2 0.1 Introduction NMR 70% 1/2

Size: px
Start display at page:

Download "2 0.1 Introduction NMR 70% 1/2"

Transcription

1 Y. Kondo

2 2 0.1 Introduction NMR 70% 1/2

3 3 0.1 Introduction Si Ge SI

4 I II NMR

5 NMR NMR

6

7 *1 electrum electrica *1 Wikipedia

8 *2 *3 18 *2 *3, 20

9 *4 *4

10 * , 2(H++e-) H2 *5

11

12 e = C (1.1) Ωm 10 6 Ωm 10 3 Ωm 1.4 * *6

13

14

15 n n = 1, 2, 3, ? 2.2 2

16 16 2 E = 0 n = 3 n = 2 n = ŒÇ µ ½Œ Žq QŒÂ ŠŒÝ ì p µ Ä éœ Žq QŒÂ

17 E = 0 ½ Ì ŠŒÝ ì p µ Ä éœ Žq

18 Si Ge Si Ge 4 Si Ge ³ E Ž R džq Si â Ge Ì ÅŠOŠk Ì džq ^ «¼ ± Ì 2.4

19 2.4 Si Ge 19 Si Ge P As A ß è È džq džq Ì s «Ž Œ^ ¼ ± Ì Œ^ ¼ ± Ì 2.5 n p B Al Ga 3

20

21 SI SI EB SI kg s m A I [I] = A [ ]=

22 I Q Q = It t [t] = s C C = [Q] = [It] = s A (3.1) F = EQ [ F ] = [ E][Q] [ F ] = m kg s 2 E [ E] = m kg s 3 A 1 (3.2) ϕ ϕ = E

23 = ( x, y, z ) [ ] = m 1 [ϕ] = m 2 kg s 3 A 1 (3.3) F = 1 Q 1 Q 2 r 4πϵ 0 r 2 r (3.4) ϵ 0 [ F = kg m s 2 [ ] Q1 Q 2 r r 2 = A2 s 2 r m 2 [ϵ 0 ] = m 3 kg 1 s 4 A 2 (3.5) ϵ 0 ϵ 0 = 1 4πc c = m/s 3.3

24 H d r = i I i H [ H] = m 1 A (3.6) EB H Q m F F = HQ m Q m [Q m ] = m 2 kg s 2 A 1 (3.7) [Q m ] = Wb F = 1 Q m1 Q m2 r 4πµ 0 r 2 r (3.8)

25 µ 0 [ F = kg m s 2 [ ] Qm1 Q m2 r r 2 = m 2 kg 2 s 4 A 2 r [µ 0 ] = m kg s 2 A 2 (3.9) µ 0 µ 0 = 4π 10 7 c 2 ϵ 0 µ 0 = D = ϵ 0 E B = µ0 H 3.2 Q = CV V = L d I C, L dt C, L

26

27

28 t x(t) δt x(t + δt) x(t) t f (x(t), u(t)) x(t + δt) x(t) = f (x(t), u(t)) δt + o(δt 2 ) (4.1) u(t) o(δt 2 ) δt 2 δt 0 d x(t) = f (x(t), u(t)) (4.2) dt u(t) y(t) x(t), u(t) t y(t) = g (x(t), u(t)) (4.3) y(t) = S (u(t)) (4.4)

29 S 4.1 *1 u(t) S y(t) 4.1 S t = τ L τ (u(t)) = { u(t), t τ 0, t > τ (4.5) S u(t) s.t. L τ (u(t)) = 0 L τ S (u(t)) = 0 (4.6) s.t. such that L τ (u(t)) = 0 u(t) L τ S (u(t)) = S(α 1 u 1 + α 2 u 2 ) = α 1 S(u 1 ) + α 2 S(u 2 ) (4.7) *1 TV TV

30 30 4 t s.t. y(t) = S(u(t)) τ y(t + τ) = S(u(t + τ)) (4.8) 4.4 V V I A R V = RI (4.9) V/A Ω I = u(t) V = y(t) S(u(t)) = R u(t) I V y(t) u(t) e(t) x(t) v(t) e(t) v(t) = R ( C d dt v(t)) (4.10)

31 RC = τ d u(t) x(t) x(t) = dt τ (4.11) y(t) = u(t) x(t) (4.12) u(t) = e(t) t = 0 0 e 0 t 0 x(t) = (x(0) e 0 )e t/τ + C (4.13) *2 C *3 t x(t) x(0) *4 4.5 *2 z(t) = x(t) e 0 d z(t) z(t) = z(t) = z(0)e dt τ t/τ z(0) = x(0) e 0 *3 t = 0 x(t) C = e 0 *4 u(t) = e(t) x(t) = x(0)e t/τ + 1 τ t 0 e t t τ u(t )dt (4.14)

32

33

34 V V I A R V = RI (5.1) V/A Ω R L m S m 2 T K R(T ) Ω R(T ) = ρ(t ) L S (5.2) ρ(t ) Ω m ρ(t ) ρ(t ) = ρ(t 0 ){1 + α(t T 0 )} (5.3) α T 0 *1 *2 *1 *2

35 5.2 I I

36 v i j i v i j i

37 v i j i = 0 i R 1 R 2 V 1 V 2 I V V = V 1 + V 2 (5.4) V i = R i I V R 1 R 2 V V R 1 R 2 I 1 I 2

38 38 5 V I I = I 1 + I 2 (5.5) I i = V/R i V I I 1 2 R 1 R R 1, R 2,... R = R 1 + R R = 1 R R

39 5.4 II (a) 2 5.5(b) II 5.4.1

40 v i j i R i 2 *3 *4 - R *5 v R 0 v i = R + R 0 = 5.6 *3 port *4 *5

41 5.4 II 41 R v R 0 v R 0 = + v v ï R R 5.7 R 0 R 0 R 0 R

42 42 5 j R 0 v 0 = RR 0 R + R 0 j 5.8 R 0 v j 0 j 0 = R 0 R + R 0 1/R 0 v j j = v/r j 0 = 1/R + 1/R 0 R + R 0 R 0 R 0 v j R R 0 R R 0 = R 5-1. R 5

43 5.4 II 43 R 0 R 3 E 1 R 1 E 3 E R 5 3. R 5 R 1 R 3 E R 5 R 4 R

44

45 V (t) = V 0 cos ωt ω f = ω/2π R L C

46 *1 I(t) V (t) = V 0 cos ωt = RI(t) I(t) = V 0 cos ωt R V (t) L di dt = V 0 cos ωt L di dt = 0 I(t) = V 0 cos ωtdt = V 0 cos(ωt π/2) L ωl * V (t) Q/C = 0 I(t) = dq dt = C dv dt = C dv 0 cos ωt dt = V 0 ωc cos(ωt + π/2) *1 *2 t t = t π/(2ω) V 0 cos ωt

47 *3 I II III R L C - q q R V (t) = V 0 cos ωt V 2 (t)/r < V 2 (t) R > = 1 T = V 0 2 R = 1 2 T 0 1 T V 2 0 R V 2 0 R cos2 ωtdt T cos 2ωt dt 2 T V e = V 0 2 Ve 2 R I e = I 0 2 *3 t t = t + π/(2ω) V 0 cos ωt

48 48 6 π/2 π/2 ϕ cos ϕ I e V e cos ϕ C Q 0 S I(t) I(t) = dq(t) dt Q(t) S Q L - Q C R = L di(t) dt = L d2 Q(t) dt 2 + RI(t) + Q(t) C + R dq(t) dt + Q(t) C

49 R = 0 Q(t) d 2 Q(t) dt 2 = 1 LC Q(t) Q(t) = Q 0 cos(ω 0 t + δ) 1 ω 0 = LC Q(t) = Ae αt cos(ω t + δ) α = R 2L 1 ω = LC R2 4L ϕ(t) = ϕ 0 cos(ωt + α) (6.1)

