I, II 1, 2 ɛ-δ 100 A = A 4 : 6 = max{ A, } A A 10

Size: px
Start display at page:

Download "I, II 1, 2 ɛ-δ 100 A = A 4 : 6 = max{ A, } A A 10"

Transcription

1 A tel: , hara@math.kyushu-u.ac.jp, hara/lectures/lectures-j.html Office hours: B A I ɛ-δ ɛ-δ A ɛ-δ 1. ɛ-n ɛ-δ ,3

2 I, II 1, 2 ɛ-δ 100 A = A 4 : 6 = max{ A, } A A 10

3 3 10% A, B ɛ-δ ɛ-δ

4 4 ɛ-δ ɛ-δ ɛ-δ ɛ-δ hara/lectures/lectures-j.html spam mail html mail

5

6 6 3 a < b n Z 1 N Q R a < b a = b a b a > b a = b a b a < x < b (a, b) a x b [a, b] n! = n (n 1) (n 2) 2 1 n 0! = 1 unique, uniquely 3

7 A hara/lectures/lectures-j.html f x f(x) f(x) = x 2 x x 2 x f(x) x f(x) x 1 x 2 f(x 1 ) = f(x 2 ) x x f(x) y = f(x) (1.1.1) x y x = g(y) y = f(x) (1.1.2) y x g f x y = f(x) y x f x y y = f(x) y = g(x) (1.1.2) x, y y = g(x) x, y x, y (1.1.2) y x y = x 2 x = ± y y > 0 x f(x) x y y = x 2 x 0 y x x = y x 0 f(x) = x 2 g g(y) = y y = e x x = log y y = sin x y x x sin x x π/2 y = sin x x y y x sin x = arcsin y (1.1.3) y = sin x (1.1.4)

8 A hara/lectures/lectures-j.html 8 cos 0 x π y = cos x x = arccos y (1.1.5) arccos tan x < π/2 y = tan x x = arctan y (1.1.6) arctan f g y = f(x) g(f(x)) = g(y) = x (1.1.7) x g (f(x)) f (x) = 1 g (f(x)) = 1 f (x) (1.1.8) y = f(x) x = g(y) y g (y) = 1 f (x) = 1 f ( g(y) ) (1.1.9) g(y) f g(y) g(y) = arcsin y f f(x) = sin x f (x) = cos x d dy arcsin y = 1 cos ( arcsin y ) = 1 cos x x = arcsin y (1.1.10) y = sin x cos x = ± 1 x 2 x π/2 cos cos x = 1 x 2 d dy arcsin y = 1 1 y 2 (1.1.11) arcsin y d dy arccos y = 1 sin ( arccos y ) = 1 1 y 2 (1.1.12) d dy arctan y = 1 { sec ( arctan y )} 2 = { cos ( arctan y )} 2 = y 2 (1.1.13)

9 A hara/lectures/lectures-j.html arctan x arctan 0 = 0 x 0 (arctan t) dt = arctan x arctan 0 = arctan x (1.2.1) arctan x = x 0 1 dt (1.2.2) 1 + t t 2 = ( 1) n t 2n t < 1 (1.2.3) n=0 (1.2.2) arctan x = x 0 ( n=0 ( 1) n t 2n ) dt?? = x ( 1) n t 2n dt = n=0 0 n=0 2n + 1 = x x3 3 + x5 5 x (1.2.4) 7 ( 1) n x2n+1 x < 1 arctan x (1.2.4) x 1 x p.27 (1.2.4) arctan x x x = 1 π 4 = (1.2.5) 9 π 1/4 π P.28 arctan x arctan x tan sin tan x tan x tan x = a 1 x + a 3 x 3 + a 5 x 5 + a 7 x 7 + (1.2.6) a 1, a 3, a 5,... x tan x a n tan arctan x arctan tan x tan(arctan x) = x a 1 arctan x + a 3 (arctan x) 3 + a 5 (arctan x) 5 + = x (1.2.7)

10 A hara/lectures/lectures-j.html 10 arctan x (1.2.4) a 1 ( x x3 3 + x5 5 x ) + a 3 ( x x3 3 + x5 5 x ) 3 + a5 ( x x3 3 + x5 5 x ) 5 + = x (1.2.8) x 1 x x, x 3, x 5, x 7,... 4 a 1, a 3, a 5,... x ( a 1 x + a ) ( a 3 x 3 a1 ) ( + 5 a 3 + a 5 x 5 + a a 3 5 ) 3 a 5 + a 7 x 7 + = x (1.2.9) a 1 = 1, a a 3 = 0, a 1 5 a 3 + a 5 = 0, a a a 5 + a 7 = 0 (1.2.10) a 1 = 1, a 3 = 1 3, a 5 = 2 15, a 7 = tan x (1.2.11) tan x = x + x x x7 + (1.2.12) sin x sin x = tan x 1 + (tan x) 2 (1.2.13) 1/ 1 + x x = a 0 + a 1 x + a 2 x 2 + a 3 x 3 + a 4 x 4 + (1.2.14) a 0, a 1, a 2,... 1 = (1+x)(a 0 +a 1 x+a 2 x 2 + ) 2 = a 0 +(1+2a 0 a 1 )x+(a 2 1+2a 0 a 2 +2a 0 a 1 )x 2 +(a 2 1+2a 0 a 2 +2a 0 a 3 +2a 1 a 2 )x (1.2.15) a 0 = 1 a 1 = 1 2 a 2 = 3 8 a 3 = 5 16 (1.2.16) cos x = (tan x) 2 = (tan x) (tan x) (tan x)6 + (1.2.17) tan x (1.2.12) sin x = tan x cos x = cos x = x x x6 + = 1 x2 2! + x4 4! x6 6! + (1.2.18) (x + x x )( 315 x x x4 1 ) 720 x6 + = x x3 6 + x5 120 x = x x3 3! + x5 5! x7 7! + (1.2.19) 4

11 A hara/lectures/lectures-j.html 11 2 ɛ-δ 3 ɛ-δ 2.1 ɛ-n 5 ɛ-n lim n a n = α n a n α 6 lim a n = 0 1 n a k n n k= ɛ-n a n α a n n α lim n a n = α ɛ N(ɛ) n > N(ɛ) a n α < ɛ (2.1.1) ɛ > 0 N(ɛ) ( n > N(ɛ) = a n α ) < ɛ (2.1.2)

12 A hara/lectures/lectures-j.html 12 N(ε 1 ) N(ε 2 ) ε 1 ε 2 α ε ε 2 1 n N(ɛ) N ɛ ɛ- (2.1.2) n > N(ɛ) a n α < ɛ n N(ɛ) a n α ɛ N(ɛ) N(ɛ) N(ɛ) ɛ N ɛ N ɛ lim n a n = a n a n n lim n a n = + M N(M) n > N(M) a n > M (2.1.3) M > 0 N(M) ( ) n > N(M) = a n > M (2.1.4) lim n a n = M < 0 N(M) ( ) n > N(M) = a n < M (2.1.5) lim a n = + lim a n = {a n } n n

13 A hara/lectures/lectures-j.html n n N n N N N N = 10 4 N = N = N n a n = 1/n n n n ɛ > 0 n a n α ɛ ɛ ɛ ɛ = 10 6 ɛ = ɛ = N ɛ a n α N ɛ 7 a n α a n α n a n = 1/n ɛ = n > 100 n > 100 a n α < ɛ = 10 6 n > n > a n α < 10 6 ɛ = n > ɛ = n > ɛ > 0 lim n a n = α ɛ = N lim n a n = α N ɛ ɛ-n N ɛ N a n α N a n α ɛ a n α N ɛ a n α ɛ-n ɛ N(ɛ) ɛ N n = 1, 2, 3,... a n = 1 n, b n = 1 log(2 + log(2 + log n)), c 1 n = log(2 + log(2 + log n)) (2.1.6) 7

14 A hara/lectures/lectures-j.html 14 n n a n b n c n a n b n c n b n c n n n a n 1/n b n log n c n 10 8 n n n N ɛ a n α ɛ ɛ n n a n α ɛ ɛ-n n N(ɛ) n = 1, 2, 3,... a n = 3, b n = 1 n, c n = 1, d n = 1 n n n 10, 10 2, 10 3, 10 4, 10 5, 10 6,... e n = 0 (2.1.6) n (2.1.7) (2.1.8) f n = n + 3 n, g n = sin n n, h n = n + 1 n, p n = 2n + 1 n + 1, q 1 n = log(n + 1) (2.1.9) ɛ-n ɛ-n lim a n = α, lim b n = β lim (a n + b n ) = α + β. n n n lim a n = α, lim b n = β lim a nb n = αβ. n n n lim a n = α, lim b a n n = β β 0 lim = α n n n b n β. b n m b m = 0 {b n } a n = n

15 A hara/lectures/lectures-j.html a n n lim a n = α lim a n = β n n α = β ɛ-n a n b n = 1 n n k=1 a k lim n a n = α lim n b n = α ɛ-n lim a a 1 + a a n n = α = lim = α n n n a 1 a n ρ 1, ρ 2, ρ 3,... ( n ) / ( n ) b n := ρ j a j ρ j j=1 lim a n = α lim b n = α ρ 1, ρ 2, ρ 3,... n n ρ 1 = ρ 2 = ρ 3 =... = 1 j=1 2.2 ɛ-δ 8 n a n x x a f(x) f(x) a, b f(x) x a b lim x a f(x) = b ɛ δ(ɛ) 0 < x a < δ(ɛ) x f(x) b < ɛ (2.2.1) ɛ > 0 δ(ɛ) > 0 ( 0 < x a < δ(ɛ) = f(x) b ) < ɛ (2.2.2) x a > 0 x = a f(x) a f(a) b f(a) = b x a p.49

