2015年度 2次数学セレクション(整数と数列)

Size: px
Start display at page:

Download "2015年度 2次数学セレクション(整数と数列)"

Transcription

1 05 次数学セレクション問題 [ 千葉大 文 ] k, m, を自然数とする 以下の問いに答えよ () k を 7 で割った余りが 4 であるとする このとき, k を 3 で割った余りは であることを示せ () 4m+ 5が 3 で割り切れるとする このとき, m を 7 で割った余りは 4 ではないことを示せ --

2 05 次数学セレクション問題 [ 九州大 理 ] 以下の問いに答えよ () が正の偶数のとき, - は 3 の倍数であることを示せ () を自然数とする + と -は互いに素であることを示せ (3) p, q を異なる素数とする p- - = pq を満たす p, q の組をすべて求めよ --

3 05 次数学セレクション問題 3 [ 京都大 理 ] a, b, c, d, e を正の実数として整式 f ( x) = ax + bx+ c, g( x) = dx+ eを考える f すべての正の整数 に対して ( ) は整数であるとする このとき, f ( x ) は g( x ) で g( ) 割り切れることを示せ -3-

4 05 次数学セレクション問題 4 [ 東北大 文 ] 次の性質をもつ数列 { a } を考える a = 3, a+ > a, a - a a + a = 3( a + a ) ( =,, 3, ) () =,, 3, に対し, a + a + を a + を用いて表せ () b = a+ - a ( =,, 3, ) により定まる数列 { b } の一般項を求めよ (3) 数列 { a } の一般項を求めよ -4-

5 05 次数学セレクション問題 5 [ 広島大 文 ] を自然数とし, p, q を実数とする ただし, p, q は p - 4q = 4を満たすと する 次方程式 x - px+ q = 0 は異なる実数解, をもつとする ただし, < とする c = - とおくとき, 数列 { c } は c+ = + ( =,, 3, ) c ( + ) を満たすとする 次の問いに答えよ () r = log ( + ) とするとき, () c を の式で表せ (3) p = であるとき, q を の式で表せ + ( + ) を r, r + を用いて表せ -5-

6 05 次数学セレクション問題 6 [ 千葉大 理 ] b と c をb + 4c> 0を満たす実数として, x に関する 次方程式 x -bx- c= 0 の相 - - 異なる解を, とする 数列 { a } を, a = + ( =,, 3, ) により定め る このとき, 次の問いに答えよ () 数列 { a } は漸化式 a+ = ba+ + ca ( =,, 3, ) を満たすことを示せ () 数列 { a } の項 a がすべて整数であるための必要十分条件は, b, c がともに整数で あることである これを証明せよ -6-

7 05 次数学セレクション問題 7 [ 東京大 理 ] () 数列 { p } を次のように定める p + p p+ p + p + p =, p =, p+ = ( =,, 3, ) p + + が によらないことを示せ () すべての =, 3, 4, に対し, p+ + p-を p のみを使って表せ (3) 数列 { q } を次のように定める q =, q =, q+ = q+ + q ( =,, 3, ) すべての =,, 3, に対し, p = q - を示せ -7-

8 05 次数学セレクション解答解説 [ 千葉大 文 ] () k を自然数, l, N を 0 以上の整数とするとき, k 3l+ l l (i) k= 3l+ のとき = = 8 = (7+ ) = (7N + ) = 7 N + これより, k を 7 で割った余りは である k 3l+ l l (ii) k= 3l+ のとき = = 4 8 = 4(7+ ) = 4(7N + ) = 7 4N + 4 これより, k を 7 で割った余りは 4 である k 3l+ 3 l l (iii) k= 3l+ 3 のとき = = 8 8 = 8(7+ ) = 8(7N + ) = 7(8N + ) + これより, k を 7 で割った余りは である (i)~(iii) より, k を 7 で割った余りが 4 のとき, k を 3 で割った余りは である () m, を自然数で, 4m+ 5が 3 で割り切れるとき, 4m+ 5= 3( m+ ) + ( m- ) これより, m-は 3 で割り切れる, すなわち m を 3 で割った余りと を 3 で割った余りは等しくなる そこで, m, を 0 以上の整数として, (i) m, を 3 で割った余りが のとき m= 3m +, = 3 + m = (3m + )(3 + ) = 3(3 m + m + ) + これより, m を 3 で割った余りは である (ii) m, を 3 で割った余りが のとき m= 3m +, = 3 + m = (3m + )(3 + ) = 3(3m + m + + ) + これより, m を 3 で割った余りは である (iii) m, を 3 で割った余りが 0 のとき m= 3m + 3, = m = (3m + 3)(3 + 3) = 3(3m + 3m ) これより, m を 3 で割った余りは 0 である (i)~(iii) より, m を 3 で割った余りは 0 または であり, ではない したがって, () より, m を 7 で割った余りは 4 ではない [ 解説 ] テーマは整数の余りによる分類です () の最後の行は, () で証明した命題の対偶を利用しています なお, 合同式を用いて記述しても構いません -- 電送数学舎 05

9 05 次数学セレクション解答解説 [ 九州大 理 ] () が正の偶数のとき, l を自然数として, = lとおくと, l - = - = 4 - = (3+ ) - l l l- l- l l l l- l- l- l-3 l l l l- = (3 + C 3 + C C 3+ ) - = 3(3 + C 3 + C C ) よって, - は 3 の倍数である () を自然数とするとき, + と -の最大公約数を g とおくと, + = g a, - = g b (a と b は互いに素 ) l -より, = g( a-b) となり, g = または g = である g = のとき, は + = a となり, 左辺は奇数, 右辺は偶数で成立しない よって, g = から, + と -は互いに素である (3) 異なる素数 p, q に対して, p - - = pq 3 (i) p が偶数のとき p は素数より p =, すると, 3から - = q となり, 素数 q は存在しない (ii) p が奇数のとき p - は偶数となり, () の結果から p- -は 3 の倍数である すると, 3から pq は 3 の倍数となり, p = 3 または q = 3 である (ii-i) p = 3 のとき 3は - = 3q となり, 素数 q は存在しない (ii-ii) q = 3 のとき p 3は - - = 9p 4となり, k を自然数として, p= k+ とおくと, p - k k k - = - = ( + )( - ) () から k + と k k k -は互いに素で, 4は ( + )( - ) = 9(k + ) となり, k k ( +, - ) = (9, k + ) または (k +, 9) k k ( +, - ) = (9, k + ) のとき, k = 3 すなわち p = 7 となる k k ( +, - ) = (k +, 9) のとき, 満たす k は存在しない (i)(ii) より, 3を満たす p, q の組は, ( p, q ) = (7, 3) のみである [ 解説 ] 誘導つきの整数問題です なお, 4を満たす p を求めるために, () の結論を利用する方法で記しましたが, グラフをイメージして, 直接的に解いても構いません -- 電送数学舎 05

10 05 次数学セレクション解答解説 3 [ 京都大 理 ] a, b, c, d, e を正の実数とするとき, f ( x) = ax + bx+ c, g( x) = dx+ eに対して, f ( x ) を g( x ) で割った商を px + q, 余りを r とおくと, p, q, r は実数となり, f ( x) = g ( x)( px+ q) + r さて, ( x ) h( x) = f とおくと, から h( x) = px+ q+ r = px+ q+ r g( x ) g( x) dx+ e ここで, を 以上の整数とすると, 条件より, h( - ), h( ), h( + ) 整数なので, h( - ) + h( + ) - h( ) の値も整数となり, h( - ) + h( + ) - h( ) ( ) = p - p + q + r + p + p + q + r - p + q + r d- d+ e d+ d+ e d+ e = r + r - r d - d + e d + d + e d + e = dr ( d - d + e )( d + d + e )( d + e ) すると, 十分に大きい に対してもが整数となることより, r = 0 である よって, から, f ( x) = g( x)( px+ q) となり, f ( x ) は g( x ) で割り切れる はすべて [ 解説 ] 結論の r = 0 を示すために, h( ) の等差数列部分である p + q を消すことを考え, h( - ) + h( + ) - h( ) を計算しています そして, 得られた式がというわけ です 階差を 回とったと考えてもよいですが なお, 既視感があったので, 過去問を調べたところ, 99 年の後期に類題が出ていました -3- 電送数学舎 05

11 05 次数学セレクション解答解説 4 [ 東北大 文 ] () 条件より, a - a a + a = 3( a + a ) なので, a - a a + a = 3( a + a ) - より, a+ - a - a ( a - a ) = 3( a - a ) ここで, a+ > a+ > aから, a+ - a > 0 となり, a+ + a - a+ = 3, a+ + a = a () 3より, a+ - a+ + a = 3となり, ( a+ -a+ ) -( a+ - a) = 3 4 ここで, b = a+ -aとおくと, 4より, b+ - b = 3 となり, b = b + 3( - ) 5 さて, より, a - a a + a = 3( a + a ) となり, a = 3 から, 9-6a + a = 3(3 + a ), a - 9a = 0 すると, a > a = 3 から a = 9 となり, b = a- a = 6 よって, 5から, b = 6 + 3( - ) = 3( + ) (3) () より, において, - a = 3+ å 3( k+ ) ( = + -) 3 3 ( ) = = 3 ( ) + k= なお, この式は = のときも成立している [ 解説 ] 誘導つきの漸化式の問題です () の結果が () へとつながり, さらに (3) へとスムーズに解いていくことができます -4- 電送数学舎 05