50 50 6 { I(t) = I0 cos(ωt + β) (6.2a) Q(t) = Q 0 cos(ωt + γ) (6.2b) ϕ 0 = ϕ 0 e iα Ĩ(t) = I 0 e (ωt+β) iωt = Ĩ0e (6.3c) ϕ(t) = ϕ 0 e i(ωt+α) = ϕ 0 e iωt Ĩ 0 = I 0 e iβ Q(t) = Q 0 e (ωt+γ) = Q 0 e iωt Q 0 = Q 0 e iγ (6.3a) (6.3b) (6.3d) (6.3e) (6.3f) L dĩ(t) dt Q + RĨ(t) + C = ϕ(t) {L di(t) dt + RI(t) + Q C } + i{ldi (t) dt + RI (t) + Q C } = ϕ(t) + iϕ (t) L, R, C { } L di(t) dt + RI(t) + Q = ϕ(t) (6.4) C

51 d Q(t) dt = iω Q 0 e iωt = Ĩ0e iωt iω Q = Ĩ dĩ(t) = iωĩ0e iωt dt iωlĩ + RĨ + Ĩ iωc = ϕ e iωt Ĩ = ϕ Z Z = R + i ( ωl 1 ωc ) (6.5) (6.6) R ω ωl 1 ωc = 0 Z 6.6 ω 0 ω 0 = 1 LC (6.7) Z

52 j(t) v(t) j(t) v(t) v(t) = Z(ω)j(t) 6.1 Z(ω) = 1 iωc Z(ω) = iωl * * *4 Z(ω) = R *5

53 E 1, E 3 E i (t) = E i,0 e iωit L C R E 1 E 2 E R 5 - E = E 0 e iωt 1. R 5 2. R 5 3. R 5 L 1 C 3 E R 5 R 4 C 2 6.4

54

55 u(t) = e iωt *1 *1 6.2

56 56 7 y(t) = G(iω)e iωt G(iω) ω y(t) = S(e iωt ) y(t + τ) = S(u(t + τ)) = S(u(t)u(τ)) = u(t)s(u(τ)) *2 τ = 0 y(t) = S(u(0))e iωt S(u(0)) t G(iω) ω u(t) y(t) G(iω) y(t) = G(iω)u(t) ( ) k d a k y(t) = ( l d b l u(t) (7.1) dt dt) k l u(t) = e iω, y(t) = G(iω)e iωt G(iω) k a k (iω) k = l b l (iω) l (7.2) *2 S(ab) = as(b) a = u(t), b = u(τ)

57 G(iω) k G(iω) = b k (iω) k l a l (iω) l (7.3) G(iω) u(t) u(t) = 1 2π u ω e iωt dω y(t) = 1 G(iω)u ω e iωt dω 2π y(t) y ω G(iω)u ω f(t) L(f(t)) = 0 f(t)e st dt (7.4)

58 58 7 f(t) = L(α 1 f 1 (t) + α 2 f 2 (t)) L(f(αt)) = G(s) 0 (α 1 f 1 (t) + α 2 f 2 (t))e st dt = α 1 L(f 1 ) + α 2 L(f 2 ) (7.5) L(f(αt)) = f(αt)e st dt 0 αt t = f(t )e (s/α)t dt /α 0 = 1 α G ( s α ) (7.6) f(t) = L( d dt f(t)) 0 ( d dt f(t))e st dt = [ e st f(t) ] ( d 0 dt e st )f(t)dt = f(0) + s L(f(t)) 0 0 e st f(t)dt L( d f(t)) = f(0) + sl(f(t)) (7.7) dt ( t ) L f(t )dt = ( t ) f(t )dt e st dt

59 = [ 1s t ] e st f(t )dt 0 0 ( d t dt = 1 s e st f(t)dt f(t )dt ) 1 s e st dt ( t ) L f(t )dt = 1 L(f(t)) (7.8) 0 s (s > 0) δ(t) 1 1 1/s t 1/s 2 e t 1/(s 1) cos t s/(s 2 + 1) sin t 1/(s 2 + 1) δ x 0 δ(x) = 0 δ(x)dx = ϵ ϵ δ(x)dx = 1 f(x)δ(x)dx = f(0)

60 60 7 δ(x) = δ( x) δ(x 2 a 2 ) = 1 2a (δ(x a) + δ(x + a)) δ(ax) = 1 a δ(x) a 0 δ(x) = d dxθ(x) Θ(x) f(x)δ(x a)dx = f(a) *3 δ(x) = lim n φ n(x) n 2 φ n (x) = π e nx *4 n 1 ; t > 0 1 u(t) = 2 ; t = 0 0 ; t < 0 1 δ(t) = lim (u(t) u(t w)) w 0 w δ 1 (7.9) L (δ(t)) δ(t)e st dt 0 ϵ ( 0 ϵ L (δ(t)) = δ(t)e st dt = e s 0 = 1 *3 δ *4 φ(0) = n/π n x 0 1

61 φ n (t) φ n (t) 0 ϵ ϵ > 0 n 2 π e nt e st dt = 1 ( ) s 2nϵ /4n Erfc 2 es2 2 n ϵ Erfc n L(δ(t)) = 1 lim (u(t) u(t w)) w ( ) 1 L (u(t) u(t w)) = 1 ( 1 w w s 1 ) s e wt = 1 ( 1 e wt ) ws = 1 ws ! w 0 1 w 0 L(δ(t)) = 1

62 62 7 ϵ L( d δ(t)) = δ( ϵ) + sl(δ(t)) dt δ( ϵ) = 0 L(δ(t)) = 1 L( d dt δ(t)) = s L( dn δ(t)) = sn dtn E t = 0 L d dt i + Ri = E 7.1 τ t = τt L τ d dt i + Ri = E L τ i(0) + L τ sl(i) + RL(i) = E s

63 t = 0 i(0) = 0 L(i) L(i) = E s(ls/τ + R) = E ( ) 1 R s 1 s + τ(r/l) τ = L/R L(i) = E ( 1 R s 1 ) s i(t ) = E R (1 e t ) t = τt t i(t) = E R (1 e t/τ ) f(t), g(t) (f g) (f g)(t) = t L (f(t)) L (g(t)) L (f(t)) L (g(t)) = f(x)e sx dx g(y)e sy dy 0 0 : x + y t ( ) = f(t y)e st g(y)dt dy 0 y 0 f(τ)g(t τ)dτ (7.10)

64 ( t ) = f(t y)e st g(y)dy dt = e st ( t = L ((f g)(t)) 0 ) f(t y)g(y)dy dt t t y y t t = τ u(t)δ(t τ) y δ (t τ) t 0 u(τ)y δ (t τ)dτ (7.11) τ = 0 t y δ (t τ) t τ τ u(t) y(t) y δ (t) y δ u

65 L (y δ (t)) L (u(t)) = L ((u y δ )(t)) L (y δ (t)) ( ) k d a k y(t) = ( l d b l u(t) (7.12) dt dt) k u(t) = δ(t) y(t) dn dt n y(x)] t=0 = 0 y δ (t) a k s k L (y δ (t)) = k k l b k s k (7.13) y δ (t) L (y δ (t)) = G(s) = l b ls l k a ks k (7.14) L di(t) dt + q(t) C = E(t)

66 66 7 τ L di(t ) τ dt + q(t ) C = E(t ) L τ sl(i) + 1 L(q) = L(E) + Li(0) C i(t ) = 1 τ dq/dt L(q) = τ(l(i) + q(0))/s E = E 0 δ(t) L(E) = E 0 L(i) = E 0 L/τ τ 2 = LC 7.1 t s s 2 + τ 2 LC L(i) = E 0 s L/τ s i(t ) = E 0 cos t L/τ i(t) = E 0 L/τ cos t/τ = E 0 ω 0 L cos ω 0t ω 2 0 = 1/LC t f(t) L(f(t)) f(t)

67 f(t) = 1 2πi γ+i γ i F (s)e st ds t > 0 0 t < 0 (7.15) L 1 L 1 (F (s)) = f(t) F (s) R(s) > γ 7.3 C C s 0 F (s 0 ) = 1 F (s) ds (7.16) 2πi C s s 0 s F (s) 0 (7.17) iω C s' s 0 0 γ σ 7.3