16 A hara/lectures/lectures-j.html 16 δ(ε 2 ) b ε 2 ε 2 ε 1 ε 1 x δ(ε 1 ) a ɛ-n 0 < x a < δ(ɛ) f(x) b < ɛ 0 < x a δ(ɛ) f(x) b ɛ 0 < x a ɛ-n ɛ, δ ɛ, δ x a f(x) b ɛ-n ɛ δ ɛ-n α f(x) b < ɛ δ(ɛ) δ(ɛ) 1) lim x 0 x, a > 0 ( 2) lim x 2 2x + 3 x 0 ) ( ), 3) lim x 2 2x + 3. (2.2.3) x 1 1 x 2 1 4) lim, 5) lim x x x 1 x 1, 6) lim sin 1 x 0 x, (2.2.4) x 3 a 3 7) lim x a x a 1 + x 1 x 8) lim x 0 x 9) lim x 0 x (2.2.5) f(x) lim f(x) x 0 ɛ-δ x = 10 1, 10 2, 10 3, 10 4,... f(x) := x { } { } lim f(x) = α lim g(x) = β lim f(x) + g(x) = α + β lim f(x)g(x) = αβ x a x a x a x a ɛ-δ

17 A hara/lectures/lectures-j.html lim x a f(x) = b lim x f(x) = b ɛ > 0 L(ɛ) x > L(ɛ) x f(x) b < ɛ lim f(x) = b ɛ > 0 L(ɛ) x x < L(ɛ) x f(x) b < ɛ lim x a f(x) = + M > 0 δ(m) x a < δ(m) x f(x) > M lim x a f(x) = M > 0 δ(m) x a < δ(m) x f(x) < M lim f(x) = lim x x f(x) = lim n a n = α lim x a f(x) = b lim x a a f(x) a, b lim f(x) = b a x > a x a x a+0 ɛ > 0 δ(ɛ) > 0 0 < x a < δ(ɛ) x f(x) b < ɛ ( ) ɛ > 0 δ(ɛ) > 0 0 < x a < δ(ɛ) = f(x) b < ɛ (2.2.6) lim f(x) = b a x < a x a x a 0 ( ) ɛ > 0 δ(ɛ) > 0 δ(ɛ) < x a < 0 = f(x) b < ɛ (2.2.7) lim x a+0 lim lim lim ± a x a + x a 0 x a f(x) a, b lim f(x) = b x a lim f(x) = lim f(x) = b x a+0 x a lim x ex =, lim x ex = 0, lim log x =, (2.2.8) x lim log x =, lim x +0 e x 1 sin x = 1, lim = 1, (2.2.9) x 0 x x 0 x

18 A hara/lectures/lectures-j.html 18 lim x xα =, lim x xα = 0, x α = e α log x lim x +0 xα = 0, α > 0 (2.2.10) lim x +0 xα =, α < 0 (2.2.11) e x log x x 2.3 lim x a f(x) = b lim n a n = a n a n a {a n } lim n f(a n) = b < x a < δ n a n a ɛ > 0 δ > 0 x(0 < x a < δ f(x) b ɛ) lim n a n = a n a n a {a n } lim n f(a n) = b {a n } ɛ > 0 δ = 1/n n δ f(x) b ɛ x 0 < x a < δ = 1/n δ = 1/n x a n n = 1, 2, 3,... {a n } 0 < a n a < 1/n lim n a n = α a n a a n f(a n ) b ɛ lim n f(a n) = b 9 10

19 A hara/lectures/lectures-j.html ɛ-δ a f(x) a lim x a f(x) = f(a) ɛ δ(ɛ) x a < δ(ɛ) x f(x) f(a) < ɛ (2.4.1) ɛ > 0, δ(ɛ) > 0, ( x a < δ(ɛ) = f(x) f(a) ) < ɛ (2.4.2) 0 < x a < δ(ɛ) x a < δ(ɛ) 0 < lim x a f(x) f(a) x a 0 < f(x) a f(x) a lim f(x) = x a+0 f(a) a f(x) a lim f(x) = f(a) x a 0 right continuous, left continuous continuous to the right, continuous to the left. f(x) [a, b] c (a, b) lim f(x) = f(c) lim f(x) = f(a), lim x c x a+0 f(x) = f(b) (2.4.3) x b 0 f(a) lim x a f(x) f(x) = x x f(x) x = a x = a

20 A hara/lectures/lectures-j.html 20 ɛ-δ ( p.49) a f(x) x = a a f δ > 0 x a < δ x f(x) < f(a) + 1 (2.4.4) f(a) > 0 a f(x) > 0 δ > 0 x a < δ x f(x) > f(a) 2 f(a) < 0 (2.4.5) f(x) x = a ɛ-δ p ( p.50) f a g b = f(a) h(x) = g(f(x)) a δ ( p.50) f, g a (1) f(x) + g(x) f(x) g(x) a (2) f(x)g(x) a (3) g(a) 0 f(x)/g(x) a

21 A hara/lectures/lectures-j.html ( ) a 1, a 2, a 3,... {a n } {a n } {a n } ( ) {a n } N n a n < N n a n > M M, N {a n } n ( ) {a n } {b n } {b n } a n 2 n (3.1.1) a 1 = 1.4, a 2 = 1.41, a 3 = 1.414, II II

22 A hara/lectures/lectures-j.html lim a n = α a n n α ( ) ɛ > 0, N(ɛ), n > N(ɛ) = a n α < ɛ (3.2.1) α e ( e = lim n (3.2.2) n n) e x = 1 + x + x2 2! + x3 3! + = lim N N n=0 x n n! (3.2.3) x e x e x 14 lim N N n=0 x n n n! lim N N n=0 x n n n! (3.2.4) ( ) a 1 a 2 a 3... a n... a n (monotone) increasing (monotone) decreasing (monotone) non-decreasing (monotone) non-increasing e x

23 A hara/lectures/lectures-j.html 23 strictly increasing n n ( 2.2.4) {a n } lim n a n {a n } lim n a n {a n } lim a n = + {a n } n lim a n = n + ± lim n a n a n 2 n a n 2 n a n ɛ-δ α {a n } {b k } α {a n } α α

24 A hara/lectures/lectures-j.html 24 {b k } α k b k α (3.2.5) {b k } {a n } {b k } k 1 b k1 > α n 1 k b k b k1 > α b k α {b k } {a n } k n b k = a n (3.2.5) a n = b k a n a n α a n n a n α n m a m a n α {b k } k a n = b k n n a n α (3.2.6) {a n }, {b k } {b n } α ɛ > 0 K(ɛ) > 0 ( ) k > K(ɛ) = b k α < ɛ (3.2.7) k > K(ɛ) α ɛ < b k (3.2.8) a n = b k n α ɛ < a n {a n } n 1 α ɛ < a n1 n > n 1 α ɛ < a n1 a n ɛ > 0 (3.2.7) K(ɛ) K(ɛ) k 1 a n1 = b k1 n 1 n > n 1 α ɛ < a n (3.2.9) (3.2.6) ɛ > 0 n 1 > 0 n > n 1 α ɛ < a n < α (3.2.10) lim n a n = α ɛ-δ {a n } α α

25 A hara/lectures/lectures-j.html ( 2.2.6) [a, b] f(x) f(a) f(b) F f(c) = F c [a, b] x a b f(x) f(a) f(b) f(x) = x 2 2 f(x) = 0 x x = ± 2 x x x = f(a) < F < f(b) f(a) > f(b) f(a) = f(b) f(a) = F c = a g(x) := f(x) F g(c) = 0 c x = a x g(a) < 0 g(x) x = a g(x) < 0 a y a x < y x g(x) < 0 y Y g(b) > 0 y b Y Y [a, b] 2 n Y a n n a n n Y y b a a n b a n α Y a a n b a α b g(α) = 0 g(α) < 0 g(α) > 0 g(α) < α x g(x) < 0 Y α n a n > α a n α g(α) > α x g(x) > 0 δ > 0 α δ < x α x g(x) < 0 n a n α δ a n α g(α) = 0 c = α 15

26 A hara/lectures/lectures-j.html ( 2.2.8) f(x) = 1/x (0, 1) g(x) = x (0, 1) g(x) = sin x x sin x [a, b] x [a, b] n (n + 1) n (n + 1) f(x) x n n = 1, 2, 3,... x 1, x 2, x 3, y l = x il y l x 1, x 2,... i l y l i l α := lim l y l α f(x) x a x b x f(α) f(x) y l i l x z l i l f(x) y l f(z l ) f(y l ) (3.3.1) l y l α α l z l x f f(x) f(α) f(x) f(α) (3.3.2) x f(α) 3.4 x α α x > 0 x α α a n x α = lim n xa n (3.4.1) x α α lim n an = α {an}

27 A hara/lectures/lectures-j.html ( ) x = a f(x) f(x) f(a) lim x a x a (4.1.1) f(x) x = a derivative f (a) df (a) dx f(x) a differentiable f I f I a f (a) a f (a) f derived function derivative x a x a 0 (4.1.1) x ( ) f (a) := f(x) f(a) lim x a 0 x a (4.1.2) f(x) a left derivative f +(a) := f(x) f(a) lim x a+0 x a (4.1.3) f(x) a right derivative f a f (a) f (a) = f + (a) f a f (a) = f (a) = f + (a)

28 A hara/lectures/lectures-j.html f(x) x = a f a p.129 Weierstrass ( Rolle 2.3.9) f(x) [a, b] (a, b) f(a) = f(b) f (ξ) = 0 (a < ξ < b) (4.2.1) ξ ξ a, b f(x) f (x) = 0 f(x) f(x) (a, b) 17 f(x) ξ f ξ (a, b) ξ ξ f(ξ) f(x) ξ f (ξ) = lim h 0 f(ξ + h) f(ξ) h (4.2.2) h h > 0 h < 0 h 0 h a ξ b x a ξ b x 17

