n n k=1 0 1.1.7 ϵ-n 1.1.1 n α n n α lim n n = α ϵ N(ϵ) n > N(ϵ) n α < ϵ (1.1.1)

More information

2009 IA I 22, 23, 24, 25, 26, a h f(x) x x a h

2009 IA I 22, 23, 24, 25, 26, a h f(x) x x a h 009 IA I, 3, 4, 5, 6, 7 7 7 4 5 h fx) x x h 4 5 4 5 1 3 1.1........................... 3 1........................... 4 1.3..................................... 6 1.4.............................. 8 1.4.1..............................

More information

4................................. 4................................. 4 6................................. 6................................. 9.................................................... 3..3..........................

More information

2000年度『数学展望 I』講義録

2000年度『数学展望 I』講義録 2000 I I IV I II 2000 I I IV I-IV. i ii 3.10 (http://www.math.nagoya-u.ac.jp/ kanai/) 2000 A....1 B....4 C....10 D....13 E....17 Brouwer A....21 B....26 C....33 D....39 E. Sperner...45 F....48 A....53

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 0 < t < τ I II 0 No.2 2 C x y x y > 0 x 0 x > b a dx

More information

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a =

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a = [ ] 9 IC. dx = 3x 4y dt dy dt = x y u xt = expλt u yt λ u u t = u u u + u = xt yt 6 3. u = x, y, z = x + y + z u u 9 s9 grad u ux, y, z = c c : grad u = u x i + u y j + u k i, j, k z x, y, z grad u v =

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

1.2 y + P (x)y + Q(x)y = 0 (1) y 1 (x), y 2 (x) y 1 (x), y 2 (x) (1) y(x) c 1, c 2 y(x) = c 1 y 1 (x) + c 2 y 2 (x) 3 y 1 (x) y 1 (x) e R P (x)dx y 2

1.2 y + P (x)y + Q(x)y = 0 (1) y 1 (x), y 2 (x) y 1 (x), y 2 (x) (1) y(x) c 1, c 2 y(x) = c 1 y 1 (x) + c 2 y 2 (x) 3 y 1 (x) y 1 (x) e R P (x)dx y 2 1 1.1 R(x) = 0 y + P (x)y + Q(x)y = R(x)...(1) y + P (x)y + Q(x)y = 0...(2) 1 2 u(x) v(x) c 1 u(x)+ c 2 v(x) = 0 c 1 = c 2 = 0 c 1 = c 2 = 0 2 0 2 u(x) v(x) u(x) u (x) W (u, v)(x) = v(x) v (x) 0 1 1.2

More information

II Brown Brown

II Brown Brown II 16 12 5 1 Brown 3 1.1..................................... 3 1.2 Brown............................... 5 1.3................................... 8 1.4 Markov.................................... 1 1.5

More information

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google I4 - : April, 4 Version :. Kwhir, Tomoki TA (Kondo, Hirotk) Google http://www.mth.ngoy-u.c.jp/~kwhir/courses/4s-biseki.html pdf 4 4 4 4 8 e 5 5 9 etc. 5 6 6 6 9 n etc. 6 6 6 3 6 3 7 7 etc 7 4 7 7 8 5 59

More information

熊本県数学問題正解

熊本県数学問題正解 00 y O x Typed by L A TEX ε ( ) (00 ) 5 4 4 ( ) http://www.ocn.ne.jp/ oboetene/plan/. ( ) (009 ) ( ).. http://www.ocn.ne.jp/ oboetene/plan/eng.html 8 i i..................................... ( )0... (

More information

2 2 ( Riemann ( 2 ( ( 2 ( (.8.4 (PDF 2

2 2 ( Riemann ( 2 ( ( 2 ( (.8.4 (PDF     2 2 ( 28 8 (http://nalab.mind.meiji.ac.jp/~mk/lecture/tahensuu2/ 2 2 ( Riemann ( 2 ( ( 2 ( (.8.4 (PDF http://nalab.mind.meiji.ac.jp/~mk/lecture/tahensuu2/ http://nalab.mind.meiji.ac.jp/~mk/lecture/tahensuu/

More information

Note.tex 2008/09/19( )

Note.tex 2008/09/19( ) 1 20 9 19 2 1 5 1.1........................ 5 1.2............................. 8 2 9 2.1............................. 9 2.2.............................. 10 3 13 3.1.............................. 13 3.2..................................

