土地税制の理論的・計量的分析

Size: px
Start display at page:

Download "土地税制の理論的・計量的分析"

Transcription

1

2 I II

3 III I

4 II I II III

5 4 I I I I I II II II II II II II II II II II III III III III III

6 * ** Peer D.Boone NBER 1

7 2 Ricardo Kanemoo, ayashi and Wago Kanemoo, ayashi and Wago1987 uoregressive Model (1) (2) (3)

8 3 I II I III I II III I II

9 4 I 50km

10 5 τ τ τ credible 1.50) ( 0.61) ( 1.79) ( (3.40) = + r p τ τ (15.43) 3.85) ( (1.96) w y y (3.87) w ) ( 0.94) ( 3.42) ( T l l k i i i dummy 16 1 = + β R 2 = permanen

11 6 (1) (11.64) (2.52) ) ( r p p l + = + (5.88) 0.88) ( ) ( ( ) + p y p τ 0.09) ( (124.73) ) ( k p w i i i i i i r dummy dummy = = + γ R 2 = (2) (11.66) (2.55) ) ( r p p l + = + (4.28) 3.38) ( ) ( ( ) + p y p τ (96.36) dummy ) ( i i i p w + + = δ R 2 = II (1) (2)(1) (3)(2) (1) 23 50km (a) 1991 (b) (c) (2) 5 (d) (e) (f) (g) 1992

12 ( ) (%) (ha) (%) (ha) (%) ,756 8, ,299 7, (6.9) 62,304 ( 2.5) 7,090 (17.9) 580 (8.5) 64,010 ( 2.7) 5,385 (24.1) 490 (5.8) 62,002 ( 2.1) 7,393 (14.4) 582 (8.2) 63,922 ( 2.6) 5,473 (22.9) 499 (4.0) 61,607 ( 1.4) 7,788 (9.8) 587 (7.4) 63,735 ( 2.3) 5,660 (20.2) 426 (18.2) 62,743 ( 3.3) 6,652 (23.0) 474 (25.3) 64,479 ( 3.5) 4,916 (30.7) 458 (11.9) 62,493 ( 2.9) 6,902 (20.1) 493 (22.3) 64,398 ( 3.4) 4,997 (29.6) 490 (5.8) 62,002 ( 2.1) 7,393 (14.4) 510 (19.6) 64,244 ( 3.1) 5,151 (27.4) 422 (18.9) 62,631 ( 3.1) 6,764 (21.7) 492 (22.4) 64,368 ( 3.3) 5,027 (29.2) 440 (15.4) 62,479 ( 2.8) 6,916 (19.9) 517 (18.5) 64,254 ( 3.1) 5,141 (27.6) 449 (11.4) 62,590 ( 3.0) 6,805 (21.2) 505 (20.4) 64,363 ( 3.3) 5,032 (29.1) (13.1) 62,655 ( 3.1) 6,740 (22.0) 515 (18.8) 64,487 ( 3.5) 4,907 (30.8) (h) ,000 m ,916ha 0.5 7

13 ,479ha m ha 353ha , m ,573 (3) (i) m 2 3,000 (j) m 2 3,000 m III I II I II

14 (1) P 1 = y c 1 (15.36) (3.59) (3.72) k k w 1 (4.86) ( 2.26) (4.50) l τ 1 dummy1 ( 12.30) (1.15) τ 1 dummy 2 (0.83) τ 1 dummy 3 (1.10) τ dummy 1 ( 1.69) τ dummy 2 ( 1.48).4206τ dummy ( 1.74) α 13+ i dummy 4+ i i = 0 (2) P +1 = y c (41.29) (5.27) (5.65) k (2.70) k ( 2.50) w (31.00) l τ 1 dummy 7 ( 27.55) (0.18) τ 1 dummy 8 (1.68) τ 1 dummy 9 (1.90) τ dummy 7 ( 1.12) τ dummy 8 ( 2.44) τ dummy 9 ( 2.81) k 0.04 (k) (l)

15 (1) P = P y 1 (6.71) (0.99) (1.10) c (4.12).0130l ( 6.68) (2) k (2.28) w (10.74) τ dummy ( 1.66) τ dummy ( 1.56) τ dummy 3 ( 1.57) 3 + β 10+ i dummy 4+ i i = P = P y 1 (6.11) (2.29) (1.33) c (2.58) k (0.10) w (7.86) l τ dummy 7 ( 6.07) ( 1.99) τ dummy 8 ( 2.08).0419τ dummy ( 2.04) 0 9 (m) ,000 m ,000 m (24.7) (36.8) (29.1) (33.7) (21.1) (24.2) (21.7) 30.6 (38.8) 32.2 (26.3) 31.7 (36.6) 35.7 (18.3) 36.9 (26.1) 1, , (27.8) (40.2) (31.4) (36.4) (23.4) (26.8) ,000 m 2 32,000 m

16 11 I II

17 I L 33 T r (1) I PL r 1977 P PL T emporary P permanen (1) P L P P + R P T + 1 = h, r, W 1 P P +1 W 1 PL T +1 R 12

18 (1) PL W 1 P + 1 P R T (2) L =, r (1) P W 1 W 1 P W 1 PL P + 1 P R T (3) L =, r P W 1 P T R T L T + (2) W 1 Tobin (1969) W 1 PL 13 W 1 P + 1 P 1