29 A hara/lectures/lectures-j.html 29 Lagrange ( ) f(x) [a, b] (a, b) ξ f(b) f(a) b a = f (ξ) (a < ξ < b) (4.2.3) ξ a, b g(x) = f(x) f(a) x a b a {f(b) f(a)} 0 = g (ξ) = f (ξ) 1 b a {f(b) f(a)} a < ξ < b ( p.64 3) f(x) g(x) [a, b] (a, b) (a, b) g (x) 0 f(b) f(a) g(b) g(a) = f (ξ) g (ξ) (a < ξ < b) (4.2.4) ξ g (x) 0 g(a) g(b) f(b) f(a) k := F (x) := f(x) f(a) k{g(x) g(a)} F (a) = F (b) = 0 g(b) g(a) F f, g F (ξ) = 0 ξ f (ξ) kg (ξ) = ( ) I f x, y I x < y f(x) < f(y) f I x, y I x < y f(x) f(y) f I x, y I x < y f(x) > f(y) f I x, y I x < y f(x) f(y) f I 3.2.1

30 A hara/lectures/lectures-j.html ( ) f(x) I = (a, b) I f (x) 0 = I f(x) I f (x) > 0 = I f(x) I f (x) = 0 I f(x) I f (x) > 0 a f (a) > 0 x = a p.135 f (x) > 0 f (x) < 0 f(x) = x f(x) n- n- n th derivative f (n) (x) f (x), f (x), f (x) f (2) (x) = d2 dx 2 f(x) = d { d } dx dx f(x), f (3) (x) = d3 dx 3 f(x) = d [ d { d }] f(x), dx dx dx... (4.3.1) f (0) (x) f(x) Leibniz d { f(x)g(x)} = f (x)g(x) + f(x)g (x), dx n d n dx n { f(x)g(x)} = n k=0 d 2 dx 2 { f(x)g(x)} = f (x)g(x) + 2f (x)g (x) + f(x)g (x) (4.3.2) ( ) n f (k) (x) g (n k) (x), k ( ) n n! := n C k = k k! (n k)! (4.3.3) 18 ( ) ( ) ( ) n n 1 n 1 = + (4.3.4) k k k 1 I f(x) n f (n) (x) I C n - m < n C n - C m - ( 18 (a + b) n n = n ) ( k=0 k a k b n k n k)

31 A hara/lectures/lectures-j.html x = a f(x) local maximum r > 0, 0 < x a < r = f(x) < f(a) (4.3.5) f x = a x = a f(x) local minimum r > 0, 0 < x a < r = f(x) > f(a) (4.3.6) r > 0, x a < r = f(x) f(a) (4.3.7) f a f(x) x = a maximum f f(a) f x f(x) < f(a) (4.3.8) x minimum local global p x = a f(x) (i) f(x) x = a x = a f(x) f (a) = 0 (ii) f(x) x = a f (a) = 0 a. f (a) > 0 f(x) x = a b. f (a) < 0 f(x) x = a c. f (a) = 0 f(x) x = a (ii)-c f (x) x f(x) y = f(x) f (x) f (x) y = f(x) f (x) > 0 x f (x) < 0 x

32 A hara/lectures/lectures-j.html 32 f f convex function concave function

33 A hara/lectures/lectures-j.html f(x) f(a) f(x) = f(a) + n=1 f (n) (a) (x a) n (4.4.1) n! a = 0 e x = 1 + x + x2 2 + x3 3! + x4 4! + = 1 n! xn (4.4.2) n=0 sin x = x x3 3! + x5 5! x7 7! + = ( 1) n (2n + 1)! x2n+1 (4.4.3) n=0 cos x = 1 x2 2! + x4 4! x6 6! + = n=0 ( 1) n (2n)! x2n (4.4.4) sin x cos x sin x cos x 2π sin π = 0 sin x cos x (4.4.2) e x, sin x 19 (4.4.1) x a f(x) f(a) ( ) f(x) I n a I x I a x ξ n 1 f(x) = f(a) + (4.4.5) k=1 f (k) (a) k! (x a) k + f (n) (ξ) (x a) n (4.4.5) n! f(x) = S n (x) + R n (x), (4.4.6) 19 e x, sin x (4.4.2)

34 A hara/lectures/lectures-j.html 34 n 1 S n (x) := f(a) + k=1 f (k) (a) k! (x a) k, R n (x) := f (n) (ξ) (x a) n (4.4.7) n! S n (x) n R n (x) n f(x) x = a a = 3 f(x) x = 3 x =... x =... x =... x = 2 x = 2 a = 0 Maclaurin y = x a x x = a y y = 0 y x x = a ξ a x b R n (x) x, a R n (x) ξ x, a f (n) (x) ξ ξ [ n 1 F (x) := f(x) f(a) + F (x) (4.4.6) R n (x) k=1 f (k) (a) (x a) ], k G(x) := (x a) n (4.4.8) k! F, G F (x) f(x) (x a) k G(x) n F (a) = F (a) = F (a) =... = F (n 1) (a) = 0, F (n) (a) = f (n) (a) (4.4.9) G(a) = G (a) = G (a) =... = G (n 1) (a) = 0, G (n) (a) = n! (4.4.10) F (x) F (a) G(x) G(a) = F (ξ 1 ) G (ξ 1 ) ξ 1 ξ 1 a x F (a) = G (a) = (4.4.11) F (ξ 1 ) G (ξ 1 ) = F (ξ 1 ) F (a) G (ξ 1 ) G (a) = F (ξ 2 ) G (ξ 2 ) (4.4.12) ξ 2 ξ 2 a ξ 1 F (k) (a) = G (k) (a) = 0 k n 1 F (k) (ξ k ) G (k) (ξ k ) = F (k) (ξ k ) F (k) (a) G (k) (ξ k ) G (k) (a) = F (k+1) (ξ k+1 ) G (k+1) (ξ k+1 ) (4.4.13) 20

35 A hara/lectures/lectures-j.html 35 ξ k+1 ξ k+1 a ξ k k n 1 F (x) F (a) G(x) G(a) = F (n) (ξ n ) G (n) (ξ n ) ξ n ξ n a x F (x) (x a) n = f (n) (ξ n ) n! (4.4.14) (4.4.15) (4.4.6) n 1 R n (x) n lim n R n(x) = 0 f(x) = lim n S n(x) = k=0 f (k) (a) (x a) k (4.4.16) k! lim n S n R n (4.4.6) n R n S n n f(x) R n (x) n f I f(x) = c n (x a) n + c n 1 (x a) n c 1 (x a) + c 0 f(x) = e x e x a = 0 e x = n 1 k=0 x k k! + R n(x), R n (x) := eξ n! xn (4.4.17) ξ 0 x x lim n R n(x) = 0 x e x = k=0 x k k! (4.4.18)

36 A hara/lectures/lectures-j.html 36 sin, cos sin x = S n (x) + R n (x), S n (x), R n (x) (4.4.19) x lim n R n(x) = 0 x sin x = ( 1) k x 2k+1 (2k + 1)! cos x = k=0 k=0 ( 1) k x2k (2k)! (4.4.20) 21 sin x n = 1, 2,..., 8 y = S n (x) y = sin x n n n = 11, 21, 31, 41 n = 10, 20, 30, 40 y = sin x n x 2 n=1 n= n= sin x 1 sin x x x n= n=

37 A hara/lectures/lectures-j.html f(x) (x a) k S n (x) (4.4.6) S n (x) f(x) R n (x) f(x) = 1/(1 x) (n ) x = 0 f(x), g(x) x 0 f(x) g(x) lim x 0 x n = 0 n (4.4.21) 0 g(x) f(x) n n f(x) g(x) x n ( 2.3.5) lim f(x) = lim h(x) = 0 x a x a lim x a f(x) h(x) = 0 f(x) h(x) f(x) = o( h(x) ) o f(x) x a h(x) K > 0 δ > 0 ( 0 < x a < δ = f(x) ) < K h(x) f(x) h(x) f(x) = O ( h(x) ) O (4.4.22) x f(x) g(x) f(x) g(x) f(x) g(x) f(x) g(x) f(x) = Ω ( g(x) ) (4.4.21) f(x) g(x) = o(x n ) n o (4.4.23) 22

38 A hara/lectures/lectures-j.html ( ) f(x) x = 0 n f(x) = S n (x) + R n (x), S n (x) := n 1 k=0 f (k) (0) x k, k! R n (x) := f (n) (θx) x n (0 < θ < 1) (4.4.24) n! S n (x) f(x) (n 1) f(x) = n 1 k=0 f (k) (0) x k + o(x n 1 ) (4.4.25) k! lim x 0 R n (x) = 0 (4.4.26) xn 1 (4.4.26) ( ) 1) 0 f (n) δ > 0 M > 0 n x x < δ f (n) (x) < M (4.4.27) f(x) = n 1 k=0 f (k) (0) x k + O(x n ) (4.4.28) k! 2) 0 f (n) f(x) C n - 1) C S n ( )) f(x) g(x) = n j=0 a jx j g(x) f(x) n g(x) a 0, a 1,..., a n a j f n g n g 1 (x) = a j x j, g 2 (x) = j=0 a j = b j 0 j n x 0 x 0 g 1 (x) g 2 (x) x n g 1(x) f(x) x n n b j x j (4.4.29) j=0 + f(x) g 2(x) x n (4.4.30) g 1 (x) g 2 (x) lim x 0 x k = 0 (0 k n) (4.4.31)

39 A hara/lectures/lectures-j.html 39 g 1 (x) g 2 (x) = n (a j b j )x j (4.4.32) k = 0, 1, 2,... (4.4.31) a k b k = 0 k = 0, 1, 2,... j=0 f(x) S n f(x) (n 1) 1/(1 3x) tan x x = 0 tan x = sin x cos x p (x a) n 2. x x Euler e iθ = cos θ + i sin θ, θ R (4.4.33) x = iθ e iθ (ix) k = k! k=0 = l=0 ( 1) l x2l (2l)! + i ( 1) l x 2l+1 (2l + 1)! l=0 (4.4.34) k i k cos θ + i sin θ sin, cos 2π e a+b = e a e b