12 05 次数学セレクション解答解説 5 [ 広島大 文 ] () r = log ( + ) = log ( + ) より, r + = log + ( + ) となり, r+ -r = log + ( + ) = log + ( + ) ( + ) よって, + r+ -r = ( + ) c () より, + - r = となり, + - c+ = r c c r + - r ここで, f ( ) = とおくと, c+ = f ( ) cとなり, において, さて, r - r r - r r - r r - r log ( + )- log log ( + )- c 3 c = c f () f () f ( -) c - = = c = c = x - px+ q = 0 の実数解を, ( < ) とすると, - -4 p p q =, すると, c = p p q = = p -4q となり, log ( + ) - log ( + ) c = p - 4q = 4 = よって, より, c = = = ( + ) 3 なお, 3は = のときも成立している (3) 3より, p - 4 q = ( + ) となり, 3 そこで, p = のとき, p = となり, 4より, 3 q { ( ) } = - + =- (+ ) ( ) p - q = + 4 [ 解説 ] 次方程式の解を題材とした, 誘導つきの漸化式の問題です () の漸化式 c+ = f ( ) c を解くことがポイントとなっています 詳しくは ピンポイントレクチャー を参照してください -5- 電送数学舎 05

13 05 次数学セレクション解答解説 6 [ 千葉大 理 ] () b + 4c> 0のとき, x -bx- c= 0 の実数解, について, + = b, =- c 条件より, - - a = + から, と合わせて, - - ba+ + ca = ( + )( + )- ( + ) + + = ( + ) = + よって, a+ = ba+ + ca 3が成立する 0 0 () a がすべて整数のとき, から, a = + =, a + + = + = b これより b は整数となり, 3から, a3 = ba + ca, a4 = ba3 + caとなり, c= a3- ba 4, bc = a4 - ba3 5 また, から a3 = + = ( + ) - = b + cとなり, 3から, a5 = ba4 + ca3, ( b + c) c= a - ba より, c, bc, ( b + c) cはすべて整数である さて, c が整数より, k を整数として c = k とおくことができる ここで, k が奇数と仮定すると, bc = bk が整数より b は偶数となる ( b + k) k ところが, ( b + c) c= は, 分子 ( b + k) kが奇数より, 整数ではない したがって, k は奇数ではなく偶数となり, c も整数である 逆に, b, c がともに整数であるとき, a =, a = bはともに整数であり, 3から, 帰納的に a ( = 3, 4, 5, ) はすべて整数となる 以上より, a がすべて整数であるための必要十分条件は, b, c がともに整数であることである [ 解説 ] 隣接 3 項間型の漸化式が題材となっている証明問題です () の設問は, 見かけよりは難しめで, 詰めに時間がかかりました -6- 電送数学舎 05

14 05 次数学セレクション解答解説 7 [ 東京大 理 ] () p+ + p+ + p + p =, p =, p+ = に対して, a = とおくと, p p+ p p+ + p+ + p+ p+ a+ = = + + p+ p+ p+ p+ p+ p+ p+ + p+ p p = + + p + p p+ + p+ ( p+ + ) ( p+ + ) + p+ p + p ( p+ + ) + p = = p+ p( p+ + ) p+ p = a これより, a a + + p+ + p + = = = 3 となり, = 3 p+ p () すべての自然数 に対し, 0 < p < p + であることを数学的帰納法で証明する (i) = のとき p =, p = より成立する (ii) = kのとき pk 0 < pk < p k + すなわち > と仮定すると, pk pk+ + pk+ pk+ pk+ 条件式より, pk+ = > から, > > となる pk pk pk+ pk (i)(ii) より, 0 < p < p + ( =,, 3, ) である さて, より, + p+ + p + = 3p p - 3 p + p + = p p - ( ) 3-3 より, = 3 ( + - -) p p p p p すると, p- < p < p+ より, p+ - p- > 0 なので, p+ + p- = 3p ( =, 3, 4, ) (3) () より, p =, p =, p+ = 3p+ - p ( =,, 3, ) ここで, q =, q =, q+ = q+ + q ( =,, 3, ) で定められる q に対して, p = q - であることを数学的帰納法で証明する (i) =, のとき p = q, q3 = q + q = から p = q 3 となり成立する (ii) = k, k+ のとき pk = qk -, pk+ = qk+ と仮定する このとき, pk+ = 3pk+ - pk = 3qk+ -qk-となり, qk+ 3 = qk+ + qk+ = qk+ + qk + qk+ = q + + q = qk+ + ( qk+ -qk-) = 3q k + - q k - (i)(ii) より, =,, 3, に対し, p = q - が成り立つ k k [ 解説 ] 複雑な漸化式ですが, 誘導に従うと道筋が見えてくるタイプです -7- 電送数学舎 05

2015-2018年度 2次数学セレクション(整数と数列)解答解説

2015-2018年度 2次数学セレクション(整数と数列)解答解説 015 次数学セレクション問題 1 [ 千葉大 文 ] k, m, n を自然数とする 以下の問いに答えよ (1) k を 7 で割った余りが 4 であるとする このとき, k を 3 で割った余りは であることを示せ () 4m+ 5nが 3 で割り切れるとする このとき, mn を 7 で割った余りは 4 ではないことを示せ -1- 015 次数学セレクション問題 [ 九州大 理 ] 以下の問いに答えよ

More information

2015-2018年度 2次数学セレクション(整数と数列)解答解説

2015-2018年度 2次数学セレクション(整数と数列)解答解説 05 次数学セレクション解答解説 [ 千葉大 文 ] () k を自然数, l, N を 0 以上の整数とするとき, k l+ l l (i) k= l+ のとき = = 8 = (7+ ) = (7N + ) = 7 N + これより, k を 7 で割った余りは である k l+ l l (ii) k= l+ のとき = = 4 8 = 4(7+ ) = 4(7N + ) = 7 4N + 4

More information

2015年度 京都大・理系数学

2015年度 京都大・理系数学 05 京都大学 ( 理系 ) 前期日程問題 解答解説のページへ つの関数 y= si( x+ ) と y = six のグラフの 0 x の部分で囲まれる領域 を, x 軸のまわりに 回転させてできる立体の体積を求めよ ただし, x = 0 と x = は領域を囲む線とは考えない -- 05 京都大学 ( 理系 ) 前期日程問題 解答解説のページへ次の つの条件を同時に満たす四角形のうち面積が最小のものの面積を求めよ

More information

2014年度 東京大・文系数学

2014年度 東京大・文系数学 014 東京大学 ( 文系 ) 前期日程問題 1 解答解説のページへ以下の問いに答えよ (1) t を実数の定数とする 実数全体を定義域とする関数 f ( x ) を f ( x) =- x + 8tx- 1x+ t - 17t + 9t-18 と定める このとき, 関数 f ( x ) の最大値を t を用いて表せ () (1) の 関数 f ( x ) の最大値 を g( t ) とする t が

More information

2016年度 京都大・文系数学

2016年度 京都大・文系数学 06 京都大学 ( 文系 ) 前期日程問題 解答解説のページへ xy 平面内の領域の面積を求めよ x + y, x で, 曲線 C : y= x + x -xの上側にある部分 -- 06 京都大学 ( 文系 ) 前期日程問題 解答解説のページへ ボタンを押すと あたり か はずれ のいずれかが表示される装置がある あたり の表示される確率は毎回同じであるとする この装置のボタンを 0 回押したとき,

More information

2016年度 九州大・理系数学

2016年度 九州大・理系数学 0 九州大学 ( 理系 ) 前期日程問題 解答解説のページへ 座標平面上の曲線 C, C をそれぞれ C : y logx ( x > 0), C : y ( x-)( x- a) とする ただし, a は実数である を自然数とするとき, 曲線 C, C が 点 P, Q で交わり, P, Q の x 座標はそれぞれ, + となっている また, 曲線 C と直線 PQ で囲まれた領域の面積を S,

More information

2015年度 信州大・医系数学

2015年度 信州大・医系数学 05 信州大学 ( 医系 ) 前期日程問題 解答解説のページへ 放物線 y = a + b + c ( a > 0) を C とし, 直線 y = -を l とする () 放物線 C が点 (, ) で直線 l と接し, かつ 軸と共有点をもつための a, b, c が満 たす必要十分条件を求めよ () a = 8 のとき, () の条件のもとで, 放物線 C と直線 l および 軸とで囲まれた部

More information

2019年度 千葉大・理系数学

2019年度 千葉大・理系数学 9 千葉大学 ( 理系 ) 前期日程問題 解答解説のページへ a, a とし, のとき, a+ a + a - として数列 { a } () のとき a+ a a a - が成り立つことを証明せよ () åai aaa + が成り立つような自然数 を求めよ i を定める -- 9 千葉大学 ( 理系 ) 前期日程問題 解答解説のページへ 三角形 ABC は AB+ AC BCを満たしている また,

