2 Planck Planck BRST Planck Λ QG Planck GeV Planck Λ QG Friedmann CMB

Size: px
Start display at page:

Download "2 Planck Planck BRST Planck Λ QG Planck GeV Planck Λ QG Friedmann CMB"

Transcription

1 量子重力理論と宇宙論 (下巻) くりこみ理論と初期宇宙論 浜田賢二 高エネルギー加速器研究機構 (KEK) 素粒子原子核研究所 量子重力の世界は霧に包まれた距離感のない幽玄の世界にたとえること ができる 深い霧が晴れて時空が現れる 国宝松林図屏風 (長谷川等伯筆) 平成 20 年 11 月初版/平成 21 年 09 月改定/ 平成 25 年 08 月再改定 (上下巻に分離)

2 2 Planck Planck BRST Planck Λ QG Planck GeV Planck Λ QG Friedmann CMB

3 D CFT CMB CMB A 71 A.1 ( )

4 4 A B 77 B.1 G D D = C 79 C D 83 D E 85 E F 87

5 5 8 4 Weyl t 4 DeWitt-Schwinger δ (4) (0) = x x x x 1 δ (D) (0) = d D k = 0 4 D 4 D 8.1 D n F (QED) D 1 D δ (4) (0) = x e td x t 0 ( t + D) x e td x = 0 (Heat Kernel)

6 6 8 Euclid Wick I = d D x { 1 g t 2 C2 µνλσ + be D F µνf µν + n F j=1 i ψ j D/ψ j M 2 P 2 R + Λ } (8.1.1) D Weyl Cµνλσ 2 = R µνλσ R µνλσ 4 D 2 R µνr µν 2 + (D 1)(D 2) R2 (8.1.2) E D Euler E 4 D E D = G D 4(D 3)2 (D 1)(D 2) 2 R (8.1.3) G D = G 4 + (D 3)2 (D 4) (D 1) 2 (D 2) R2 (8.1.4) G 4 = R 2 µνλσ 4R 2 µν + R 2 Euler G D D E D G D Dirac D/ = e µα γ α D µ e α µ 4 (vierbein field) D e α µ e να = g µν e µα e µ β = δ αβ Dirac {γ α, γ β } = 2δ αβ D µ = µ ω µαβσ αβ + iea µ 1 (connection 1-form) Lorentz ω µαβ = e ν α( µ e νβ Γ λ µνe λβ ) Σ αβ = 1 4 [γα, γ β ] A.2 g µν = e 2ϕ ḡ µν = e 2ϕ (ĝe th ) µν Riegert ϕ h µν ĝ µν Euclid δ µν A µ = Z 1/2 3 A r µ, ψ j = Z 1/2 2 ψ r j, h µν = Z 1/2 h hr µν

7 8.1. D 7 QED e = Z e e r, t = Z t t r Ward-Takahashi (Z 1 = Z 2 ) Z e = Z 1/2 3 Riegert ϕ Riegert Z ϕ = 1 (8.1.5) D 4 D 4 Laurent Z 3 = 1 + x 1 D 4 + x 2 (D 4) 2 + (8.1.6) Z x 1 x 2 e r t r Euler b Euler D 4 b = 1 (4π) 2 n=1 b n (D 4) n (8.1.7) b n e r t r 4 D D 2

8 8 8 Wess-Zumino [δ ω1, δ ω2 ]Γ = 0 D 4η 1 + Dη 2 + 4(D 1)η 3 + (D 4)η 4 = 0 (8.1.8) ( A.1 ) D Weyl 2 G 4 M D = 2 R D 4 4(D 1) R2 (8.1.9) M D 2 R D E D E D = G 4 + ηm D η 2 2 R 2 D R 2 d D x gr = S (2) n S n (2) (ϕ, ḡ) = (D 2) n S n (2) (ϕ, ḡ) n! n=0 d D x ḡ { ϕ n 2 ϕ + Rϕ n + o(ϕ n ) } o(ϕ n ) ϕ n S (2) 1 Liouville-Polyakov 4 E D 4 d D x (D 4) n ge D = S n (ϕ, ḡ) (8.1.10) n=0 n!

9 8.1. D 9 S n (ϕ, ḡ) = d D x ḡ { 2ϕ n 4 ϕ + Ē4ϕ n + o(ϕ n ) } S 1 5 ( ) Riegert-Wess-Zumino S RWS 4(D 3)2 η = (D 1)(D 2) B 4 2/3 E 4 (8.1.10) G D (8.1.4) Hathrell 2 3 (e 6 r) D Weyl bg 4 + ch 2 H = R/(D 1) bg D c = (D 3)2 (D 4) b (D 2) b Laurent (8.1.7) c b Laurent c 1 = (D 3)2 D 2 b 2 = 1 2 b 2 + o(d 4) Hathrell e 6 r QED 4 2 S. Hathrell, Ann. of Phys. 142 (1982) 34.

10 10 8 G D Z ϕ = 1(8.1.5) 8.2 Laurent D 4 (counterterm) Z 3 Laurent (8.1.6) 1 4 d D x gf µν F µν = 1 4 Z 3 d D xe (D 4)ϕ FµνF r λσḡ r µλ ḡ νσ = 1 {( d D x 1 + x 1 4 D 4 + x ) 2 (D 4) + 2 ( + D 4 + x 1 + x 2 D 4 + ) F r µνf r λσḡ µλ ḡ νσ ϕfµνf r λσḡ r µλ ḡ νσ + 1 ( ) (D 4) 2 + (D 4)x 1 + x 2 + ϕ 2 F r 2 µνfλσḡ r µλ ḡ νσ } + (8.2.1) F r µν = µ A r ν ν A r µ = µ A r ν ν A r µ Laurent (8.2.1)

11 ϕf r2 µν Fµν r2 Riegert Wess-Zumino Riegert Weyl 3 D Riegert 1 t 2 d D x gc 2 µνλσ = 1 t 2 d D x ḡe (D 4)ϕ C2 µνλσ Laurent Wess- Zumino ϕ n C2 µνλσ Euler b Laurent (8.1.7) Euler (8.1.10) b d D x ge D = 1 (4π) {( b1 d D x D 4 + b 2 (D 4) + 2 )Ḡ4 ( + b 1 + b )( 2 D 4 + 2ϕ 4 ϕ + Ē4ϕ R ) 2 ( (D 4)b1 + b 2 + )( 2ϕ 2 4 ϕ + Ē4ϕ 2 + ) } + (8.2.2) G 4 Riegert-Wess-Zumino S ( ) S RWS Riegert 3 Duff, Nucl. Phys. B125 (1977) 334 Duff D 4 Weyl 1 ( R 2 )

12 12 8 Wess-Zumino S 2 b n b 1 b 1 (t r, e r ) = b 1 + b 1(t r, e r ) b 1 b 1 n 2 D ( A.2 ) Riegert Riegert d D xi ψ D/ψ { = d D x i ψγ µ µ ψ i t 4 ( ψγ µ ν ψ ν ψγµ ψ)h µν +i t2 16 ( ψγ µ ν ψ ν ψγµ ψ)h µλ h νλ + i t2 16 ψγ µνλ ψh µσ λ h νσ e ψγ µ ψa µ + et 2 ψγ µ ψa ν h µν et2 8 ψγ µ ψa ν h µλ h νλ } + o(t 3 ) γ µνλ = 1 (γ 3! µγ ν γ λ + anti-sym.) e t ψ Euclid δ µν 8.3 Riegert Wess- Zumino

13 Weyl d D x gc 2 µνλσ/t 2 { D 3 ( ) } d D x hµν 4 h µν + 2χ µ 2 D 3 χ µ D 2 D 1 χ µ µ ν χ ν χ µ = λ h λµ Euclid 2 = λ λ BRST I GF+FP = { d D xδ B c µ N µν (χ ν ζ ) 2 B ν + c ( µ A µ α ) } 2 B c µ c B µ B N µν 2 N µν = ( 2(D 3) 2 2 δ µν + D 2 ) D 2 D 1 µ ν BRST ξ µ /t c µ U(1) c δ B h µν = µ c ν + ν c µ 2 D δ µν λ c λ + tc λ λ h µν + t 2 h µλ ( ν c λ λ c ν ) + t 2 h νλ ( µ c λ λ c µ ) +, δ B A µ = µ c + t (c λ λ A µ + A λ µ c λ ) BRST δ B c µ = tc λ λ c µ,

14 14 8 δ B c = tc λ λ c, δ B c µ = B µ, δ B B µ = 0, δ B c = B, δ B B = 0 Riegert BRST δ B ϕ = tc λ λ ϕ + t D λc λ BRST I GF+FP = { d D x B µ N µν χ ν ζ 2 B µn µν B ν c µ N µν λ (δ B h νλ ) +B µ A µ α } 2 B2 c µ (δ B A µ ) B B µ 4 I GF = d D x { 1 2ζ χ µn µν χ ν + 1 } 2α ( µa µ ) 2 α = 1 ζ = 1 Feynman α = Z 3 α r ζ = Z h ζ r Feynman h r µν 4 h r µν h r µν(k)h r λσ( k) = D 2 1 2(D 3) k 4 IH µν,λσ 4 B µ det 1/2 (N µν )

15 I H µν,λσ = 1 2 (δ µλδ νσ + δ µσ δ νλ ) 1 D δ µνδ λσ I 2 H = I H Riegert Riegert Laurent (8.2.2) b 1 (4π) S 1(ϕ, ḡ) = b 1 2 (4π) 2 { d D x 2ϕ 4 ϕ + Ē4ϕ R } 2 ϕ(k)ϕ( k) = (4π)2 4b 1 1 k 4 b 1 t Riegert L 2 S 1 = b 1 { 2 (4π) 2 3 t 2 ϕ µ ν h µν + 1 } 18 t2 ( µ ν h µν ) 2, L 3 S 1 = 2b { 1 (4π) t 2 2 µ ϕ ν 2 ϕ µ λ ϕ ν λ ϕ 2 } 3 λϕ µ ν λ ϕ 2 µ ν ϕ 2 ϕ h µν, L 4 S 1 = 2b 1 (4π) 2 t2{ 2 ϕ µ ν ϕh µλ h νλ + µ ν ϕ λ σ ϕh µν h λσ } + h L 2 S 1 Ē4ϕ ( 2 R)ϕ R2 L 3 S 1 L 4 S 1 ϕ 4 ϕ

16 h Riegert Wess-Zumino Weyl h z ϕ h µν 1/(k 2 + z 2 ) 2 log z 2 Einstein 4 t r Riegert Einstein Riegert M P D = 4 2ϵ, t r = t r µ ϵ, e r = ẽ r µ ϵ, b = bµ 2ϵ t r ẽ r µ Riegert D µ ϵ Riegert I Feynman 8.1 t 2 r Riegert 2

17 t r (1) t r t 2 r (2) 8.1: Riegert t 2 r L 3 S 1 8.1(1) d D { k (2π) ϕ(k)ϕ( k) D b 1 t 2 r D 2 d D l 1 6 (4π) 2 2(D 3) (2π) D (l 2 + z 2 ) 2 {(l + k) 2 + z 2 } 2 [ 6(l 2 k 6 + l 6 k 2 ) + 24l 4 k 4 16(l k)(l 2 k 4 + l 4 k 2 ) 20(l k) 2 l 2 k 2 2(l k) 2 (l 4 + k 4 ) + 8(l k) 3 (l 2 + k 2 ) + 8(l k) D ( 36l 4 k (l k)(l 2 k 4 + l 4 k 2 ) + 40(l k) 2 l 2 k 2 3D 4(l k) 2 (l 4 + k 4 ) 16(l k) 3 (l 2 + k 2 ) 16(l k) 4 )]}. D l z 1 { } [ 2b 1 (4π) 2 k4 3 t 2 r (4π) 2 ( 1 z2 log ϵ µ + 7 )], 2 6 1/ ϵ = 1/ϵ γ + log 4π log k 2 /µ 2 (tadpole) 8.1(2) L 4 S 1 h µν 2 [ 2b 1 (4π) 2 k4 3 t 2 r (4π) 2 ( 1 z2 log ϵ µ + 7 )]. 2 12

18 18 8 Feynman t 2 r Z ϕ = ( 8.2) Weyl 2 3 b n Ḡ4 3 (1) (2) 8.2: 2 3 (background field method) t r ( nf Z t = ) t 2 r 1 3 (4π) 2 ϵ 7n F ẽ 2 r t 2 r (4π) 4 ϵ + o( t 4 r) (8.4.1) 1 Feynman t 2 r n F /80 U(1) 1/40 Riegert 1/60 199/120 t 2 re 2 r 2 Feynman ĝ µν = (e tĥ) µν Zĥ ĥ µν = Z 1/2 ĥ r ĥ µν Z tz 1/2 = 1 ĥ