40 A hara/lectures/lectures-j.html ( 2.5.8) f(x) I C n - I a I x I f(x) = S n (x) + R n (x), S n (x) := n 1 k=0 f (k) (a) x (x a) k, R n (x) := k! a f (n) (y) (n 1)! (x y)n 1 dy (4.4.35) f(x) C N - (4.4.35) n N n I. n = 1 x a f (y)dy = f(x) f(a) f(a) f (0) (x) := f(x) I. n = 2 n = 1 x a f (y)dy = x a f(x) = f(a) + { d dy (x y)} f (y)dy = = (x a)f (a) + x a x a f (y)dy (4.4.36) [ ] x (x y)f (y) + a x a (x y)f (y)dy (x y)f (y)dy (4.4.37) II. n n + 1 n N 1 n (4.4.35) (n 1)! x a x { f (n) (y)(x y) n 1 dy = f (n) (y) 1 d a n dy (x y)n} dy = 1 [ ] x f (n) (y) (x y) n + 1 x f (n+1) (y) (x y) n dy n a n a = 1 n f (n) (a) (x a) n + 1 n x a f (n+1) (y) (x y) n dy. (4.4.38) (4.4.35) (n 1)! (4.4.35) n + 1

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10% 1 2006.4.17. A 3-312 tel: 092-726-4774, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office hours: B A I ɛ-δ ɛ-δ 1. 2. A 1. 1. 2. 3. 4. 5. 2. ɛ-δ 1. ɛ-n

More information

A S hara/lectures/lectures-j.html ϵ-n 1 ϵ-n lim n a n = α n a n α 2 lim a n = 0 1 n a k n n k= ϵ

A S hara/lectures/lectures-j.html ϵ-n 1 ϵ-n lim n a n = α n a n α 2 lim a n = 0 1 n a k n n k= ϵ A S1-20 http://www2.mth.kyushu-u.c.jp/ hr/lectures/lectures-j.html 1 1 1.1 ϵ-n 1 ϵ-n lim n n = α n n α 2 lim n = 0 1 n k n n k=1 0 1.1.7 ϵ-n 1.1.1 n α n n α lim n n = α ϵ N(ϵ) n > N(ϵ) n α < ϵ (1.1.1)

More information

r 1 m A r/m i) t ii) m i) t B(t; m) ( B(t; m) = A 1 + r ) mt m ii) B(t; m) ( B(t; m) = A 1 + r ) mt m { ( = A 1 + r ) m } rt r m n = m r m n B

r 1 m A r/m i) t ii) m i) t B(t; m) ( B(t; m) = A 1 + r ) mt m ii) B(t; m) ( B(t; m) = A 1 + r ) mt m { ( = A 1 + r ) m } rt r m n = m r m n B 1 1.1 1 r 1 m A r/m i) t ii) m i) t Bt; m) Bt; m) = A 1 + r ) mt m ii) Bt; m) Bt; m) = A 1 + r ) mt m { = A 1 + r ) m } rt r m n = m r m n Bt; m) Aert e lim 1 + 1 n 1.1) n!1 n) e a 1, a 2, a 3,... {a n

More information

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ = 1 1.1 ( ). z = + bi,, b R 0, b 0 2 + b 2 0 z = + bi = ( ) 2 + b 2 2 + b + b 2 2 + b i 2 r = 2 + b 2 θ cos θ = 2 + b 2, sin θ = b 2 + b 2 2π z = r(cos θ + i sin θ) 1.2 (, ). 1. < 2. > 3. ±,, 1.3 ( ). A

More information

III ϵ-n ϵ-n lim n a n = α n a n α 1 lim a n = 0 1 n a k n n k= ϵ-n 1.1

III ϵ-n ϵ-n lim n a n = α n a n α 1 lim a n = 0 1 n a k n n k= ϵ-n 1.1 III http://www2.mth.kyushu-u.c.jp/~hr/lectures/lectures-j.html 1 1 1.1 ϵ-n ϵ-n lim n = α n n α 1 lim n = 0 1 n k n k=1 0 1.1.7 ϵ-n 1.1.1 n α n n α lim n = α ϵ Nϵ n > Nϵ n α < ϵ 1.1.1 ϵ n > Nϵ n α < ϵ 1.1.2

More information

, x R, f (x),, df dx : R R,, f : R R, f(x) ( ).,, f (a) d f dx (a), f (a) d3 f dx 3 (a),, f (n) (a) dn f dx n (a), f d f dx, f d3 f dx 3,, f (n) dn f

, x R, f (x),, df dx : R R,, f : R R, f(x) ( ).,, f (a) d f dx (a), f (a) d3 f dx 3 (a),, f (n) (a) dn f dx n (a), f d f dx, f d3 f dx 3,, f (n) dn f ,,,,.,,,. R f : R R R a R, f(a + ) f(a) lim 0 (), df dx (a) f (a), f(x) x a, f (a), f(x) x a ( ). y f(a + ) y f(x) f(a+) f(a) f(a + ) f(a) f(a) x a 0 a a + x 0 a a + x y y f(x) 0 : 0, f(a+) f(a)., f(x)

More information

1 I

1 I 1 I 3 1 1.1 R x, y R x + y R x y R x, y, z, a, b R (1.1) (x + y) + z = x + (y + z) (1.2) x + y = y + x (1.3) 0 R : 0 + x = x x R (1.4) x R, 1 ( x) R : x + ( x) = 0 (1.5) (x y) z = x (y z) (1.6) x y =

More information

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω ω α 3 3 2 2V 3 33+.6T m T 5 34m Hz. 34 3.4m 2 36km 5Hz. 36km m 34 m 5 34 + m 5 33 5 =.66m 34m 34 x =.66 55Hz, 35 5 =.7 485.7Hz 2 V 5Hz.5V.5V V

More information

f(x) = x (1) f (1) (2) f (2) f(x) x = a y y = f(x) f (a) y = f(x) A(a, f(a)) f(a + h) f(x) = A f(a) A x (3, 3) O a a + h x 1 f(x) x = a

f(x) = x (1) f (1) (2) f (2) f(x) x = a y y = f(x) f (a) y = f(x) A(a, f(a)) f(a + h) f(x) = A f(a) A x (3, 3) O a a + h x 1 f(x) x = a 3 3.1 3.1.1 A f(a + h) f(a) f(x) lim f(x) x = a h 0 h f(x) x = a f 0 (a) f 0 (a) = lim h!0 f(a + h) f(a) h = lim x!a f(x) f(a) x a a + h = x h = x a h 0 x a 3.1 f(x) = x x = 3 f 0 (3) f (3) = lim h 0 (

More information

2014 S hara/lectures/lectures-j.html r 1 S phone: ,

2014 S hara/lectures/lectures-j.html r 1 S phone: , 14 S1-1+13 http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html r 1 S1-1+13 14.4.11. 19 phone: 9-8-4441, e-mail: hara@math.kyushu-u.ac.jp Office hours: 1 4/11 web download. I. 1. ϵ-δ 1. 3.1, 3..

More information

2009 IA 5 I 22, 23, 24, 25, 26, (1) Arcsin 1 ( 2 (4) Arccos 1 ) 2 3 (2) Arcsin( 1) (3) Arccos 2 (5) Arctan 1 (6) Arctan ( 3 ) 3 2. n (1) ta

2009 IA 5 I 22, 23, 24, 25, 26, (1) Arcsin 1 ( 2 (4) Arccos 1 ) 2 3 (2) Arcsin( 1) (3) Arccos 2 (5) Arctan 1 (6) Arctan ( 3 ) 3 2. n (1) ta 009 IA 5 I, 3, 4, 5, 6, 7 6 3. () Arcsin ( (4) Arccos ) 3 () Arcsin( ) (3) Arccos (5) Arctan (6) Arctan ( 3 ) 3. n () tan x (nπ π/, nπ + π/) f n (x) f n (x) fn (x) Arctan x () sin x [nπ π/, nπ +π/] g n

More information

I y = f(x) a I a x I x = a + x 1 f(x) f(a) x a = f(a + x) f(a) x (11.1) x a x 0 f(x) f(a) f(a + x) f(a) lim = lim x a x a x 0 x (11.2) f(x) x

I y = f(x) a I a x I x = a + x 1 f(x) f(a) x a = f(a + x) f(a) x (11.1) x a x 0 f(x) f(a) f(a + x) f(a) lim = lim x a x a x 0 x (11.2) f(x) x 11 11.1 I y = a I a x I x = a + 1 f(a) x a = f(a +) f(a) (11.1) x a 0 f(a) f(a +) f(a) = x a x a 0 (11.) x = a a f (a) d df f(a) (a) I dx dx I I I f (x) d df dx dx (x) [a, b] x a ( 0) x a (a, b) () [a,

More information

, 1 ( f n (x))dx d dx ( f n (x)) 1 f n (x)dx d dx f n(x) lim f n (x) = [, 1] x f n (x) = n x x 1 f n (x) = x f n (x) = x 1 x n n f n(x) = [, 1] f n (x

, 1 ( f n (x))dx d dx ( f n (x)) 1 f n (x)dx d dx f n(x) lim f n (x) = [, 1] x f n (x) = n x x 1 f n (x) = x f n (x) = x 1 x n n f n(x) = [, 1] f n (x 1 1.1 4n 2 x, x 1 2n f n (x) = 4n 2 ( 1 x), 1 x 1 n 2n n, 1 x n n 1 1 f n (x)dx = 1, n = 1, 2,.. 1 lim 1 lim 1 f n (x)dx = 1 lim f n(x) = ( lim f n (x))dx = f n (x)dx 1 ( lim f n (x))dx d dx ( lim f d

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f

f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f 22 A 3,4 No.3 () (2) (3) (4), (5) (6) (7) (8) () n x = (x,, x n ), = (,, n ), x = ( (x i i ) 2 ) /2 f(x) R n f(x) = f() + i α i (x ) i + o( x ) α,, α n g(x) = o( x )) lim x g(x) x = y = f() + i α i(x )

More information

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google I4 - : April, 4 Version :. Kwhir, Tomoki TA (Kondo, Hirotk) Google http://www.mth.ngoy-u.c.jp/~kwhir/courses/4s-biseki.html pdf 4 4 4 4 8 e 5 5 9 etc. 5 6 6 6 9 n etc. 6 6 6 3 6 3 7 7 etc 7 4 7 7 8 5 59

More information

( ) a, b c a 2 + b 2 = c 2. 2 1 2 2 : 2 2 = p q, p, q 2q 2 = p 2. p 2 p 2 2 2 q 2 p, q (QED)

( ) a, b c a 2 + b 2 = c 2. 2 1 2 2 : 2 2 = p q, p, q 2q 2 = p 2. p 2 p 2 2 2 q 2 p, q (QED) rational number p, p, (q ) q ratio 3.14 = 3 + 1 10 + 4 100 ( ) a, b c a 2 + b 2 = c 2. 2 1 2 2 : 2 2 = p q, p, q 2q 2 = p 2. p 2 p 2 2 2 q 2 p, q (QED) ( a) ( b) a > b > 0 a < nb n A A B B A A, B B A =

More information

1

1 1 1 7 1.1.................................. 11 2 13 2.1............................ 13 2.2............................ 17 2.3.................................. 19 3 21 3.1.............................