More information

2018年度 筑波大・理系数学

2018年度 筑波大・理系数学 筑波大学 ( 理系 ) 前期日程問題 解答解説のページへ < < とする 放物線 上に 点 (, ), A (ta, ta ), B( - ta, ta ) をとる 三角形 AB の内心の 座標を p とし, 外心の 座標を q とする また, 正の実数 a に対して, 直線 a と放物線 で囲まれた図形の面積を S( a) で表す () p, q を cos を用いて表せ S( p) () S(

More information

2014年度 名古屋大・理系数学

2014年度 名古屋大・理系数学 04 名古屋大学 ( 理系 ) 前期日程問題 解答解説のページへ空間内にある半径 の球 ( 内部を含む ) を B とする 直線 と B が交わっており, その交わりは長さ の線分である () B の中心と との距離を求めよ () のまわりに B を 回転してできる立体の体積を求めよ 04 名古屋大学 ( 理系 ) 前期日程問題 解答解説のページへ 実数 t に対して 点 P( t, t ), Q(

More information

2014年度 千葉大・医系数学

2014年度 千葉大・医系数学 04 千葉大学 ( 医系 ) 前期日程問題 解答解説のページへ 袋の中に, 赤玉が 3 個, 白玉が 7 個が入っている 袋から玉を無作為に つ取り出し, 色を確認してから, 再び袋に戻すという試行を行う この試行を N 回繰り返したときに, 赤玉を A 回 ( ただし 0 A N) 取り出す確率を p( N, A) とする このとき, 以下の問いに答えよ () 確率 p( N, A) を N と

More information

2011年度 筑波大・理系数学

2011年度 筑波大・理系数学 0 筑波大学 ( 理系 ) 前期日程問題 解答解説のページへ O を原点とするy 平面において, 直線 y= の を満たす部分をC とする () C 上に点 A( t, ) をとるとき, 線分 OA の垂直二等分線の方程式を求めよ () 点 A が C 全体を動くとき, 線分 OA の垂直二等分線が通過する範囲を求め, それ を図示せよ -- 0 筑波大学 ( 理系 ) 前期日程問題 解答解説のページへ

More information

2014年度 筑波大・理系数学

2014年度 筑波大・理系数学 筑波大学 ( 理系 ) 前期日程問題 解答解説のページへ f ( x) = x x とする y = f ( x ) のグラフに点 P(, ) から引いた接線は 本あるとする つの接点 A (, f ( )), B(, f ( )), C(, f ( )) を頂点とする三角形の 重心を G とする () + +, + + および を, を用いて表せ () 点 G の座標を, を用いて表せ () 点 G

More information

2011年度 東京大・文系数学

2011年度 東京大・文系数学 東京大学 ( 文系 ) 前期日程問題 解答解説のページへ x の 次関数 f( x) = x + x + cx+ d が, つの条件 f () =, f ( ) =, ( x + cx+ d) dx= をすべて満たしているとする このような f( x) の中で定積分 I = { f ( x) } dx を最小にするものを求め, そのときの I の値を求めよ ただし, f ( x) は f ( x)

More information

2018年度 岡山大・理系数学

2018年度 岡山大・理系数学 08 岡山大学 ( 理系 ) 前期日程問題 解答解説のページへ 関数 f ( x) = ( + x) x について, 以下の問いに答えよ () f ( x ) = 0 を満たす x の値を求めよ () 曲線 y = f ( x ) について, 原点を通るすべての接線の方程式を求めよ (3) 曲線 y = f ( x ) について, 原点を通る接線のうち, 接点の x 座標が最大のものを L とする

More information

2017年度 金沢大・理系数学

2017年度 金沢大・理系数学 07 金沢大学 ( 理系 前期日程問題 解答解説のページへ 次の問いに答えよ ( 6 z + 7 = 0 を満たす複素数 z をすべて求め, それらを表す点を複素数平面上に図 示せよ ( ( で求めた複素数 z を偏角が小さい方から順に z, z, とするとき, z, z と 積 zz を表す 点が複素数平面上で一直線上にあることを示せ ただし, 偏角は 0 以上 未満とする -- 07 金沢大学

More information

2016年度 筑波大・理系数学

2016年度 筑波大・理系数学 06 筑波大学 ( 理系 ) 前期日程問題 解答解説のページへ k を実数とする y 平面の曲線 C : y とC : y- + k+ -k が異なる共 有点 P, Q をもつとする ただし点 P, Q の 座標は正であるとする また, 原点を O とする () k のとりうる値の範囲を求めよ () k が () の範囲を動くとき, OPQ の重心 G の軌跡を求めよ () OPQ の面積を S とするとき,

More information

2018年度 神戸大・理系数学

2018年度 神戸大・理系数学 8 神戸大学 ( 理系 ) 前期日程問題 解答解説のページへ t を < t < を満たす実数とする OABC を 辺の長さが の正四面体とする 辺 OA を -t : tに内分する点を P, 辺 OB を t :-tに内分する点を Q, 辺 BC の中点を R とする また a = OA, b = OB, c = OC とする 以下の問いに答えよ () QP と QR をt, a, b, c を用いて表せ

More information

2017年度 京都大・文系数学

2017年度 京都大・文系数学 07 京都大学 ( 文系 ) 前期日程問題 解答解説のページへ 曲線 y= x - 4x+ を C とする 直線 l は C の接線であり, 点 P(, 0) を通るもの とする また, l の傾きは負であるとする このとき, C と l で囲まれた部分の面積 S を求めよ -- 07 京都大学 ( 文系 ) 前期日程問題 解答解説のページへ 次の問いに答えよ ただし, 0.00 < log0

More information

Microsoft Word - 漸化式の解法NEW.DOCX

Microsoft Word - 漸化式の解法NEW.DOCX 閑話休題 漸化式の解法 基本形 ( 等差数列, 等比数列, 階差数列 ) 等差数列 : d 等比数列 : r の一般項を求めよ () 3, 5 () 3, () 5より数列 は, 初項 3, 公差の等差数列であるので 5 3 5 5 () 数列 は, 初項 3, 公比 の等比数列であるので 3 階差数列 : f の一般項を求めよ 3, より のとき k k 3 3 において, を代入すると 33 となるので,は

More information

2018年度 東京大・理系数学

2018年度 東京大・理系数学 08 東京大学 ( 理系 ) 前期日程問題 解答解説のページへ関数 f ( ) = + cos (0 < < ) の増減表をつくり, + 0, 0 のと sin きの極限を調べよ 08 東京大学 ( 理系 ) 前期日程問題 解答解説のページへ n+ 数列 a, a, を, Cn a n = ( n =,, ) で定める n! an qn () n とする を既約分数 an p として表したときの分母

More information

2017年度 長崎大・医系数学

2017年度 長崎大・医系数学 07 長崎大学 ( 医系 ) 前期日程問題 解答解説のページへ 以下の問いに答えよ () 0 のとき, si + cos の最大値と最小値, およびそのときの の値 をそれぞれ求めよ () e を自然対数の底とする > eの範囲において, 関数 y を考える この両 辺の対数を について微分することにより, y は減少関数であることを示せ また, e< < bのとき, () 数列 { } b の一般項が,

More information

2015-2017年度 2次数学セレクション(複素数)解答解説

2015-2017年度 2次数学セレクション(複素数)解答解説 05 次数学セレクション解答解説 [ 筑波大 ] ( + より, 0 となり, + から, ( (,, よって, の描く図形 C は, 点 を中心とし半径が の円である すなわち, 原 点を通る円となる ( は虚数, は正の実数より, である さて, w ( ( とおくと, ( ( ( w ( ( ( ここで, w は純虚数より, は純虚数となる すると, の描く図形 L は, 点 を通り, 点 と点

More information

2011年度 大阪大・理系数学

2011年度 大阪大・理系数学 0 大阪大学 ( 理系 ) 前期日程問題 解答解説のページへ a a を自然数とする O を原点とする座標平面上で行列 A= a の表す 次変換 を f とする cosθ siθ () >0 および0θ

More information

2014年度 センター試験・数学ⅡB

2014年度 センター試験・数学ⅡB 第 問 解答解説のページへ [] O を原点とする座標平面において, 点 P(, q) を中心とする円 C が, 方程式 y 4 x で表される直線 l に接しているとする () 円 C の半径 r を求めよう 点 P を通り直線 l に垂直な直線の方程式は, y - ア ( x- ) + qなので, P イ から l に引いた垂線と l の交点 Q の座標は ( ( ウ + エ q ), 4 (

More information

2018年度 2次数学セレクション(微分と積分)

2018年度 2次数学セレクション(微分と積分) 08 次数学セレクション問題 [ 東京大 ] > 0 とし, f = x - x とおく () x で f ( x ) が単調に増加するための, についての条件を求めよ () 次の 条件を満たす点 (, b) の動きうる範囲を求め, 座標平面上に図示せよ 条件 : 方程式 f = bは相異なる 実数解をもつ 条件 : さらに, 方程式 f = bの解を < < とすると > である -- 08 次数学セレクション問題