68 F (s 0 ) = 1 γ i F (s) ds 2πi s s 0 = 1 2πi γ+i γ+i γ i F (s) s 0 s ds t > 0 t [ e t(s0 s) 1 dt = e t(s 0 n) s s 0 0 1/(s 0 s) F (s) = 1 2πi = 1 2πi = 1 2πi γ+i ( F (s) γ i ( γ+i 0 γ i ( γ+i 0 γ i 0 ] 0 = 1 s 0 s ) e t(s0 s) dt ds ) F (s)e t(s0 s) ds dt ) F (s)e ts ds e ts0 dt (7.18) F (s)e t(s 0 s) F (s) = 1 f(t) s s 1/s 0 t > C 1 *5 s = 0 *5 e st t

69 iω C 1 C 2 0 γ σ 7.4 f(t) = 1 γ+ 1 2πi γ s est ds = 1 1 2πi C 1 s est ds = e 0 = 1 t < 0 C 2 *6 f(t) = 0 F (s) = 1/s F (s) = 1 s 2 f(t) + 1 s 1/(s 2 + 1) 0 F (s) s = ±i 7.4 γ > 1 t > 0 C 1 s = ±i *6 e st t

70 70 7 f(t) = 1 γ+ 1 2πi γ s est ds = 1 γ+ ( 1 1 2πi γ 2i s i 1 ) e st ds s + i = 1 ( 1 γ+ e st 2i 2πi γ s i ds 1 γ+ e st ) 2πi γ s + i ds = 1 ( e it e it) 2i = sin t t < 0 C 2 f(t) = 0

71

72 FET z É z É ƒoƒšƒbƒh A É A É (a) R ÉŠÇ

73 PN p n PN PN n p 0 p n n p n p *1 n p p pn n p *2 *1 *2

74 ó R w Œ^ ¼ @ ŽŒ^ ¼ ± Ì ƒtƒfƒ ƒ~ ˆÊ Ö Ñ (a) dˆ³ ª Á Ä ó R w ó R w ƒtƒfƒ ƒ~ ˆÊ ƒtƒfƒ ƒ~ ˆÊ Ö Ñ t ûœüƒoƒcƒaƒx Ö Ñ NPN n p PN NP -

75 ŽŒ^ ¼ ŽŒ^ ¼ ± Ì E ƒgƒ~ƒbƒ^ Œ^ ¼ ± Ì B ƒx [ƒx C ƒrƒœƒnƒ^ ó R w 8.3 PN - PN p *3 - *3

76 76 8 *4 PNP Field Effect Transistor; FET (Junction-type FET; JFET) (metal-oxide-semiconductor FET; MOSFET) MOSFET MOSFET p n S( ) D( ) G p SB SB S G D 8.4 FET *

77 n n 8.3 IC ( +, - ) 1 2 = V + V V- V V o 8.5

78 78 8 V O = A(V + V ) A (operational amplifier; ) A ( ) R 2 R 2 V I R 1 - V o R 1 - V o + V I (0 V) V I R R 2 A V O V + V = 0 *5 V = 0 *5 V O /A = V + V A V + V = 0 A V + V 0

79 R 1 R 2 V O = R 2 R 1 V I R R 1 I I = V I /R 1 - I = (V O V I )/R 2 V O = R 1 + R 2 V I R V i V I V i + - A H V o + ÁŽZ ð s È 8.7 H 0 < H < 1

80 80 8 V O = AV i V i = V I HV O V i G A 1 G = V O A = V I 1 + AH 1 H 1/H A R

81 H ƒ [ƒpƒx EƒtƒBƒ EƒtƒBƒ ƒ^ [ 8.9

82

83 83 9 NMR NMR NMR 9.1 H 0 B 0 M 0 H 0 *1 z H 0 = (0, 0, H 0 ) x - y - B H B *1

84 84 9 NMR z M 0 y x H H 0 M B 0 M d M dt = γ M B 0, (9.1) γ γ > 0 M B 0 M 9.1 z *2 ω 0 = γb 0 * MHz/T MHz/T *4 z M *2 *3 γb 0 ω 0 > 0 *4 1 T MHz MHz

85 M z z x,y ω M ω 0 ω (0, 0, B 0 ω/γ) 9.3 B 0 = (0, 0, B 0 ) B 1 = B 1 (cos (ω rf t ϕ), sin (ω rf t ϕ), 0) (9.2) B 0 B ω rf B 1 = ( B 1 cos ϕ, B 1 sin ϕ, B 0 ω rf /γ) M (a) z z (b) z M H M 0 y y y x x x 9.2 (a) M ω 0 = γb 0 (b) M

86 86 9 NMR γ B (B 0 ω rf /γ) 2 z φ x y 9.3 B 1 = ( B 1 cos ϕ, B 1 sin ϕ, B 0 ω rf /γ) ω rf (= ω 0 ) ω rf M (cos ϕ, sin ϕ, 0) ω 1 = γb 1 t p (0, 0, M) M β = ω 1 t p β = π/2 π/ (0, 0, M) x-y (M sin ϕ, M cos ϕ, 0) 90 ϕ π/2 90 π 90 3π/2 90 x 90 y 90 x 90 y β = π π- (, ) M M 2B 1 (cos (ω rf t ϕ), 0, 0) 2B 1 (cos (ω rf t ϕ), 0, 0)

87 (a) z (b) z y y x x 9.4. (a) 90 x- y (b) 180 x- = B 1 (cos (ω rf t ϕ), sin (ω rf t ϕ), 0) B 1 (cos (ω rf t ϕ), sin (ω rf t ϕ), 0), ω rf ω rf 2ω rf NMR t p 1/(γB 1 ) 1/(γB 0 ) 1/ω rf 9.4 M 0 = (0, 0, M 0 ) dm = γm dt B 0 Γ( M M 0 ), (9.3) 1/T Γ = 0 1/T /T 1

88 88 9 NMR z z (a) (b) y y x x (c) z y (d) z y x x 9.5 T 2 (a) t = 0 M x (b d) M xy (d) T 1 T 2 2 Γ( M M 0 ) T 2 T 1 NMR t = 0 M(0) = M 0 (cos χ, sin χ, 0) M(t) T 2 T 1 t T 2 M(t) = 0 xy M 0 T 1 T 2 T 2 t = 0 x M 9.5 xy M xy

89 z z (a) (b) y y x x (c) z y (d) z y x x 9.6 (a) M i 90 x- y-axis (b) r τ M i xy (c) 180 y M i y (d) τ M i y 9.5 NMR ω0 i M i *5 B 1 B0 i ω rf /γ 90 x- M i y τ M i xy 180 y y M i τ *5

90 90 9 NMR M i y M i 9.6 NMR NMR 9.7 Pulse Generator test tube Oscillator Power Amp. z' ADC ADC cos ω reft sin ω LPF LPF ref t Pre.Amp. x' s A s B Mixer s A xs B Directional Coupler 9.7 NMR Oscillator Pulse Generator test tube LPF ADC - Directional Coupler mixer

91 9.6 NMR 91 xy M = (M x, M y, 0) = M(cos χ, sin χ, 0) M(t) = M(cos χ, sin χ, 0) exp( t/t 2 ), T 2 T 1 T 2 T 1 NMR M (t) = M(cos(ω 0 t χ), sin(ω 0 t χ), 0) exp( t/t 2 ). ω 0 x M cos(ω 0 t χ) exp( t/t 2 ) * 6 Free Induction Decay (= FID) FID cos ω ref t M cos(ω 0 t χ) exp( t/t 2 ) cos ω ref t = 1 2 M (cos( ω t χ) + cos(( ω + 2ω ref)t χ)) exp( t/t 2 ), ω ref > 0 ω = ω 0 ω ref *6 x dm x dt = Mω 0 sin(ω 0 t χ) exp( t/t 2 ), ω 0 1/T 2 exp( t/t 2 ) ω 0 x M cos(ω 0 t χ) exp( t/t 2 )