19 Z h Zĥ Zĥ Z t t r β t = µ d dµ t r µ 0 = µ d dµ t = µ d dµ (Z t t r µ ϵ ) µ dz t β t = ϵ t r t r Z t dµ µd t r /dµ = β t = ϵ t r + o( t 2 r) µdẽ r /dµ = ϵẽ r + (8.4.1) β t = ( nf ) t 3 r (4π) 7n F 2 72 e 2 rt 3 r (4π) 4 + o(t5 r) Euler Ḡ4 b1 = 11n F , b 1 = n2 F ẽ 4 r 6 (4π) + o( t 2 r), 4 b2 = 2n3 F 9 ẽ 6 r (4π) 6 + o( t 4 r) (8.4.2) b 1 (11n F + 62)/360 Riegert 7/90 87/20 b 1 e 4 r b 2 e 6 r 2 3 Feynman

20 20 8 Riegert II Riegert 2 t 2 r Hathrell e 6 r Z ϕ = 1 8.3: Riegert e 4 r QED Z 3 x 1 = 8n F 3 x 2 = 32n2 F 9 ẽ 2 r (4π) 2 + 4n F ẽ 4 r (4π) 4, ẽ 6 r (4π) 6 (8.4.3) Laurent (8.2.1) Wess-Zumino e 2 r Riegert 2 e 4 r Feynman 8.3 2lp 2 (subdiagram) e 4 r 2 b 2 e 6 r 2

21 E D Laurent (8.2.2) e 6 r (5) 2 Riegert ϵ 4 (6) (7) (1) (4) e 6 r Hathrell Z ϕ = 1 e 6 r b 2 Riegert U(1) Z 3 t 2 r 8.4 Feynman (1) (2) 8.4: Z 3 t 2 r Riegert Feynman e 4 r Feynman e 6 r 2 Feynman 8.6

22 : Z 3 e 4 r Feynman 8.6: Z 3 e 6 r 2 Feynman QED (8.4.3) Z 3 Z 3 = 1 4n F 3 ( + ẽ 2 ( r 1 (4π) 2 ϵ + 8n2 F QED 2n F + 8 n 2 ) F ẽ4 r 1 27 b1 (4π) 4 ϵ n 3 ) F ẽ6 r 1 b1 (4π) 6 ϵ + 2 o(ẽ2 r t 2 r, t 4 r) β e = µ dẽ r dµ (8.4.4) Ward-Takahashi Z 1 = Z 2 e r Z e = Z 1/2 3 β e = ϵẽ r + ẽr 2 µ dz 3 Z 3 dµ (8.4.5)

23 Z 3 Z 3 = 1 + A 1 ϵ + A ( 2 ϵ b1 B1 2 ϵ + B ) 2 ϵ ẽ r A 1 = A 1,n ẽ 2n r, A 2 = A 2,n ẽ 2n r, n 1 n 3 B 1 = B 1,n ẽ 2n r, B 2 = B 2,n ẽ 2n r n 2 n 3 (8.4.4) (8.4.5) ϵ A 2,3 = 1 3 A 1,1A 1,2, B 2,3 = 1 4 A 1,1B 1,2 (8.4.6) µd b 1 /dµ = 2ϵ b B 1, B 2,3 QED β e = 4n F 3 e 3 r (4n (4π) + 2 F 8 n 2 ) F e 5 r 9 b 1 (4π) + 4 o(e3 rt 2 r) b 1 n F 24 e 5 r Λ QG e r Landau Riegert ( ) ϕf r2 µν Z 3 Z ϕ = 1 Z 3 2 e 6 r Laurent (8.2.1) Wess-Zumino ϕf r2 µν

24 : ϕfµν 2 e6 r I e 6 r Feynman QED Riegert Feynman 8.7 (1) (2) 2 n F e 2 rϕf r2 µν 2 (3) (4) 3 ϵϕf r2 µν 3 2 Riegert ϵ (5) Z ϵϕfµν r2 Feynman 3

25 Riegert ϵ { Γ ϕaa µν (0; k, k) I = } n 2 e 6 r 1 ( ) F δµν k 2 k 9 (4π) 6 µ k ν = 0(8.4.7) ϵ Γ = d D k 1 (2π) D d D k 2 (2π) D ϕ( k 1 k 2 )A r µ(k 1 )A r ν(k 2 )Γ ϕaa µν ( k 1 k 2 ; k 1, k 2 ) (1) (2) (3) (4) (5) Riegert Feynman Feynman Feynman Riegert ϕ 3 ϕ 2 F r2 µν b ge D Laurent (8.2.2) { Γ ϕaa µν (0; k, k) II = } n 3 F 81 b 1 e 6 r 1 ( ) δµν k 2 k (4π) 6 µ k ν = 0 ϵ (1) (3) (10) (13) (14) Z 3 2 (4) (9) 8.5 Wess-Zumino

26 : ϕfµν 2 e6 r II

27 QED log(k 2 /µ 2 ) QED 2 β e /e r = y 1 /2 y 1 = 8n F 3 e 2 r (4π) 2 + 8n F e 4 r (4π) 4 y 1 e 4 r x 1(8.4.3) Riegert QED { Γ QED = 1 y ( ) 1 k 2 2 log e 4 } r 1 + x µ 2 1 ϕ + 4n F (4π) ϕ x 1 Wess-Zumino ϕ ϕ ( e 4 ) r 1 δ ϕ Γ QED = x 1 + 4n F gr F r2 (4π) µν = y 1 4 F r2 µν gr F r2 µν 8.9: ϕfµν 2 e4 r 2 ϵ k 2 (= k µ k ν δ µν ) gµν r (= e 2ϕ δ µν ) p 2 = k 2 /e 2ϕ (8.5.1)

28 28 8 { Γ QED = 1 y ( )} 1 p log gr F µ 2 µν r2 4 Wess-Zumino log n (k 2 /µ 2 ) ϕ n Fµν r2 Wess-Zumino Weyl log(k 2 /µ 2 ) Wess-Zumino ϕc 2 µνλσ β t = β 0 t 3 r (β 0 > 0) { ( )} 1 k 2 Γ W = 2β 0 ϕ + β 0 log = t 2 r 1 gr C t 2 µνλσ r2 r(p) µ 2 C r2 µνλσ { } t r (p) t 2 r(p) = 1 β 0 log(p 2 /Λ 2 QG) (8.5.2) p (8.5.1) Λ QG = µ exp{ 1/(2β 0 t 2 r)} log n (k 2 /µ 2 ) ϕ n C 2 µνλσ Euler Euler Ḡ4 b 1 Ḡ4 2 Feynman 3 8.2(2) W G (ḡ r ) = b { 1 1 d 4 x 8Ēr 1 (4π) 2 4 Ē r 4 r 1 } 4 18 R r 2

29 R 2 W G 2 Ḡ4 Riegert-Wess-Zumino b 1 S 1 W G b 1 (4π) S 1(ϕ, ḡ 2 r ) + W G (ḡ r ) = b 1 8(4π) 2 d 4 x g r E r 4 1 r 4 E r 4 (8.5.3) R 2 Riegert-Wess-Zumino 2 Polyakov 4 Riegert-Wess-Zumino L S1 = b 1 /(4π) 2 {2ϕ r 4ϕ+ } t 2 r Γ R = ( 1 a 1 t 2 r(p) + ) L S1 (ϕ, ḡ r ) [ ( ) ]} k = {1 a 1 t 2 r + 2β 0 t 4 rϕ β 0 t 4 2 r log + L µ 2 S1 (ϕ, ḡ r ) ϕ 2 r 4 ϕ t 4 r (8.2.2) b 2 t 4 r ϕ n r 4 ϕ (n 2) 8.6

30 30 8 Riegert I Λ = Λ d D x g = Λ d D xe Dϕ Riegert Λ = Z Λ Λ r = Z Λ Λr µ 2ϵ Λ r Z Λ 4 Λ r Laurent I Λ = Λ r Z Λ = 1 + u 1 D 4 + u 2 (D 4) 2 + { ( d D x 1 + u 1 D 4 + u 2 (D 4) 2 + ) e 4ϕ ( + D 4 + u 1 + u ) 2 D 4 + ϕe 4ϕ + 1 ( (D 4) 2 + (D 4)u 1 + u 2 + ) ϕ 2 e 4ϕ 2 } + (8.6.1) b 1 N e 4ϕ = n(4ϕ) n /n! Z Λ = 1 2 b1 1 ϵ 2 b2 1 1 ϵ + 2 b2 1 1 ϵ 2 +. (8.6.2)

31 n (a) n (b) n (c) 8.10: 1/b 1 1/b u 1 n (a) n (b) n (c) 8.11: ϕe 4ϕ 1/b 2 1 Feynman 8.10 (a) (b) (c) u 1 = 4/ b 1 + 4/ b 2 1 u 2 = 8/ b 2 1 ϕe 4ϕ /b 2 1 (a) (b) Laurent (8.6.1) 2 2 u 2 (c) u 1 u 2 ϕe 4ϕ

32 32 8 u n γ Λ = µ Λr d Λ r dµ µ γ Λ = 2ϵ + µ dz Λ Z Λ dµ = (8.6.3) b 1 b 2 1 Riegert δ ϕ L Λ = (4 + γ Λ )L Λ 4 Riegert e γ 0ϕ γ 0 = 4 + γ Λ γ Λ ) γ Λ = 2b 1 (1 1 4b1 4 = 4 b b b (8.6.3)

33 33 9 Planck m pl GeV Λ QG Planck Λ QG GeV Friedmann 9.1 I = d 4 x { g 1 t 2 C2 µνλσ bg 4 + M P 2 } 2 R Λ + I M M P = 1/ 8πG Planck Riegert g µν = e 2ϕ ḡ µν ḡ µν t ḡ µν = η µν + h µν + (9.1.1)

34 34 9 th µν h µν η µν = ( 1, 1, 1, 1) x µ = (η, x i ) η (conformal time) x i (comoving coordinate) Z = [dϕdhdadx]η Vol(diff.) exp {is(ϕ, ḡ) + ii(a, X, g)} S Wess-Zumino (Jacobian) Riegert- Wess-Zumino S(ϕ, ḡ) = b 1 (4π) 2 d 4 x { ḡ 2ϕ 4 ϕ + (Ḡ4 2 3 ) 2 R ϕ R } 2 b 1 Weyl N X N W N A b 1 = 1 (N X + 11 ) N W + 62N A R 2 Λ QG (β t = β 0 t 3 r, β 0 > 0) t 2 r(p) = 1 β 0 log(p 2 /Λ 2 QG) p η µν k p = k/e ϕ ( 8.5 )

35 Planck Planck Einstein m pl Λ QG Planck m x 1/m Schwarzschild r g = 2Gm x r g m Planck m pl Planck Planck l pl (= 1/m pl ) Schwarzschild 2l pl Planck Λ QG ξ Λ = 1/Λ QG ξ l pl Riegert ˆϕ(η) b 1 4π 2 4 η ˆϕ + 6M 2 Pe 2 ˆϕ ( 2 η ˆϕ + η ˆϕ η ˆϕ) = 0

36 36 9 a Hubble H a = e ˆϕ, H = ηa a 2 = ȧ a (, proper time)τ dτ = adη Hubble b 1 8π 2 (... H +7HḦ + 4Ḣ2 + 18H 2 Ḣ + 6H 4) 3M 2 P (Ḣ + 2H 2 ) = 0 (de Sitter ) H = H D, H D = 8π 2 b 1 M P = a e H Dτ π b 1 m pl (9.2.1) Planck b 1 GUT 10 H D Planck M P = GeV Planck

37 m pl = GeV H D Planck Planck τ P = 1/H D (9.2.2) δ H = H D (1 + δ) o(δ 2 )... δ +7H D δ + 15H 2 D δ + 12H 3 D δ = 0 δ = e υτ υ 4H D, ( 3 2 ± i 3 2 ( ) (power-law) ) H D Planck Λ QG 1/Λ QG Λ QG (QCD) QCD Λ QCD

38 38 9 Weyl (1/t 2 r)cµνλσ 2 Riegert Wess-Zumino b 1 ( b 1 b 1 1 a1 t 2 r + ) = b 1 B 0 (t r ) B 0 (t r ) = 1 (1 + a 1 κ t 2 r) κ κ 0 < κ 1 Riegert b 1 4π 2 B 0 4 η ˆϕ + M 2 Pe 2 ˆϕ { 6 2 η ˆϕ + 6 η ˆϕ η ˆϕ} = 0 (9.2.3) (0, 0) b 1 8π B { η ˆϕ η ˆϕ 2 2 η ˆϕ η ˆϕ} 3M 2 P e 2 ˆϕ η ˆϕ η ˆϕ + e 4 ˆϕρ = 0 (9.2.4) ρ τ d dτ t r = β( t r ) = β 0 t 3 r

39 t 2 r(τ) = τ Λ = 1/Λ QG 1 β 0 log(1/τ 2 Λ 2 QG) p 1/τ (τ > 0) t r t r (τ) B 0 Hubble b 1 8π 2 B 0(τ) (... H +7HḦ + 4Ḣ2 + 18H 2 Ḣ + 6H 4) 3M 2 P (Ḣ + 2H 2 ) = 0 (9.2.5) b 1 8π 2 B 0(τ) ( 2HḦ Ḣ2 + 6H 2 Ḣ + 3H 4) 3M 2 PH 2 + ρ = 0 (9.2.6) H H D ρ 0 H = H D B 0 Hubble H 0 < κ < 1 3 κ = 1 2 B 0 Ḧ (9.2.6)