More information

n 2 + π2 6 x [10 n x] x = lim n 10 n n 10 k x 1.1. a 1, a 2,, a n, (a n ) n=1 {a n } n=1 1.2 ( ). {a n } n=1 Q ε > 0 N N m, n N a m

n 2 + π2 6 x [10 n x] x = lim n 10 n n 10 k x 1.1. a 1, a 2,, a n, (a n ) n=1 {a n } n=1 1.2 ( ). {a n } n=1 Q ε > 0 N N m, n N a m 1 1 1 + 1 4 + + 1 n 2 + π2 6 x [10 n x] x = lim n 10 n n 10 k x 1.1. a 1, a 2,, a n, (a n ) n=1 {a n } n=1 1.2 ( ). {a n } n=1 Q ε > 0 N N m, n N a m a n < ε 1 1. ε = 10 1 N m, n N a m a n < ε = 10 1 N

More information

Chap9.dvi

Chap9.dvi .,. f(),, f(),,.,. () lim 2 +3 2 9 (2) lim 3 3 2 9 (4) lim ( ) 2 3 +3 (5) lim 2 9 (6) lim + (7) lim (8) lim (9) lim (0) lim 2 3 + 3 9 2 2 +3 () lim sin 2 sin 2 (2) lim +3 () lim 2 2 9 = 5 5 = 3 (2) lim

More information

(u(x)v(x)) = u (x)v(x) + u(x)v (x) ( ) u(x) = u (x)v(x) u(x)v (x) v(x) v(x) 2 y = g(t), t = f(x) y = g(f(x)) dy dx dy dx = dy dt dt dx., y, f, g y = f (g(x))g (x). ( (f(g(x)). ). [ ] y = e ax+b (a, b )

More information

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n (

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n ( 3 n nc k+ k + 3 () n C r n C n r nc r C r + C r ( r n ) () n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (4) n C n n C + n C + n C + + n C n (5) k k n C k n C k (6) n C + nc

More information

A, B, C. (1) A = A. (2) A = B B = A. (3) A = B, B = C A = C. A = B. (3)., f : A B g : B C. g f : A C, A = C. 7.1, A, B,. A = B, A, A A., A, A

A, B, C. (1) A = A. (2) A = B B = A. (3) A = B, B = C A = C. A = B. (3)., f : A B g : B C. g f : A C, A = C. 7.1, A, B,. A = B, A, A A., A, A 91 7,.,, ( ).,,.,.,. 7.1 A B, A B, A = B. 1), 1,.,. 7.1 A, B, 3. (i) A B. (ii) f : A B. (iii) A B. (i) (ii)., 6.9, (ii) (iii).,,,. 1), Ā = B.. A, Ā, Ā,. 92 7 7.2 A, B, C. (1) A = A. (2) A = B B = A. (3)

More information

chap1.dvi

chap1.dvi 1 1 007 1 e iθ = cos θ + isin θ 1) θ = π e iπ + 1 = 0 1 ) 3 11 f 0 r 1 1 ) k f k = 1 + r) k f 0 f k k = 01) f k+1 = 1 + r)f k ) f k+1 f k = rf k 3) 1 ) ) ) 1+r/)f 0 1 1 + r/) f 0 = 1 + r + r /4)f 0 1 f

More information

1 R n (x (k) = (x (k) 1,, x(k) n )) k 1 lim k,l x(k) x (l) = 0 (x (k) ) 1.1. (i) R n U U, r > 0, r () U (ii) R n F F F (iii) R n S S S = { R n ; r > 0