19 T L α P = ( 1 + α) P P R R (4) L = P + 1 P ( 1 + α) W 1 P + (1 + α)( R P T ), α T L (5) L + L = L T (2)(4)(5) (6) P = ƒ ( P + 1, r, T, T, R, R, W 1, ( + ) ( ) ( ) ( ) ( + ) ( + ) ( + ) T W 1, L ) ( + ) ( ) a i b i P +1 P ( α = 0) r P T T T / P R / P ( P + 1 P )/ P P 14 P P W 1 W 1 P T L P T (7) L = a0 + b0 + a1( P + 1 P + R T )/ P ( P 1 1 P + (1 + )( R +1 + b + α T ))/ P + ( a + b2 ) r + a3( W 1 / P ) 2 + b 1 + α )( W / P ) 3( 1

20 (9) R ( L ) T = R ( L ) T R T = R T a = b = (8) 1 = a2 ( + 1 P + R T )/ 1 = b2 P P = r L L (8) P P I O1O 2 O O (4) (2) (7) T T R R E 0 15

21 16 (7) i a i b I II 1989

22 P P P Ω McCallum1976 Ω (10) P E Ω ] + 1 = [ P + 1 Ω P +1 Ω ε +1 (11) P + 1 = E [ P + 1 Ω ] + ε + 1 E [ ε 1 Ω ] = 0 + P +1 P (errors in variableε + 1 McCallum (1976)

23 (12) uij = υ i + e j + ε ij ( i = 1, L L, N. j = 1, LL, T ) ε ij (13) E ( υ i ) = E ( e j ) = E ( ε ij ) = 0 E [ υ ie j ] = E [ υiεij ] = E [ e jε ij ] = 0 2 E [ υ i υs ] = σ υ ( i = s) = 0 ( i s) = 0 ( j ) 2 E [ ε ij ε s ] = σ ε ( i = s, j = ) = 0 ( ) uij υ e j i 2 E [ e e ] = σ ( j ) j e = 18

24 α 2 2 E ( uu' ) = σ I + σ σ ε NT υ + I J B J I, I, I N, I T N 2 e B T, N T NT NT, N, T J T, J N ( T T ), ( N N ) Kronecker Produc Fuller and Baese1974 σ 2 σ 2, σ 2 ε, υ e = α + P 0 α1x I 0 α 0 Fuller and Baese1974 siao

25 I ET T m 2 IIIIII km / m m m 2 T m

26 / II 1.4 m 2 T ET /74

27 I 11 P + 1 = r (14) τ (3.40) ( 1.79) ( 0.61) τ ( 1.50) y y 1 (1.96) ( 3.85) w w 1 (15.43) (3.87) R T.1791k l l ( 3.42) ( 0.94) ( 0.41) K Y R + β i dummyi i = β i (1.11) 0.45 (1.97) (0.61) (3.28) (1.01) (3.25) (0.41) (0.09) (0.78) (0.94) R (0.21) (0.43) (0.33) (7.94) Y (4.27) R 2 = r 1 McCallum τ = ln( T ) T 0 1 McCallum

28 I1 l l T l l n( l + l ) P +1 P r τ τ y y w 1 w 1 D 1 D 1 ln( P 1L 1 + D 1 ) ln( P 1L 1 + D 1 ) k dummy1 dummy2 dummy3 dummy4 dummy5 dummy6 dummy7 dummy8 dummy9 dummy10 dummy11 dummy12 dummy13 dummy14 dummy15 dummy

29 τ τ m 2 τ (15) P = ( P + 1 r ) (1.24) (2.02) 0.273τ τ y ( 0.69) ( 0.30) (0.50).0014y w w ( 0.06) (3.76) (3.62) k l T + α i dummy i = 1 ( 0.76) ( 3.93) τ α i (0.60) 0.32 (1.37) τ (0.17) (0.62) (0.78) (0.36) (0.19) (0.04) (0.56) (0.43) credible τ τ (0.12) (0.49) (0.18) (0.58) (3.85) R 2 = (15) P + 1 r ln ( p + 1 / ( 1 + r )) 20 (15) y 20 τ 0 1 i 24

30 τ τ I (16) l = ( p + 1 p r ) 10) P (2.52) (11.64) ( τ p ) ( y p ) P ( 0.88) (5.88) ( w 1 p ) k P (124.73) ( 0.09) γ i dummy i + γ i dummy i (16)(17)i = 1 i = 15 y γ i y (4.12) (3.77) (10.31) (16)(17) (1.72) (6.57) (5.72) (2.88) (15) (3.90) (71.32) R 2 = y (17) l = ( p + 1 p r ) y (2.55) (11.66) ( τ p ) ( y p ) ( 3.38) (4.28) (15) P ( w 1 p ) δ idummy i P 0.38 i = 8 (96.36) T l δ i (3.49) (3.02) (12.58) w 1 w (2.33) (3.19) (2.95) (3.31) (6.82) (31.28) R 2 =

31 26 (16)(17) p p + 1 r m 2 +1 p l l +1 p permanen +1 p l

32 k 11) p 1 w 1 p + 1 l l p 11 27

33 28

34 1.72 η η (16) (17) T T (18) η = η ( L / L ) + η ( L / L ) (16) η = = (17)9 η = 0. T T ( L / L ) ( L / L ) () η = = L / L T = 0.82 L / LT = η =

35 (14) (15) (14) (16)(17) 30

36 31 II (1). (2).(1) (3).(2) (16) (17) (14) 12 (17) (14) (17) (16) (14) (16) (16) (17) (14) (16) (17) 12Kanemoo, ayashi and Wago1987