40 40 9 ρ(τ Λ ) = 3M 2 PH 2 (τ Λ ) ρ + 4Hρ = b 1 8π 2 Ḃ0(τ) ( 2HḦ Ḣ2 + 6H 2 Ḣ + 3H 4) B 0 Planck τ P (= 1/H D ) τ Λ (= 1/Λ QG ) (e-foldings) N e = log a(τ Λ) a(τ P ) a e H Dτ N e H D Λ QG β 0 a 1 κ t r H D /Λ QG = 60 β 0 /b 1 = 0.06 a 1 /b 1 = 0.01 κ = 0.5 H D = 1 τ Λ = 60 N e = 65.0 (τ > τ Λ ) Planck M P = GeV b 1 = 10 H D = GeV Λ QG = GeV (9.2.7)

41 CMB 10 log 10 [a(τ)/a(τλ)] τ Λ log 10 (τ/τ P ) 9.1: a(τ) Planck τ P τ Λ (= 60τ P ) Friedmann 9.3 Λ QG Einstein QCD QCD Λ QCD Λ QG Riegert Λ QG Riegert Einstein Friedmann

42 ρ H Friedman H, ρ proper time,τ 9.2: Hubble H ρ H D = 1 Friedmann I low = d 4 x g {L 2 + L 4 + } Einstein L 2 = M 2 P 2 R + L M L M Einstein 1 Planck M P 4πF π Planck M P Λ QG 4 L 4 R 2, R 2 µν, R 2 µνλσ, 1 M 2 P R µν T µν M, 1 M 4 P T µν M T M µν

43 T M µν Einstein Einstein M 2 P R µν = T M µν Einstein R = 0 L 4 Euler Riemann L 4 = α (4π) 2 Rµν R µν α α E c (< Λ QG ) Einstein α α(e c ) = α(λ QG ) + ζ log(e 2 c /Λ 2 QG) (9.3.1) N X Weyl N W N A Feynman ζ = (N X + 3N W + 12N A )/120 Ricci µ R µν (= µ Tµν) M = 0 ζ Λ QG α(λ QG ) ζ (9.3.1) α(e c ) 4 Λ QG Planck

44 44 9 M 2 P (Ḣ + 2H 2 ) + α 4π 2 (... H +7HḦ + 4Ḣ2 + 12H 2 Ḣ ) = 0 (9.3.2) 3M 2 PH 2 + ρ + α 4π 2 ( 6H Ḧ + 3Ḣ2 18H 2 Ḣ ) = 0 (9.3.3) E c = 1/τ ( ) 1 α(τ) = α 0 + ζ log τ 2 Λ 2 QG α ζ α 0 log(τ 2 Λ 2 QG) α 0 = α(λ QG ) QCD τ = τ Λ H Ḣ ρ (9.3.2) Ḧ (9.3.3) α 0 = 1 ζ = 1 (9.3.2) (9.3.3) Ḣ + 2H2 = 0 3M 2 PH 2 = ρ Friedmann H Friedmann 9.2 Friedmann R 0 Friedmann

45 R = 0 R = 6Ḣ + 12H2 (9.3.2) (9.3.3) R + 3HṘ + 4π2 α M PR 2 = 0, ρ = 3MPH α (HṘ 4π + 2 H2 R 1 ) 12 R2 Planck m rsp = 8π 2 /2αM P = π/2αm pl R 0 1/m rsp Planck Friedmann R = 0 9.3: Planck ξ Λ = 1/Λ QG ( l pl ) Hubble 1/H 0 ( 5000Mpc) 1/H ξ Λ

46

47 47 10 E m pl ( ) (cosmological perturbation theory) 10.1 ( ) E δr R E2 12H 2 D (10.1.1) 1 H = H D (9.2.1) H D Planck Planck E H D Λ QG δr/r τp 0.1 δr Λ2 QG 10 5 R τλ 12HD 2 CMB 1

48 /Λ QG Planck Planck Riegert φ ϕ(η, x) = ˆϕ(η) + φ(η, x) ˆϕ(η) (9.2.3) δ ξ φ = ξ 0 η ˆϕ λξ λ, δ ξ h µν = µ ξ ν + ν ξ µ 1 2 η µν λ ξ λ h 00 = h, h 0i = h T i + i h, h ij = h TT ij + (i h T j) δ ijh + ( i j 1 ) 2 3 δ ij h

49 i j 3 2 = i i h T i h T i h TT ij ξ i = ξ T i + i ξ S δ ξ φ = ξ 0 η ˆϕ ηξ ξ S, δ ξ h = 3 2 ηξ ξ S, δ ξ h = ξ 0 + η ξ S, δ ξ h = 2 2 ξ S, δ ξ h T i = η ξ T i, δ ξ h T i = 2ξ T i, δ ξ h TT ij = 0 Bardeen Φ = φ h 1 6 h + σ η ˆϕ, σ Ψ = φ 1 2 h + σ η ˆϕ + η σ (10.1.2) σ = h 1 η h 2 2 δ ξ σ = ξ 0 (10.1.2) h = h = 0 (conformal Newtonian gauge)[ (longitudinal gauge) ] Φ = φ + h/6 Ψ = φ h/2 ds 2 = a 2 [ (1 + 2Ψ) dη 2 + (1 + 2Φ) dx 2]

50 50 10 Ψ Φ Υ i = h T i 1 2 ηh T i, h TT ij h = h = 0 h T i = 0 T Mλ λ = 0 T M0 0 = (ρ + δρ), T Mi 0 = 4 3 ρv i, T M0 i = 4 3 ρ (v i + h 0i ), T Mi j = 1 3 (ρ + δρ)δi j (10.1.3) ρ(η) (9.2.4) δρ v i δ ξ T Mµ ν = ν ξ λ T Mµ λ λξ µ T Mλ ν + ξ λ λ T Mµ ν v i = vi T + i v vi T v δ ξ (δρ) = ξ 0 η ρ, δ ξ v = η ξ S, δ ξ vi T = η ξi T

51 D = δρ ρ + ηρ ρ σ 4 η ˆϕV, V = v η h 2, V i = v T i ηh T i, Ω i = v T i + h T i Υ i V i Ω i Υ i + V i = Ω i 10.2 Riegert Einstein δγ = 1 2 = = d 4 x gt µν δg µν d 4 x { ḡ T λ λδϕ T } µν δḡ µν { d 4 x T λ λδϕ + 1 } 2 Tµ νδh ν µ T µν T µν T µν g µν = e 2ϕ ḡ µν δg µν = 2e 2ϕ ḡ µν δϕ + e 2ϕ δḡ µν T µν (g) g µν T µν (ϕ, ḡ) Riegert ḡ µν

52 52 10 T µν (ϕ, h) Minkowski η µν Riegert T µν = e 6ϕ T µν = e 6 ˆϕ(1 6φ) T µν, T µ ν = e 4ϕ µ T ν = e 4 ˆϕ(1 4φ) T µ ν h µ ν T µν = η λ(µ T λ ν) = T µν h λ (µ ˆT ν)λ T µν ˆT µν T λ λ(= η µν T µν ) = T λ λ T µν = T R µν + T W µν + T EH µν + T M µν = 0 R W EH M Riegert-Wess-Zumino Weyl Einstein δ ξ B = ξ λ λ B = ξ 0 η B σ B = B 0 σ η B 0 Riegert-Wess-Zumino b 1 b 1 B σ = 0

53 T λ λ = 0, (10.2.1) ( 1 T i 2 i 3 i j ) T 2 ij = 0 (10.2.2) (10.2.1) { ( b 1 8π B 0(τ) 2 ηφ η ˆϕ η Φ + 8 η 2 ˆϕ + 10 ) 3 2 ηφ 2 + ( 12 3η ˆϕ ˆϕ ) ( 16 η 2 η Φ ˆϕ η 4 ) Φ 3 +2 η ˆϕ η Ψ + (8 2η ˆϕ + 2 ) 3 2 ηψ 2 + (12 3η ˆϕ 10 3 ˆϕ ) η 2 η Ψ + ( η ˆϕ 2 ) } Ψ +M 2 Pe 2 ˆϕ { 6 2 ηφ + 18 η ˆϕ η Φ 4 2 Φ 6 η ˆϕ η Ψ + ( 12 2 η ˆϕ + 12 η ˆϕ η ˆϕ 2 2 ) Ψ } = 0 (10.2.3) (9.2.3) 4 η ˆϕ η B 0 (10.2.2) 2 { 2 t 2 r(τ) + b 1 8π 2 B 0(τ) 4 ηφ Φ 4 ηψ } 3 2 Ψ { ηφ + 4 η ˆϕ η Φ η ˆϕ η Ψ + ( η ˆϕ 8 3 η ˆϕ η ˆϕ 8 ( η ˆϕ η ˆϕ η ˆϕ ) 9 2 Φ ) } Ψ +M 2 Pe 2 ˆϕ { 2Φ 2Ψ} = 0 (10.2.4) Einstein t r 0 Riegert Φ = Ψ (= φ)

54 54 10 Einstein Einstein Φ = Ψ Φ = Ψ = φ (10.2.3) Riegert φ T µ µ tr 0 = b 1 4π 2 ( 4 η φ 2 2 η 2 φ + 4 φ ) +M 2 Pe 2 ˆϕ { 6 2 ηφ 6 2 φ + 12 η ˆϕ η φ +12 ( 2 η ˆϕ + η ˆϕ η ˆϕ) φ } j 2 T ij = 0 2 { } 3 t 2 η Υ i η 2 Υ i r(τ) b {( 1 1 8π B 0(τ) ˆϕ η ˆϕ ) ( 1 η η ˆϕ η Υ i ˆϕ η ˆϕ ) } η η ˆϕ Υ i { } +MPe 2 2 ˆϕ 1 2 ηυ i + η ˆϕΥi = 0 (10.2.5) T ij = 0 2 { 4 t 2 η h TT ij r(τ) + b 1 8π 2 B 0(τ) ηh TT ij } + 4 h TT ij {( ˆϕ η ˆϕ ) η η ˆϕ ηh 2 TT ( ˆϕ η ˆϕ ) η η ˆϕ { +MPe 2 2 ˆϕ ηh TT ij η ˆϕ η h TT ij ij + 2 h TT ij } h TT ij ( ˆϕ η ˆϕ ) η η ˆϕ } = 0 η h TT ij

55 dτ = a(τ)dη τ a(τ) = e ˆϕ(τ) Hubble H(τ) = ȧ(τ)/a(τ) 2 = a 2 ( η = a τ, ) k2 a 2 2 η = a 2 ( 2 τ + H τ ),, η 3 = a { 3 τ 3 + 3H τ 2 + ( Ḣ + 2H 2) } τ, η 4 = a { 4 τ 4 + 6H τ 3 + ( 4Ḣ + 11H2) τ 2 + ( Ḧ + 7HḢ + } 6H3) τ η ˆϕ = ah, 2 η ˆϕ = a 2 ( Ḣ + H 2), 3 η ˆϕ = a 3 ( Ḧ + 4HḢ + 2H3), 4 η ˆϕ = a 4 (... H +7HḦ + 4Ḣ2 + 18H 2 Ḣ + 6H 4) 10.3 (10.1.3) T Mλ λ = 0, T M 00 = e 4ϕ (ρ + δρ + 4ρφ), T M 0i = 4 ( 3 e4ϕ ρ v i + 1 ) 2 h 0i, T M ij = 1 3 e4ϕ (ρ + δρ + 4ρφ) δ ij (10.3.1)

56 56 10 T η ˆϕ i T 2 i0 = 0, i T 2 i0 = 0 D {( b 1 8π B 0(τ) 2 2 ˆϕ ) 2 2 η + 2 η ˆϕ η ˆϕ 3 2 ηφ 2 + ( 2 η 3 ˆϕ 4 η 2 ˆϕ η ˆϕ) η Φ ( + η ˆϕ 2 2 η ˆϕ + 2 η ˆϕ η ˆϕ ) ( 2 2 η Φ ˆϕ ) 4 η η ˆϕ Φ ( + η ˆϕ 2 η 2 ˆϕ ) 2 2 η ˆϕ η ˆϕ η Ψ + ( 2 η 3 ˆϕ η ˆϕ η ˆϕ η ˆϕ) Ψ ( + 2 η 2 ˆϕ ˆϕ ) } 2 η η ˆϕ Ψ + 2 { 4 t 2 r(τ) 3 4 Φ 4 η ˆϕ 2 η Φ + 4 } 3 4 Ψ + 4 η ˆϕ 2 η Ψ +M 2 Pe 2 ˆϕ2 2 Φ + e 4 ˆϕρD = 0 2 (10.2.3) (10.2.4) Φ Ψ D V { b 1 8π B 0(τ) ηφ t 2 r(τ) η ˆϕ 2 ηψ + ( η ˆϕ η ˆϕ η ˆϕ + 4 ( 2 2 η ˆϕ 2 3 η ˆϕ η ˆϕ + 2 { η Φ η Ψ +M 2 Pe 2 ˆϕ { 2 η Φ 2 η ˆϕΨ } 4 3 e4 ˆϕρV = 0 } ) 9 2 η Φ 4 3 ˆϕ η 2 Φ ) 9 2 η Ψ + (2 3η ˆϕ 2 3 η ˆϕ 2 ) Ψ 3 (10.2.3) (10.2.4) V }