More information

2014年度 九州大・文系数学

2014年度 九州大・文系数学 014 九州大学 ( 文系 ) 前期日程問題 1 解答解説のページへ 座標平面上の直線 y =-1 を l 1, 直線 y = 1 を l とし, x 軸上の 点 O(0, 0), A ( a, 0) を考える 点 P( x, y) について, 次の条件を考える d(p, l1 ) PO かつ d(p, l ) PA 1 ただし, d( P, l) は点 P と直線 l の距離である (1) 条件

More information

2015年度 金沢大・理系数学

2015年度 金沢大・理系数学 05 金沢大学 ( 理系 ) 前期日程問題 解答解説のページへ四面体 OABC において, 3 つのベクトル OA, OB, OC はどの つも互いに垂直で あり, h > 0 に対して, OA, OB, OC h とする 3 点 O, A, B を通る平面上の点 P は, CP が CA と CB のどちらとも垂直となる点であるとする 次の問いに答えよ () OP OA + OB とするとき, と

More information

2017年度 千葉大・理系数学

2017年度 千葉大・理系数学 017 千葉大学 ( 理系 ) 前期日程問題 1 解答解説のページへ n を 4 以上の整数とする 座標平面上で正 n 角形 A1A A n は点 O を中心とする半径 1 の円に内接している a = OA 1, b = OA, c = OA 3, d = OA4 とし, k = cos とおく そして, 線分 A1A3 と線分 AA4 との交点 P は線分 A1A3 を n :1に内分するとする

More information

2013年度 信州大・医系数学

2013年度 信州大・医系数学 03 信州大学 ( 医系 ) 前期日程問題 解答解説のページへ () 式 + + a a a3 を満たす自然数の組 ( a, a, a3) で, a a a3とな るものをすべて求めよ () r を正の有理数とする 式 r + + a a a を満たす自然数の組 ( a, a, a3) で, 3 a a a3となるものは有限個しかないことを証明せよ ただし, そのよう な組が存在しない場合は 0 個とし,

More information

2017年度 信州大・医系数学

2017年度 信州大・医系数学 7 信州大学 ( 医系 ) 前期日程問題 解答解説のページへ 座標平面上の点 O(, ), A ( a, a ), B( b, b ), C( b, b) を考える さらに,, に対し, D( acos asi, asi + acos ), E( bcos bsi, bsi + bcos ) とおく () OA = OD を示せ () OA OC = かつ OA OB = OD OE ¹ であるとする

More information

2013年度 九州大・理系数学

2013年度 九州大・理系数学 九州大学 ( 理系 ) 前期日程問題 解答解説のページへ a> とし, つの曲線 y= ( ), y= a ( > ) を順にC, C とする また, C とC の交点 P におけるC の接線をl とする 以下 の問いに答えよ () 曲線 C とy 軸および直線 l で囲まれた部分の面積をa を用いて表せ () 点 P におけるC の接線と直線 l のなす角を ( a) とき, limasin θ(

More information

2014年度 九州大・理系数学

2014年度 九州大・理系数学 04 九州大学 ( 理系 ) 前期日程問題 解答解説のページへ関数 f ( x) = x-sinx ( 0 x ) を考える 曲線 y = f ( x ) の接線で傾きが となるものを l とする () l の方程式と接点の座標 ( a, b) を求めよ () a は () で求めたものとする 曲線 y = f ( x ), 直線 x = a, および x 軸で囲まれた 領域を, x 軸のまわりに

More information

2015年度 岡山大・理系数学

2015年度 岡山大・理系数学 5 岡山大学 ( 理系 ) 前期日程問題 解答解説のページへ を 以上の自然数とし, から までの自然数 k に対して, 番号 k をつけたカードをそれぞれ k 枚用意する これらすべてを箱に入れ, 箱の中から 枚のカードを同時に引くとき, 次の問いに答えよ () 用意したカードは全部で何枚か答えよ () 引いたカード 枚の番号が両方とも k である確率を と k の式で表せ () 引いたカード 枚の番号が一致する確率を

More information

2014年度 信州大・医系数学

2014年度 信州大・医系数学 4 信州大学 ( 医系 ) 前期日程問題 解答解説のページへ 3 個の玉が横に 列に並んでいる コインを 回投げて, それが表であれば, そのときに中央にある玉とその左にある玉とを入れ替える また, それが裏であれば, そのときに中央にある玉とその右にある玉とを入れ替える この操作を繰り返す () 最初に中央にあったものが 回後に中央にある確率を求めよ () 最初に右端にあったものが 回後に右端にある確率を求めよ

More information

1999年度 センター試験・数学ⅡB

1999年度 センター試験・数学ⅡB 99 センター試験数学 Ⅱ 数学 B 問題 第 問 ( 必答問題 ) [] 関数 y cos3x の周期のうち正で最小のものはアイウ 解答解説のページへ 0 x 360 のとき, 関数 y cos3x において, y となる x はエ個, y となる x はオ 個ある また, y sin x と y cos3x のグラフより, 方程式 sin x cos3x は 0 x 360のときカ個の解をもつことがわかる

More information

< 図形と方程式 > 点間の距離 A x, y, B x, y のとき x y x y : に分ける点 æ ç è A x, y, B x, y のとき 線分 AB を : に分ける点は x x y y, ö ø 注 < のとき外分点 三角形の重心 点 A x, y, B x, y, C x, を頂

< 図形と方程式 > 点間の距離 A x, y, B x, y のとき x y x y : に分ける点 æ ç è A x, y, B x, y のとき 線分 AB を : に分ける点は x x y y, ö ø 注 < のとき外分点 三角形の重心 点 A x, y, B x, y, C x, を頂 公式集数学 Ⅱ B < 式と証明 > 整式の割り算縦書きの割り算が出来ること f を g で割って 商が Q で余りが R のときは Q g f /////// R f g Q R と書ける 分数式 分母, 分子をそれぞれ因数分解し 約分する 既約分数式 加法, 減法については 分母を通分し分子の計算をする 繁分数式 分母 分子に同じ多項式をかけて 普通の分数式になおす 恒等式 数値代入法 係数比較法

More information

高ゼミサポSelectⅢ数学Ⅰ_解答.indd

高ゼミサポSelectⅢ数学Ⅰ_解答.indd 数と式 ⑴ 氏点00 次の式を展開せよ ( 各 6 点 ) ⑴ (a-)(a -a+) ⑵ (x+y+)(x+y-5) 次の式を因数分解せよ (⑴⑵ 各 6 点, ⑶⑷ 各 8 点 ) ⑴ x y+x -x-6y ⑵ x -x - ⑶ a +5b ⑷ (x+y+z+)(x+)+yz 数と式 ⑵ 氏点00 次の問いに答えよ ( 各 6 点 ) ⑴ 次の循環小数を分数で表せ. a-5 = ⑵ 次の等式を満たす実数

More information

2017年度 神戸大・理系数学

2017年度 神戸大・理系数学 7 神戸大学 ( 理系 前期日程問題 解答解説のページへ を自然数とする f ( si + とおく < < 4 であることを用い て, 以下の問いに答えよ ( < < のとき, f ( < であることを示せ ( 方程式 f ( は < < の範囲に解をただ つもつことを示せ ( ( における解を とする lim であることを示し, lim を求めよ 7 神戸大学 ( 理系 前期日程問題 解答解説のページへ

More information

2010年度 筑波大・理系数学

2010年度 筑波大・理系数学 00 筑波大学 ( 理系 ) 前期日程問題 解答解説のページへ f( x) x ax とおく ただしa>0 とする () f( ) f() となるa の範囲を求めよ () f(x) の極小値が f ( ) 以下になる a の範囲を求めよ () x における f(x) の最小値をa を用いて表せ -- 00 筑波大学 ( 理系 ) 前期日程問題 解答解説のページへ つの曲線 C : y six ( 0

More information

æœ•å¤§å–¬ç´—æŁ°,æœ•å°‘å–¬å•“æŁ°,ã…¦ã…¼ã‡¯ã…ªã……ã…›ã†®äº™éŽ¤æ³Ł

æœ•å¤§å–¬ç´—æŁ°,æœ•å°‘å–¬å•“æŁ°,ã…¦ã…¼ã‡¯ã…ªã……ã…›ã†®äº™éŽ¤æ³Ł 最大公約数, 最小公倍数, ユークリッドの互除法 最大公約数, 最小公倍数とは つ以上の正の整数に共通な約数 ( 公約数 ) のうち最大のものを最大公約数といいます. と 8 の公約数は,,,,6 で, 6 が最大公約数 つ以上の正の整数の共通な倍数 ( 公倍数 ) のうち最小のものを最小公倍数といいます. と の公倍数は, 6,,8,,... で, 6 が最小公倍数 最大公約数, 最小公倍数の求め方

More information

【FdData中間期末過去問題】中学数学2年(連立方程式計算/加減法/代入法/係数決定)