More information

IA 2013 : :10722 : 2 : :2 :761 :1 (23-27) : : ( / ) (1 /, ) / e.g. (Taylar ) e x = 1 + x + x xn n! +... sin x = x x3 6 + x5 x2n+1 + (

IA 2013 : :10722 : 2 : :2 :761 :1 (23-27) : : ( / ) (1 /, ) / e.g. (Taylar ) e x = 1 + x + x xn n! +... sin x = x x3 6 + x5 x2n+1 + ( IA 2013 : :10722 : 2 : :2 :761 :1 23-27) : : 1 1.1 / ) 1 /, ) / e.g. Taylar ) e x = 1 + x + x2 2 +... + xn n! +... sin x = x x3 6 + x5 x2n+1 + 1)n 5! 2n + 1)! 2 2.1 = 1 e.g. 0 = 0.00..., π = 3.14..., 1

More information

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi) 0. A A = 4 IC () det A () A () x + y + z = x y z X Y Z = A x y z ( 5) ( s5590) 0. a + b + c b c () a a + b + c c a b a + b + c 0 a b c () a 0 c b b c 0 a c b a 0 0. A A = 7 5 4 5 0 ( 5) ( s5590) () A ()

More information

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C 8 ( ) 8 5 4 I II III A B C( ),,, 5 I II A B ( ),, I II A B (8 ) 6 8 I II III A B C(8 ) n ( + x) n () n C + n C + + n C n = 7 n () 7 9 C : y = x x A(, 6) () A C () C P AP Q () () () 4 A(,, ) B(,, ) C(,,

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

No2 4 y =sinx (5) y = p sin(2x +3) (6) y = 1 tan(3x 2) (7) y =cos 2 (4x +5) (8) y = cos x 1+sinx 5 (1) y =sinx cos x 6 f(x) = sin(sin x) f 0 (π) (2) y

No2 4 y =sinx (5) y = p sin(2x +3) (6) y = 1 tan(3x 2) (7) y =cos 2 (4x +5) (8) y = cos x 1+sinx 5 (1) y =sinx cos x 6 f(x) = sin(sin x) f 0 (π) (2) y No1 1 (1) 2 f(x) =1+x + x 2 + + x n, g(x) = 1 (n +1)xn + nx n+1 (1 x) 2 x 6= 1 f 0 (x) =g(x) y = f(x)g(x) y 0 = f 0 (x)g(x)+f(x)g 0 (x) 3 (1) y = x2 x +1 x (2) y = 1 g(x) y0 = g0 (x) {g(x)} 2 (2) y = µ

More information

5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h 0 g(a + h) g(a) h g(x) a A = g (a) = f x (a, b)

5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h 0 g(a + h) g(a) h g(x) a A = g (a) = f x (a, b) 5 partial differentiation (total) differentiation 5. z = f(x, y) (a, b) A = lim h 0 f(a + h, b) f(a, b) h............................................................... ( ) f(x, y) (a, b) x A (a, b) x

More information

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1)

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1) 1. 1.1...,. 1.1.1 V, V x, y, x y x + y x + y V,, V x α, αx αx V,, (i) (viii) : x, y, z V, α, β C, (i) x + y = y + x. (ii) (x + y) + z = x + (y + z). 1 (iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y

More information

DVIOUT

DVIOUT A. A. A-- [ ] f(x) x = f 00 (x) f 0 () =0 f 00 () > 0= f(x) x = f 00 () < 0= f(x) x = A--2 [ ] f(x) D f 00 (x) > 0= y = f(x) f 00 (x) < 0= y = f(x) P (, f()) f 00 () =0 A--3 [ ] y = f(x) [, b] x = f (y)

More information

2012 IA 8 I p.3, 2 p.19, 3 p.19, 4 p.22, 5 p.27, 6 p.27, 7 p

2012 IA 8 I p.3, 2 p.19, 3 p.19, 4 p.22, 5 p.27, 6 p.27, 7 p 2012 IA 8 I 1 10 10 29 1. [0, 1] n x = 1 (n = 1, 2, 3,...) 2 f(x) = n 0 [0, 1] 2. 1 x = 1 (n = 1, 2, 3,...) 2 f(x) = n 0 [0, 1] 1 0 f(x)dx 3. < b < c [, c] b [, c] 4. [, b] f(x) 1 f(x) 1 f(x) [, b] 5.

More information

[] x < T f(x), x < T f(x), < x < f(x) f(x) f(x) f(x + nt ) = f(x) x < T, n =, 1,, 1, (1.3) f(x) T x 2 f(x) T 2T x 3 f(x), f() = f(t ), f(x), f() f(t )

[] x < T f(x), x < T f(x), < x < f(x) f(x) f(x) f(x + nt ) = f(x) x < T, n =, 1,, 1, (1.3) f(x) T x 2 f(x) T 2T x 3 f(x), f() = f(t ), f(x), f() f(t ) 1 1.1 [] f(x) f(x + T ) = f(x) (1.1), f(x), T f(x) x T 1 ) f(x) = sin x, T = 2 sin (x + 2) = sin x, sin x 2 [] n f(x + nt ) = f(x) (1.2) T [] 2 f(x) g(x) T, h 1 (x) = af(x)+ bg(x) 2 h 2 (x) = f(x)g(x)

More information

4................................. 4................................. 4 6................................. 6................................. 9.................................................... 3..3..........................

More information

2009 IA I 22, 23, 24, 25, 26, a h f(x) x x a h

2009 IA I 22, 23, 24, 25, 26, a h f(x) x x a h 009 IA I, 3, 4, 5, 6, 7 7 7 4 5 h fx) x x h 4 5 4 5 1 3 1.1........................... 3 1........................... 4 1.3..................................... 6 1.4.............................. 8 1.4.1..............................

More information

http://know-star.com/ 3 1 7 1.1................................. 7 1.2................................ 8 1.3 x n.................................. 8 1.4 e x.................................. 10 1.5 sin

More information

A S- hara/lectures/lectures-j.html r A = A 5 : 5 = max{ A, } A A A A B A, B A A A %

A S-   hara/lectures/lectures-j.html r A = A 5 : 5 = max{ A, } A A A A B A, B A A A % A S- http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html r A S- 3.4.5. 9 phone: 9-8-444, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office

More information

7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa, f a g b g f a g f a g bf a

7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa, f a g b g f a g f a g bf a 9 203 6 7 WWW http://www.math.meiji.ac.jp/~mk/lectue/tahensuu-203/ 2 8 8 7. 7 7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa,

More information

, 3, 6 = 3, 3,,,, 3,, 9, 3, 9, 3, 3, 4, 43, 4, 3, 9, 6, 6,, 0 p, p, p 3,..., p n N = p p p 3 p n + N p n N p p p, p 3,..., p n p, p,..., p n N, 3,,,,

, 3, 6 = 3, 3,,,, 3,, 9, 3, 9, 3, 3, 4, 43, 4, 3, 9, 6, 6,, 0 p, p, p 3,..., p n N = p p p 3 p n + N p n N p p p, p 3,..., p n p, p,..., p n N, 3,,,, 6,,3,4,, 3 4 8 6 6................................. 6.................................. , 3, 6 = 3, 3,,,, 3,, 9, 3, 9, 3, 3, 4, 43, 4, 3, 9, 6, 6,, 0 p, p, p 3,..., p n N = p p p 3 p n + N p n N p p p,

More information

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x [ ] IC. f(x) = e x () f(x) f (x) () lim f(x) lim f(x) x + x (3) lim f(x) lim f(x) x + x (4) y = f(x) ( ) ( s46). < a < () a () lim a log xdx a log xdx ( ) n (3) lim log k log n n n k=.3 z = log(x + y ),

More information

さくらの個別指導 ( さくら教育研究所 ) A a 1 a 2 a 3 a n {a n } a 1 a n n n 1 n n 0 a n = 1 n 1 n n O n {a n } n a n α {a n } α {a

さくらの個別指導 ( さくら教育研究所 ) A a 1 a 2 a 3 a n {a n } a 1 a n n n 1 n n 0 a n = 1 n 1 n n O n {a n } n a n α {a n } α {a ... A a a a 3 a n {a n } a a n n 3 n n n 0 a n = n n n O 3 4 5 6 n {a n } n a n α {a n } α {a n } α α {a n } a n n a n α a n = α n n 0 n = 0 3 4. ()..0.00 + (0.) n () 0. 0.0 0.00 ( 0.) n 0 0 c c c c c

More information

() Remrk I = [0, ] [x i, x i ]. (x : ) f(x) = 0 (x : ) ξ i, (f) = f(ξ i )(x i x i ) = (x i x i ) = ξ i, (f) = f(ξ i )(x i x i ) = 0 (f) 0.