92 92 9 NMR ( ω + 2ω ref ) 1 2 M cos( ω t χ) exp( t/t 2). 2 ω ref FID sin ω ref t 1 2 M sin( ω t χ) exp( t/t 2), ω ref ω MHz, ω 10 khz 1/T 2 1 Hz s(t) = M (cos( ωt χ) + i sin( ωt χ)) exp( t/t 2 ) = M exp( iχ) exp(i ωt) exp( t/t 2 ) t < 0 s(t) = 0 s(t) S(ω) = = M exp( iχ) s(t) exp( iω t)dt 0 1/T 2 i(ω ω) = M exp( iχ) (1/T 2 ) 2 + (ω ω) 2. exp(i ωt) exp( t/t 2 ) exp( iω t)dt χ = 0, S(ω) ω R(S(ω)) = M/T 2 (1/T 2 ) 2 + (ω ω) 2. ω = ω MT 2 R(S(ω)) > MT 2 /2 FWHH 1/πT 2 T 2

93 9.6 NMR 93 Absorptive (Real) Spectrum M T 2 M T 2 2 ω FWHH = 1 π T 2 ω Dispersive (Imaginary) Spectrum ω ω 9.8 ω = ω 0 ω ref M T 2 (FWHH) M S(ω) M(ω ω) I(S(ω)) = (1/T 2 ) 2 + (ω ω) 2. χ 0

94

95 95 10 NMR NMR NMR 10.1 II *1 47 µt ω H = 2π rad s 1 *2 *1 γ C = 2π s 1 T *2 2 khz

96 96 10 NMR h = J s k B = J K 1 µ 0 = 4π 10 7 N A 2 γ H = 2π s 1 T N A = mol 1 ρ Cu = Ωm 10.1 SI 10.2 sd sl sd = m sl = m sv sv = πsd 2 sl/4 = m kg 1 m kg mol m 3 sa sa = sv mol m 3 = mol

97 T = 300 K B 0 = 30 mt *3 1 µ H µ H = ( hγ H) 2 4k B B 0 T = A m 2 M H M H = sa µ H N A = A m 2 Φ H Φ H = µ 0 M H sv (πsd2 /4) = µ 0 M H /sl = Wb 1 V H V H = dφ H dt = ω H Φ H = V 10.3 ϕ = m N L = 10 N t = (sl/ϕ)n L L π(sd/2) 2 L = A n µ 0 sl N 2 t = H A n A n = R πsd R = ρ Cu π(ϕ/2) 2 N t = 6.12 Ω *3 1 A 30 mt

98 98 10 NMR Q Q = ω HL R = 15.7 V H N t Q = V 100 µv ω H C C = 1 ω 2 H L = F 10.4 (M H /sv) 2 2µ 0 sv = J 1 (V H N t Q) 2 R 2π ω H = J mv 10 µv khz 1000

99 H H = ni n n = N L /ϕ B 0 = µ 0 N L ϕ I 30 mt I = 1.2 A khz FID NMR

100

101 101 [1] I,II. [2] [3] EH EB EB EH B EH EB monograph [4] [5] G. Arfken, Mathematical Method for Physicist.

128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds = 0 (3.4) S 1, S 2 { B( r) n( r)}ds

128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds = 0 (3.4) S 1, S 2 { B( r) n( r)}ds 127 3 II 3.1 3.1.1 Φ(t) ϕ em = dφ dt (3.1) B( r) Φ = { B( r) n( r)}ds (3.2) S S n( r) Φ 128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds

More information

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d S I.. http://ayapin.film.s.dendai.ac.jp/~matuda /TeX/lecture.html PDF PS.................................... 3.3.................... 9.4................5.............. 3 5. Laplace................. 5....

More information

214 March 31, 214, Rev.2.1 4........................ 4........................ 5............................. 7............................... 7 1 8 1.1............................... 8 1.2.......................

More information

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt S I. x yx y y, y,. F x, y, y, y,, y n http://ayapin.film.s.dendai.ac.jp/~matuda n /TeX/lecture.html PDF PS yx.................................... 3.3.................... 9.4................5..............

More information

213 March 25, 213, Rev.1.5 4........................ 4........................ 6 1 8 1.1............................... 8 1.2....................... 9 2 14 2.1..................... 14 2.2............................

More information

IA hara@math.kyushu-u.ac.jp Last updated: January,......................................................................................................................................................................................

More information

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8)

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8) 4 4 ) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8) a b a b = 6i j 4 b c b c 9) a b = 4 a b) c = 7

More information

š š o š» p š î å ³å š š n š š š» š» š ½Ò š ˆ l ˆ š p î å ³å š î å» ³ ì š š î å š o š š ½ ñ š å š š n n å š» š m ³ n š

š š o š» p š î å ³å š š n š š š» š» š ½Ò š ˆ l ˆ š p î å ³å š î å» ³ ì š š î å š o š š ½ ñ š å š š n n å š» š m ³ n š š š o š» p š î å ³å š š n š š š» š» š ½Ò š ˆ l ˆ š p î å ³å š î å» ³ ì š š î å š o š š ½ ñ š å š š n n å š» š m ³ n š n š p š š Ž p í š p š š» n É» š å p š n n š û o å Ì å š ˆ š š ú š p š m å ìå ½ m î

More information

pdf

pdf http://www.ns.kogakuin.ac.jp/~ft13389/lecture/physics1a2b/ pdf I 1 1 1.1 ( ) 1. 30 m µm 2. 20 cm km 3. 10 m 2 cm 2 4. 5 cm 3 km 3 5. 1 6. 1 7. 1 1.2 ( ) 1. 1 m + 10 cm 2. 1 hr + 6400 sec 3. 3.0 10 5 kg

More information

LCR e ix LC AM m k x m x x > 0 x < 0 F x > 0 x < 0 F = k x (k > 0) k x = x(t)

LCR e ix LC AM m k x m x x > 0 x < 0 F x > 0 x < 0 F = k x (k > 0) k x = x(t) 338 7 7.3 LCR 2.4.3 e ix LC AM 7.3.1 7.3.1.1 m k x m x x > 0 x < 0 F x > 0 x < 0 F = k x k > 0 k 5.3.1.1 x = xt 7.3 339 m 2 x t 2 = k x 2 x t 2 = ω 2 0 x ω0 = k m ω 0 1.4.4.3 2 +α 14.9.3.1 5.3.2.1 2 x

More information

2019 1 5 0 3 1 4 1.1.................... 4 1.1.1......................... 4 1.1.2........................ 5 1.1.3................... 5 1.1.4........................ 6 1.1.5......................... 6 1.2..........................

More information

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2 II No.1 [n/] [1]H n x) H n x) = 1) r n! r!n r)! x)n r r= []H n x) n,, H n x) = 1) n H n x) [3] H n x) = 1) n dn x e dx n e x [4] H n+1 x) = xh n x) nh n 1 x) ) d dx x H n x) = H n+1 x) d dx H nx) = nh

More information

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 2 ), ϕ(t) = B 1 cos(ω 1 t + α 1 ) + B 2 cos(ω 2 t

More information

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x [ ] IC. f(x) = e x () f(x) f (x) () lim f(x) lim f(x) x + x (3) lim f(x) lim f(x) x + x (4) y = f(x) ( ) ( s46). < a < () a () lim a log xdx a log xdx ( ) n (3) lim log k log n n n k=.3 z = log(x + y ),

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s ... x, y z = x + iy x z y z x = Rez, y = Imz z = x + iy x iy z z () z + z = (z + z )() z z = (z z )(3) z z = ( z z )(4)z z = z z = x + y z = x + iy ()Rez = (z + z), Imz = (z z) i () z z z + z z + z.. z

More information

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 0 < t < τ I II 0 No.2 2 C x y x y > 0 x 0 x > b a dx

More information

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y [ ] 7 0.1 2 2 + y = t sin t IC ( 9) ( s090101) 0.2 y = d2 y 2, y = x 3 y + y 2 = 0 (2) y + 2y 3y = e 2x 0.3 1 ( y ) = f x C u = y x ( 15) ( s150102) [ ] y/x du x = Cexp f(u) u (2) x y = xey/x ( 16) ( s160101)