【FdData中間期末過去問題】中学数学2年(連立方程式計算/加減法/代入法/係数決定) FdData 中間期末 : 中学数学 年 : 連立方程式計算 [ 元 1 次方程式 / 加減法 / 代入法 / 加減法と代入法 / 分数などのある連立方程式 / A=B=C, 元連立方程式 / 係数の決定 ] [ 数学 年 pdf ファイル一覧 ] 元 1 次方程式 次の方程式ア~カの中から, 元 1 次方程式をすべて選べ ア y = 6 イ x y = 5 ウ xy = 1 エ x + 5 = 9

More information

2011年度 東京工大・数学

2011年度 東京工大・数学 東京工業大学前期日程問題 解答解説のページへ n n を自然数とする 平面上で行列 n( n+ ) n+ の表す 次変換 ( 移動とも いう ) を n とする 次の問いに答えよ () 原点 O(, ) を通る直線で, その直線上のすべての点が n により同じ直線上に移 されるものが 本あることを示し, この 直線の方程式を求めよ () () で得られた 直線と曲線 (3) を求めよ n Sn 6

More information

数学 ⅡB < 公理 > 公理を論拠に定義を用いて定理を証明する 1 大小関係の公理 順序 (a > b, a = b, a > b 1 つ成立 a > b, b > c a > c 成立 ) 順序と演算 (a > b a + c > b + c (a > b, c > 0 ac > bc) 2 図

数学 ⅡB < 公理 > 公理を論拠に定義を用いて定理を証明する 1 大小関係の公理 順序 (a > b, a = b, a > b 1 つ成立 a > b, b > c a > c 成立 ) 順序と演算 (a > b a + c > b + c (a > b, c > 0 ac > bc) 2 図 数学 Ⅱ < 公理 > 公理を論拠に定義を用いて定理を証明する 大小関係の公理 順序 >, =, > つ成立 >, > > 成立 順序と演算 > + > + >, > > 図形の公理 平行線の性質 錯角 同位角 三角形の合同条件 三角形の合同相似 量の公理 角の大きさ 線分の長さ < 空間における座漂とベクトル > ベクトルの演算 和 差 実数倍については 文字の計算と同様 ベクトルの成分表示 平面ベクトル

More information

æœ•å¤§å–¬ç´—æŁ°,æœ•å°‘å–¬å•“æŁ°,ã…¦ã…¼ã‡¯ã…ªã……ã…›ã†®äº™éŽ¤æ³Ł

æœ•å¤§å–¬ç´—æŁ°,æœ•å°‘å–¬å•“æŁ°,ã…¦ã…¼ã‡¯ã…ªã……ã…›ã†®äº™éŽ¤æ³Ł 最大公約数, 最小公倍数, ユークリッドの互除法 最大公約数, 最小公倍数とは つ以上の正の整数に共通な約数 ( 公約数 ) のうち最大のものを最大公約数といいます. 1 と 18 の公約数は, 1,,,6 で, 6 が最大公約数 つ以上の正の整数の共通な倍数 ( 公倍数 ) のうち最小のものを最小公倍数といいます. と の公倍数は, 6,1,18,,... で, 6 が最小公倍数 最大公約数, 最小公倍数の求め方

More information

( 最初の等号は,N =0, 番目は,j= のとき j =0 による ) j>r のときは p =0 から和の上限は r で十分 定義 命題 3 ⑵ 実数 ( 0) に対して, ⑴ =[] []=( 0 または ) =[6]+[] [4] [3] [] =( 0 または ) 実数 に対して, π()

( 最初の等号は,N =0, 番目は,j= のとき j =0 による ) j>r のときは p =0 から和の上限は r で十分 定義 命題 3 ⑵ 実数 ( 0) に対して, ⑴ =[] []=( 0 または ) =[6]+[] [4] [3] [] =( 0 または ) 実数 に対して, π() 伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊 伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊 数研通信 70 号を読んで チェビシェフの定理の精密化 と.5 の間に素数がある 伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊 さい才 の 野 せ瀬 いちろう 一郎 伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊 0. はじめに このたび,

More information

Microsoft PowerPoint - 2.ppt [互換モード]

Microsoft PowerPoint - 2.ppt [互換モード] 0 章数学基礎 1 大学では 高校より厳密に議論を行う そのために 議論の議論の対象を明確にする必要がある 集合 ( 定義 ) 集合 物の集まりである集合 X に対して X を構成している物を X の要素または元という 集合については 3 セメスタ開講の 離散数学 で詳しく扱う 2 集合の表現 1. 要素を明示する表現 ( 外延的表現 ) 中括弧で 囲う X = {0,1, 2,3} 慣用的に 英大文字を用いる

More information

2018試行 共通テスト 数学ⅠA 解答例

2018試行 共通テスト 数学ⅠA 解答例 第 1 問 共通テスト ( 試行調査 018) 数学 Ⅰ 数学 A 解答例 [1] (1) 1 のみを要素としてもつ集合が集合 A の部分集合 であることは, C = {1} とおくと, CÌ Aと表される () 命題 x Î, y Î ならば, x+ yîである が偽であることを示すための反例は, x Î かつ y Î かつ x+ yï から探すと, ( x, y ) = (3-3, 3-1),

More information

本書の目的 B 本書の難易度 50 本書の内容 B A

本書の目的 B 本書の難易度 50 本書の内容 B A 数列 漸化式問題を得意分野に! 漸化式は 0 パターン完全解説 別解満載! ライバルを置き去りにする 冊! 数列問題の基礎完全対策難関大 医大の数列 漸化式問題の極意 第 章数第 章漸化式 0 種パターンの完全対策第 章数列 漸化式の応用問題第 4 章数列 級数の極限値の問題第 5 章三角関数と微積分の漸化式第 6 章数列 漸化式の融合問題 i 本書の目的 B 0 0..6 0 0 本書の難易度 50

More information

チェビシェフ多項式の2変数への拡張と公開鍵暗号(ElGamal暗号)への応用

チェビシェフ多項式の2変数への拡張と公開鍵暗号(ElGamal暗号)への応用 チェビシェフ多項式の 変数への拡張と公開鍵暗号 Ell 暗号 への応用 Ⅰ. チェビシェフ Chbhv Chbhv の多項式 より であるから よって ここで とおくと coθ iθ coθ iθ iθ coθcoθ 4 4 iθ iθ iθ iθ iθ i θ i θ i θ i θ co θ co θ} co θ coθcoθ co θ coθ coθ したがって が成り立つ この漸化式と であることより

More information

Chap2

Chap2 逆三角関数の微分 Arcsin の導関数を計算する Arcsin I. 初等関数の微積分 sin [, ], [π/, π/] cos sin / (Arcsin ) 計算力の体力をつけよう π/ π/ E. II- 次の関数の導関数を計算せよ () Arccos () Arctan E. I- の解答 不定積分あれこれ () Arccos n log C C (n ) n e e C log (log

More information

1 対 1 対応の演習例題を解いてみた 微分法とその応用 例題 1 極限 微分係数の定義 (2) 関数 f ( x) は任意の実数 x について微分可能なのは明らか f ( 1, f ( 1) ) と ( 1 + h, f ( 1 + h)

1 対 1 対応の演習例題を解いてみた   微分法とその応用 例題 1 極限 微分係数の定義 (2) 関数 f ( x) は任意の実数 x について微分可能なのは明らか f ( 1, f ( 1) ) と ( 1 + h, f ( 1 + h) 微分法とその応用 例題 1 極限 微分係数の定義 () 関数 ( x) は任意の実数 x について微分可能なのは明らか ( 1, ( 1) ) と ( 1 + h, ( 1 + h) ) の傾き= ( 1 + h ) - ( 1 ) ( 1 + ) - ( 1) = ( 1 + h) - 1 h ( 1) = lim h ( 1 + h) - ( 1) h ( 1, ( 1) ) と ( 1 - h,

More information

2016年度 広島大・文系数学

2016年度 広島大・文系数学 06 広島大学 ( 文系 ) 前期日程問題 解答解説のページへ a を正の定数とし, 座標平面上において, 円 C : x + y, 放物線 C : y ax + C 上の点 P (, ) を考える - におけるC の接線 l は点 Q( s, t) でC に接してい る 次の問いに答えよ () s, t および a を求めよ () C, l および y 軸で囲まれた部分の面積を求めよ () 円 C

More information

数学 Ⅲ 微分法の応用 大学入試問題 ( 教科書程度 ) 1 問 1 (1) 次の各問に答えよ (ⅰ) 極限 を求めよ 年会津大学 ( 前期 ) (ⅱ) 極限値 を求めよ 年愛媛大学 ( 前期 ) (ⅲ) 無限等比級数 が収束するような実数 の範囲と そのときの和を求めよ 年広島市立大学 ( 前期