() Remrk I = [0, ] [x i, x i ]. (x : ) f(x) = 0 (x : ) ξ i, (f) = f(ξ i )(x i x i ) = (x i x i ) = ξ i, (f) = f(ξ i )(x i x i ) = 0 (f) 0. () 6 f(x) [, b] 6. Riemnn [, b] f(x) S f(x) [, b] (Riemnn) = x 0 < x < x < < x n = b. I = [, b] = {x,, x n } mx(x i x i ) =. i [x i, x i ] ξ i n (f) = f(ξ i )(x i x i ) i=. (ξ i ) (f) 0( ), ξ i, S, ε >

More information

D xy D (x, y) z = f(x, y) f D (2 ) (x, y, z) f R z = 1 x 2 y 2 {(x, y); x 2 +y 2 1} x 2 +y 2 +z 2 = 1 1 z (x, y) R 2 z = x 2 y

D xy D (x, y) z = f(x, y) f D (2 ) (x, y, z) f R z = 1 x 2 y 2 {(x, y); x 2 +y 2 1} x 2 +y 2 +z 2 = 1 1 z (x, y) R 2 z = x 2 y 5 5. 2 D xy D (x, y z = f(x, y f D (2 (x, y, z f R 2 5.. z = x 2 y 2 {(x, y; x 2 +y 2 } x 2 +y 2 +z 2 = z 5.2. (x, y R 2 z = x 2 y + 3 (2,,, (, 3,, 3 (,, 5.3 (. (3 ( (a, b, c A : (x, y, z P : (x, y, x

More information

6. Euler x

6. Euler x ...............................................................................3......................................... 4.4................................... 5.5......................................

More information

(1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10)

(1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10) 2017 12 9 4 1 30 4 10 3 1 30 3 30 2 1 30 2 50 1 1 30 2 10 (1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10) (1) i 23 c 23 0 1 2 3 4 5 6 7 8 9 a b d e f g h i (2) 23 23 (3) 23 ( 23 ) 23 x 1 x 2 23 x

More information

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) (

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) ( 6 20 ( ) sin, cos, tan sin, cos, tan, arcsin, arccos, arctan. π 2 sin π 2, 0 cos π, π 2 < tan < π 2 () ( 2 2 lim 2 ( 2 ) ) 2 = 3 sin (2) lim 5 0 = 2 2 0 0 2 2 3 3 4 5 5 2 5 6 3 5 7 4 5 8 4 9 3 4 a 3 b

More information

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 0 < t < τ I II 0 No.2 2 C x y x y > 0 x 0 x > b a dx

More information

2009 I 2 II III 14, 15, α β α β l 0 l l l l γ (1) γ = αβ (2) α β n n cos 2k n n π sin 2k n π k=1 k=1 3. a 0, a 1,..., a n α a

2009 I 2 II III 14, 15, α β α β l 0 l l l l γ (1) γ = αβ (2) α β n n cos 2k n n π sin 2k n π k=1 k=1 3. a 0, a 1,..., a n α a 009 I II III 4, 5, 6 4 30. 0 α β α β l 0 l l l l γ ) γ αβ ) α β. n n cos k n n π sin k n π k k 3. a 0, a,..., a n α a 0 + a x + a x + + a n x n 0 ᾱ 4. [a, b] f y fx) y x 5. ) Arcsin 4) Arccos ) ) Arcsin

More information

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d S I.. http://ayapin.film.s.dendai.ac.jp/~matuda /TeX/lecture.html PDF PS.................................... 3.3.................... 9.4................5.............. 3 5. Laplace................. 5....

More information

基礎数学I

基礎数学I I & II ii ii........... 22................. 25 12............... 28.................. 28.................... 31............. 32.................. 34 3 1 9.................... 1....................... 1............

More information

- II

- II - II- - -.................................................................................................... 3.3.............................................. 4 6...........................................

More information

CALCULUS II (Hiroshi SUZUKI ) f(x, y) A(a, b) 1. P (x, y) A(a, b) A(a, b) f(x, y) c f(x, y) A(a, b) c f(x, y) c f(x, y) c (x a, y b)

CALCULUS II (Hiroshi SUZUKI ) f(x, y) A(a, b) 1. P (x, y) A(a, b) A(a, b) f(x, y) c f(x, y) A(a, b) c f(x, y) c f(x, y) c (x a, y b) CALCULUS II (Hiroshi SUZUKI ) 16 1 1 1.1 1.1 f(x, y) A(a, b) 1. P (x, y) A(a, b) A(a, b) f(x, y) c f(x, y) A(a, b) c f(x, y) c f(x, y) c (x a, y b) lim f(x, y) = lim f(x, y) = lim f(x, y) = c. x a, y b

More information

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt S I. x yx y y, y,. F x, y, y, y,, y n http://ayapin.film.s.dendai.ac.jp/~matuda n /TeX/lecture.html PDF PS yx.................................... 3.3.................... 9.4................5..............

More information

di-problem.dvi

di-problem.dvi III 005/06/6 by. : : : : : : : : : : : : : : : : : : : : :. : : : : : : : : : : : : : : : : : : : : : : : : : : 3 3. : : : : : : : : : : : : : : 4 4. : : : : : : : : : : : : : : : : : : : : : : 5 5. :

More information

i

i i 3 4 4 7 5 6 3 ( ).. () 3 () (3) (4) /. 3. 4/3 7. /e 8. a > a, a = /, > a >. () a >, a =, > a > () a > b, a = b, a < b. c c n a n + b n + c n 3c n..... () /3 () + (3) / (4) /4 (5) m > n, a b >, m > n,

More information

( 12 ( ( ( ( Levi-Civita grad div rot ( ( = 4 : 6 3 1 1.1 f(x n f (n (x, d n f(x (1.1 dxn f (2 (x f (x 1.1 f(x = e x f (n (x = e x d dx (fg = f g + fg (1.2 d dx d 2 dx (fg = f g + 2f g + fg 2... d n n

More information

< 1 > (1) f 0 (a) =6a ; g 0 (a) =6a 2 (2) y = f(x) x = 1 f( 1) = 3 ( 1) 2 =3 ; f 0 ( 1) = 6 ( 1) = 6 ; ( 1; 3) 6 x =1 f(1) = 3 ; f 0 (1) = 6 ; (1; 3)

< 1 > (1) f 0 (a) =6a ; g 0 (a) =6a 2 (2) y = f(x) x = 1 f( 1) = 3 ( 1) 2 =3 ; f 0 ( 1) = 6 ( 1) = 6 ; ( 1; 3) 6 x =1 f(1) = 3 ; f 0 (1) = 6 ; (1; 3) < 1 > (1) f 0 (a) =6a ; g 0 (a) =6a 2 (2) y = f(x) x = 1 f( 1) = 3 ( 1) 2 =3 ; f 0 ( 1) = 6 ( 1) = 6 ; ( 1; 3) 6 x =1 f(1) = 3 ; f 0 (1) = 6 ; (1; 3) 6 y = g(x) x = 1 g( 1) = 2 ( 1) 3 = 2 ; g 0 ( 1) =

More information

04.dvi

04.dvi 22 I 4-4 ( ) 4, [,b] 4 [,b] R, x =, x n = b, x i < x i+ n + = {x,,x n } [,b], = mx{ x i+ x i } 2 [,b] = {x,,x n }, ξ = {ξ,,ξ n }, x i ξ i x i, [,b] f: S,ξ (f) S,ξ (f) = n i= f(ξ i )(x i x i ) 3 [,b] f:,

More information

I No. sin cos sine, cosine : trigonometric function π : π =.4 : n =, ±, ±, sin + nπ = sin cos + nπ = cos sin = sin : cos = cos :. sin. sin. sin + π si

I No. sin cos sine, cosine : trigonometric function π : π =.4 : n =, ±, ±, sin + nπ = sin cos + nπ = cos sin = sin : cos = cos :. sin. sin. sin + π si I 8 No. : No. : No. : No.4 : No.5 : No.6 : No.7 : No.8 : No.9 : No. : I No. sin cos sine, cosine : trigonometric function π : π =.4 : n =, ±, ±, sin + nπ = sin cos + nπ = cos sin = sin : cos = cos :. sin.

More information

Chap10.dvi

Chap10.dvi =0. f = 2 +3 { 2 +3 0 2 f = 1 =0 { sin 0 3 f = 1 =0 2 sin 1 0 4 f = 0 =0 { 1 0 5 f = 0 =0 f 3 2 lim = lim 0 0 0 =0 =0. f 0 = 0. 2 =0. 3 4 f 1 lim 0 0 = lim 0 sin 2 cos 1 = lim 0 2 sin = lim =0 0 2 =0.

More information

[ ] x f(x) F = f(x) F(x) f(x) f(x) f(x)dx A p.2/29

[ ] x f(x) F = f(x) F(x) f(x) f(x) f(x)dx A p.2/29 A p./29 [ ] x f(x) F = f(x) F(x) f(x) f(x) f(x)dx A p.2/29 [ ] x f(x) F = f(x) F(x) f(x) f(x) f(x)dx [ ] F(x) f(x) C F(x) + C f(x) A p.2/29 [ ] x f(x) F = f(x) F(x) f(x) f(x) f(x)dx [ ] F(x) f(x) C F(x)

More information

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63> 電気電子数学入門 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/073471 このサンプルページの内容は, 初版 1 刷発行当時のものです. i 14 (tool) [ ] IT ( ) PC (EXCEL) HP() 1 1 4 15 3 010 9 ii 1... 1 1.1 1 1.

More information

M3 x y f(x, y) (= x) (= y) x + y f(x, y) = x + y + *. f(x, y) π y f(x, y) x f(x + x, y) f(x, y) lim x x () f(x,y) x 3 -

M3 x y f(x, y) (= x) (= y) x + y f(x, y) = x + y + *. f(x, y) π y f(x, y) x f(x + x, y) f(x, y) lim x x () f(x,y) x 3 - M3............................................................................................ 3.3................................................... 3 6........................................... 6..........................................