More information

9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) Ĥ0 ψ n (r) ω n Schrödinger Ĥ 0 ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ0 + Ĥint (

9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) Ĥ0 ψ n (r) ω n Schrödinger Ĥ 0 ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ0 + Ĥint ( 9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) 2. 2.1 Ĥ ψ n (r) ω n Schrödinger Ĥ ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ + Ĥint (t)] ψ (r, t), (2) Ĥ int (t) = eˆxe cos ωt ˆdE cos ωt, (3)

More information

I ( ) 2019

I ( ) 2019 I ( ) 2019 i 1 I,, III,, 1,,,, III,,,, (1 ) (,,, ), :...,, : NHK... NHK, (YouTube ),!!, manaba http://pen.envr.tsukuba.ac.jp/lec/physics/,, Richard Feynman Lectures on Physics Addison-Wesley,,,, x χ,

More information

x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ dt iωζ = ẍ + ω2 x (2.1) ζ ζ = Aωe iωt = Aω cos ωt + iaω sin

x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ dt iωζ = ẍ + ω2 x (2.1) ζ ζ = Aωe iωt = Aω cos ωt + iaω sin 2 2.1 F (t) 2.1.1 mẍ + kx = F (t). m ẍ + ω 2 x = F (t)/m ω = k/m. 1 : (ẋ, x) x = A sin ωt, ẋ = Aω cos ωt 1 2-1 x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ

More information

B ver B

B ver B B ver. 2017.02.24 B Contents 1 11 1.1....................... 11 1.1.1............. 11 1.1.2.......................... 12 1.2............................. 14 1.2.1................ 14 1.2.2.......................

More information

KENZOU

KENZOU KENZOU 2008 8 2 3 2 3 2 2 4 2 4............................................... 2 4.2............................... 3 4.2........................................... 4 4.3..............................

More information

Note.tex 2008/09/19( )

Note.tex 2008/09/19( ) 1 20 9 19 2 1 5 1.1........................ 5 1.2............................. 8 2 9 2.1............................. 9 2.2.............................. 10 3 13 3.1.............................. 13 3.2..................................

More information

30 (11/04 )

30 (11/04 ) 30 (11/04 ) i, 1,, II I?,,,,,,,,, ( ),,, ϵ δ,,,,, (, ),,,,,, 5 : (1) ( ) () (,, ) (3) ( ) (4) (5) ( ) (1),, (),,, () (3), (),, (4), (1), (3), ( ), (5),,,,,,,, ii,,,,,,,, Richard P. Feynman, The best teaching

More information

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 24 I 1.1.. ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 1 (t), x 2 (t),, x n (t)) ( ) ( ), γ : (i) x 1 (t),

More information

I 1

I 1 I 1 1 1.1 1. 3 m = 3 1 7 µm. cm = 1 4 km 3. 1 m = 1 1 5 cm 4. 5 cm 3 = 5 1 15 km 3 5. 1 = 36 6. 1 = 8.64 1 4 7. 1 = 3.15 1 7 1 =3 1 7 1 3 π 1. 1. 1 m + 1 cm = 1.1 m. 1 hr + 64 sec = 1 4 sec 3. 3. 1 5 kg

More information

(4.15a) Hurwitz (4.15a) {a j } (s ) {a j } n n Hurwitz a n 1 a n 3 a n 5 a n a n 2 a n 4 a n 1 a n 3 H = a n a n 2. (4.16)..... a Hurwitz H i H i i H

(4.15a) Hurwitz (4.15a) {a j } (s ) {a j } n n Hurwitz a n 1 a n 3 a n 5 a n a n 2 a n 4 a n 1 a n 3 H = a n a n 2. (4.16)..... a Hurwitz H i H i i H 6 ( ) 218 1 28 4.2.6 4.1 u(t) w(t) K w(t) = Ku(t τ) (4.1) τ Ξ(iω) = exp[ α(ω) iβ(ω)] (4.11) (4.1) exp[ α(ω) iβ(ω)] = K exp( iωτ) (4.12) α(ω) = ln(k), β(ω) = ωτ (4.13) dϕ/dω f T 4.3 ( ) OP-amp Nyquist Hurwitz

More information

() (, y) E(, y) () E(, y) (3) q ( ) () E(, y) = k q q (, y) () E(, y) = k r r (3).3 [.7 ] f y = f y () f(, y) = y () f(, y) = tan y y ( ) () f y = f y

() (, y) E(, y) () E(, y) (3) q ( ) () E(, y) = k q q (, y) () E(, y) = k r r (3).3 [.7 ] f y = f y () f(, y) = y () f(, y) = tan y y ( ) () f y = f y 5. [. ] z = f(, y) () z = 3 4 y + y + 3y () z = y (3) z = sin( y) (4) z = cos y (5) z = 4y (6) z = tan y (7) z = log( + y ) (8) z = tan y + + y ( ) () z = 3 8y + y z y = 4 + + 6y () z = y z y = (3) z =

More information

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H 199 1 1 199 1 1. Vx) m e V cos x π x π Vx) = x < π, x > π V i) x = Vx) V 1 x /)) n n d f dξ ξ d f dξ + n f = H n ξ) ii) H n ξ) = 1) n expξ ) dn dξ n exp ξ )) H n ξ)h m ξ) exp ξ )dξ = π n n!δ n,m x = Vx)

More information

dynamics-solution2.dvi

dynamics-solution2.dvi 1 1. (1) a + b = i +3i + k () a b =5i 5j +3k (3) a b =1 (4) a b = 7i j +1k. a = 14 l =/ 14, m=1/ 14, n=3/ 14 3. 4. 5. df (t) d [a(t)e(t)] =ti +9t j +4k, = d a(t) d[a(t)e(t)] e(t)+ da(t) d f (t) =i +18tj

More information

1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N m 1.

1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N m 1. 1.1 1. 1.3.1..3.4 3.1 3. 3.3 4.1 4. 4.3 5.1 5. 5.3 6.1 6. 6.3 7.1 7. 7.3 1 1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N

More information

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5. A 1. Boltzmann Planck u(ν, T )dν = 8πh ν 3 c 3 kt 1 dν h 6.63 10 34 J s Planck k 1.38 10 23 J K 1 Boltzmann u(ν, T ) T ν e hν c = 3 10 8 m s 1 2. Planck λ = c/ν Rayleigh-Jeans u(ν, T )dν = 8πν2 kt dν c

More information

(u(x)v(x)) = u (x)v(x) + u(x)v (x) ( ) u(x) = u (x)v(x) u(x)v (x) v(x) v(x) 2 y = g(t), t = f(x) y = g(f(x)) dy dx dy dx = dy dt dt dx., y, f, g y = f (g(x))g (x). ( (f(g(x)). ). [ ] y = e ax+b (a, b )

More information

http://www.ike-dyn.ritsumei.ac.jp/ hyoo/wave.html 1 1, 5 3 1.1 1..................................... 3 1.2 5.1................................... 4 1.3.......................... 5 1.4 5.2, 5.3....................

More information

006 11 8 0 3 1 5 1.1..................... 5 1......................... 6 1.3.................... 6 1.4.................. 8 1.5................... 8 1.6................... 10 1.6.1......................

More information

23 7 28 i i 1 1 1.1................................... 2 1.2............................... 3 1.2.1.................................... 3 1.2.2............................... 4 1.2.3 SI..............................

More information

chap1.dvi

chap1.dvi 1 1 007 1 e iθ = cos θ + isin θ 1) θ = π e iπ + 1 = 0 1 ) 3 11 f 0 r 1 1 ) k f k = 1 + r) k f 0 f k k = 01) f k+1 = 1 + r)f k ) f k+1 f k = rf k 3) 1 ) ) ) 1+r/)f 0 1 1 + r/) f 0 = 1 + r + r /4)f 0 1 f

More information

Z: Q: R: C: sin 6 5 ζ a, b

Z: Q: R: C: sin 6 5 ζ a, b Z: Q: R: C: 3 3 7 4 sin 6 5 ζ 9 6 6............................... 6............................... 6.3......................... 4 7 6 8 8 9 3 33 a, b a bc c b a a b 5 3 5 3 5 5 3 a a a a p > p p p, 3,

More information

* 1 2014 7 8 *1 iii 1. Newton 1 1.1 Newton........................... 1 1.2............................. 4 1.3................................. 5 2. 9 2.1......................... 9 2.2........................