37 II (/m 2 ) (%) (/m 2 ) (%) ( ) (%) ( ) (%) , ,895,140 1,104, , ,171, ,254, , ,953, ,375, , ,068, ,549, , ,145, ,667, , ,099, ,775, , ,355, ,898, , ,598, ,071, , ,114, ,244, , ,992, ,498, , ,227, ,734, , ,658, ,968, , ,032, ,238, , ,641, ,533, , ,510, ,855, , ,666, ,207, , ,139, ,592, , ,965, ,013, , ,181, ,472, , ,833, ,975, , ,968, ,525, , ,644, ,126, , ,923, ,783, (/m 2 ) (%) (/m 2 ) (%) (%) ( ha) (%) , , , , , , , , , , , , , , , , , , , , , , ,

38 33 II (1)(2) (3) (1)(2) (3) II II ,000 m 2 634,000 m 2 58,274ha ,299ha 11,120ha 7,096ha 335ha II

39 II II 34

40 II m m

41 II ( ) (%) (ha) () (ha) () ,756 8, ,299 7, (6.9) 62,304 ( 2.5) 7,090 (17.9) 580 (8.5) 64,010 ( 2.7) 5,385 (24.1) (5.8) 62,002 ( 2.1) 7,393 (14.4) 582 (8.2) 63,922 ( 2.6) 5,473 (22.9) (4.0) 61,607 ( 1.4) 7,788 (9.8) 587 (7.4) 63,735 ( 2.3) (20.2) (18.2) 62,743 ( 3.3) 6,652 (23.0) 474 (25.3) 64,479 ( 3.5) 4,916 (30.7) (11.9) 62,493 ( 2.9) 6,902 (20.1) 493 (22.3) 64,398 ( 3.4) 4,997 (29.6) (5.8) 62,002 ( 2.1) 7,393 (14.4) 510 (19.6) 64,244 ( 3.1) 5,151 (27.4) (18.9) 62,631 ( 3.1) 6,764 (21.7) 492 (22.4) 64,368 ( 3.3) 5,027 (29.2) (15.4) 62,479 ( 2.8) 6,916 (19.9) 517 (18.5) 64,254 ( 3.1) 5,141 (27.6) (11.4) 62,590 ( 3.0) 6,805 (21.2) 505 (20.4) 64,363 ( 3.3) 5,032 (29.1) (13.1) 62,655 ( 3.1) 6,740 (22.0) 515 (18.8) 64,487 ( 3.5) 4,907 (30.8) II II II II E 0 36

42 II L L 0 0 P0 E 1 P 1 L L

43 23 50km m 2 X M X N L M m 2 L M m 2 L N m 2 L N m m 2 T 1991 T 1995 X M L M + X N LN L M (1) T = = X M L M + L N L M + LN 2000 LN X N LM + LN X M L M + X N L N L M (2) T = = X M L M + L N L M + L N II II 13) LN II II + X N LM + LN X M X N L / ( LM + LN )) )) L M M / ( LM + LN L N /( LM + LN ) < LN /( LM + LN ) 2000 (1) (2) T > T I ET ET ET ET P 1991 L M L N II (3) P = PM + PN L M + L N L M + L N PM P N ,000 m 2 L M L N 58 m 2 1,700ha L M = LM + LM L N = LN + LN 5,385ha 64,010ha ( L M + LN ) 524ha I (3) (1) 100m 2 T (2)T T > T 12 14) m II m

44 II 39

45 II 40

46 II II II E 0 E 1 41

47 II 1995 E 1 E P 1 P II 2000 E 1 E II I II

48 43 II II II II II II II ,000 m 2

49 44 II ,916ha ,479ha m ha 353ha , ) 0.7

50 II Feldsein1977 Calvo, Kolikoff and Rodriguez

51 II )

52 II II II 50m 2 150m

53 II , m 2 6,100 50m 2 50m 2 305, m ,000 5, m ,000 1, m 2 150m 2 9, m

54 II4 (1) (a) 50m 2 150m 2 50m 2 150m 2 50m 2 150m 2 (b) 6,523 6,523 8,943 8,943 11,633 11,633 (c) (263) (263) (501) (501) (877) (877) (d) (c)+(d) (2) 100m (3) 50m 2 150m 2 50m 2 150m 2 50m 2 150m (4) 50m 2 150m 2 50m 2 150m 2 50m 2 150m (d)(2) (b) 49

55 50 II II E 0 E 1 P 0 P 1

56 II m ,000 51

57 II m 2 3,000 II10 II m 2 3, m 2 3,000 m 2 3,000 II m 2 m 2 3, m 2 3,

58 II 10 m 2 3, II m 2 3, m 2 3,000 m 2 3, m 2 3,

土地税制の理論的・計量的分析

土地税制の理論的・計量的分析 54 III 1971 1988 III 1971 m 2 16,000 1988 109,000 17 6.6 4.5 1974 197173 17) 197881 198687 17 1950 III ( m 2 ) () 1971 16,470 15.53 1972 21,550 30.84 1973 26,817 24.44 1974 24,973 6.88 1975 25,549 2.31

More information

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 第 2 版 1 刷発行時のものです. 医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/009192 このサンプルページの内容は, 第 2 版 1 刷発行時のものです. i 2 t 1. 2. 3 2 3. 6 4. 7 5. n 2 ν 6. 2 7. 2003 ii 2 2013 10 iii 1987