57 T 0i = 0 Ω i 2 { } ( 2 t 2 η 2 Υ i 4 b 1 1 Υ i r(τ) 8π B 0(τ) ˆϕ η ˆϕ ) η η ˆϕ M 2 Pe 2 ˆϕ 2 Υ i 4 3 e4 ˆϕρΩ i = 0 2 Υ i Υ i 2 (10.2.5) Ω i

58

59 59 11 CFT CMB Λ QG GeV (= GeV/3 o K) ( 9.3 ) Planck Planck (Mpc) CMB Planck Planck CMB τ i = 1/E i (E i H D ) Φ = Ψ Riegert φ 4 Riegert-

60 60 11 CFT CMB Wess-Zumino φ(τ i, x)φ(τ i, x ) = 1 4b 1 log ( m 2 x x 2) (11.1.1) b 1 Riegert-Wess-Zumino m τ i Planck m = a(τ i )H D (11.1.2) τ i r r = a(τ i ) x x (11.1.1) Planck L P = 1/H D 3 Fourier φ(x) Fourier φ(x) = φ(k) 2 d 3 k (2π) 3 φ(k)eik x φ(k) φ(k ) = φ(k) 2 (2π) 3 δ 3 (k + k ) (11.1.3) Fourier log ( m 2 x 2) = k>ϵ d 3 k 4π 2 ( ) m eik x 2 log (2π) 3 k 3 ϵ 2 e 2γ 2 k = k ϵ( 1) γ Euler Fourier δ 3 (k) (11.1.1) φ(k) 2 = π2 b 1 1 k 3

61 φ(x) P φ φ 2 (x) = dk k P φ(k) (11.1.3) φ 2 (x) = = d 3 k d 3 k (2π) 3 (2π) φ(k) 3 φ(k ) e i(k+k ) x dk k 3 k 2π 2 φ(k) 2 P φ (τ i, k) = k3 2π 2 φ(τ i, k) 2 = 1 2b 1 (11.1.4) Harrison-Zel dovich-peebles k n s 1 n s = 1 1 Υ i h ij TT 2 h ij TT 4 Weyl 2 P h (τ i, k) = k3 2π 2 h TT(τ i, k) 2 = A t A t 2 A t k n t n t = τ = τ Λ 1 n s 1

62 62 11 CFT CMB τ i Ψ = Φ = φ Φ(τ i, k) = Ψ(τ i, k) Ψ = Φ (10.2.4) Φ(τ Λ, k) + Ψ(τ Λ, k) = 0 (11.2.1) (10.2.3) (10.2.4) τ Φ Ψ 2 Φ Φ(τ Λ, k) = T Φ (τ Λ, τ i ) Φ(τ i, k) P Φ (τ Λ, k) = TΦ 2 (τ Λ, τ i )P φ (τ i, k) k a(τ) H D 2 2 k 2 /m 2 a(τ) 2 a(τ i ) = 1 Planck H D m a(τ) β 0 a 1 κ 2 τ t = H D τ

63 Φ and Ψ log 10 (τ/τ P ) τ Λ 11.1: Bardeen Φ( ) Ψ( ) Φ = Ψ(= φ) 1/ 20 k = 0.01Mpc 1 m = (= 60λ)Mpc 1 Bardeen τ Λ Φ = Ψ b 1 = 10 Planck m = Mpc 1 (e-foldings) H D /Λ QG H D /Λ QG = 60 β 0 /b 1 = 0.06 a 1 /b 1 = 0.01 κ = 0.5 N e = / 2b 1 = P φ A t = Friedmann

64 64 11 CFT CMB Bardeen Potential Φ(b 1 =10, m=0.0156) proper time, log 10 (τ/τ p ) k [Mpc -1 ] proper time τ k [Mpc -1 ] : Bardeen Φ τ = 60 Tensor Perturbation (b 1 =10, m=0.0156) k [Mpc -1 ] proper time, log 10 (τ/τ p ) 11.3: Riegert τ φ = 2 τ φ = 0 δ R = δr 12m 2 = 1 2m 2 e2φ ( 2 φ i φ i φ )

65 Fourier δ R (k) = k2 2m 2 φ NL(k) (11.2.2) Riegert φ 2 d 3 ( ) q 3 φ NL (k) = φ(k) + φ (k/2 q) φ (k/2 + q) (2π) q2 (11.2.3) k 2 φ NL (x) = φ(x) + f NL φ 2 (x) f NL 1 n s > 1 f NK 1 1/2b 1 A s ( ) Harrison-Zel dovich-peebles (n s 1) ξ Λ ξ Λ = 1/Λ QG ( L P ) Planck ξ Λ 2 t r t 2 r(k) = 1/β 0 log(k 2 /λ 2 ) ) v/ log(k 2 /λ 2 ) ( k P s (k) = A s (11.2.4) m v λ λ = a(τ i )Λ QG (11.2.5) Planck m/λ = H D /Λ QG k = λ

66 66 11 CFT CMB 9.3 k k < λ (11.2.4) P t (k) = A t ( k m ) v/ log(k 2 /λ 2 ) (11.2.6) 11.3 A t r = A t A s CMB Fourier H 2 D D(τ Λ, k) = 2 k2 e 3 H(τ Λ ) 2e 2N m Φ(τ Λ, k) 2 ρ(τ Λ ) = 3MPH 2 2 (τ Λ ) N e

67 11.3. CMB CMB P s (11.2.4) P t (11.2.6) Friedmann CMB CMBFAST WMAP wmap 5yrs acbar2008 l(l + 1)Cl/2π Multipole, l 11.4: CMB (TT ) WMAP5 ACBAR2008 r = 0.06 λ = (= m/60)mpc 1 v = EE ( ) τ e = 0.08 Ω b = Ω c = 0.20 Ω vac = H 0 = 73.1 T cmb = Y He = 0.24 [χ 2 /dof = 1.10 (2 l 1000)] λ l k l kd dec

68 68 11 CFT CMB l(l + 1)Cl/2π Multipole, l 11.5: CMB TE WMAP [χ 2 /dof = (2 l 1000)] d dec 14000Mpc l = 2, Mpc 1 λ = Mpc 1 (11.2.5) λ Λ QG GeV(9.2.7) 1 a(τ i ) = Mpc GeV /λ 4000Mpc ξ Λ = 1/Λ QG cm N e Planck

69 11.3. CMB Λ QG 3 o K (l < 100) r = 0.06 EE ( ) τ e = 0.08 TT WMAP 5 (WMAP5) ACBAR(Arcminute Cosmology Bolometer Array Receiver) 11.4 TE WMAP5 11.5

70

71 71 A A.1 ( ) Christoffel Riemann Γ λ µν = 1 2 gλσ ( µ g νσ + ν g µσ σ g µν ), R λ µσν = σ Γ λ µν ν Γ λ µσ + Γ λ ρσγ ρ µν Γ λ ρνγ ρ µσ, Ricci R µν = R λ µλν Ricci R = Rµ µ Christoffel µ A σ 1 σ m λ 1 λ n = µ A σ 1 σ m λ 1 λ n n j=1 Γ ν j µλ j A σ 1 σ m λ 1 ν j λ n + m j=1 Γ σ j µν j A σ 1 ν j σ m λ 1 λ n [ µ, ν ] A λ1 λ n = n Rµνλ j j=1 σ j A λ1 σ j λ n A D Riemann R µ νλσ + Rµ λσν + Rµ σνλ = 0, ρ R µ νλσ + λr µ νσρ + σ R µ νρλ = 0 Bianchi µ R µ λνσ = ν R λσ σ R λν µ R µ ν = ν R/2

72 72 A δg µν = g µλ g νσ δg λσ, δ g = 1 2 gg µν δg µν, δγ λ µν = 1 2 gλσ ( µ δg νσ + ν δg µσ σ δg µν ), δr λ µσν = σ δγ λ µν ν δγ λ µσ = 1 2 gλρ{ σ µ δg νρ + σ ν δg µρ σ ρ δg µν ν µ δg σρ ν σ δg µρ + ν ρ δg µσ }, δr µν = δr λ µλν = 1 { ( )} µ λ δg λν + ν λ δg λµ 2 δg µν µ ν g λσ δg λσ 2 R λ µ σ νδg λσ + 1 ( ) R λ 2 µ δg λν + Rν λ δg λµ, δr = δg µν R µν + g µν δr µν = R µν δg µν + µ ν δg µν 2 (g µν δg µν ) δ( µ A) = µ δa, δ( µ ν A) = µ ν δa 1 2 λ A ( µ δg νλ + ν δg µλ λ δg µν ), δ( 2 A) = 2 δa δg µν µ ν A µ A ν δg µν λ A λ (g µν δg µν ) A Weyl Weyl δ ω g µν = 2ωg µν δ ω gr = (D 2)ω gr 2(D 1) g 2 ω 2 δ ω gr µνλσ R µνλσ = (D 4)ω gr µνλσ R µνλσ 8 gr µν µ ν ω, δ ω gr µν R µν = (D 4)ω gr µν R µν 2 gr 2 ω

73 A.1. ( ) 73 2(D 2) gr µν µ ν ω, δ ω gr 2 = (D 4)ω gr 2 4(D 1) gr 2 ω, δ ω g 2 R = (D 4)ω g 2 R + (D 6) g λ R λ ω 2 gr 2 ω 2(D 1) g 4 ω, δ ω gfµν F µν = (D 4)ω gf µν F µν D (8.1.8) [δ ω1, δ ω2 ]Γ = 2{4η 1 + Dη 2 + 4(D 1)η 3 + (D 4)η 4 } d D x grω [1 2 ω 2] Euler D = 2 Euler R µν = 1 2 g µνr D = 4 Euler R µλσρ R λσρ ν 2R µλνσ R λσ 2R µλ R λ ν + R µν R = 1 4 g µνg 4 g µν = e 2ϕ ḡ µν Riegert Γ λ µν = Γ λ µν + ḡ λ µ ν ϕ + ḡ λ ν µ ϕ ḡ µν λ ϕ, R λ µσν = R λ µσν + ḡ λ ν µσ ḡ λ σ µν + ḡ µσ λ ν ḡ µν λ σ +(ḡ λ νḡ µσ ḡ λ σḡ µν ) ρ ϕ ρ ϕ, R µν = R µν (D 2) { µν ḡ 2 µν ϕ + (D 2) λ ϕ λ ϕ }, R = e { 2ϕ R 2(D 1) 2 ϕ (D 1)(D 2) λ ϕ λ ϕ }

74 74 A µν = µ ν ϕ µ ϕ ν ϕ ḡ µν = (ĝe h ) µν h µν Γ λ µν = ˆΓ λ µν + ˆ (µ h λ ν) 1 2 ˆ λ h µν ˆ (µ (h 2 ) λ ν) 1 4 ˆ λ (h 2 ) µν h λ ˆ σ (µ h σ ν) hλ ˆ σ σ h µν + o(h 3 ), R = ˆR ˆR µν h µν + ˆ µ ˆ ν h µν 1 4 ˆ λ h µ ˆ ν λ h ν µ ˆR σ µλνh λ σh µν ˆ ν h ν ˆ µ λ h λµ ˆ µ (h µ ˆ ν λ h ν λ) + o(h 3 ), R µν = ˆR µν ˆR σ µλνh λ σ + ˆR λ (µh ν)λ + ˆ (µ ˆ λ h ν)λ 1 2 ˆ 2 h µν 1 2 hλ (µ ˆ 2 h ν)λ 1 2 ˆ λ h σ µ ˆ σ h νλ 1 4 ˆ µ h λ σ ˆ ν h σ λ 1 2 ˆ λ (h λ σ ˆ (µ h σ ν)) ˆ λ (h σ (µ ˆ ν) h λ σ) ˆ λ (h λ σ ˆ σ h µν ) + o(h 3 ) a (µ b ν) = (a µ b ν + a ν b µ )/2 R = ḡ µν Rµν ḡ µν = ĝ µν h µν + [ ˆ λ, ˆ ν ]h λ µ = h λ σ ˆR σ µνλ + h µσ ˆRσ ν R µν R A.2 g µν = e α µe να D α β γ δ Lorentz µ ν λ σ Einstein Lorentz {γ α, γ β } = 2η αβ Einstein e µ αγ α ψ Dirac (adjoint) Lorentz ψ = ψ γ 0 D µ = µ ω µαβσ αβ