More information

20 4 20 i 1 1 1.1............................ 1 1.2............................ 4 2 11 2.1................... 11 2.2......................... 11 2.3....................... 19 3 25 3.1.............................

More information

i

i 009 I 1 8 5 i 0 1 0.1..................................... 1 0.................................................. 1 0.3................................. 0.4........................................... 3

More information

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes ) ( 3 7 4 ) 2 2 ) 8 2 954 2) 955 3) 5) J = σe 2 6) 955 7) 9) 955 Statistical-Mechanical Theory of Irreversible Processes 957 ) 3 4 2 A B H (t) = Ae iωt B(t) = B(ω)e iωt B(ω) = [ Φ R (ω) Φ R () ] iω Φ R (t)

More information

<4D F736F F D2092B28DB882C982C282A282C42E646F63>

<4D F736F F D2092B28DB882C982C282A282C42E646F63> Íû Ñ ÐÑw x ÌÆÇÇ ÇÊÊ ÉÈÉÃÑ ÐÑwà v Ê ÉÇÂdvÊwÎxÇiÊ vèéìêéèâ Ñ ÐÑwÊËÊÊÎwÈÂÈËÉÊÊÆÇ ÍËÊfuÊ~ÎËÊÍÇÊÈÍÇÉÂvw ÊÉÌÊyÎÍÇÉÎÉÈÉÆÌÈ ÇÊwÊÂÇÊÎÿÉfÊÈÍvwÉÈÉ vwêêêuvwîuèâéêvèíéwéâéê ÎyÉÈ ÍÂÇÉÿÊvwÉÈ ÎÂsÌÊÂÆÍÆÊgyÉÈÉÇÈÉÆÉÉÇÍÊ

More information

構造と連続体の力学基礎

構造と連続体の力学基礎 II 37 Wabash Avenue Bridge, Illinois 州 Winnipeg にある歩道橋 Esplanade Riel 橋6 6 斜張橋である必要は多分無いと思われる すぐ横に道路用桁橋有り しかも塔基部のレストランは 8 年には営業していなかった 9 9. 9.. () 97 [3] [5] k 9. m w(t) f (t) = f (t) + mg k w(t) Newton

More information

曲面のパラメタ表示と接線ベクトル

曲面のパラメタ表示と接線ベクトル L11(2011-07-06 Wed) :Time-stamp: 2011-07-06 Wed 13:08 JST hig 1,,. 2. http://hig3.net () (L11) 2011-07-06 Wed 1 / 18 ( ) 1 V = (xy2 ) x + (2y) y = y 2 + 2. 2 V = 4y., D V ds = 2 2 ( ) 4 x 2 4y dy dx =

More information

[1.1] r 1 =10e j(ωt+π/4), r 2 =5e j(ωt+π/3), r 3 =3e j(ωt+π/6) ~r = ~r 1 + ~r 2 + ~r 3 = re j(ωt+φ) =(10e π 4 j +5e π 3 j +3e π 6 j )e jωt

[1.1] r 1 =10e j(ωt+π/4), r 2 =5e j(ωt+π/3), r 3 =3e j(ωt+π/6) ~r = ~r 1 + ~r 2 + ~r 3 = re j(ωt+φ) =(10e π 4 j +5e π 3 j +3e π 6 j )e jωt 3.4.7 [.] =e j(t+/4), =5e j(t+/3), 3 =3e j(t+/6) ~ = ~ + ~ + ~ 3 = e j(t+φ) =(e 4 j +5e 3 j +3e 6 j )e jt = e jφ e jt cos φ =cos 4 +5cos 3 +3cos 6 =.69 sin φ =sin 4 +5sin 3 +3sin 6 =.9 =.69 +.9 =7.74 [.]

More information

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,.

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,. 24(2012) (1 C106) 4 11 (2 C206) 4 12 http://www.math.is.tohoku.ac.jp/~obata,.,,,.. 1. 2. 3. 4. 5. 6. 7.,,. 1., 2007 (). 2. P. G. Hoel, 1995. 3... 1... 2.,,. ii 3.,. 4. F. (),.. 5... 6.. 7.,,. 8.,. 1. (75%)

More information

<4D F736F F D B B BB2D834A836F815B82D082C88C602E646F63>

<4D F736F F D B B BB2D834A836F815B82D082C88C602E646F63> 信号処理の基礎 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/081051 このサンプルページの内容は, 初版 1 刷発行時のものです. i AI ii z / 2 3 4 5 6 7 7 z 8 8 iii 2013 3 iv 1 1 1.1... 1 1.2... 2 2 4 2.1...

More information

meiji_resume_1.PDF

meiji_resume_1.PDF β β β (q 1,q,..., q n ; p 1, p,..., p n ) H(q 1,q,..., q n ; p 1, p,..., p n ) Hψ = εψ ε k = k +1/ ε k = k(k 1) (x, y, z; p x, p y, p z ) (r; p r ), (θ; p θ ), (ϕ; p ϕ ) ε k = 1/ k p i dq i E total = E

More information

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2 No.2 1 2 2 δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i δx j (5) δs 2 = δx i δx i + 2 u i δx i δx j = δs 2 + 2s ij δx i δx j

More information

2011de.dvi

2011de.dvi 211 ( 4 2 1. 3 1.1............................... 3 1.2 1- -......................... 13 1.3 2-1 -................... 19 1.4 3- -......................... 29 2. 37 2.1................................ 37

More information

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq 49 2 I II 2.1 3 e e = 1.602 10 19 A s (2.1 50 2 I SI MKSA 2.1.1 r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = 3 10 8 m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq F = k r

More information

n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

n=1 1 n 2 = π = π f(z) f(z) 2 f(z) = u(z) + iv(z) *1 f (z) u(x, y), v(x, y) f(z) f (z) = f/ x u x = v y, u y = v x

n=1 1 n 2 = π = π f(z) f(z) 2 f(z) = u(z) + iv(z) *1 f (z) u(x, y), v(x, y) f(z) f (z) = f/ x u x = v y, u y = v x n= n 2 = π2 6 3 2 28 + 4 + 9 + = π2 6 2 f(z) f(z) 2 f(z) = u(z) + iv(z) * f (z) u(x, y), v(x, y) f(z) f (z) = f/ x u x = v y, u y = v x f x = i f y * u, v 3 3. 3 f(t) = u(t) + v(t) [, b] f(t)dt = u(t)dt

More information

( ) ( )

( ) ( ) 20 21 2 8 1 2 2 3 21 3 22 3 23 4 24 5 25 5 26 6 27 8 28 ( ) 9 3 10 31 10 32 ( ) 12 4 13 41 0 13 42 14 43 0 15 44 17 5 18 6 18 1 1 2 2 1 2 1 0 2 0 3 0 4 0 2 2 21 t (x(t) y(t)) 2 x(t) y(t) γ(t) (x(t) y(t))

More information

sikepuri.dvi

sikepuri.dvi 2009 2 2 2. 2.. F(s) G(s) H(s) G(s) F(s) H(s) F(s),G(s) H(s) : V (s) Z(s)I(s) I(s) Y (s)v (s) Z(s): Y (s): 2: ( ( V V 2 I I 2 ) ( ) ( Z Z 2 Z 2 Z 22 ) ( ) ( Y Y 2 Y 2 Y 22 ( ) ( ) Z Z 2 Y Y 2 : : Z 2 Z

More information

II 2 II

II 2 II II 2 II 2005 yugami@cc.utsunomiya-u.ac.jp 2005 4 1 1 2 5 2.1.................................... 5 2.2................................. 6 2.3............................. 6 2.4.................................