1 R n (x (k) = (x (k) 1,, x(k) n )) k 1 lim k,l x(k) x (l) = 0 (x (k) ) 1.1. (i) R n U U, r > 0, r () U (ii) R n F F F (iii) R n S S S = { R n ; r > 0 III 2018 11 7 1 2 2 3 3 6 4 8 5 10 ϵ-δ http://www.mth.ngoy-u.c.jp/ ymgmi/teching/set2018.pdf http://www.mth.ngoy-u.c.jp/ ymgmi/teching/rel2018.pdf n x = (x 1,, x n ) n R n x 0 = (0,, 0) x = (x 1 ) 2 +

More information

Basic Math. 1 0 [ N Z Q Q c R C] 1, 2, 3,... natural numbers, N Def.(Definition) N (1) 1 N, (2) n N = n +1 N, (3) N (1), (2), n N n N (element). n/ N.

Basic Math. 1 0 [ N Z Q Q c R C] 1, 2, 3,... natural numbers, N Def.(Definition) N (1) 1 N, (2) n N = n +1 N, (3) N (1), (2), n N n N (element). n/ N. Basic Mathematics 16 4 16 3-4 (10:40-12:10) 0 1 1 2 2 2 3 (mapping) 5 4 ε-δ (ε-δ Logic) 6 5 (Potency) 9 6 (Equivalence Relation and Order) 13 7 Zorn (Axiom of Choice, Zorn s Lemma) 14 8 (Set and Topology)

More information

π, R { 2, 0, 3} , ( R),. R, [ 1, 1] = {x R 1 x 1} 1 0 1, [ 1, 1],, 1 0 1,, ( 1, 1) = {x R 1 < x < 1} [ 1, 1] 1 1, ( 1, 1), 1, 1, R A 1

π, R { 2, 0, 3} , ( R),. R, [ 1, 1] = {x R 1 x 1} 1 0 1, [ 1, 1],, 1 0 1,, ( 1, 1) = {x R 1 < x < 1} [ 1, 1] 1 1, ( 1, 1), 1, 1, R A 1 sup inf (ε-δ 4) 2018 1 9 ε-δ,,,, sup inf,,,,,, 1 1 2 3 3 4 4 6 5 7 6 10 6.1............................................. 11 6.2............................... 13 1 R R 5 4 3 2 1 0 1 2 3 4 5 π( R) 2 1 0

More information

v er.1/ c /(21)

v er.1/ c /(21) 12 -- 1 1 2009 1 17 1-1 1-2 1-3 1-4 2 2 2 1-5 1 1-6 1 1-7 1-1 1-2 1-3 1-4 1-5 1-6 1-7 c 2011 1/(21) 12 -- 1 -- 1 1--1 1--1--1 1 2009 1 n n α { n } α α { n } lim n = α, n α n n ε n > N n α < ε N {1, 1,

More information

20 6 4 1 4 1.1 1.................................... 4 1.1.1.................................... 4 1.1.2 1................................ 5 1.2................................... 7 1.2.1....................................

More information

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) =

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) = 1 1 1.1 I R 1.1.1 c : I R 2 (i) c C (ii) t I c (t) (0, 0) c (t) c(i) c c(t) 1.1.2 (1) (2) (3) (1) r > 0 c : R R 2 : t (r cos t, r sin t) (2) C f : I R c : I R 2 : t (t, f(t)) (3) y = x c : R R 2 : t (t,

More information

koji07-02.dvi

koji07-02.dvi 007 I II III 1,, 3, 4, 5, 6, 7 5 4 1 ε-n 1 ε-n ε-n ε-n. {a } =1 a ε N N a a N= a a

More information

A S- hara/lectures/lectures-j.html r A = A 5 : 5 = max{ A, } A A A A B A, B A A A %

A S-   hara/lectures/lectures-j.html r A = A 5 : 5 = max{ A, } A A A A B A, B A A A % A S- http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html r A S- 3.4.5. 9 phone: 9-8-444, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office

More information

M3 x y f(x, y) (= x) (= y) x + y f(x, y) = x + y + *. f(x, y) π y f(x, y) x f(x + x, y) f(x, y) lim x x () f(x,y) x 3 -

M3 x y f(x, y) (= x) (= y) x + y f(x, y) = x + y + *. f(x, y) π y f(x, y) x f(x + x, y) f(x, y) lim x x () f(x,y) x 3 - M3............................................................................................ 3.3................................................... 3 6........................................... 6..........................................