75 A (connection 1-form)ω µ dx µ ( ) ω µαβ = e ν α µ e νβ = e ν α µ e νβ Γ λ µνe λβ Lorentz ω µαβ = ω µβα Σ αβ Lorentz [ Σ αβ, Σ γδ] = η βγ Σ αδ η αγ Σ βδ + η βδ Σ γα η δα Σ γβ [D µ, D ν ] = 1 2 ( µω ναβ ν ω µαβ + [ω µ, ω ν ] αβ ) Σ αβ = 1 2 R µναβσ αβ Lorentz Σ αβ = 0 Einstein Σ µν = e µ αe ν βσ αβ (Σ µν ) λσ = g µ λ gν σ g µ σg ν λ D µ = ν Σ αβ = 1 [ γ α, γ β] 4 Weyl Weyl δ ω g µν = 2ωg µν δ ω e µ α = ωe µ α, δ ω e µα = ωe µα, δ ω ψ = 1 D 1 D ωψ, δ ω ψ = ω 2 2 ψ δ ω ω µαβ = ( e µα e λ β e µβ e λ α) λ ω, δ ω (e µ αγ α D µ ψ) = D + 1 ωe µ 2 αγ α D µ ψ γ α Σ αβ = 1(D 2 1)γβ ( δ ω g µ ψe α γ α D µ ψ ) ( = Dω + 1 D ω D + 1 ) g µ ω ψe 2 2 αγ α D µ ψ = 0 D Weyl

76 76 A Riegert Riegert ē µα = (e 1 2 h ) µα = η µα h µα (h2 ) µα +, ē µ α = (e 1 2 h ) µ α = δ α µ 1 2 hµ α (h2 ) µ α + ē α µē να = ḡ µν ē µ αē µβ = η αβ Lorentz ω µαβ = ( ē ν a µ ē νβ Γ ) λ µνē λβ = 1 2 ( αh µβ β h µα ) 1 ( ) h λ 8 α µ h λβ h λ β µ h λα 1 ( hµλ α h λ β h µλ β h λ 1 ( ) α) + h λ 4 4 α λ h µβ h λ β λ h µα +o(h 3 )

77 77 B B.1 G D D = 4 D 4 Euler G 4 D = 4 d D x gg 4 = (D 4) n n=0 n! { d D x ĝ ϕ n Ḡ 4 + 4(D 3)ϕ n Rµν µ ν ϕ 2(D 3)ϕ n R 2 ϕ 2(D 2)(D 3)(D 4)ϕ n 2 ϕ λ ϕ λ ϕ (D 2)(D 3) 2 (D 4)ϕ n ( λ ϕ λ ϕ) 2 } (B.1.1) D M D (8.1.9) d D x gm D = D 4 d D x gr 2 4(D 1) 1 (D 4) n { = d D x ĝ (D 4)ϕ n R2 4(D 1) n! n=0 2(D 1)(D 6)ϕ n R 2 ϕ + 2(D 1)(D 2)ϕ n λ R λ ϕ +4(D 1) 2 ϕ n 4 ϕ + 8(D 1) 2 (D 4)ϕ n 2 ϕ λ ϕ λ ϕ +(D 1) 2 (D 2) 2 (D 4)ϕ n ( λ ϕ λ ϕ) 2 } (B.1.2) E D (8.1.3) (B.1.2) (D 4) n o(ϕ n+2 ) o(ϕ n+3 ) (B.1.1) E D (8.1.10) o(ϕ n+1 ) o(ϕ n+2 ) o(ϕ n+3 )

78 78 B E D = G 4 + ηm D η η = 4(D 3) 2 /(D 1)(D 2) E D G D (8.1.4) E D d D x ge D = d D x gg D G D d D x gg D = (D 4) n n=0 n! d D x ĝ {ϕ n Ē D + 4(D 3)2 D 2 ϕn 4 ϕ +4(D 3)ϕ n Rµν µ ν ϕ 4(D 3)(D2 6D + 10) ϕ n R (D 1)(D 2) 2 ϕ 2(D 3)2 (D 6) 2(D 3)(D 4)3 (D 1)(D 2) ϕn λ R λ ϕ ϕ n D 2 2 ϕ λ ϕ } λ ϕ ( = d D x ĝ{ḡ4 + (D 4) 2ϕ 4 ϕ + Ē4ϕ R ) (2ϕ 2 (D 4)2 2 4 ϕ + Ē4ϕ 2 + 6ϕ 4 ϕ + 8ϕ R µν µ ν ϕ 28 9 ϕ R 2 ϕ ϕ λ R λ ϕ 14 9 R 2 ϕ R 2 ϕ R ) ! (D 4)3( 2ϕ 3 4 ϕ + Ē4ϕ ϕ λ ϕ λ ϕ + 9ϕ 2 4 ϕ + ) } +o((d 4) 4 ) 1 1 D Ricci D = 2 d D x (D 2) n gr = n! n=0 d D x ĝ { (D 1)ϕ n 2 ϕ + Rϕ n} n = 1 Liouville-Polyakov

79 79 C C.1 D Euclid d D p = dω D = D Euclid p D 1 dp dω D, (p 2 = p µ p µ ) D 1 sin D 1 l θ l dθ l = 2πD/2 l=1 Γ ( ) D 2 d D p (2π) D p 2 p 2n (p 2 + L) = 1 Γ α (4π) D/2 ( n + D 2 p µ ) ( ) Γ α n D 2 ) L D/2+n α Γ(α) Γ ( D 2 d D p (2π) p µp D ν f(p 2 ) = 1 D δ µν d D p (2π) p µp D ν p λ p σ f(p 2 1 ) = d D p (2π) D p2 f(p 2 ), D(D + 2) (δ µνδ λσ + δ µλ δ νσ + δ µσ δ νλ ) d D p (2π) D p4 f(p 2 ) p µ

80 80 C Feynman Feynmann 1 Γ(α + β) 1 = A α Bβ Γ(α)Γ(β) 0 dx (1 x)α 1 x β 1 [(1 x)a + xb] α+β A = p 2 +z 2 B = (p + q) 2 + z 2 z 2 d D p f(p µ, q ν ) (2π) D (p 2 + z 2 ) α ((p + q) 2 + z 2 ) β = Γ(α + β) Γ(α)Γ(β) 1 0 dx(1 x) α 1 x β 1 d D p f(p µ xq µ, q ν ) (2π) D [p 2 + z 2 + x(1 x)q 2 ] α+β D = 4 2ϵ ϵ Γ(ϵ) = 1 ϵ γ + ϵ 2 ( γ 2 + π2 6 a ϵ = e ϵ ln a = 1 + ϵ ln a + o(ϵ 2 ) ) + o(ϵ 2 ), a p 2 z 2 D Euclid {γ µ, γ ν } = 2δ µν γ λ γ λ = D, γ λ γ µ γ λ = (D 2)γ µ, γ λ γ µ γ ν γ λ = (D 4)γ µ γ ν + 4δ µν, γ λ γ µν = γ λµν δ λµ γ ν + δ λν γ µ

81 C δ µν γ µν = 1 2 [γ µ, γ ν ], γ λµν = 1 3! (γ λγ µ γ ν + γ µ γ ν γ λ + γ ν γ λ γ µ γ λ γ ν γ µ γ ν γ µ γ λ γ µ γ λ γ ν )

82

83 83 D D.1 (10.2.3) (10.2.4) t r Hubble H = H D / B 0 = 1 T = b 1 B 0 t 2 r/8π 2 ( 1) k 2 /a 2 a 2... Φ Φ 36 Φ 48 Φ Ψ +14 Ψ + 36 Ψ + 48Ψ +6 ( Φ + 4 Φ Ψ 4Ψ ) = 0 (D.1.1) 4 3 Φ Φ Φ 4 3 Ψ Ψ + 8 T 2(Φ + Ψ) = 0 ( Φ + Φ Ψ Ψ) (D.1.2) f = Ψ Φ... f +7 f + 15f + 12f = 0, (... Φ ) 12 T 7 Φ 12 T Φ = f ( ) 6 T f 1 12 T f

84 84 D ( ) ( ) f = c 1 e 4τ + c 2 e τ sin 2 τ + c 3 e τ cos 2 τ ( Φ = (a 1 + c 1 )e τ + (a 2 + c 2 ) +c T c 2 3c 3 e 3 2 τ sin ) 12 T τ e 4τ 3c2 + 5c 3 + e 3 2 τ cos 14 ( ) 3 2 τ ( + (a 3 + c 3 ) ) ( 3 2 τ T T τ ) e τ (D.1.3) T = 0 (D.1.1) Φ = Ψ = ω... ω +6 ω ω 3 ω 12ω = 0 (D.1.2) 9.2 ˆϕ e τ e 4τ e 3τ/2 sin( 3τ/2) e 3τ/2 cos( 3τ/2) T = 0 (D.1.3) Φ T 1 Φ T τ

85 85 E E.1 Planck h = cm 2 g s 1 (speed of light) c = cm s 1 Newton G = cm 3 g 1 s 2 Planck m pl = g = GeV/c 2 Planck M P = GeV/c 2 Planck l pl = cm Planck t pl = s Boltzmann k B = erg K 1 (Megaparsec) 1Mpc = cm Hubble H 0 = 100h km s 1 Mpc 1 Hubble c/h 0 = 2998h 1 Mpc ( h 0.7 ) (c = h = k B = 1) 1 cm = h/gev 1 s = h/gev/c 1 g = GeV/c 2 1 erg = GeV 1 K = GeV/k B

86

87 87 F J. Collins, Renormalization (Cambridge University Press, 1984). T. Muta, Foundations of Quantum Chromodynamics (World Scientific, 1987). S. Hathrell, Trace Anomalies and λϕ 4 Theory in Curved Space, Ann. of Phys. 139 (1982) 136. S. Hathrell, Trace Anomalies and QED in Curved Space, Ann. of Phys. 142 (1982) 34. K. Hamada and F. Sugino, Background-metric Independent Formulation of 4D Quantum Gravity, Nucl. Phys. B553 (1999) 283. K. Hamada, Resummation and Higher Order Renormalization in 4D Quantum Gravity, Prog. Theor. Phys. 108 (2002) 399. K. Hamada, Renormalizable 4D Quantum Gravity as a Perturbed Theory from CFT, Found. Phys. 39 (2009) 1356.

88 88 F E. Kolb and M. Turner, The Early Univrse (Westview Press,1990). A. Liddle and D. Lyth, Cosmological Inflation and Large-Scale Structure (Cambridge University Press, 2000). S. Weinberg, Cosmology (Oxford University Press, 2008) CMB R. Durrer, The Theory of CMB Anisotropies, J. Phys. Stud. 5 (2001) 177., ( K. Hamada and T. Yukawa, CMB Anisotropies Reveal Quantized Gravity, Mod. Phys. Lett. A20 (2005) 509. K. Hamada, S. Horata and T. Yukawa, Space-time Evolution and CMB Anisotropies from Quantum Gravity, Phys. Rev. D74 (2006) K. Hamada, S. Horata and T. Yukawa, From Conformal Field Theory Spectra to CMB Multipoles in Quantum Gravity Cosmology, Phys. Rev. D81 (2010) K. Hamada, S. Horata and T. Yukawa, Focus on Quantum Gravity Research (Nova Science Publisher, NY, 2006), Chap. 1 entitled by Background Free Quantum Gravity and Cosmology.

untitled

untitled 20 11 1 KEK 2 (cosmological perturbation theory) CMB R. Durrer, The theory of CMB Anisotropies, astro-ph/0109522; A. Liddle and D. Lyth, Cosmological Inflation and Large-Scale Structure (Cambridge University

More information

QCD 1 QCD GeV 2014 QCD 2015 QCD SU(3) QCD A µ g µν QCD 1

QCD 1 QCD GeV 2014 QCD 2015 QCD SU(3) QCD A µ g µν QCD 1 QCD 1 QCD GeV 2014 QCD 2015 QCD SU(3) QCD A µ g µν QCD 1 (vierbein) QCD QCD 1 1: QCD QCD Γ ρ µν A µ R σ µνρ F µν g µν A µ Lagrangian gr TrFµν F µν No. Yes. Yes. No. No! Yes! [1] Nash & Sen [2] Riemann

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc2.com/ 1 30 3 30.1.............. 3 30.2........................... 4 30.3...................... 5 30.4........................ 6 30.5.................................. 8 30.6...............................

More information

重力と宇宙 新しい時空の量子論

重力と宇宙 新しい時空の量子論 Summer Institute at Fujiyoshida, 2009/08/06 KEK/ Conformal Field Theory on R x S^3 from Quantized Gravity, arxiv:0811.1647[hep-th]. Renormalizable 4D Quantum Gravity as A Perturbed Theory from CFT, arxiv:0907.3969[hep-th].

More information

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i July 8, 4. H H H int H H H int H int (x)d 3 x Schrödinger Picture Ψ(t) S e iht Ψ H O S Heisenberg Picture Ψ H O H (t) e iht O S e iht Interaction Picture Ψ(t) D e iht Ψ(t) S O D (t) e iht O S e ih t (Dirac

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc2.com/ 1 6 3 6.1................................ 3 6.2.............................. 4 6.3................................ 5 6.4.......................... 6 6.5......................

More information

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p.