More information

4 4 4 a b c d a b A c d A a da ad bce O E O n A n O ad bc a d n A n O 5 {a n } S n a k n a n + k S n a a n+ S n n S n n log x x {xy } x, y x + y 7 fx

4 4 4 a b c d a b A c d A a da ad bce O E O n A n O ad bc a d n A n O 5 {a n } S n a k n a n + k S n a a n+ S n n S n n log x x {xy } x, y x + y 7 fx 4 4 5 4 I II III A B C, 5 7 I II A B,, 8, 9 I II A B O A,, Bb, b, Cc, c, c b c b b c c c OA BC P BC OP BC P AP BC n f n x xn e x! e n! n f n x f n x f n x f k x k 4 e > f n x dx k k! fx sin x cos x tan

More information

Chap11.dvi

Chap11.dvi . () x 3 + dx () (x )(x ) dx + sin x sin x( + cos x) dx () x 3 3 x + + 3 x + 3 x x + x 3 + dx 3 x + dx 6 x x x + dx + 3 log x + 6 log x x + + 3 rctn ( ) dx x + 3 4 ( x 3 ) + C x () t x t tn x dx x. t x

More information

v er.1/ c /(21)

v er.1/ c /(21) 12 -- 1 1 2009 1 17 1-1 1-2 1-3 1-4 2 2 2 1-5 1 1-6 1 1-7 1-1 1-2 1-3 1-4 1-5 1-6 1-7 c 2011 1/(21) 12 -- 1 -- 1 1--1 1--1--1 1 2009 1 n n α { n } α α { n } lim n = α, n α n n ε n > N n α < ε N {1, 1,

More information

3 0407).3. I f x sin fx) = x + x x 0) 0 x = 0). f x sin f x) = x cos x + x 0) x = 0) x n = /nπ) n = 0,,... ) x n 0 n ) fx n ) = f 0 lim f x n ) = f 0)

3 0407).3. I f x sin fx) = x + x x 0) 0 x = 0). f x sin f x) = x cos x + x 0) x = 0) x n = /nπ) n = 0,,... ) x n 0 n ) fx n ) = f 0 lim f x n ) = f 0) 0407).. I ) f ) a I 3).) lim x a fx) = fa) a.) 4)5) lim fx) = fa) x a+0 lim x a 0 fx) = fa)). I f I I I I f I a 6) fx) fa) lim x a x a f a f a) I I 7) *) 03 0 8 ) an interval; ) an open a closed) interval.

More information

.1 1,... ( )

.1 1,... ( ) 1 δ( ε )δ 2 f(b) f(a) slope f (c) = f(b) f(a) b a a c b 1 213 3 21. 2 [e-mail] nobuo@math.kyoto-u.ac.jp, [URL] http://www.math.kyoto-u.ac.jp/ nobuo 1 .1 1,... ( ) 2.1....................................

More information

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s ... x, y z = x + iy x z y z x = Rez, y = Imz z = x + iy x iy z z () z + z = (z + z )() z z = (z z )(3) z z = ( z z )(4)z z = z z = x + y z = x + iy ()Rez = (z + z), Imz = (z z) i () z z z + z z + z.. z

More information

Riemann-Stieltjes Poland S. Lojasiewicz [1] An introduction to the theory of real functions, John Wiley & Sons, Ltd., Chichester, 1988.,,,,. Riemann-S

Riemann-Stieltjes Poland S. Lojasiewicz [1] An introduction to the theory of real functions, John Wiley & Sons, Ltd., Chichester, 1988.,,,,. Riemann-S Riemnn-Stieltjes Polnd S. Lojsiewicz [1] An introduction to the theory of rel functions, John Wiley & Sons, Ltd., Chichester, 1988.,,,, Riemnn-Stieltjes 1 2 2 5 3 6 4 Jordn 13 5 Riemnn-Stieltjes 15 6 Riemnn-Stieltjes

More information

body.dvi

body.dvi ..1 f(x) n = 1 b n = 1 f f(x) cos nx dx, n =, 1,,... f(x) sin nx dx, n =1,, 3,... f(x) = + ( n cos nx + b n sin nx) n=1 1 1 5 1.1........................... 5 1.......................... 14 1.3...........................

More information

2011de.dvi

2011de.dvi 211 ( 4 2 1. 3 1.1............................... 3 1.2 1- -......................... 13 1.3 2-1 -................... 19 1.4 3- -......................... 29 2. 37 2.1................................ 37

More information

[ ] 0.1 lim x 0 e 3x 1 x IC ( 11) ( s114901) 0.2 (1) y = e 2x (x 2 + 1) (2) y = x/(x 2 + 1) 0.3 dx (1) 1 4x 2 (2) e x sin 2xdx (3) sin 2 xdx ( 11) ( s

[ ] 0.1 lim x 0 e 3x 1 x IC ( 11) ( s114901) 0.2 (1) y = e 2x (x 2 + 1) (2) y = x/(x 2 + 1) 0.3 dx (1) 1 4x 2 (2) e x sin 2xdx (3) sin 2 xdx ( 11) ( s [ ]. lim e 3 IC ) s49). y = e + ) ) y = / + ).3 d 4 ) e sin d 3) sin d ) s49) s493).4 z = y z z y s494).5 + y = 4 =.6 s495) dy = 3e ) d dy d = y s496).7 lim ) lim e s49).8 y = e sin ) y = sin e 3) y =

More information

5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h g(a + h) g(a) h g(x) a A = g (a) = f x (a, b)............................................

5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h g(a + h) g(a) h g(x) a A = g (a) = f x (a, b)............................................ 5 partial differentiation (total) differentiation 5. z = f(x, y) (a, b) A = lim h f(a + h, b) f(a, b) h........................................................... ( ) f(x, y) (a, b) x A (a, b) x (a, b)

More information

sin cos No. sine, cosine : trigonometric function π : π = 3.4 : n = 0, ±, ±, sin + nπ = sin cos + nπ = cos : parity sin = sin : odd cos = cos : even.

sin cos No. sine, cosine : trigonometric function π : π = 3.4 : n = 0, ±, ±, sin + nπ = sin cos + nπ = cos : parity sin = sin : odd cos = cos : even. 08 No. : No. : No.3 : No.4 : No.5 : No.6 : No.7 : No.8 : No.9 : No.0 : No. : sin cos No. sine, cosine : trigonometric function π : π = 3.4 : n = 0, ±, ±, sin + nπ = sin cos + nπ = cos : parity sin = sin

More information

. sinh x sinh x) = e x e x = ex e x = sinh x 3) y = cosh x, y = sinh x y = e x, y = e x 6 sinhx) coshx) 4 y-axis x-axis : y = cosh x, y = s

. sinh x sinh x) = e x e x = ex e x = sinh x 3) y = cosh x, y = sinh x y = e x, y = e x 6 sinhx) coshx) 4 y-axis x-axis : y = cosh x, y = s . 00 3 9 [] sinh x = ex e x, cosh x = ex + e x ) sinh cosh 4 hyperbolic) hyperbola) = 3 cosh x cosh x) = e x + e x = cosh x ) . sinh x sinh x) = e x e x = ex e x = sinh x 3) y = cosh x, y = sinh x y =

More information

2 2 ( Riemann ( 2 ( ( 2 ( (.8.4 (PDF 2

2 2 ( Riemann ( 2 ( ( 2 ( (.8.4 (PDF     2 2 ( 28 8 (http://nalab.mind.meiji.ac.jp/~mk/lecture/tahensuu2/ 2 2 ( Riemann ( 2 ( ( 2 ( (.8.4 (PDF http://nalab.mind.meiji.ac.jp/~mk/lecture/tahensuu2/ http://nalab.mind.meiji.ac.jp/~mk/lecture/tahensuu/

More information

29

29 9 .,,, 3 () C k k C k C + C + C + + C 8 + C 9 + C k C + C + C + C 3 + C 4 + C 5 + + 45 + + + 5 + + 9 + 4 + 4 + 5 4 C k k k ( + ) 4 C k k ( k) 3 n( ) n n n ( ) n ( ) n 3 ( ) 3 3 3 n 4 ( ) 4 4 4 ( ) n n

More information

(ii) (iii) z a = z a =2 z a =6 sin z z a dz. cosh z z a dz. e z dz. (, a b > 6.) (z a)(z b) 52.. (a) dz, ( a = /6.), (b) z =6 az (c) z a =2 53. f n (z

(ii) (iii) z a = z a =2 z a =6 sin z z a dz. cosh z z a dz. e z dz. (, a b > 6.) (z a)(z b) 52.. (a) dz, ( a = /6.), (b) z =6 az (c) z a =2 53. f n (z B 4 24 7 9 ( ) :,..,,.,. 4 4. f(z): D C: D a C, 2πi C f(z) dz = f(a). z a a C, ( ). (ii), a D, a U a,r D f. f(z) = A n (z a) n, z U a,r, n= A n := 2πi C f(ζ) dζ, n =,,..., (ζ a) n+, C a D. (iii) U a,r

More information

I No. sin cos sine, cosine : trigonometric function π : π =.4 : n = 0, ±, ±, sin + nπ = sin cos + nπ = cos : parity sin = sin : odd cos = cos : even.