More information

Microsoft Word - 表紙.docx

Microsoft Word - 表紙.docx 黒住英司 [ 著 ] サピエンティア 計量経済学 訂正および練習問題解答 (206/2/2 版 ) 訂正 練習問題解答 3 .69, 3.8 4 (X i X)U i i i (X i μ x )U i ( X μx ) U i. i E [ ] (X i μ x )U i i E[(X i μ x )]E[U i ]0. i V [ ] (X i μ x )U i i 2 i j E [(X i

More information

1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C

1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C 0 9 (1990 1999 ) 10 (2000 ) 1900 1994 1995 1999 2 SAT ACT 1 1990 IMO 1990/1/15 1:00-4:00 1 N 1990 9 N N 1, N 1 N 2, N 2 N 3 N 3 2 x 2 + 25x + 52 = 3 x 2 + 25x + 80 3 2, 3 0 4 A, B, C 3,, A B, C 2,,,, 7,

More information

[ ] 0.1 lim x 0 e 3x 1 x IC ( 11) ( s114901) 0.2 (1) y = e 2x (x 2 + 1) (2) y = x/(x 2 + 1) 0.3 dx (1) 1 4x 2 (2) e x sin 2xdx (3) sin 2 xdx ( 11) ( s

[ ] 0.1 lim x 0 e 3x 1 x IC ( 11) ( s114901) 0.2 (1) y = e 2x (x 2 + 1) (2) y = x/(x 2 + 1) 0.3 dx (1) 1 4x 2 (2) e x sin 2xdx (3) sin 2 xdx ( 11) ( s [ ]. lim e 3 IC ) s49). y = e + ) ) y = / + ).3 d 4 ) e sin d 3) sin d ) s49) s493).4 z = y z z y s494).5 + y = 4 =.6 s495) dy = 3e ) d dy d = y s496).7 lim ) lim e s49).8 y = e sin ) y = sin e 3) y =

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

( )

( ) 18 10 01 ( ) 1 2018 4 1.1 2018............................... 4 1.2 2018......................... 5 2 2017 7 2.1 2017............................... 7 2.2 2017......................... 8 3 2016 9 3.1 2016...............................

More information

29

29 9 .,,, 3 () C k k C k C + C + C + + C 8 + C 9 + C k C + C + C + C 3 + C 4 + C 5 + + 45 + + + 5 + + 9 + 4 + 4 + 5 4 C k k k ( + ) 4 C k k ( k) 3 n( ) n n n ( ) n ( ) n 3 ( ) 3 3 3 n 4 ( ) 4 4 4 ( ) n n

More information

( )/2 hara/lectures/lectures-j.html 2, {H} {T } S = {H, T } {(H, H), (H, T )} {(H, T ), (T, T )} {(H, H), (T, T )} {1

( )/2   hara/lectures/lectures-j.html 2, {H} {T } S = {H, T } {(H, H), (H, T )} {(H, T ), (T, T )} {(H, H), (T, T )} {1 ( )/2 http://www2.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html 1 2011 ( )/2 2 2011 4 1 2 1.1 1 2 1 2 3 4 5 1.1.1 sample space S S = {H, T } H T T H S = {(H, H), (H, T ), (T, H), (T, T )} (T, H) S

More information

Grushin 2MA16039T

Grushin 2MA16039T Grushin 2MA1639T 3 2 2 R d Borel α i k (x, bi (x, 1 i d, 1 k N d N α R d b α = α(x := (αk(x i 1 i d, 1 k N b = b(x := (b i (x 1 i d X = (X t t x R d dx t = α(x t db t + b(x t dt ( 3 u t = Au + V u, u(,

More information

ii

ii ii iii 1 1 1.1..................................... 1 1.2................................... 3 1.3........................... 4 2 9 2.1.................................. 9 2.2...............................

More information