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p. tomocci 18 7 5...,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p. M F (M), X(F (M)).. T M p e i = e µ i µ. a a = a i

More information

Einstein ( ) YITP

Einstein ( ) YITP Einstein ( ) 2013 8 21 YITP 0. massivegravity Massive spin 2 field theory Fierz-Pauli (FP ) Kinetic term L (2) EH = 1 2 [ λh µν λ h µν λ h λ h 2 µ h µλ ν h νλ + 2 µ h µλ λ h], (1) Mass term FP L mass =

More information

Dirac 38 5 Dirac 4 4 γ µ p µ p µ + m 2 = ( p µ γ µ + m)(p ν γ ν + m) (5.1) γ = p µ p ν γ µ γ ν p µ γ µ m + mp ν γ ν + m 2 = 1 2 p µp ν {γ µ, γ ν } + m

Dirac 38 5 Dirac 4 4 γ µ p µ p µ + m 2 = ( p µ γ µ + m)(p ν γ ν + m) (5.1) γ = p µ p ν γ µ γ ν p µ γ µ m + mp ν γ ν + m 2 = 1 2 p µp ν {γ µ, γ ν } + m Dirac 38 5 Dirac 4 4 γ µ p µ p µ + m 2 p µ γ µ + mp ν γ ν + m 5.1 γ p µ p ν γ µ γ ν p µ γ µ m + mp ν γ ν + m 2 1 2 p µp ν {γ µ, γ ν } + m 2 5.2 p m p p µ γ µ {, } 10 γ {γ µ, γ ν } 2η µν 5.3 p µ γ µ + mp

More information

1.1 foliation M foliation M 0 t Σ t M M = t R Σ t (12) Σ t t Σ t x i Σ t A(t, x i ) Σ t n µ Σ t+ t B(t + t, x i ) AB () tα tαn µ Σ t+ t C(t + t,

1.1 foliation M foliation M 0 t Σ t M M = t R Σ t (12) Σ t t Σ t x i Σ t A(t, x i ) Σ t n µ Σ t+ t B(t + t, x i ) AB () tα tαn µ Σ t+ t C(t + t, 1 Gourgoulhon BSSN BSSN ϕ = 1 6 ( D i β i αk) (1) γ ij = 2αĀij 2 3 D k β k γ ij (2) K = e 4ϕ ( Di Di α + 2 D i ϕ D i α ) + α ] [4π(E + S) + ĀijĀij + K2 3 (3) Ā ij = 2 3Āij D k β k 2αĀikĀk j + αāijk +e

More information

[1] convention Minkovski i Polchinski [2] 1 Clifford Spin 1 2 Euclid Clifford 2 3 Euclid Spin 6 4 Euclid Pin Clifford Spin 10 A 12 B 17 1 Cliffo

[1] convention Minkovski i Polchinski [2] 1 Clifford Spin 1 2 Euclid Clifford 2 3 Euclid Spin 6 4 Euclid Pin Clifford Spin 10 A 12 B 17 1 Cliffo [1] convention Minkovski i Polchinski [2] 1 Clifford Spin 1 2 Euclid Clifford 2 3 Euclid Spin 6 4 Euclid Pin + 8 5 Clifford Spin 10 A 12 B 17 1 Clifford Spin D Euclid Clifford Γ µ, µ = 1,, D {Γ µ, Γ ν

More information

: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j =

: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j = 72 Maxwell. Maxwell e r ( =,,N Maxwell rot E + B t = 0 rot H D t = j dv D = ρ dv B = 0 D = ɛ 0 E H = μ 0 B ρ( r = j( r = N e δ( r r = N e r δ( r r = : 2005 ( 2006.8.22 73 207 ρ t +dv j =0 r m m r = e E(

More information

A

A A04-164 2008 2 13 1 4 1.1.......................................... 4 1.2..................................... 4 1.3..................................... 4 1.4..................................... 5 2

More information

2009 2 26 1 3 1.1.................................................. 3 1.2..................................................... 3 1.3...................................................... 3 1.4.....................................................

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 1 19 3 19.1................... 3 19.............................. 4 19.3............................... 6 19.4.............................. 8 19.5.............................

More information

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T NHK 204 2 0 203 2 24 ( ) 7 00 7 50 203 2 25 ( ) 7 00 7 50 203 2 26 ( ) 7 00 7 50 203 2 27 ( ) 7 00 7 50 I. ( ν R n 2 ) m 2 n m, R = e 2 8πε 0 hca B =.09737 0 7 m ( ν = ) λ a B = 4πε 0ħ 2 m e e 2 = 5.2977

More information

1 (Contents) (1) Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji

1 (Contents) (1) Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji 8 4 2018 6 2018 6 7 1 (Contents) 1. 2 2. (1) 22 3. 31 1. Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji SETO 22 3. Editorial Comments Tadashi

More information

2017 II 1 Schwinger Yang-Mills 5. Higgs 1

2017 II 1 Schwinger Yang-Mills 5. Higgs 1 2017 II 1 Schwinger 2 3 4. Yang-Mills 5. Higgs 1 1 Schwinger Schwinger φ 4 L J 1 2 µφ(x) µ φ(x) 1 2 m2 φ 2 (x) λφ 4 (x) + φ(x)j(x) (1.1) J(x) Schwinger source term) c J(x) x S φ d 4 xl J (1.2) φ(x) m 2

More information

26 3 ( 29 5 ) D 3 1 (KEK) 1 Minkowski (conformal field theory, CFT) Minkowski Minkowski Hamilton Hermite Euclid

26 3 ( 29 5 ) D 3 1 (KEK)   1 Minkowski (conformal field theory, CFT) Minkowski Minkowski Hamilton Hermite Euclid 26 3 ( 29 5 ) D 3 (KEK) http://research.kek.jp/people/hamada/ Minkowski (conformal field theory, CFT) Minkowski Minkowski Hamilton Hermite Euclid Euclid Minkowski () Euclid Minkowski Euclid D 4 (, 206)

More information

( ) (ver )

( ) (ver ) ver.3.1 11 9 1 1. p1, 1.1 ψx, t,, E, p. = E, p ψx, t,. p, 1.8 p4, 1. t = t ρx, t = m [ψ ψ ψ ψ] ρx, t = mi [ψ ψ ψ ψ] p4, 1.1 = p6, 1.38 p6, 1.4 = fxδ ϵ x = fxδϵx = 1 π fxδ ϵ x dx = fxδ ϵ x dx = [ 1 fϵ π

More information

量子重力理論と宇宙論 (上巻) 共形場理論と重力の量子論 浜田賢二 高エネルギー加速器研究機構 (KEK) 素粒子原子核研究所 量子重力の世界は霧に包まれた距離感のない幽玄の世界にたとえること ができる 深い霧が晴れて時空が

量子重力理論と宇宙論 (上巻) 共形場理論と重力の量子論 浜田賢二 高エネルギー加速器研究機構 (KEK) 素粒子原子核研究所   量子重力の世界は霧に包まれた距離感のない幽玄の世界にたとえること ができる 深い霧が晴れて時空が 量子重力理論と宇宙論 (上巻) 共形場理論と重力の量子論 浜田賢二 高エネルギー加速器研究機構 (KEK) 素粒子原子核研究所 http://research.kek.jp/people/hamada/ 量子重力の世界は霧に包まれた距離感のない幽玄の世界にたとえること ができる 深い霧が晴れて時空が現れる 国宝松林図屏風 (長谷川等伯筆) 平成 0 年 11 月初版/平成 1 年 09 月改定/ 平成

More information

φ 4 Minimal subtraction scheme 2-loop ε 2008 (University of Tokyo) (Atsuo Kuniba) version 21/Apr/ Formulas Γ( n + ɛ) = ( 1)n (1 n! ɛ + ψ(n + 1)

φ 4 Minimal subtraction scheme 2-loop ε 2008 (University of Tokyo) (Atsuo Kuniba) version 21/Apr/ Formulas Γ( n + ɛ) = ( 1)n (1 n! ɛ + ψ(n + 1) φ 4 Minimal subtraction scheme 2-loop ε 28 University of Tokyo Atsuo Kuniba version 2/Apr/28 Formulas Γ n + ɛ = n n! ɛ + ψn + + Oɛ n =,, 2, ψn + = + 2 + + γ, 2 n ψ = γ =.5772... Euler const, log + ax x

More information

Einstein 1905 Lorentz Maxwell c E p E 2 (pc) 2 = m 2 c 4 (7.1) m E ( ) E p µ =(p 0,p 1,p 2,p 3 )=(p 0, p )= c, p (7.2) x µ =(x 0,x 1,x 2,x

Einstein 1905 Lorentz Maxwell c E p E 2 (pc) 2 = m 2 c 4 (7.1) m E ( ) E p µ =(p 0,p 1,p 2,p 3 )=(p 0, p )= c, p (7.2) x µ =(x 0,x 1,x 2,x 7 7.1 7.1.1 Einstein 1905 Lorentz Maxwell c E p E 2 (pc) 2 = m 2 c 4 (7.1) m E ( ) E p µ =(p 0,p 1,p 2,p 3 )=(p 0, p )= c, p (7.2) x µ =(x 0,x 1,x 2,x 3 )=(x 0, x )=(ct, x ) (7.3) E/c ct K = E mc 2 (7.4)

More information

1 ( ) Einstein, Robertson-Walker metric, R µν R 2 g µν + Λg µν = 8πG c 4 T µν, (1) ( ds 2 = c 2 dt 2 + a(t) 2 dr 2 ) + 1 Kr 2 r2 dω 2, (2) (ȧ ) 2 H 2

1 ( ) Einstein, Robertson-Walker metric, R µν R 2 g µν + Λg µν = 8πG c 4 T µν, (1) ( ds 2 = c 2 dt 2 + a(t) 2 dr 2 ) + 1 Kr 2 r2 dω 2, (2) (ȧ ) 2 H 2 1 ( ) Einstein, Robertson-Walker metric, R µν R 2 g µν + Λg µν = 8πG c 4 T µν, (1) ( ds 2 = c 2 dt 2 + a(t) 2 dr 2 ) + 1 Kr 2 r2 dω 2, (2) (ȧ ) 2 H 2 = 8πG a 3c 2 ρ Kc2 a 2 + Λc2 3 (3), ä a = 4πG Λc2 (ρ

More information

量子力学A

量子力学A c 1 1 1.1....................................... 1 1............................................ 4 1.3.............................. 6 10.1.................................. 10......................................

More information

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2 2005 9/8-11 2 2.2 ( 2-5) γ ( ) γ cos θ 2πr πρhr 2 g h = 2γ cos θ ρgr (2.1) γ = ρgrh (2.2) 2 cos θ θ cos θ = 1 (2.2) γ = 1 ρgrh (2.) 2 2. p p ρgh p ( ) p p = p ρgh (2.) h p p = 2γ r 1 1 (Berry,1975) 2-6

More information

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes ) ( 3 7 4 ) 2 2 ) 8 2 954 2) 955 3) 5) J = σe 2 6) 955 7) 9) 955 Statistical-Mechanical Theory of Irreversible Processes 957 ) 3 4 2 A B H (t) = Ae iωt B(t) = B(ω)e iωt B(ω) = [ Φ R (ω) Φ R () ] iω Φ R (t)

More information

中央大学セミナー.ppt

中央大学セミナー.ppt String Gas Cosmology References Brandenberger & Vafa, Superstrings in the early universe, Nucl.Phys.B316(1988) 391. Tseytlin & Vafa, Elements of string cosmology, Nucl.Phys.B372 (1992) 443. Brandenberger,

More information

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 第 2 版 1 刷発行時のものです. 医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/009192 このサンプルページの内容は, 第 2 版 1 刷発行時のものです. i 2 t 1. 2. 3 2 3. 6 4. 7 5. n 2 ν 6. 2 7. 2003 ii 2 2013 10 iii 1987

More information

K E N Z U 2012 7 16 HP M. 1 1 4 1.1 3.......................... 4 1.2................................... 4 1.2.1..................................... 4 1.2.2.................................... 5................................