I No. sin cos sine, cosine : trigonometric function π : π =.4 : n = 0, ±, ±, sin + nπ = sin cos + nπ = cos : parity sin = sin : odd cos = cos : even. I 0 No. : No. : No. : No.4 : No.5 : No.6 : No.7 : No.8 : No.9 : No.0 : I No. sin cos sine, cosine : trigonometric function π : π =.4 : n = 0, ±, ±, sin + nπ = sin cos + nπ = cos : parity sin = sin : odd

More information

0 1-4. 1-5. (1) + b = b +, (2) b = b, (3) + 0 =, (4) 1 =, (5) ( + b) + c = + (b + c), (6) ( b) c = (b c), (7) (b + c) = b + c, (8) ( + b)c = c + bc (9

0 1-4. 1-5. (1) + b = b +, (2) b = b, (3) + 0 =, (4) 1 =, (5) ( + b) + c = + (b + c), (6) ( b) c = (b c), (7) (b + c) = b + c, (8) ( + b)c = c + bc (9 1-1. 1, 2, 3, 4, 5, 6, 7,, 100,, 1000, n, m m m n n 0 n, m m n 1-2. 0 m n m n 0 2 = 1.41421356 π = 3.141516 1-3. 1 0 1-4. 1-5. (1) + b = b +, (2) b = b, (3) + 0 =, (4) 1 =, (5) ( + b) + c = + (b + c),

More information

r III... IV.. grad, div, rot. grad, div, rot 3., B grad, div, rot I, II ɛ-δ web page (

r III... IV.. grad, div, rot. grad, div, rot 3., B grad, div, rot I, II ɛ-δ web page ( r 8.4.8. 3-3 phone: 9-76-4774, e-mail: hara@math.kyushu-u.ac.jp http://www.math.kyushu-u.ac.jp/~hara/lectures/lectures-j.html Office hours: 4/8 I.. ɛ-n. ɛ-δ 3. 4. II... 3. 4. 5.. r III... IV.. grad, div,

More information

1/1 lim f(x, y) (x,y) (a,b) ( ) ( ) lim limf(x, y) lim lim f(x, y) x a y b y b x a ( ) ( ) xy x lim lim lim lim x y x y x + y y x x + y x x lim x x 1

1/1 lim f(x, y) (x,y) (a,b) ( ) ( ) lim limf(x, y) lim lim f(x, y) x a y b y b x a ( ) ( ) xy x lim lim lim lim x y x y x + y y x x + y x x lim x x 1 1/5 ( ) Taylor ( 7.1) (x, y) f(x, y) f(x, y) x + y, xy, e x y,... 1 R {(x, y) x, y R} f(x, y) x y,xy e y log x,... R {(x, y, z) (x, y),z f(x, y)} R 3 z 1 (x + y ) z ax + by + c x 1 z ax + by + c y x +

More information

春期講座 ~ 極限 1 1, 1 2, 1 3, 1 4,, 1 n, n n {a n } n a n α {a n } α {a n } α lim n an = α n a n α α {a n } {a n } {a n } 1. a n = 2 n {a n } 2, 4, 8, 16,

春期講座 ~ 極限 1 1, 1 2, 1 3, 1 4,, 1 n, n n {a n } n a n α {a n } α {a n } α lim n an = α n a n α α {a n } {a n } {a n } 1. a n = 2 n {a n } 2, 4, 8, 16, 春期講座 ~ 極限 1 1, 1 2, 1 3, 1 4,, 1 n, n n {a n } n a n α {a n } α {a n } α lim an = α n a n α α {a n } {a n } {a n } 1. a n = 2 n {a n } 2, 4, 8, 16, 32, n a n {a n } {a n } 2. a n = 10n + 1 {a n } lim an

More information

201711grade1ouyou.pdf

201711grade1ouyou.pdf 2017 11 26 1 2 52 3 12 13 22 23 32 33 42 3 5 3 4 90 5 6 A 1 2 Web Web 3 4 1 2... 5 6 7 7 44 8 9 1 2 3 1 p p >2 2 A 1 2 0.6 0.4 0.52... (a) 0.6 0.4...... B 1 2 0.8-0.2 0.52..... (b) 0.6 0.52.... 1 A B 2

More information

grad φ(p ) φ P grad φ(p ) p P p φ P p l t φ l t = 0 g (0) g (0) (31) grad φ(p ) p grad φ φ (P, φ(p )) xy (x, y) = (ξ(t), η(t)) ( )

grad φ(p ) φ P grad φ(p ) p P p φ P p l t φ l t = 0 g (0) g (0) (31) grad φ(p ) p grad φ φ (P, φ(p )) xy (x, y) = (ξ(t), η(t)) ( ) 2 9 2 5 2.2.3 grad φ(p ) φ P grad φ(p ) p P p φ P p l t φ l t = g () g () (3) grad φ(p ) p grad φ φ (P, φ(p )) y (, y) = (ξ(t), η(t)) ( ) ξ (t) (t) := η (t) grad f(ξ(t), η(t)) (t) g(t) := f(ξ(t), η(t))

More information

no35.dvi

no35.dvi p.16 1 sin x, cos x, tan x a x a, a>0, a 1 log a x a III 2 II 2 III III [3, p.36] [6] 2 [3, p.16] sin x sin x lim =1 ( ) [3, p.42] x 0 x ( ) sin x e [3, p.42] III [3, p.42] 3 3.1 5 8 *1 [5, pp.48 49] sin

More information

i 6 3 ii 3 7 8 9 3 6 iii 5 8 5 3 7 8 v...................................................... 5.3....................... 7 3........................ 3.................3.......................... 8 3 35

More information

A

A A 2563 15 4 21 1 3 1.1................................................ 3 1.2............................................. 3 2 3 2.1......................................... 3 2.2............................................

More information

Untitled

Untitled II 14 14-7-8 8/4 II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ 6/ ] Navier Stokes 3 [ ] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I 1 balance law t (ρv i )+ j

More information

1 I 1.1 ± e = = - = C C MKSA [m], [Kg] [s] [A] 1C 1A 1 MKSA 1C 1C +q q +q q 1

1 I 1.1 ± e = = - = C C MKSA [m], [Kg] [s] [A] 1C 1A 1 MKSA 1C 1C +q q +q q 1 1 I 1.1 ± e = = - =1.602 10 19 C C MKA [m], [Kg] [s] [A] 1C 1A 1 MKA 1C 1C +q q +q q 1 1.1 r 1,2 q 1, q 2 r 12 2 q 1, q 2 2 F 12 = k q 1q 2 r 12 2 (1.1) k 2 k 2 ( r 1 r 2 ) ( r 2 r 1 ) q 1 q 2 (q 1 q 2

More information

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a =

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a = [ ] 9 IC. dx = 3x 4y dt dy dt = x y u xt = expλt u yt λ u u t = u u u + u = xt yt 6 3. u = x, y, z = x + y + z u u 9 s9 grad u ux, y, z = c c : grad u = u x i + u y j + u k i, j, k z x, y, z grad u v =

More information

9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x

9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x 2009 9 6 16 7 1 7.1 1 1 1 9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x(cos y y sin y) y dy 1 sin

More information

function2.pdf

function2.pdf 2... 1 2009, http://c-faculty.chuo-u.ac.jp/ nishioka/ 2 11 38 : 5) i) [], : 84 85 86 87 88 89 1000 ) 13 22 33 56 92 147 140 120 100 80 60 40 20 1 2 3 4 5 7.1 7 7.1 1. *1 e = 2.7182 ) fx) e x, x R : 7.1)

More information

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F F 1 F 2 F, (3) F λ F λ F λ F. 3., A λ λ A λ. B λ λ

More information

³ÎΨÏÀ

³ÎΨÏÀ 2017 12 12 Makoto Nakashima 2017 12 12 1 / 22 2.1. C, D π- C, D. A 1, A 2 C A 1 A 2 C A 3, A 4 D A 1 A 2 D Makoto Nakashima 2017 12 12 2 / 22 . (,, L p - ). Makoto Nakashima 2017 12 12 3 / 22 . (,, L p

More information

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

II ( ) (7/31) II (  [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re II 29 7 29-7-27 ( ) (7/31) II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I Euler Navier

More information

x i [, b], (i 0, 1, 2,, n),, [, b], [, b] [x 0, x 1 ] [x 1, x 2 ] [x n 1, x n ] ( 2 ). x 0 x 1 x 2 x 3 x n 1 x n b 2: [, b].,, (1) x 0, x 1, x 2,, x n

x i [, b], (i 0, 1, 2,, n),, [, b], [, b] [x 0, x 1 ] [x 1, x 2 ] [x n 1, x n ] ( 2 ). x 0 x 1 x 2 x 3 x n 1 x n b 2: [, b].,, (1) x 0, x 1, x 2,, x n 1, R f : R R,.,, b R < b, f(x) [, b] f(x)dx,, [, b] f(x) x ( ) ( 1 ). y y f(x) f(x)dx b x 1: f(x)dx, [, b] f(x) x ( ).,,,,,., f(x)dx,,,, f(x)dx. 1.1 Riemnn,, [, b] f(x) x., x 0 < x 1 < x 2 < < x n 1

More information

webkaitou.dvi

webkaitou.dvi ( c Akir KANEKO) ).. m. l s = lθ m d s dt = mg sin θ d θ dt = g l sinθ θ l θ mg. d s dt xy t ( d x dt, d y dt ) t ( mg sin θ cos θ, sin θ sin θ). (.) m t ( d x dt, d y dt ) = t ( mg sin θ cos θ, mg sin

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

( ) ( ) ( ) i (i = 1, 2,, n) x( ) log(a i x + 1) a i > 0 t i (> 0) T i x i z n z = log(a i x i + 1) i=1 i t i ( ) x i t i (i = 1, 2, n) T n x i T i=1 z = n log(a i x i + 1) i=1 x i t i (i = 1, 2,, n) n

More information

A 2008 10 (2010 4 ) 1 1 1.1................................. 1 1.2..................................... 1 1.3............................ 3 1.3.1............................. 3 1.3.2..................................

More information

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g(

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g( 06 5.. ( y = x x y 5 y 5 = (x y = x + ( y = x + y = x y.. ( Y = C + I = 50 + 0.5Y + 50 r r = 00 0.5Y ( L = M Y r = 00 r = 0.5Y 50 (3 00 0.5Y = 0.5Y 50 Y = 50, r = 5 .3. (x, x = (, u = = 4 (, x x = 4 x,

More information

IA hara@math.kyushu-u.ac.jp Last updated: January,......................................................................................................................................................................................

More information