More information

I II III IV V

I II III IV V I II III IV V N/m 2 640 980 50 200 290 440 2m 50 4m 100 100 150 200 290 390 590 150 340 4m 6m 8m 100 170 250 µ = E FRVβ β N/mm 2 N/mm 2 1.1 F c t.1 3 1 1.1 1.1 2 2 2 2 F F b F s F c F t F b F s 3 3 3

More information

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) =

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) = 1 1 1.1 I R 1.1.1 c : I R 2 (i) c C (ii) t I c (t) (0, 0) c (t) c(i) c c(t) 1.1.2 (1) (2) (3) (1) r > 0 c : R R 2 : t (r cos t, r sin t) (2) C f : I R c : I R 2 : t (t, f(t)) (3) y = x c : R R 2 : t (t,

More information

O1-1 O1-2 O1-3 O1-4 O1-5 O1-6

O1-1 O1-2 O1-3 O1-4 O1-5 O1-6 O1-1 O1-2 O1-3 O1-4 O1-5 O1-6 O1-7 O1-8 O1-9 O1-10 O1-11 O1-12 O1-13 O1-14 O1-15 O1-16 O1-17 O1-18 O1-19 O1-20 O1-21 O1-22 O1-23 O1-24 O1-25 O1-26 O1-27 O1-28 O1-29 O1-30 O1-31 O1-32 O1-33 O1-34 O1-35

More information

1 911 9001030 9:00 A B C D E F G H I J K L M 1A0900 1B0900 1C0900 1D0900 1E0900 1F0900 1G0900 1H0900 1I0900 1J0900 1K0900 1L0900 1M0900 9:15 1A0915 1B0915 1C0915 1D0915 1E0915 1F0915 1G0915 1H0915 1I0915

More information

v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i

v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i 1. 1 1.1 1.1.1 1.1.1.1 v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) R ij R ik = δ jk (4) δ ij Kronecker δ ij = { 1 (i = j) 0 (i j) (5) 1 1.1. v1.1 2011/04/10 1. 1 2 v i = R ij v j (6) [

More information

基礎数学I

基礎数学I I & II ii ii........... 22................. 25 12............... 28.................. 28.................... 31............. 32.................. 34 3 1 9.................... 1....................... 1............

More information

訪問看護ステーションにおける安全性及び安定的なサービス提供の確保に関する調査研究事業報告書

訪問看護ステーションにおける安全性及び安定的なサービス提供の確保に関する調査研究事業報告書 1... 1 2... 3 I... 3 II... 3 1.... 3 2....15 3....17 4....19 5....25 6....34 7....38 8....48 9....58 III...70 3...73 I...73 1....73 2....82 II...98 4...99 1....99 2....104 3....106 4....108 5.... 110 6....

More information

読めば必ずわかる 分散分析の基礎 第2版

読めば必ずわかる 分散分析の基礎 第2版 2 2003 12 5 ( ) ( ) 2 I 3 1 3 2 2? 6 3 11 4? 12 II 14 5 15 6 16 7 17 8 19 9 21 10 22 11 F 25 12 : 1 26 3 I 1 17 11 x 1, x 2,, x n x( ) x = 1 n n i=1 x i 12 (SD ) x 1, x 2,, x n s 2 s 2 = 1 n n (x i x)

More information

14 88 7 1 3 4 75 14 9 13 51 16 22 16 69 22 134 54 40 27 5 29 29 3 31 11 2-1 - 12 22 20 150 200 4.1993 22 22 250 400 2011 576 2011 2 2010 2 3 3 4 77 1990 448 1,298 3 2-2 - 1990 7 5,000 100 5 8 1996 75 85

More information

... - 1 -... - 1 -... - 1 -... - 1 -... - 1 -... - 1 -... - 1 -... - 1 -... - 3 -... - 4 -... - 4 -... - 4 -... - 5 -... - 6 -... - 6 -... - 6 -... - 6 -... - 6 -... - 7 -... - 7 -... - 7 -... - 7 -...

More information

untitled

untitled 1 2 3 4 5 (1834) 1834 200 6 7 8 9 10 11 (1791) (17511764) (1824) 1843 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 (1791) (1791) (17511764) (17511764) (1824)1843

More information

20 15 14.6 15.3 14.9 15.7 16.0 15.7 13.4 14.5 13.7 14.2 10 10 13 16 19 22 1 70,000 60,000 50,000 40,000 30,000 20,000 10,000 0 2,500 59,862 56,384 2,000 42,662 44,211 40,639 37,323 1,500 33,408 34,472

More information

I? 3 1 3 1.1?................................. 3 1.2?............................... 3 1.3!................................... 3 2 4 2.1........................................ 4 2.2.......................................

More information

- 2 -

- 2 - - 2 - - 3 - (1) (2) (3) (1) - 4 - ~ - 5 - (2) - 6 - (1) (1) - 7 - - 8 - (i) (ii) (iii) (ii) (iii) (ii) 10 - 9 - (3) - 10 - (3) - 11 - - 12 - (1) - 13 - - 14 - (2) - 15 - - 16 - (3) - 17 - - 18 - (4) -

More information

2 1980 8 4 4 4 4 4 3 4 2 4 4 2 4 6 0 0 6 4 2 4 1 2 2 1 4 4 4 2 3 3 3 4 3 4 4 4 4 2 5 5 2 4 4 4 0 3 3 0 9 10 10 9 1 1