数学 Ⅲ 微分法の応用 大学入試問題 ( 教科書程度 ) 1 問 1 (1) 次の各問に答えよ (ⅰ) 極限 を求めよ 年会津大学 ( 前期 ) (ⅱ) 極限値 を求めよ 年愛媛大学 ( 前期 ) (ⅲ) 無限等比級数 が収束するような実数 の範囲と そのときの和を求めよ 年広島市立大学 ( 前期 数学 Ⅲ 微分法の応用 大学入試問題 ( 教科書程度 )1 問 1 (1) 次の各問に答えよ (ⅰ) 極限 を求めよ 年会津大学 ( 前期 ) (ⅱ) 極限値 を求めよ 年愛媛大学 ( 前期 ) (ⅲ) 無限等比級数 が収束するような実数 の範囲と そのときの和を求めよ 年広島市立大学 ( 前期 ) (2) 次の関数を微分せよ (ⅰ) を正の定数とする (ⅱ) (ⅳ) (ⅵ) ( 解答 )(1) 年群馬大学

More information

Fibonacci_square_pdf

Fibonacci_square_pdf 1/81 ページ フィボナッチ数列に現れる平方数 1 と 144 だけであることの証明 フィボナッチ数列と フィボナッチ数列と, 前の 2 つの数を加えると次の数になる という数列です ただし,1 番目と 2 番目の数両方とも 1 です 1, 1, 1 + 1 = 2 ですから,3 番目の数 2 になります 1, 1, 2, 1 + 2 = 3 ですから,4 番目の数 3 です 1, 1, 2, 3,

More information

学習指導要領

学習指導要領 (1) 数と式 ア数と集合 ( ア ) 実数数を実数まで拡張する意義を理解し 簡単な無理数の四則計算をすること 絶対値の意味を理解し適切な処理することができる 例題 1-3 の絶対値をはずせ 展開公式 ( a + b ) ( a - b ) = a 2 - b 2 を利用して根号を含む分数の分母を有理化することができる 例題 5 5 + 2 の分母を有理化せよ 実数の整数部分と小数部分の表し方を理解している

More information

学習指導要領

学習指導要領 (1) 数と式 学習指導要領ア数と集合 ( ア ) 実数数を実数まで拡張する意義を理解し 簡単な無理数の四則計算をすること 千早高校学力スタンダード 自然数 整数 有理数 無理数の用語の意味を理解す る ( 例 ) 次の数の中から自然数 整数 有理 数 無理数に分類せよ 3 3,, 0.7, 3,,-, 4 (1) 自然数 () 整数 (3) 有理数 (4) 無理数 自然数 整数 有理数 無理数の包含関係など

More information

<4D F736F F D F90948A F835A E815B8E8E8CB189F090E05F8E6C8D5A>

<4D F736F F D F90948A F835A E815B8E8E8CB189F090E05F8E6C8D5A> 06 年度大学入試センター試験解説 数学 Ⅱ B 第 問 () 8 より, 5 5 5 6 6 8 ア, イ また, 底の変換公式を用いると, log 7 log log 9 9 log 7 log ウエ, オ (), のグラフは, それぞれ = 89 = 右図のようになり, この つのグラフは 軸に関して対称 ここで, 0, のとき, と log カ のグラフが直線 に関して対称 であることから,

More information

<4D F736F F D F90948A F835A E815B8E8E8CB189F090E05F81798D5A97B98CE38F4390B A2E646F63>

<4D F736F F D F90948A F835A E815B8E8E8CB189F090E05F81798D5A97B98CE38F4390B A2E646F63> 07 年度大学入試センター試験解説 数学 Ⅰ A 第 問 9 のとき, 9 アイ 0 より, 0 であるから, 次に, 解答記号ウを含む等式の右辺を a とおくと, a a a 8 a a a 8 a これが 8 と等しいとき,( 部 ) 0 より, a 0 よって, a ウ ( 注 ) このとき, 8 9 (, より ) 7 エ, オカ また,より, これより, 9 であるから, 6 8 8 すなわち,

More information

学習指導要領

学習指導要領 (1 ) 数と式 ア数と集合 ( ア ) 実数数を実数まで拡張する意義を理解し 簡単な無理数の四則計算をすること 自然数 整数 有理数 無理数の包含関係など 実 数の構成を理解する ( 例 ) 次の空欄に適当な言葉をいれて, 数の集合を表しなさい 実数の絶対値が実数と対応する点と原点との距離で あることを理解する ( 例 ) 次の値を求めよ (1) () 6 置き換えなどを利用して 三項の無理数の乗法の計

More information

20~22.prt

20~22.prt [ 三クリア W] 辺が等しいことの証明 ( 円周角と弦の関係利用 ) の の二等分線がこの三角形の外接円と交わる点をそれぞれ とするとき 60 ならば であることを証明せよ 60 + + 0 + 0 80-60 60 から ゆえに 等しい長さの弧に対する弦の長さは等しいから [ 三クリア ] 方べきの定理 接線と弦のなす角と円周角を利用 線分 を直径とする円 があり 右の図のように の延長上の点

More information

学習指導要領

学習指導要領 (1) 数と式 ア数と集合 ( ア ) 実数数を実数まで拡張する意義を理解し 簡単な無理数の四則計算をすること 自然数 整数 有理数 無理数の包含関係など 実数 の構成を理解する ( 例 ) 次の空欄に適当な言葉をいれて, 数の集合を表しなさい ア イ 無理数 整数 ウ 無理数の加法及び減法 乗法公式などを利用した計 算ができる また 分母だけが二項である無理数の 分母の有理化ができる ( 例 1)

More information

競技プログラミングと初等整数論入門 67 回生佐竹俊哉 1. はじめに 初めまして satashun と申します 普段はのんびり数学やプログラミングをして楽しんでいます 自分は主にプログラミングの中でも 特に決められた時間の中で問題を解く競技プログラミングというものに興味を持っています そのようなプ

競技プログラミングと初等整数論入門 67 回生佐竹俊哉 1. はじめに 初めまして satashun と申します 普段はのんびり数学やプログラミングをして楽しんでいます 自分は主にプログラミングの中でも 特に決められた時間の中で問題を解く競技プログラミングというものに興味を持っています そのようなプ 競技プログラミングと初等整数論入門 67 回生佐竹俊哉 1. はじめに 初めまして satashun と申します 普段はのんびり数学やプログラミングをして楽しんでいます 自分は主にプログラミングの中でも 特に決められた時間の中で問題を解く競技プログラミングというものに興味を持っています そのようなプログラミングコンテストでは プログラムの実行速度が重要であり プログラムを高速化するために数学的知識を要求される問題が出題されることもあるので

More information

( 表紙 )

( 表紙 ) ( 表紙 ) 1 次の各問いに答えなさい. 解答用紙には答えのみ記入すること. ( 48 点 ) (1) U108 -U8 %5U6 + 7 U を計算しなさい. () 15a 7 b 8 &0-5a b 1& - 8 9 ab を計算しなさい. () + y - -5y 6 を計算しなさい. (4) 1 4 5 の 5 枚のカードから 枚を選び, 横に並べて 桁の数を作 るとき, それが の倍数になる確率を求めなさい.

More information

< 中 3 分野例題付き公式集 > (1)2 の倍数の判定法は 1 の位が 0 又は偶数 ( 例題 )1~5 までの 5 つの数字を使って 3 ケタの数をつくるとき 2 の倍数は何通りできるか (2)5 の倍数の判定法は 1 の位が 0 又は 5 ( 例題 )1~9 までの 9 個の数字を使って 3

< 中 3 分野例題付き公式集 > (1)2 の倍数の判定法は 1 の位が 0 又は偶数 ( 例題 )1~5 までの 5 つの数字を使って 3 ケタの数をつくるとき 2 の倍数は何通りできるか (2)5 の倍数の判定法は 1 の位が 0 又は 5 ( 例題 )1~9 までの 9 個の数字を使って 3 () の倍数の判定法は の位が 0 又は偶数 ~ までの つの数字を使って ケタの数をつくるとき の倍数は何通りできるか () の倍数の判定法は の位が 0 又は ~9 までの 9 個の数字を使って ケタの数をつくるとき の倍数は何通りできるか () の倍数の判定法は 下 ケタが 00 又は の倍数 ケタの数 8 が の倍数となるときの 最小の ケタの数は ( 解 ) 一の位の数は の 通り 十の位は一の位の数以外の

More information

喨微勃挹稉弑

喨微勃挹稉弑 == 全微分方程式 == 全微分とは 変数の関数 z=f(, ) について,, の増分を Δ, Δ とするとき, z の増分 Δz は Δz z Δ+ z Δ で表されます. この式において, Δ 0, Δ 0 となる極限を形式的に dz= z d+ z d (1) で表し, dz を z の全微分といいます. z は z の に関する偏導関数で, を定数と見なし て, で微分したものを表し, 方向の傾きに対応します.