More information

08-Note2-web

08-Note2-web r(t) t r(t) O v(t) = dr(t) dt a(t) = dv(t) dt = d2 r(t) dt 2 r(t), v(t), a(t) t dr(t) dt r(t) =(x(t),y(t),z(t)) = d 2 r(t) dt 2 = ( dx(t) dt ( d 2 x(t) dt 2, dy(t), dz(t) dt dt ), d2 y(t) dt 2, d2 z(t)

More information

9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x

9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x 2009 9 6 16 7 1 7.1 1 1 1 9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x(cos y y sin y) y dy 1 sin

More information

振動と波動

振動と波動 Report JS0.5 J Simplicity February 4, 2012 1 J Simplicity HOME http://www.jsimplicity.com/ Preface 2 Report 2 Contents I 5 1 6 1.1..................................... 6 1.2 1 1:................ 7 1.3

More information

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T NHK 204 2 0 203 2 24 ( ) 7 00 7 50 203 2 25 ( ) 7 00 7 50 203 2 26 ( ) 7 00 7 50 203 2 27 ( ) 7 00 7 50 I. ( ν R n 2 ) m 2 n m, R = e 2 8πε 0 hca B =.09737 0 7 m ( ν = ) λ a B = 4πε 0ħ 2 m e e 2 = 5.2977

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

(1) D = [0, 1] [1, 2], (2x y)dxdy = D = = (2) D = [1, 2] [2, 3], (x 2 y + y 2 )dxdy = D = = (3) D = [0, 1] [ 1, 2], 1 {

(1) D = [0, 1] [1, 2], (2x y)dxdy = D = = (2) D = [1, 2] [2, 3], (x 2 y + y 2 )dxdy = D = = (3) D = [0, 1] [ 1, 2], 1 { 7 4.., ], ], ydy, ], 3], y + y dy 3, ], ], + y + ydy 4, ], ], y ydy ydy y y ] 3 3 ] 3 y + y dy y + 3 y3 5 + 9 3 ] 3 + y + ydy 5 6 3 + 9 ] 3 73 6 y + y + y ] 3 + 3 + 3 3 + 3 + 3 ] 4 y y dy y ] 3 y3 83 3

More information

K E N Z OU

K E N Z OU K E N Z OU 11 1 1 1.1..................................... 1.1.1............................ 1.1..................................................................................... 4 1.........................................

More information

December 28, 2018

December 28, 2018 e-mail : kigami@i.kyoto-u.ac.jp December 28, 28 Contents 2............................. 3.2......................... 7.3..................... 9.4................ 4.5............. 2.6.... 22 2 36 2..........................

More information

1 1.1 H = µc i c i + c i t ijc j + 1 c i c j V ijklc k c l (1) V ijkl = V jikl = V ijlk = V jilk () t ij = t ji, V ijkl = V lkji (3) (1) V 0 H mf = µc

1 1.1 H = µc i c i + c i t ijc j + 1 c i c j V ijklc k c l (1) V ijkl = V jikl = V ijlk = V jilk () t ij = t ji, V ijkl = V lkji (3) (1) V 0 H mf = µc 013 6 30 BCS 1 1.1........................ 1................................ 3 1.3............................ 3 1.4............................... 5 1.5.................................... 5 6 3 7 4 8

More information

keisoku01.dvi

keisoku01.dvi 2.,, Mon, 2006, 401, SAGA, JAPAN Dept. of Mechanical Engineering, Saga Univ., JAPAN 4 Mon, 2006, 401, SAGA, JAPAN Dept. of Mechanical Engineering, Saga Univ., JAPAN 5 Mon, 2006, 401, SAGA, JAPAN Dept.

More information

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e 7 -a 7 -a February 4, 2007 1. 2. 3. 4. 1. 2. 3. 1 Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e z

More information

,,,17,,, ( ),, E Q [S T F t ] < S t, t [, T ],,,,,,,,

,,,17,,, ( ),, E Q [S T F t ] < S t, t [, T ],,,,,,,, 14 5 1 ,,,17,,,194 1 4 ( ),, E Q [S T F t ] < S t, t [, T ],,,,,,,, 1 4 1.1........................................ 4 5.1........................................ 5.........................................

More information

r d 2r d l d (a) (b) (c) 1: I(x,t) I(x+ x,t) I(0,t) I(l,t) V in V(x,t) V(x+ x,t) V(0,t) l V(l,t) 2: 0 x x+ x 3: V in 3 V in x V (x, t) I(x, t

r d 2r d l d (a) (b) (c) 1: I(x,t) I(x+ x,t) I(0,t) I(l,t) V in V(x,t) V(x+ x,t) V(0,t) l V(l,t) 2: 0 x x+ x 3: V in 3 V in x V (x, t) I(x, t 1 1 2 2 2r d 2r d l d (a) (b) (c) 1: I(x,t) I(x+ x,t) I(0,t) I(l,t) V in V(x,t) V(x+ x,t) V(0,t) l V(l,t) 2: 0 x x+ x 3: V in 3 V in x V (x, t) I(x, t) V (x, t) I(x, t) V in x t 3 4 1 L R 2 C G L 0 R 0

More information

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1)

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1) 1. 1.1...,. 1.1.1 V, V x, y, x y x + y x + y V,, V x α, αx αx V,, (i) (viii) : x, y, z V, α, β C, (i) x + y = y + x. (ii) (x + y) + z = x + (y + z). 1 (iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y

More information

21 2 26 i 1 1 1.1............................ 1 1.2............................ 3 2 9 2.1................... 9 2.2.......... 9 2.3................... 11 2.4....................... 12 3 15 3.1..........

More information

DE-resume

DE-resume - 2011, http://c-faculty.chuo-u.ac.jp/ nishioka/ 2 11 21131 : 4 1 x y(x, y (x,y (x,,y (n, (1.1 F (x, y, y,y,,y (n =0. (1.1 n. (1.1 y(x. y(x (1.1. 1 1 1 1.1... 2 1.2... 9 1.3 1... 26 2 2 34 2.1,... 35 2.2

More information

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google I4 - : April, 4 Version :. Kwhir, Tomoki TA (Kondo, Hirotk) Google http://www.mth.ngoy-u.c.jp/~kwhir/courses/4s-biseki.html pdf 4 4 4 4 8 e 5 5 9 etc. 5 6 6 6 9 n etc. 6 6 6 3 6 3 7 7 etc 7 4 7 7 8 5 59

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

橡実験IIINMR.PDF

橡実験IIINMR.PDF (NMR) 0 (NMR) 2µH hω ω 1 h 2 1 1-1 NMR NMR h I µ = γµ N 1-2 1 H 19 F Ne µ = Neh 2mc ( 1) N 2 ( ) I =1/2 I =3/2 I z =+1/2 I z = 1/2 γh H>0 2µH H=0 µh I z =+3/2 I z =+1/2 I z = 1/2 I z = 3/2 γh H>0 2µH H=0

More information

1. (8) (1) (x + y) + (x + y) = 0 () (x + y ) 5xy = 0 (3) (x y + 3y 3 ) (x 3 + xy ) = 0 (4) x tan y x y + x = 0 (5) x = y + x + y (6) = x + y 1 x y 3 (

1. (8) (1) (x + y) + (x + y) = 0 () (x + y ) 5xy = 0 (3) (x y + 3y 3 ) (x 3 + xy ) = 0 (4) x tan y x y + x = 0 (5) x = y + x + y (6) = x + y 1 x y 3 ( 1 1.1 (1) (1 + x) + (1 + y) = 0 () x + y = 0 (3) xy = x (4) x(y + 3) + y(y + 3) = 0 (5) (a + y ) = x ax a (6) x y 1 + y x 1 = 0 (7) cos x + sin x cos y = 0 (8) = tan y tan x (9) = (y 1) tan x (10) (1 +

More information

25 7 18 1 1 1.1 v.s............................. 1 1.1.1.................................. 1 1.1.2................................. 1 1.1.3.................................. 3 1.2................... 3

More information

1 I 1.1 ± e = = - = C C MKSA [m], [Kg] [s] [A] 1C 1A 1 MKSA 1C 1C +q q +q q 1

1 I 1.1 ± e = = - = C C MKSA [m], [Kg] [s] [A] 1C 1A 1 MKSA 1C 1C +q q +q q 1 1 I 1.1 ± e = = - =1.602 10 19 C C MKA [m], [Kg] [s] [A] 1C 1A 1 MKA 1C 1C +q q +q q 1 1.1 r 1,2 q 1, q 2 r 12 2 q 1, q 2 2 F 12 = k q 1q 2 r 12 2 (1.1) k 2 k 2 ( r 1 r 2 ) ( r 2 r 1 ) q 1 q 2 (q 1 q 2

More information

05Mar2001_tune.dvi

05Mar2001_tune.dvi 2001 3 5 COD 1 1.1 u d2 u + ku =0 (1) dt2 u = a exp(pt) (2) p = ± k (3) k>0k = ω 2 exp(±iωt) (4) k

More information

6.1 (P (P (P (P (P (P (, P (, P.