2 1980 8 4 4 4 4 4 3 4 2 4 4 2 4 6 0 0 6 4 2 4 1 2 2 1 4 4 4 2 3 3 3 4 3 4 4 4 4 2 5 5 2 4 4 4 0 3 3 0 9 10 10 9 1 1 1 1979 6 24 3 4 4 4 4 3 4 4 2 3 4 4 6 0 0 6 2 4 4 4 3 0 0 3 3 3 4 3 2 4 3? 4 3 4 3 4 4 4 4 3 3 4 4 4 4 2 1 1 2 15 4 4 15 0 1 2 1980 8 4 4 4 4 4 3 4 2 4 4 2 4 6 0 0 6 4 2 4 1 2 2 1 4 4 4 2 3 3 3 4 3 4 4

More information

1 (1) (2)

1 (1) (2) 1 2 (1) (2) (3) 3-78 - 1 (1) (2) - 79 - i) ii) iii) (3) (4) (5) (6) - 80 - (7) (8) (9) (10) 2 (1) (2) (3) (4) i) - 81 - ii) (a) (b) 3 (1) (2) - 82 - - 83 - - 84 - - 85 - - 86 - (1) (2) (3) (4) (5) (6)

More information

B

B B YES NO 5 7 6 1 4 3 2 BB BB BB AA AA BB 510J B B A 510J B A A A A A A 510J B A 510J B A A A A A 510J M = σ Z Z = M σ AAA π T T = a ZP ZP = a AAA π B M + M 2 +T 2 M T Me = = 1 + 1 + 2 2 M σ Te = M 2 +T

More information

chap9.dvi

chap9.dvi 9 AR (i) (ii) MA (iii) (iv) (v) 9.1 2 1 AR 1 9.1.1 S S y j = (α i + β i j) D ij + η j, η j = ρ S η j S + ε j (j =1,,T) (1) i=1 {ε j } i.i.d(,σ 2 ) η j (j ) D ij j i S 1 S =1 D ij =1 S>1 S =4 (1) y j =

More information

○01 那覇市(7月変更)

○01 那覇市(7月変更) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 H26,2 H28.2 9 9 38 39 40 41 42 43 l ll 44 45 46 47 48 49 50 51 52 53 54 55 2733 14,500 56 57 58 59

More information

2016 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 1 16 2 1 () X O 3 (O1) X O, O (O2) O O (O3) O O O X (X, O) O X X (O1), (O2), (O3) (O2) (O3) n (O2) U 1,..., U n O U k O k=1 (O3) U λ O( λ Λ) λ Λ U λ O 0 X 0 (O2) n =

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ±

7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ± 7 7. ( ) SU() SU() 9 ( MeV) p 98.8 π + π 0 n 99.57 9.57 97.4 497.70 δm m 0.4%.% 0.% 0.8% π 9.57 4.96 Σ + Σ 0 Σ 89.6 9.46 K + K 0 49.67 (7.) p p = αp + βn, n n = γp + δn (7.a) [ ] p ψ ψ = Uψ, U = n [ α

More information

19 σ = P/A o σ B Maximum tensile strength σ % 0.2% proof stress σ EL Elastic limit Work hardening coefficient failure necking σ PL Proportional

19 σ = P/A o σ B Maximum tensile strength σ % 0.2% proof stress σ EL Elastic limit Work hardening coefficient failure necking σ PL Proportional 19 σ = P/A o σ B Maximum tensile strength σ 0. 0.% 0.% proof stress σ EL Elastic limit Work hardening coefficient failure necking σ PL Proportional limit ε p = 0.% ε e = σ 0. /E plastic strain ε = ε e

More information

: , 2.0, 3.0, 2.0, (%) ( 2.

: , 2.0, 3.0, 2.0, (%) ( 2. 2017 1 2 1.1...................................... 2 1.2......................................... 4 1.3........................................... 10 1.4................................. 14 1.5..........................................

More information

n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz

n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz 1 2 (a 1, a 2, a n ) (b 1, b 2, b n ) A (1.1) A = a 1 b 1 + a 2 b 2 + + a n b n (1.1) n A = a i b i (1.2) i=1 n i 1 n i=1 a i b i n i=1 A = a i b i (1.3) (1.3) (1.3) (1.1) (ummation convention) a 11 x

More information

nsg04-28/ky208684356100043077

nsg04-28/ky208684356100043077 δ!!! μ μ μ γ UBE3A Ube3a Ube3a δ !!!! α α α α α α α α α α μ μ α β α β β !!!!!!!! μ! Suncus murinus μ Ω! π μ Ω in vivo! μ μ μ!!! ! in situ! in vivo δ δ !!!!!!!!!! ! in vivo Orexin-Arch Orexin-Arch !!

More information

untitled

untitled ( ) c a sin b c b c a cos a c b c a tan b a b cos sin a c b c a ccos b csin (4) Ma k Mg a (Gal) g(98gal) (Gal) a max (K-E) kh Zck.85.6. 4 Ma g a k a g k D τ f c + σ tanφ σ 3 3 /A τ f3 S S τ A σ /A σ /A

More information

x 3 a (mod p) ( ). a, b, m Z a b m a b (mod m) a b m 2.2 (Z/mZ). a = {x x a (mod m)} a Z m 0, 1... m 1 Z/mZ = {0, 1... m 1} a + b = a +

x 3 a (mod p) ( ). a, b, m Z a b m a b (mod m) a b m 2.2 (Z/mZ). a = {x x a (mod m)} a Z m 0, 1... m 1 Z/mZ = {0, 1... m 1} a + b = a + 1 1 22 1 x 3 (mod ) 2 2.1 ( )., b, m Z b m b (mod m) b m 2.2 (Z/mZ). = {x x (mod m)} Z m 0, 1... m 1 Z/mZ = {0, 1... m 1} + b = + b, b = b Z/mZ 1 1 Z Q R Z/Z 2.3 ( ). m {x 0, x 1,..., x m 1 } modm 2.4