More information

gr09.dvi

gr09.dvi .1, θ, ϕ d = A, t dt + B, t dtd + C, t d + D, t dθ +in θdϕ.1.1 t { = f1,t t = f,t { D, t = B, t =.1. t A, tdt e φ,t dt, C, td e λ,t d.1.3,t, t d = e φ,t dt + e λ,t d + dθ +in θdϕ.1.4 { = f1,t t = f,t {

More information

2 1 ds 2 = a 2 (η) ( dη 2 + γ ij dx i dx j ) (1.2) ( dt ) conformal time η η = a(t) a(t) (scale factor) t =const (3) R ijkl = K a 2 (t) (γ ikγ jl γ il

2 1 ds 2 = a 2 (η) ( dη 2 + γ ij dx i dx j ) (1.2) ( dt ) conformal time η η = a(t) a(t) (scale factor) t =const (3) R ijkl = K a 2 (t) (γ ikγ jl γ il 1 1.1 Robertson-Walker [ ds 2 = dt 2 + a 2 dr 2 ] (t) 1 Kr 2 + r2 (dθ 2 + sin 2 θdφ 2 ) sin 2 χ = dt 2 + a 2 (t) dχ 2 + χ 2 (dθ 2 + sin 2 θdφ 2 ) = dt 2 + sinh 2 χ a 2 (t) (1 + K 4 r2 ) [d r 2 + r (dθ

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 3.............................. 3.............................. 4.3 4................... 5.4........................ 6.5........................ 8.6...........................7

More information

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2 1 6 6.1 (??) (P = ρ rad /3) ρ rad T 4 d(ρv ) + PdV = 0 (6.1) dρ rad ρ rad + 4 da a = 0 (6.2) dt T + da a = 0 T 1 a (6.3) ( ) n ρ m = n (m + 12 ) m v2 = n (m + 32 ) T, P = nt (6.4) (6.1) d [(nm + 32 ] )a

More information

(Maldacena) ads/cft

(Maldacena) ads/cft SGC - 90 100 1998 (Maldacena) ads/cft 100 2011 4 1 2012 3 1) μ, ν 2) i i, j, k 3) a h a,,h 1.6 4) μ μ = / x μ 5) μ 6) g μν (, +, +, +, ) g μν 7) Γ α μν Γμν α = 1 2 gαβ ( μ g βν + ν g βμ β g μν ) 8) R μναβ

More information

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5. A 1. Boltzmann Planck u(ν, T )dν = 8πh ν 3 c 3 kt 1 dν h 6.63 10 34 J s Planck k 1.38 10 23 J K 1 Boltzmann u(ν, T ) T ν e hν c = 3 10 8 m s 1 2. Planck λ = c/ν Rayleigh-Jeans u(ν, T )dν = 8πν2 kt dν c

More information

006 11 8 0 3 1 5 1.1..................... 5 1......................... 6 1.3.................... 6 1.4.................. 8 1.5................... 8 1.6................... 10 1.6.1......................

More information

2016 ǯ¥Î¡¼¥Ù¥ëʪÍý³Ø¾Þ²òÀ⥻¥ß¥Ê¡¼ Kosterlitz-Thouless ž°Ü¤È Haldane ͽÁÛ

2016 ǯ¥Î¡¼¥Ù¥ëʪÍý³Ø¾Þ²òÀ⥻¥ß¥Ê¡¼  Kosterlitz-Thouless ž°Ü¤È Haldane ͽÁÛ 2016 Kosterlitz-Thouless Haldane Dept. of Phys., Kyushu Univ. 2016 11 29 2016 Figure: D.J.Thouless F D.M.Haldane J.M.Kosterlitz TOPOLOGICAL PHASE TRANSITIONS AND TOPOLOGICAL PHASES OF MATTER ( ) ( ) (Dirac,

More information

O x y z O ( O ) O (O ) 3 x y z O O x v t = t = 0 ( 1 ) O t = 0 c t r = ct P (x, y, z) r 2 = x 2 + y 2 + z 2 (t, x, y, z) (ct) 2 x 2 y 2 z 2 = 0

O x y z O ( O ) O (O ) 3 x y z O O x v t = t = 0 ( 1 ) O t = 0 c t r = ct P (x, y, z) r 2 = x 2 + y 2 + z 2 (t, x, y, z) (ct) 2 x 2 y 2 z 2 = 0 9 O y O ( O ) O (O ) 3 y O O v t = t = 0 ( ) O t = 0 t r = t P (, y, ) r = + y + (t,, y, ) (t) y = 0 () ( )O O t (t ) y = 0 () (t) y = (t ) y = 0 (3) O O v O O v O O O y y O O v P(, y,, t) t (, y,, t )

More information

0406_total.pdf

0406_total.pdf 59 7 7.1 σ-ω σ-ω σ ω σ = σ(r), ω µ = δ µ,0 ω(r) (6-4) (iγ µ µ m U(r) γ 0 V (r))ψ(x) = 0 (7-1) U(r) = g σ σ(r), V (r) = g ω ω(r) σ(r) ω(r) (6-3) ( 2 + m 2 σ)σ(r) = g σ ψψ (7-2) ( 2 + m 2 ω)ω(r) = g ω ψγ

More information

ʪ¼Á¤Î¥È¥Ý¥í¥¸¥«¥ë¸½¾Ý (2016ǯ¥Î¡¼¥Ù¥ë¾Þ¤Ë´ØÏ¢¤·¤Æ)

ʪ¼Á¤Î¥È¥Ý¥í¥¸¥«¥ë¸½¾Ý  (2016ǯ¥Î¡¼¥Ù¥ë¾Þ¤Ë´ØÏ¢¤·¤Æ) (2016 ) Dept. of Phys., Kyushu Univ. 2017 8 10 1 / 59 2016 Figure: D.J.Thouless F D.M.Haldane J.M.Kosterlitz TOPOLOGICAL PHASE TRANSITIONS AND TOPOLOGICAL PHASES OF MATTER 2 / 59 ( ) ( ) (Dirac, t Hooft-Polyakov)

More information

,,..,. 1

,,..,. 1 016 9 3 6 0 016 1 0 1 10 1 1 17 1..,,..,. 1 1 c = h = G = ε 0 = 1. 1.1 L L T V 1.1. T, V. d dt L q i L q i = 0 1.. q i t L q i, q i, t L ϕ, ϕ, x µ x µ 1.3. ϕ x µ, L. S, L, L S = Ld 4 x 1.4 = Ld 3 xdt 1.5

More information

量子力学 問題

量子力学 問題 3 : 203 : 0. H = 0 0 2 6 0 () = 6, 2 = 2, 3 = 3 3 H 6 2 3 ϵ,2,3 (2) ψ = (, 2, 3 ) ψ Hψ H (3) P i = i i P P 2 = P 2 P 3 = P 3 P = O, P 2 i = P i (4) P + P 2 + P 3 = E 3 (5) i ϵ ip i H 0 0 (6) R = 0 0 [H,

More information

1 1.1 H = µc i c i + c i t ijc j + 1 c i c j V ijklc k c l (1) V ijkl = V jikl = V ijlk = V jilk () t ij = t ji, V ijkl = V lkji (3) (1) V 0 H mf = µc

1 1.1 H = µc i c i + c i t ijc j + 1 c i c j V ijklc k c l (1) V ijkl = V jikl = V ijlk = V jilk () t ij = t ji, V ijkl = V lkji (3) (1) V 0 H mf = µc 013 6 30 BCS 1 1.1........................ 1................................ 3 1.3............................ 3 1.4............................... 5 1.5.................................... 5 6 3 7 4 8

More information

( )

( ) 7..-8..8.......................................................................... 4.................................... 3...................................... 3..3.................................. 4.3....................................

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

液晶の物理1:連続体理論(弾性,粘性)

液晶の物理1:連続体理論(弾性,粘性) The Physics of Liquid Crystals P. G. de Gennes and J. Prost (Oxford University Press, 1993) Liquid crystals are beautiful and mysterious; I am fond of them for both reasons. My hope is that some readers

More information

arxiv: v1(astro-ph.co)

arxiv: v1(astro-ph.co) arxiv:1311.0281v1(astro-ph.co) R µν 1 2 Rg µν + Λg µν = 8πG c 4 T µν Λ f(r) R f(r) Galileon φ(t) Massive Gravity etc... Action S = d 4 x g (L GG + L m ) L GG = K(φ,X) G 3 (φ,x)φ + G 4 (φ,x)r + G 4X (φ)

More information

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT I (008 4 0 de Broglie (de Broglie p λ k h Planck ( 6.63 0 34 Js p = h λ = k ( h π : Dirac k B Boltzmann (.38 0 3 J/K T U = 3 k BT ( = λ m k B T h m = 0.067m 0 m 0 = 9. 0 3 kg GaAs( a T = 300 K 3 fg 07345

More information

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

I A A441 : April 15, 2013 Version : 1.1 I   Kawahira, Tomoki TA (Shigehiro, Yoshida ) I013 00-1 : April 15, 013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida) http://www.math.nagoya-u.ac.jp/~kawahira/courses/13s-tenbou.html pdf * 4 15 4 5 13 e πi = 1 5 0 5 7 3 4 6 3 6 10 6 17

More information

( ) Note (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e

( ) Note (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e ( ) Note 3 19 12 13 8 8.1 (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e µ τ, e R, µ R, τ R (1a) L ( ) ) * 3) W Z 1/2 ( - )

More information

四変数基本対称式の解放

四変数基本対称式の解放 The second-thought of the Galois-style way to solve a quartic equation Oomori, Yasuhiro in Himeji City, Japan Jan.6, 013 Abstract v ρ (v) Step1.5 l 3 1 6. l 3 7. Step - V v - 3 8. Step1.3 - - groupe groupe

More information

80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t = 0 i r 0 t(> 0) j r 0 + r < δ(r 0 x i (0))δ(r 0 + r x j (t)) > (4.2) r r 0 G i j (r, t) dr 0

80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t = 0 i r 0 t(> 0) j r 0 + r < δ(r 0 x i (0))δ(r 0 + r x j (t)) > (4.2) r r 0 G i j (r, t) dr 0 79 4 4.1 4.1.1 x i (t) x j (t) O O r 0 + r r r 0 x i (0) r 0 x i (0) 4.1 L. van. Hove 1954 space-time correlation function V N 4.1 ρ 0 = N/V i t 80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t

More information

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [ 3 3. 3.. H H = H + V (t), V (t) = gµ B α B e e iωt i t Ψ(t) = [H + V (t)]ψ(t) Φ(t) Ψ(t) = e iht Φ(t) H e iht Φ(t) + ie iht t Φ(t) = [H + V (t)]e iht Φ(t) Φ(t) i t Φ(t) = V H(t)Φ(t), V H (t) = e iht V (t)e

More information

Lagrange.dvi

Lagrange.dvi Lagrange 1 2006.2.10 1 Introduction CfA survey 2dF SDSS high-z Euler Lagrange Lagrange CDM Lagrange Lagrange 2 Newton Friedmann Newton Newton Newton [1,2,3,4,5] ρ + r ρu = 0, 1 t r u +u r u = 1 t r ρ rp

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

29 7 5 i 1 1 1.1............................ 1 1.1.1................. 1 1.1.2............................. 3 1.1.3......................... 4 1.2........................... 9 1.2.1................. 9

More information

IA

IA IA 31 4 11 1 1 4 1.1 Planck.............................. 4 1. Bohr.................................... 5 1.3..................................... 6 8.1................................... 8....................................

More information

/ Christopher Essex Radiation and the Violation of Bilinearity in the Thermodynamics of Irreversible Processes, Planet.Space Sci.32 (1984) 1035 Radiat

/ Christopher Essex Radiation and the Violation of Bilinearity in the Thermodynamics of Irreversible Processes, Planet.Space Sci.32 (1984) 1035 Radiat / Christopher Essex Radiation and the Violation of Bilinearity in the Thermodynamics of Irreversible Processes, Planet.Space Sci.32 (1984) 1035 Radiation and the Continuing Failure of the Bilinear Formalism,

More information

X G P G (X) G BG [X, BG] S 2 2 2 S 2 2 S 2 = { (x 1, x 2, x 3 ) R 3 x 2 1 + x 2 2 + x 2 3 = 1 } R 3 S 2 S 2 v x S 2 x x v(x) T x S 2 T x S 2 S 2 x T x S 2 = { ξ R 3 x ξ } R 3 T x S 2 S 2 x x T x S 2

More information

ii p ϕ x, t = C ϕ xe i ħ E t +C ϕ xe i ħ E t ψ x,t ψ x,t p79 やは時間変化しないことに注意 振動 粒子はだいたい このあたりにいる 粒子はだいたい このあたりにいる p35 D.3 Aψ Cϕdx = aψ ψ C Aϕ dx

ii p ϕ x, t = C ϕ xe i ħ E t +C ϕ xe i ħ E t ψ x,t ψ x,t p79 やは時間変化しないことに注意 振動 粒子はだいたい このあたりにいる 粒子はだいたい このあたりにいる p35 D.3 Aψ Cϕdx = aψ ψ C Aϕ dx i B5 7.8. p89 4. ψ x, tψx, t = ψ R x, t iψ I x, t ψ R x, t + iψ I x, t = ψ R x, t + ψ I x, t p 5.8 π π π F e ix + F e ix + F 3 e 3ix F e ix + F e ix + F 3 e 3ix dx πψ x πψx p39 7. AX = X A [ a b c d x

More information

main.dvi

main.dvi SGC - 48 208X Y Z Z 2006 1930 β Z 2006! 1 2 3 Z 1930 SGC -12, 2001 5 6 http://www.saiensu.co.jp/support.htm http://www.shinshu-u.ac.jp/ haru/ xy.z :-P 3 4 2006 3 ii 1 1 1.1... 1 1.2 1930... 1 1.3 1930...