More information

学習指導要領

学習指導要領 (1) 数と式 ア整式 ( ア ) 式の展開と因数分解二次の乗法公式及び因数分解の公式の理解を深め 式を多面的にみたり目的に応じて式を適切に変形したりすること (ax b)(cx d) acx (ad bc)x bd などの基本的な公式を活用して 二次式の展開や因数分解ができる また 式の置き換えや一文字に着目するなどして 展開 因数分解ができる ( 例 ) 次の問に答えよ (1) (3x a)(4x

More information

DVIOUT-SS_Ma

DVIOUT-SS_Ma 第 章 微分方程式 ニュートンはリンゴが落ちるのを見て万有引力を発見した という有名な逸話があります 無重力の宇宙船の中ではリンゴは落ちないで静止していることを考えると 重力が働くと始め静止しているものが動き出して そのスピードはどんどん大きくなる つまり速度の変化が現れることがわかります 速度は一般に時間と共に変化します 速度の瞬間的変化の割合を加速度といい で定義しましょう 速度が変化する, つまり加速度がでなくなるためにはその原因があり

More information

経済数学演習問題 2018 年 5 月 29 日 I a, b, c R n に対して a + b + c 2 = a 2 + b 2 + c 2 + 2( a, b) + 2( b, c) + 2( a, c) が成立することを示しましょう.( 線型代数学 教科書 13 ページ 演習 1.17)

経済数学演習問題 2018 年 5 月 29 日 I a, b, c R n に対して a + b + c 2 = a 2 + b 2 + c 2 + 2( a, b) + 2( b, c) + 2( a, c) が成立することを示しましょう.( 線型代数学 教科書 13 ページ 演習 1.17) 経済数学演習問題 8 年 月 9 日 I a, b, c R n に対して a + b + c a + b + c + a, b + b, c + a, c が成立することを示しましょう. 線型代数学 教科書 ページ 演習.7 II a R n がすべての x R n に対して垂直, すなわち a, x x R n が成立するとします. このとき a となることを示しましょう. 線型代数学 教科書

More information

代数 幾何 < ベクトル > 1 ベクトルの演算 和 差 実数倍については 文字の計算と同様 2 ベクトルの成分表示 平面ベクトル : a x e y e x, ) ( 1 y1 空間ベクトル : a x e y e z e x, y, ) ( 1 1 z1

代数 幾何 < ベクトル > 1 ベクトルの演算 和 差 実数倍については 文字の計算と同様 2 ベクトルの成分表示 平面ベクトル : a x e y e x, ) ( 1 y1 空間ベクトル : a x e y e z e x, y, ) ( 1 1 z1 代数 幾何 < ベクトル > ベクトルの演算 和 差 実数倍については 文字の計算と同様 ベクトルの成分表示 平面ベクトル :, 空間ベクトル : z,, z 成分での計算ができるようにすること ベクトルの内積 : os 平面ベクトル :,, 空間ベクトル :,,,, z z zz 4 ベクトルの大きさ 平面上 : 空間上 : z は 良く用いられる 5 m: に分ける点 : m m 図形への応用

More information

Microsoft Word - 微分入門.doc

Microsoft Word - 微分入門.doc 基本公式 例題 0 定義式 f( ) 数 Ⅲ 微分入門 = の導関数を定義式にもとづいて計算しなさい 基本事項 ( f( ), g( ) が微分可能ならば ) y= f( ) g( ) のとき, y = y= f( ) g( ) h( ) のとき, y = ( f( ), g( ) が微分可能で, g( ) 0 ならば ) f( ) y = のとき, y = g ( ) とくに, y = のとき,

More information

解答速報数学 2017 年度大阪医科大学 ( 前期 ) 一般入学試験 1 (1) 0, 8 1 e9 進学塾 0t= $ e e 0t= 11 2e -1 1 = 2 e 0t= -11 dy dx = -2 - t te 3t 2-1 = = ビッグバン dy (2) x

解答速報数学 2017 年度大阪医科大学 ( 前期 ) 一般入学試験 1 (1) 0, 8 1 e9 進学塾 0t= $ e e 0t= 11 2e -1 1 = 2 e 0t= -11 dy dx = -2 - t te 3t 2-1 = = ビッグバン dy (2) x 解答速報数学 07 年度大阪医科大学 ( 前期 ) 一般入学試験 () 0, 8 9 0t= $ - - 0t= - = 0t= - dx = - - t t t - = = () x 軸と平行 dt =- - t t =0. t=0, x=0, y= dx y 軸と平行 dt = t -=0. t=$ U, x=p U, y= - ( 複号同順 ) () t dx = - t - t - より,

More information

数学○ 学習指導案

数学○ 学習指導案 第 1 学年数学科数学 Ⅰ 学習指導案 1 単元名 二次方等式 二次不等式 2 単元の目標 二次方程式を因数分解や解の公式で導くことができるようにする 二次関数のグラフと 軸との共有点の個数を判別する方法を理解する 一次不等式や二次不等式の解法を 一次関数や二次関数のグラフを利用して理解する 二次不等式を含んだ連立不等式の解法を理解する 判別式をさまざまな事象の考察に応用することができるようにする

More information

学習指導要領

学習指導要領 (1) いろいろな式 学習指導要領紅葉川高校学力スタンダードア式と証明展開の公式を用いて 3 乗に関わる式を展開すること ( ア ) 整式の乗法 除法 分数式の計算ができるようにする 三次の乗法公式及び因数分解の公式を理解し そ 3 次の因数分解の公式を理解し それらを用いて因数れらを用いて式の展開や因数分解をすること また 分解することができるようにする 整式の除法や分数式の四則計算について理解し

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション 平成 28 年度全国学力 学習状況調査 中学校数学 2 特徴的な問題 A 問題より A B C 垂線の作図方法について理解しているかどうか 3 関連問題 問題番号 問題の概要 全国正答率 三重県 公立 正答率 H24A 4 (1) 角の二等分線の作図の方法で作図された直線がもつ性質として, 正しい記述を選ぶ 58.2% 56.9% H26A 4 (2) 線分の垂直二等分線の作図の方法で作図される直線について,

More information

学習指導要領

学習指導要領 (1) 数と式 学習指導要領ア数と集合 ( ア ) 実数数を実数まで拡張する意義を理解し 簡単な無理数の四則計算をすること 第 1 章第 節実数 東高校学力スタンダード 4 実数 (P.3~7) 自然数 整数 有理数 無理数 実数のそれぞれの集 合について 四則演算の可能性について判断できる ( 例 ) 下の表において, それぞれの数の範囲で四則計算を考えるとき, 計算がその範囲で常にできる場合には

More information

Σ(72回生用数ⅠA教材NO.16~30).spr

Σ(72回生用数ⅠA教材NO.16~30).spr 日々の演習 Σ( シグマ ) No. 16 16 ( ) 組 ( ) 番名前 ( ) 1 [ 改訂版 4STEP 数学 Ⅰ 問題 119] 関数 f0x 1 =3x-,g0x 1 =x -3x+1 について, 次の値を求 めよ f001 6 [ 改訂版 4STEP 数学 Ⅰ 例題 16] a は定数とする 関数 y=x -4ax 00(x(1 について, 次の問いに答えよ 最小値 m を求めよ (7)

More information

オートマトンと言語

オートマトンと言語 オートマトンと言語 回目 4 月 8 日 ( 水 ) 章 ( 数式の記法, スタック,BNF 記法 ) 授業資料 http://ir.cs.yamanashi.ac.jp/~ysuzuki/public/automaton/ 授業の予定 ( 中間試験まで ) 回数月日 内容 4 月 日オートマトンとは, オリエンテーション 4 月 8 日 章 ( 数式の記法, スタック,BNF) 3 4 月 5 日

More information

05 年度センター試験数学 ⅡB () において,cos q 0 であるから,P ( cos q, sin q) より, 直線 OP を表す方程式は y sin q sin q x cos q cos q x すなわち, (sin q) x - (cos q) y 0 ( ) ク 点 O,P,Q が

05 年度センター試験数学 ⅡB () において,cos q 0 であるから,P ( cos q, sin q) より, 直線 OP を表す方程式は y sin q sin q x cos q cos q x すなわち, (sin q) x - (cos q) y 0 ( ) ク 点 O,P,Q が 05 年度大学入試センター試験解説 数学 ⅡB 第 問 []() 点間の距離の公式から, OP ( cos q ) + ( sin q ) ( cos q + sin q ) ア PQ { ( cos q + cos 7q ) - cos q } + { ( sin q + sin 7q ) - sin q } cos q + sin q 7 7 イ である また, OQ ( cos q + cos

More information

DVIOUT-17syoze

DVIOUT-17syoze 平面の合同変換と相似変換 岩瀬順一 要約 : 平面の合同変換と相似変換を論じる いま大学で行列を学び始めている大学一年生を念頭に置いている 高等学校で行列や一次変換を学んでいなくてもよい 1. 写像 定義 1.1 X, Y を集合とする X の各元 x に対し Y のただ一つの元 y を対応させる規則 f を写像とよび,f : X! Y のように書く f によって x に対応する Y の元を f(x)

More information

jhs-math3_01-02ans

jhs-math3_01-02ans 因数分解 (1) 因数ある式がいくつかの式の積の形で表されるとき, かけ合わされたそれぞれの式のことをもとの式の因数という 例 ) 多項式 x 2 +( a + b)x + ab は x + a と x + b の積である x 2 +( a + b)x + ab = ( x + a)( x + b) もとの式 このとき,x + a と x + b を x 2 +( a + b)x + ab の因数という