More information

km2 km2 km2 km2 km2 22 4 H20 H20 H21 H20 (H22) (H22) (H22) L=600m L=430m 1 H14.04.12 () 1.6km 2 H.14.05.31 () 3km 3 4 5 H.15.03.18 () 3km H.15.06.20 () 1.1km H.15.06.30 () 800m 6 H.15.07.18

More information

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1)

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1) 1. 1.1...,. 1.1.1 V, V x, y, x y x + y x + y V,, V x α, αx αx V,, (i) (viii) : x, y, z V, α, β C, (i) x + y = y + x. (ii) (x + y) + z = x + (y + z). 1 (iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y

More information

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [ 3 3. 3.. H H = H + V (t), V (t) = gµ B α B e e iωt i t Ψ(t) = [H + V (t)]ψ(t) Φ(t) Ψ(t) = e iht Φ(t) H e iht Φ(t) + ie iht t Φ(t) = [H + V (t)]e iht Φ(t) Φ(t) i t Φ(t) = V H(t)Φ(t), V H (t) = e iht V (t)e

More information

Note.tex 2008/09/19( )

Note.tex 2008/09/19( ) 1 20 9 19 2 1 5 1.1........................ 5 1.2............................. 8 2 9 2.1............................. 9 2.2.............................. 10 3 13 3.1.............................. 13 3.2..................................

More information

2,., ,. 8.,,,..,.,, ,....,..,... 4.,..

2,., ,. 8.,,,..,.,, ,....,..,... 4.,.. Contents 1. 1 2. 2 3. 2 4. 2 5. 3 6. 3 7. 3 8. 4 9. 5 10. 6 11. 8 12. 9 13. - 10 14. 12 15. 13 16. 14 17. 14 18. 15 19. 15 20. 16 21. 16 References 16 1......, 1 2,.,. 4. 2. 2.,. 8.,,,..,.,,... 3....,....,..,...

More information

,,,,., = (),, (1) (4) :,,,, (1),. (2),, =. (3),,. (4),,,,.. (1) (3), (4).,,., () : = , ( ) : = F 1 + F 2 + F 3 + ( ) : = i Fj j=1 2

,,,,., = (),, (1) (4) :,,,, (1),. (2),, =. (3),,. (4),,,,.. (1) (3), (4).,,., () : = , ( ) : = F 1 + F 2 + F 3 + ( ) : = i Fj j=1 2 6 2 6.1 2 2, 2 5.2 R 2, 2 (R 2, B, µ)., R 2,,., 1, 2, 3,., 1, 2, 3,,. () : = 1 + 2 + 3 + (6.1.1).,,, 1 ,,,,., = (),, (1) (4) :,,,, (1),. (2),, =. (3),,. (4),,,,.. (1) (3), (4).,,., () : = 1 + 2 + 3 +,

More information

?

? 240-8501 79-2 Email: nakamoto@ynu.ac.jp 1 3 1.1...................................... 3 1.2?................................. 6 1.3..................................... 8 1.4.......................................

More information

xyz,, uvw,, Bernoulli-Euler u c c c v, w θ x c c c dv ( x) dw uxyz (,, ) = u( x) y z + ω( yz, ) φ dx dx c vxyz (,, ) = v( x) zθ x ( x) c wxyz (,, ) =

xyz,, uvw,, Bernoulli-Euler u c c c v, w θ x c c c dv ( x) dw uxyz (,, ) = u( x) y z + ω( yz, ) φ dx dx c vxyz (,, ) = v( x) zθ x ( x) c wxyz (,, ) = ,, uvw,, Bernoull-Euler u v, w θ dv ( ) dw u (,, ) u( ) ω(, ) φ d d v (,, ) v( ) θ ( ) w (,, ) w( ) θ ( ) (11.1) ω φ φ dθ / dφ v v θ u w u w 11.1 θ θ θ 11. vw, (11.1) u du d v d w ε d d d u v ω γ φ w u

More information

y = x x R = 0. 9, R = σ $ = y x w = x y x x w = x y α ε = + β + x x x y α ε = + β + γ x + x x x x' = / x y' = y/ x y' =

y = x x R = 0. 9, R = σ $ = y x w = x y x x w = x y α ε = + β + x x x y α ε = + β + γ x + x x x x' = / x y' = y/ x y' = y x = α + β + ε =,, ε V( ε) = E( ε ) = σ α $ $ β w ( 0) σ = w σ σ y α x ε = + β + w w w w ε / w ( w y x α β ) = α$ $ W = yw βwxw $β = W ( W) ( W)( W) w x x w x x y y = = x W y W x y x y xw = y W = w w

More information

研修コーナー

研修コーナー l l l l l l l l l l l α α β l µ l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l

More information

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x Compton Scattering Beaming exp [i k x ωt] k λ k π/λ ω πν k ω/c k x ωt ω k α c, k k x ωt η αβ k α x β diag + ++ x β ct, x O O x O O v k α k α β, γ k γ k βk, k γ k + βk k γ k k, k γ k + βk 3 k k 4 k 3 k

More information

n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................