More information

N/m f x x L dl U 1 du = T ds pdv + fdl (2.1)

N/m f x x L dl U 1 du = T ds pdv + fdl (2.1) 23 2 2.1 10 5 6 N/m 2 2.1.1 f x x L dl U 1 du = T ds pdv + fdl (2.1) 24 2 dv = 0 dl ( ) U f = T L p,t ( ) S L p,t (2.2) 2 ( ) ( ) S f = L T p,t p,l (2.3) ( ) U f = L p,t + T ( ) f T p,l (2.4) 1 f e ( U/

More information

untitled

untitled Abstract Black Hole Black Hole Λ 1 1 Introduction 4 1.1 Prelude : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 4 1.2 History : : : : : : : : : : : : : : : : : : : : : : : : : : : : :

More information

The Physics of Atmospheres CAPTER :

The Physics of Atmospheres CAPTER : The Physics of Atmospheres CAPTER 4 1 4 2 41 : 2 42 14 43 17 44 25 45 27 46 3 47 31 48 32 49 34 41 35 411 36 maintex 23/11/28 The Physics of Atmospheres CAPTER 4 2 4 41 : 2 1 σ 2 (21) (22) k I = I exp(

More information

n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz

n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz 1 2 (a 1, a 2, a n ) (b 1, b 2, b n ) A (1.1) A = a 1 b 1 + a 2 b 2 + + a n b n (1.1) n A = a i b i (1.2) i=1 n i 1 n i=1 a i b i n i=1 A = a i b i (1.3) (1.3) (1.3) (1.1) (ummation convention) a 11 x

More information

meiji_resume_1.PDF

meiji_resume_1.PDF β β β (q 1,q,..., q n ; p 1, p,..., p n ) H(q 1,q,..., q n ; p 1, p,..., p n ) Hψ = εψ ε k = k +1/ ε k = k(k 1) (x, y, z; p x, p y, p z ) (r; p r ), (θ; p θ ), (ϕ; p ϕ ) ε k = 1/ k p i dq i E total = E

More information

構造と連続体の力学基礎

構造と連続体の力学基礎 II 37 Wabash Avenue Bridge, Illinois 州 Winnipeg にある歩道橋 Esplanade Riel 橋6 6 斜張橋である必要は多分無いと思われる すぐ横に道路用桁橋有り しかも塔基部のレストランは 8 年には営業していなかった 9 9. 9.. () 97 [3] [5] k 9. m w(t) f (t) = f (t) + mg k w(t) Newton

More information

Z: Q: R: C: sin 6 5 ζ a, b

Z: Q: R: C: sin 6 5 ζ a, b Z: Q: R: C: 3 3 7 4 sin 6 5 ζ 9 6 6............................... 6............................... 6.3......................... 4 7 6 8 8 9 3 33 a, b a bc c b a a b 5 3 5 3 5 5 3 a a a a p > p p p, 3,

More information

5 5.1 E 1, E 2 N 1, N 2 E tot N tot E tot = E 1 + E 2, N tot = N 1 + N 2 S 1 (E 1, N 1 ), S 2 (E 2, N 2 ) E 1, E 2 S tot = S 1 + S 2 2 S 1 E 1 = S 2 E

5 5.1 E 1, E 2 N 1, N 2 E tot N tot E tot = E 1 + E 2, N tot = N 1 + N 2 S 1 (E 1, N 1 ), S 2 (E 2, N 2 ) E 1, E 2 S tot = S 1 + S 2 2 S 1 E 1 = S 2 E 5 5.1 E 1, E 2 N 1, N 2 E tot N tot E tot = E 1 + E 2, N tot = N 1 + N 2 S 1 (E 1, N 1 ), S 2 (E 2, N 2 ) E 1, E 2 S tot = S 1 + S 2 2 S 1 E 1 = S 2 E 2, S 1 N 1 = S 2 N 2 2 (chemical potential) µ S N

More information

n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................

More information

30

30 3 ............................................2 2...........................................2....................................2.2...................................2.3..............................

More information

201711grade1ouyou.pdf

201711grade1ouyou.pdf 2017 11 26 1 2 52 3 12 13 22 23 32 33 42 3 5 3 4 90 5 6 A 1 2 Web Web 3 4 1 2... 5 6 7 7 44 8 9 1 2 3 1 p p >2 2 A 1 2 0.6 0.4 0.52... (a) 0.6 0.4...... B 1 2 0.8-0.2 0.52..... (b) 0.6 0.52.... 1 A B 2

More information

25 7 31 i 1 1 1.1......................... 1 1.1.1 Newton..................... 1 1.1.2 Galilei................. 1 1.1.3...................... 3 1.2.......................... 3 1.3..........................

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

0. Intro ( K CohFT etc CohFT 5.IKKT 6.

0. Intro ( K CohFT etc CohFT 5.IKKT 6. E-mail: sako@math.keio.ac.jp 0. Intro ( K 1. 2. CohFT etc 3. 4. CohFT 5.IKKT 6. 1 µ, ν : d (x 0,x 1,,x d 1 ) t = x 0 ( t τ ) x i i, j, :, α, β, SO(D) ( x µ g µν x µ µ g µν x ν (1) g µν g µν vector x µ,y

More information

: , 2.0, 3.0, 2.0, (%) ( 2.

: , 2.0, 3.0, 2.0, (%) ( 2. 2017 1 2 1.1...................................... 2 1.2......................................... 4 1.3........................................... 10 1.4................................. 14 1.5..........................................

More information

多体問題

多体問題 Many Body Problem 997 4, 00 4, 004 4............................................................................. 7...................................... 7.............................................

More information

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google I4 - : April, 4 Version :. Kwhir, Tomoki TA (Kondo, Hirotk) Google http://www.mth.ngoy-u.c.jp/~kwhir/courses/4s-biseki.html pdf 4 4 4 4 8 e 5 5 9 etc. 5 6 6 6 9 n etc. 6 6 6 3 6 3 7 7 etc 7 4 7 7 8 5 59

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

(e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ,µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) [ ] [ ] [ ] ν e ν µ ν τ e µ τ, e R,µ R,τ R (2.1a

(e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ,µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) [ ] [ ] [ ] ν e ν µ ν τ e µ τ, e R,µ R,τ R (2.1a 1 2 2.1 (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ,µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) [ ] [ ] [ ] ν e ν µ ν τ e µ τ, e R,µ R,τ R (2.1a) L ( ) ) * 2) W Z 1/2 ( - ) d u + e + ν e 1 1 0 0

More information

D.dvi

D.dvi 2005 3 3 1 7 1.1... 7 1.2 Brane... 8 1.3 AdS/CFT black hole... 9 1.4... 10 2 11 2.1 Kaluza-Klein... 11 2.1.1 Kazula-Klein 4... 11 2.1.2 Kaluza-Klein... 13 2.2 Brane... 14 2.2.1 Brane 4... 14 2.2.2 Bulk

More information

chap9.dvi

chap9.dvi 9 AR (i) (ii) MA (iii) (iv) (v) 9.1 2 1 AR 1 9.1.1 S S y j = (α i + β i j) D ij + η j, η j = ρ S η j S + ε j (j =1,,T) (1) i=1 {ε j } i.i.d(,σ 2 ) η j (j ) D ij j i S 1 S =1 D ij =1 S>1 S =4 (1) y j =

More information

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

II ( ) (7/31) II (  [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re II 29 7 29-7-27 ( ) (7/31) II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I Euler Navier

More information

* 1 2014 7 8 *1 iii 1. Newton 1 1.1 Newton........................... 1 1.2............................. 4 1.3................................. 5 2. 9 2.1......................... 9 2.2........................

More information

25 7 18 1 1 1.1 v.s............................. 1 1.1.1.................................. 1 1.1.2................................. 1 1.1.3.................................. 3 1.2................... 3

More information

1/2 ( ) 1 * 1 2/3 *2 up charm top -1/3 down strange bottom 6 (ν e, ν µ, ν τ ) -1 (e) (µ) (τ) 6 ( 2 ) 6 6 I II III u d ν e e c s ν µ µ t b ν τ τ (2a) (

1/2 ( ) 1 * 1 2/3 *2 up charm top -1/3 down strange bottom 6 (ν e, ν µ, ν τ ) -1 (e) (µ) (τ) 6 ( 2 ) 6 6 I II III u d ν e e c s ν µ µ t b ν τ τ (2a) ( August 26, 2005 1 1 1.1...................................... 1 1.2......................... 4 1.3....................... 5 1.4.............. 7 1.5.................... 8 1.6 GIM..........................

More information

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2 II No.1 [n/] [1]H n x) H n x) = 1) r n! r!n r)! x)n r r= []H n x) n,, H n x) = 1) n H n x) [3] H n x) = 1) n dn x e dx n e x [4] H n+1 x) = xh n x) nh n 1 x) ) d dx x H n x) = H n+1 x) d dx H nx) = nh

More information

基礎数学I

基礎数学I I & II ii ii........... 22................. 25 12............... 28.................. 28.................... 31............. 32.................. 34 3 1 9.................... 1....................... 1............

More information

2 1 1 (1) 1 (2) (3) Lax : (4) Bäcklund : (5) (6) 1.1 d 2 q n dt 2 = e q n 1 q n e q n q n+1 (1.1) 1 m q n n ( ) r n = q n q n 1 r ϕ(r) ϕ (r)

2 1 1 (1) 1 (2) (3) Lax : (4) Bäcklund : (5) (6) 1.1 d 2 q n dt 2 = e q n 1 q n e q n q n+1 (1.1) 1 m q n n ( ) r n = q n q n 1 r ϕ(r) ϕ (r) ( ( (3 Lax : (4 Bäcklud : (5 (6 d q = e q q e q q + ( m q ( r = q q r ϕ(r ϕ (r 0 5 0 q q q + 5 3 4 5 m d q = ϕ (r + ϕ (r + ( Hooke ϕ(r = κr (κ > 0 ( d q = κ(q q + κ(q + q = κ(q + + q q (3 ϕ(r = a b e br

More information

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0 1 1 1.1 1.) T D = T = D = kn 1. 1.4) F W = F = W/ = kn/ = 15 kn 1. 1.9) R = W 1 + W = 6 + 5 = 11 N. 1.9) W b W 1 a = a = W /W 1 )b = 5/6) = 5 cm 1.4 AB AC P 1, P x, y x, y y x 1.4.) P sin 6 + P 1 sin 45

More information

inflation.key

inflation.key 2 2 G M 0 0-5 ϕ / M G 0 L SUGRA = 1 2 er + eg ij Dµ φ i Dµ φ j 1 2 eg2 D (a) D +ieg ij χ j σ µ Dµ χ i + eϵ µνρσ ψ µ σ ν Dρ ψ σ 1 4 ef (ab) R F (a) [ ] + i 2 e λ (a) σ µ Dµ λ (a) + λ (a) σ µ Dµ λ (a) 1

More information

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co 16 I ( ) (1) I-1 I-2 I-3 (2) I-1 ( ) (100 ) 2l x x = 0 y t y(x, t) y(±l, t) = 0 m T g y(x, t) l y(x, t) c = 2 y(x, t) c 2 2 y(x, t) = g (A) t 2 x 2 T/m (1) y 0 (x) y 0 (x) = g c 2 (l2 x 2 ) (B) (2) (1)

More information

『共形場理論』

『共形場理論』 T (z) SL(2, C) T (z) SU(2) S 1 /Z 2 SU(2) (ŜU(2) k ŜU(2) 1)/ŜU(2) k+1 ŜU(2)/Û(1) G H N =1 N =1 N =1 N =1 N =2 N =2 N =2 N =2 ĉ>1 N =2 N =2 N =4 N =4 1 2 2 z=x 1 +ix 2 z f(z) f(z) 1 1 4 4 N =4 1 = = 1.3

More information

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e 3 3 5 5 5 3 3 7 5 33 5 33 9 5 8 > e > f U f U u u > u ue u e u ue u ue u e u e u u e u u e u N cos s s cos ψ e e e e 3 3 e e 3 e 3 e 3 > A A > A E A f A A f A [ ] f A A e > > A e[ ] > f A E A < < f ; >

More information

DVIOUT-fujin

DVIOUT-fujin 2005 Limit Distribution of Quantum Walks and Weyl Equation 2006 3 2 1 2 2 4 2.1...................... 4 2.2......................... 5 2.3..................... 6 3 8 3.1........... 8 3.2..........................

More information

E1 (4/12)., ( )., 3,4 ( ). ( ) Allen Hatcher, Vector bundle and K-theory ( HP ) 1

E1 (4/12)., ( )., 3,4 ( ). ( ) Allen Hatcher, Vector bundle and K-theory ( HP ) 1 E1 (4/12)., ( )., 3,4 ( ). ( ) Allen Hatcher, Vector bundle and K-theory ( HP ) 1 (4/12) 1 1.. 2. F R C H P n F E n := {((x 0,..., x n ), [v 0 : : v n ]) F n+1 P n F n x i v i = 0 }. i=0 E n P n F P n

More information

YITP50.dvi

YITP50.dvi 1 70 80 90 50 2 3 3 84 first revolution 4 94 second revolution 5 6 2 1: 1 3 consistent 1-loop Feynman 1-loop Feynman loop loop loop Feynman 2 3 2: 1-loop Feynman loop 3 cycle 4 = 3: 4: 4 cycle loop Feynman

More information

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x Compton Scattering Beaming exp [i k x ωt] k λ k π/λ ω πν k ω/c k x ωt ω k α c, k k x ωt η αβ k α x β diag + ++ x β ct, x O O x O O v k α k α β, γ k γ k βk, k γ k + βk k γ k k, k γ k + βk 3 k k 4 k 3 k

More information