More information

学習指導要領

学習指導要領 (1) 数と式 学習指導要領ア数と集合 ( ア ) 実数数を実数まで拡張する意義を理解し 簡単な無理数の四則計算をすること 都立大江戸高校学力スタンダード 平方根の意味を理解し 平方根の計算法則に従って平方根を簡単にすることができる ( 例 1) 次の値を求めよ (1)5 の平方根 () 81 ( 例 ) 次の数を簡単にせよ (1) 5 () 7 1 (3) 49 無理数の加法や減法 乗法公式を利用した計算がで

More information

RSA-lecture-2015.pptx

RSA-lecture-2015.pptx 公開鍵暗号 RSA について 3 年授業 情報ネットワーク 授業スライドより抜粋 豊橋技術科学大学情報 知能工学系梅村恭司 2015-06-24 Copyright 2014 Kyoji Umemura (http://www.ss.cs.tut.ac.jp/) 出典を明らかにしていただければ 自由に授業 / セミナー等で使っていただいて結構です これからのスライドは下記を参考 に,Java でプログラミングしながら,

More information

<4D F736F F D2094F795AA95FB92F68EAE82CC89F082AB95FB E646F63>

<4D F736F F D2094F795AA95FB92F68EAE82CC89F082AB95FB E646F63> 力学 A 金曜 限 : 松田 微分方程式の解き方 微分方程式の解き方のところが分からなかったという声が多いので プリントにまとめます 数学的に厳密な話はしていないので 詳しくは数学の常微分方程式を扱っているテキストを参照してください また os s は既知とします. 微分方程式の分類 常微分方程式とは 独立変数 と その関数 その有限次の導関数 がみたす方程式 F,,, = のことです 次までの導関数を含む方程式を

More information

5 分で解くシリーズ 0 確率 1(+ 英文法 ) 大学受験を終えた仲良し 5 人組の白石君 黒本君 赤木君 青田君 緑川君が卒業旅行で岡山の旅館に泊まりました (1) 旅館では 5 人のために雪と月の 部屋を用意してくれていました しかし 5 人は 全員が 1 つの部屋になってもいいので くじ引き

5 分で解くシリーズ 0 確率 1(+ 英文法 ) 大学受験を終えた仲良し 5 人組の白石君 黒本君 赤木君 青田君 緑川君が卒業旅行で岡山の旅館に泊まりました (1) 旅館では 5 人のために雪と月の 部屋を用意してくれていました しかし 5 人は 全員が 1 つの部屋になってもいいので くじ引き 5 分で解くシリーズ 01 平面図形 1998 年度本試験数学 ⅠA 第 問 [] 四角形 ABCD は円に内接し, ABC は鈍角で 1 AB, BC 6, si ABC 3 とする また, 線分 AC と BD は直角に交わるとする このとき cosabc クケ コ, AC サシ となる 円の半径は スセ ソ であり タツ si CAB チ, si ACB テとなる また,AC と BD の交点を

More information

PowerPoint Presentation

PowerPoint Presentation 応用数学 Ⅱ (7) 7 連立微分方程式の立て方と解法. 高階微分方程式による解法. ベクトル微分方程式による解法 3. 演算子による解法 連立微分方程式 未知数が複数個あり, 未知数の数だけ微分方程式が与えられている場合, これらを連立微分方程式という. d d 解法 () 高階微分方程式化による解法 つの方程式から つの未知数を消去して, 未知数が つの方程式に変換 のみの方程式にするために,

More information

「個別訪問」の所感⑦

「個別訪問」の所感⑦ 40 漸化式を究めよう 単元等数学 B 数列 ( 漸化式 ) Cotets 漸化式から一般項 漸化式を作る先日は, お忙しい中にもかかわらず, 丁寧なアンケート (2 ヵ月後 ) の回答をいただきありがとうございました. 私は, 授業を行われた先生に, 授業の内容にちなんだ教材ネタなどの話題を提供させていただいておりますが, これは, 授業者に配信するとともに, 最終的には県内の先生方へ向けた資料集を作ることを意図しています.

More information

Microsoft Word - K-ピタゴラス数.doc

Microsoft Word - K-ピタゴラス数.doc - ピタゴラス数の代数と幾何学 津山工業高等専門学校 菅原孝慈 ( 情報工学科 年 ) 野山由貴 ( 情報工学科 年 ) 草地弘幸 ( 電子制御工学科 年 ) もくじ * 第 章ピタゴラス数の幾何学 * 第 章ピタゴラス数の代数学 * 第 3 章代数的極小元の幾何学の考察 * 第 章ピタゴラス数の幾何学的研究の動機 交点に注目すると, つの曲線が直交しているようにみえる. これらは本当に直交しているのだろうか.

More information

学習指導要領

学習指導要領 (1) 数と式 ア数と集合 ( ア ) 実数数を実数まで拡張する意義を理解し 簡単な無理数の四則計算をすること 自然数 整数 有理数 無理数 実数のそれぞれの集 合について 四則演算の可能性について判断できる ( 例 ) 下の表において それぞれの数の範囲で四則計算を考えるとき 計算がその範囲で常にできる場合には を 常にできるとは限らない場合には を付けよ ただし 除法では 0 で割ることは考えない

More information

学力スタンダード(様式1)

学力スタンダード(様式1) (1) 数と式 学習指導要領ア数と集合 ( ア ) 実数数を実数まで拡張する意義を理解し 簡単な無理数の四則計算をすること 稔ヶ丘高校学力スタンダード 有理数 無理数の定義や実数の分類について理解し ている 絶対値の意味と記号表示を理解している 実数と直線上の点が一対一対応であることを理解 し 実数を数直線上に示すことができる 例 実数 (1) -.5 () π (3) 数直線上の点はどれか答えよ

More information

- 2 -

- 2 - - 2 - - 3 - (1) (2) (3) (1) - 4 - ~ - 5 - (2) - 6 - (1) (1) - 7 - - 8 - (i) (ii) (iii) (ii) (iii) (ii) 10 - 9 - (3) - 10 - (3) - 11 - - 12 - (1) - 13 - - 14 - (2) - 15 - - 16 - (3) - 17 - - 18 - (4) -

More information

2 1980 8 4 4 4 4 4 3 4 2 4 4 2 4 6 0 0 6 4 2 4 1 2 2 1 4 4 4 2 3 3 3 4 3 4 4 4 4 2 5 5 2 4 4 4 0 3 3 0 9 10 10 9 1 1

2 1980 8 4 4 4 4 4 3 4 2 4 4 2 4 6 0 0 6 4 2 4 1 2 2 1 4 4 4 2 3 3 3 4 3 4 4 4 4 2 5 5 2 4 4 4 0 3 3 0 9 10 10 9 1 1 1 1979 6 24 3 4 4 4 4 3 4 4 2 3 4 4 6 0 0 6 2 4 4 4 3 0 0 3 3 3 4 3 2 4 3? 4 3 4 3 4 4 4 4 3 3 4 4 4 4 2 1 1 2 15 4 4 15 0 1 2 1980 8 4 4 4 4 4 3 4 2 4 4 2 4 6 0 0 6 4 2 4 1 2 2 1 4 4 4 2 3 3 3 4 3 4 4

More information

20 15 14.6 15.3 14.9 15.7 16.0 15.7 13.4 14.5 13.7 14.2 10 10 13 16 19 22 1 70,000 60,000 50,000 40,000 30,000 20,000 10,000 0 2,500 59,862 56,384 2,000 42,662 44,211 40,639 37,323 1,500 33,408 34,472

More information

I? 3 1 3 1.1?................................. 3 1.2?............................... 3 1.3!................................... 3 2 4 2.1........................................ 4 2.2.......................................

More information

1 (1) (2)

1 (1) (2) 1 2 (1) (2) (3) 3-78 - 1 (1) (2) - 79 - i) ii) iii) (3) (4) (5) (6) - 80 - (7) (8) (9) (10) 2 (1) (2) (3) (4) i) - 81 - ii) (a) (b) 3 (1) (2) - 82 - - 83 - - 84 - - 85 - - 86 - (1) (2) (3) (4) (5) (6)

More information

< BD96CA E B816989A B A>

< BD96CA E B816989A B A> 数 Ⅱ 平面ベクトル ( 黄色チャート ) () () ~ () " 図 # () () () - - () - () - - () % から %- から - -,- 略 () 求めるベクトルを とする S であるから,k となる実数 k がある このとき k k, であるから k すなわち k$, 求めるベクトルは --,- - -7- - -, から また ',' 7 (),,-,, -, -,

More information

<8D828D5A838A817C A77425F91E6318FCD2E6D6364>

<8D828D5A838A817C A77425F91E6318FCD2E6D6364> 4 1 平面上のベクトル 1 ベクトルとその演算 例題 1 ベクトルの相等 次の問いに答えよ. ⑴ 右の図 1 は平行四辺形 である., と等しいベクトルをいえ. ⑵ 右の図 2 の中で互いに等しいベクトルをいえ. ただし, すべてのマス目は正方形である. 解 ⑴,= より, =,= より, = ⑵ 大きさと向きの等しいものを調べる. a =d, c = f d e f 1 右の図の長方形 において,

More information