More information

量子力学 問題

量子力学 問題 3 : 203 : 0. H = 0 0 2 6 0 () = 6, 2 = 2, 3 = 3 3 H 6 2 3 ϵ,2,3 (2) ψ = (, 2, 3 ) ψ Hψ H (3) P i = i i P P 2 = P 2 P 3 = P 3 P = O, P 2 i = P i (4) P + P 2 + P 3 = E 3 (5) i ϵ ip i H 0 0 (6) R = 0 0 [H,

More information

第10章 アイソパラメトリック要素

第10章 アイソパラメトリック要素 June 5, 2019 1 / 26 10.1 ( ) 2 / 26 10.2 8 2 3 4 3 4 6 10.1 4 2 3 4 3 (a) 4 (b) 2 3 (c) 2 4 10.1: 3 / 26 8.3 3 5.1 4 10.4 Gauss 10.1 Ω i 2 3 4 Ξ 3 4 6 Ξ ( ) Ξ 5.1 Gauss ˆx : Ξ Ω i ˆx h u 4 / 26 10.2.1

More information

1 1 1 11 25 2 28 2 2 6 10 8 30 4 26 1 38 5 1 2 25 57ha 25 3 24ha 3 4 83km2 15cm 5 8ha 30km2 8ha 30km2 4 14

1 1 1 11 25 2 28 2 2 6 10 8 30 4 26 1 38 5 1 2 25 57ha 25 3 24ha 3 4 83km2 15cm 5 8ha 30km2 8ha 30km2 4 14 3 9 11 25 1 2 2 3 3 6 7 1 2 4 2 1 1 1 11 25 2 28 2 2 6 10 8 30 4 26 1 38 5 1 2 25 57ha 25 3 24ha 3 4 83km2 15cm 5 8ha 30km2 8ha 30km2 4 14 60 m3 60 m3 4 1 11 26 30 2 3 15 50 2 1 4 7 110 2 4 21 180 1 38

More information

Mathematical Logic I 12 Contents I Zorn

Mathematical Logic I 12 Contents I Zorn Mathematical Logic I 12 Contents I 2 1 3 1.1............................. 3 1.2.......................... 5 1.3 Zorn.................. 5 2 6 2.1.............................. 6 2.2..............................

More information

³ÎΨÏÀ

³ÎΨÏÀ 2017 12 12 Makoto Nakashima 2017 12 12 1 / 22 2.1. C, D π- C, D. A 1, A 2 C A 1 A 2 C A 3, A 4 D A 1 A 2 D Makoto Nakashima 2017 12 12 2 / 22 . (,, L p - ). Makoto Nakashima 2017 12 12 3 / 22 . (,, L p

More information

広域防災拠点検討会報告書030723表紙_0829_.PDF

広域防災拠点検討会報告書030723表紙_0829_.PDF 15 3 i 15 3 ii iii iv ( ) ( ) ( ) ... i...iii... 1.... 1.... 1..... 1..... 2.... 3... 5.... 5..... 5..... 5.... 6..... 6..... 6.... 7..... 7..... 8... 12... 13.... 13..... 13..... 16..... 16.... 17....

More information

変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy,

変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy, 変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy, z + dz) Q! (x + d x + u + du, y + dy + v + dv, z +

More information

006 11 8 0 3 1 5 1.1..................... 5 1......................... 6 1.3.................... 6 1.4.................. 8 1.5................... 8 1.6................... 10 1.6.1......................

More information

2011 8 26 3 I 5 1 7 1.1 Markov................................ 7 2 Gau 13 2.1.................................. 13 2.2............................... 18 2.3............................ 23 3 Gau (Le vy

More information

9. 05 L x P(x) P(0) P(x) u(x) u(x) (0 < = x < = L) P(x) E(x) A(x) P(L) f ( d EA du ) = 0 (9.) dx dx u(0) = 0 (9.2) E(L)A(L) du (L) = f (9.3) dx (9.) P

9. 05 L x P(x) P(0) P(x) u(x) u(x) (0 < = x < = L) P(x) E(x) A(x) P(L) f ( d EA du ) = 0 (9.) dx dx u(0) = 0 (9.2) E(L)A(L) du (L) = f (9.3) dx (9.) P 9 (Finite Element Method; FEM) 9. 9. P(0) P(x) u(x) (a) P(L) f P(0) P(x) (b) 9. P(L) 9. 05 L x P(x) P(0) P(x) u(x) u(x) (0 < = x < = L) P(x) E(x) A(x) P(L) f ( d EA du ) = 0 (9.) dx dx u(0) = 0 (9.2) E(L)A(L)

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 1 19 3 19.1................... 3 19.............................. 4 19.3............................... 6 19.4.............................. 8 19.5.............................

More information

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T NHK 204 2 0 203 2 24 ( ) 7 00 7 50 203 2 25 ( ) 7 00 7 50 203 2 26 ( ) 7 00 7 50 203 2 27 ( ) 7 00 7 50 I. ( ν R n 2 ) m 2 n m, R = e 2 8πε 0 hca B =.09737 0 7 m ( ν = ) λ a B = 4πε 0ħ 2 m e e 2 = 5.2977

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

untitled

untitled C n π/n σ S n π/n v h N tc C S S S S S S S S S S S S S σ v S C σ v C σ v S. O. C / 8 Grou ABCABC EAAEA E AA - A- AE A - N C v EC C σ v σ v σ v 6 C C σ v σ v σ v X X A X - AXB B A B A B B A A C B C A B...