6.1 (P (P (P (P (P (P (, P (, P. (011 30 7 0 ( ( 3 ( 010 1 (P.3 1 1.1 (P.4.................. 1 1. (P.4............... 1 (P.15.1 (P.16................. (P.0............3 (P.18 3.4 (P.3............... 4 3 (P.9 4 3.1 (P.30........... 4 3.

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

chap9.dvi

chap9.dvi 9 AR (i) (ii) MA (iii) (iv) (v) 9.1 2 1 AR 1 9.1.1 S S y j = (α i + β i j) D ij + η j, η j = ρ S η j S + ε j (j =1,,T) (1) i=1 {ε j } i.i.d(,σ 2 ) η j (j ) D ij j i S 1 S =1 D ij =1 S>1 S =4 (1) y j =

More information

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z I 1 m 2 l k 2 x = 0 x 1 x 1 2 x 2 g x x 2 x 1 m k m 1-1. L x 1, x 2, ẋ 1, ẋ 2 ẋ 1 x = 0 1-2. 2 Q = x 1 + x 2 2 q = x 2 x 1 l L Q, q, Q, q M = 2m µ = m 2 1-3. Q q 1-4. 2 x 2 = h 1 x 1 t = 0 2 1 t x 1 (t)

More information

sec13.dvi

sec13.dvi 13 13.1 O r F R = m d 2 r dt 2 m r m = F = m r M M d2 R dt 2 = m d 2 r dt 2 = F = F (13.1) F O L = r p = m r ṙ dl dt = m ṙ ṙ + m r r = r (m r ) = r F N. (13.2) N N = R F 13.2 O ˆn ω L O r u u = ω r 1 1:

More information

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi) 0. A A = 4 IC () det A () A () x + y + z = x y z X Y Z = A x y z ( 5) ( s5590) 0. a + b + c b c () a a + b + c c a b a + b + c 0 a b c () a 0 c b b c 0 a c b a 0 0. A A = 7 5 4 5 0 ( 5) ( s5590) () A ()

More information

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence Hanbury-Brown Twiss (ver. 2.) 25 4 4 1 2 2 2 2.1 van Cittert - Zernike..................................... 2 2.2 mutual coherence................................. 4 3 Hanbury-Brown Twiss ( ) 5 3.1............................................

More information

( ) : 1997

( ) : 1997 ( ) 2008 2 17 : 1997 CMOS FET AD-DA All Rights Reserved (c) Yoichi OKABE 2000-present. [ HTML ] [ PDF ] [ ] [ Web ] [ ] [ HTML ] [ PDF ] 1 1 4 1.1..................................... 4 1.2..................................

More information

untitled

untitled 2 : n =1, 2,, 10000 0.5125 0.51 0.5075 0.505 0.5025 0.5 0.4975 0.495 0 2000 4000 6000 8000 10000 2 weak law of large numbers 1. X 1,X 2,,X n 2. µ = E(X i ),i=1, 2,,n 3. σi 2 = V (X i ) σ 2,i=1, 2,,n ɛ>0

More information

SFGÇÃÉXÉyÉNÉgÉãå`.pdf

SFGÇÃÉXÉyÉNÉgÉãå`.pdf SFG 1 SFG SFG I SFG (ω) χ SFG (ω). SFG χ χ SFG (ω) = χ NR e iϕ +. ω ω + iγ SFG φ = ±π/, χ φ = ±π 3 χ SFG χ SFG = χ NR + χ (ω ω ) + Γ + χ NR χ (ω ω ) (ω ω ) + Γ cosϕ χ NR χ Γ (ω ω ) + Γ sinϕ. 3 (θ) 180

More information

Ÿ ( ) Ÿ ,195,027 9,195,027 9,195, ,000 25, ,000 30,000 9,000,000 9,000, ,789, ,000 2,039,145 3,850,511 2,405,371

Ÿ ( ) Ÿ ,195,027 9,195,027 9,195, ,000 25, ,000 30,000 9,000,000 9,000, ,789, ,000 2,039,145 3,850,511 2,405,371 Ÿ ( ) Ÿ 540,000 980,000 300,000 700,000 1,200,000 1,100,000 1,300,000 980,000 400,000 220,000 280,000 400,000 300,000 220,000 1,300,000 460,000 260,000 400,000 400,000 340,000 600,000 1,500,000 740,000

More information

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) =

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) = 1 1 1.1 I R 1.1.1 c : I R 2 (i) c C (ii) t I c (t) (0, 0) c (t) c(i) c c(t) 1.1.2 (1) (2) (3) (1) r > 0 c : R R 2 : t (r cos t, r sin t) (2) C f : I R c : I R 2 : t (t, f(t)) (3) y = x c : R R 2 : t (t,

More information

4‐E ) キュリー温度を利用した消磁:熱消磁

4‐E ) キュリー温度を利用した消磁:熱消磁 ( ) () x C x = T T c T T c 4D ) ) Fe Ni Fe Fe Ni (Fe Fe Fe Fe Fe 462 Fe76 Ni36 4E ) ) (Fe) 463 4F ) ) ( ) Fe HeNe 17 Fe Fe Fe HeNe 464 Ni Ni Ni HeNe 465 466 (2) Al PtO 2 (liq) 467 4G ) Al 468 Al ( 468

More information

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d A 2. x F (t) =f sin ωt x(0) = ẋ(0) = 0 ω θ sin θ θ 3! θ3 v = f mω cos ωt x = f mω (t sin ωt) ω t 0 = f ( cos ωt) mω x ma2-2 t ω x f (t mω ω (ωt ) 6 (ωt)3 = f 6m ωt3 2.2 u ( v w) = v ( w u) = w ( u v) ma22-9

More information

A (1) = 4 A( 1, 4) 1 A 4 () = tan A(0, 0) π A π

A (1) = 4 A( 1, 4) 1 A 4 () = tan A(0, 0) π A π 4 4.1 4.1.1 A = f() = f() = a f (a) = f() (a, f(a)) = f() (a, f(a)) f(a) = f 0 (a)( a) 4.1 (4, ) = f() = f () = 1 = f (4) = 1 4 4 (4, ) = 1 ( 4) 4 = 1 4 + 1 17 18 4 4.1 A (1) = 4 A( 1, 4) 1 A 4 () = tan

More information

mugensho.dvi

mugensho.dvi 1 1 f (t) lim t a f (t) = 0 f (t) t a 1.1 (1) lim(t 1) 2 = 0 t 1 (t 1) 2 t 1 (2) lim(t 1) 3 = 0 t 1 (t 1) 3 t 1 2 f (t), g(t) t a lim t a f (t) g(t) g(t) f (t) = o(g(t)) (t a) = 0 f (t) (t 1) 3 1.2 lim

More information

(1) (2) (3) (4) 1

(1) (2) (3) (4) 1 8 3 4 3.................................... 3........................ 6.3 B [, ].......................... 8.4........................... 9........................................... 9.................................

More information

24.15章.微分方程式

24.15章.微分方程式 m d y dt = F m d y = mg dt V y = dy dt d y dt = d dy dt dt = dv y dt dv y dt = g dv y dt = g dt dt dv y = g dt V y ( t) = gt + C V y ( ) = V y ( ) = C = V y t ( ) = gt V y ( t) = dy dt = gt dy = g t dt

More information