More information

E1 (4/12)., ( )., 3,4 ( ). ( ) Allen Hatcher, Vector bundle and K-theory ( HP ) 1

E1 (4/12)., ( )., 3,4 ( ). ( ) Allen Hatcher, Vector bundle and K-theory ( HP ) 1 E1 (4/12)., ( )., 3,4 ( ). ( ) Allen Hatcher, Vector bundle and K-theory ( HP ) 1 (4/12) 1 1.. 2. F R C H P n F E n := {((x 0,..., x n ), [v 0 : : v n ]) F n+1 P n F n x i v i = 0 }. i=0 E n P n F P n

More information

7/30 40 8/4 7/30 18:00 19:00 7/31 10:00 15:00 7/31 10:00 15:00 8/20 12:30 15:00 8/21 13:00 15:00 ( 49ha) JA () TEL 079-421-9026

7/30 40 8/4 7/30 18:00 19:00 7/31 10:00 15:00 7/31 10:00 15:00 8/20 12:30 15:00 8/21 13:00 15:00 ( 49ha) JA () TEL 079-421-9026 ( ) ( ) 7/30 40 8/4 7/30 18:00 19:00 7/31 10:00 15:00 7/31 10:00 15:00 8/20 12:30 15:00 8/21 13:00 15:00 ( 49ha) JA () TEL 079-421-9026 H144 H2358 H148 H2319 H1563 H23221 H1587 H23122 H1549 5,800 H22265

More information

untitled

untitled - k k k = y. k = ky. y du dx = ε ux ( ) ux ( ) = ax+ b x u() = ; u( ) = AE u() = b= u () = a= ; a= d x du ε x = = = dx dx N = σ da = E ε da = EA ε A x A x x - σ x σ x = Eε x N = EAε x = EA = N = EA k =

More information

1 12 *1 *2 (1991) (1992) (2002) (1991) (1992) (2002) 13 (1991) (1992) (2002) *1 (2003) *2 (1997) 1

1 12 *1 *2 (1991) (1992) (2002) (1991) (1992) (2002) 13 (1991) (1992) (2002) *1 (2003) *2 (1997) 1 2005 1 1991 1996 5 i 1 12 *1 *2 (1991) (1992) (2002) (1991) (1992) (2002) 13 (1991) (1992) (2002) *1 (2003) *2 (1997) 1 2 13 *3 *4 200 1 14 2 250m :64.3km 457mm :76.4km 200 1 548mm 16 9 12 589 13 8 50m

More information

7

7 01111() 7.1 (ii) 7. (iii) 7.1 poit defect d hkl d * hkl ε Δd hkl d hkl ~ Δd * hkl * d hkl (7.1) f ( ε ) 1 πσ e ε σ (7.) σ relative strai root ea square d * siθ λ (7.) Δd * cosθ Δθ λ (7.4) ε Δθ ( Δθ ) Δd

More information

A

A A 2563 15 4 21 1 3 1.1................................................ 3 1.2............................................. 3 2 3 2.1......................................... 3 2.2............................................

More information

第86回日本感染症学会総会学術集会後抄録(I)

第86回日本感染症学会総会学術集会後抄録(I) κ κ κ κ κ κ μ μ β β β γ α α β β γ α β α α α γ α β β γ μ β β μ μ α ββ β β β β β β β β β β β β β β β β β β γ β μ μ μ μμ μ μ μ μ β β μ μ μ μ μ μ μ μ μ μ μ μ μ μ β

More information

44 4 I (1) ( ) (10 15 ) ( 17 ) ( 3 1 ) (2)

44 4 I (1) ( ) (10 15 ) ( 17 ) ( 3 1 ) (2) (1) I 44 II 45 III 47 IV 52 44 4 I (1) ( ) 1945 8 9 (10 15 ) ( 17 ) ( 3 1 ) (2) 45 II 1 (3) 511 ( 451 1 ) ( ) 365 1 2 512 1 2 365 1 2 363 2 ( ) 3 ( ) ( 451 2 ( 314 1 ) ( 339 1 4 ) 337 2 3 ) 363 (4) 46

More information

untitled

untitled ( 9:: 3:6: (k 3 45 k F m tan 45 k 45 k F m tan S S F m tan( 6.8k tan k F m ( + k tan 373 S S + Σ Σ 3 + Σ os( sin( + Σ sin( os( + sin( os( p z ( γ z + K pzdz γ + K γ K + γ + 9 ( 9 (+ sin( sin { 9 ( } 4

More information

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,.

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,. 24(2012) (1 C106) 4 11 (2 C206) 4 12 http://www.math.is.tohoku.ac.jp/~obata,.,,,.. 1. 2. 3. 4. 5. 6. 7.,,. 1., 2007 (). 2. P. G. Hoel, 1995. 3... 1... 2.,,. ii 3.,. 4. F. (),.. 5... 6.. 7.,,. 8.,. 1. (75%)

More information

d ϕ i) t d )t0 d ϕi) ϕ i) t x j t d ) ϕ t0 t α dx j d ) ϕ i) t dx t0 j x j d ϕ i) ) t x j dx t0 j f i x j ξ j dx i + ξ i x j dx j f i ξ i x j dx j d )

d ϕ i) t d )t0 d ϕi) ϕ i) t x j t d ) ϕ t0 t α dx j d ) ϕ i) t dx t0 j x j d ϕ i) ) t x j dx t0 j f i x j ξ j dx i + ξ i x j dx j f i ξ i x j dx j d ) 23 M R M ϕ : R M M ϕt, x) ϕ t x) ϕ s ϕ t ϕ s+t, ϕ 0 id M M ϕ t M ξ ξ ϕ t d ϕ tx) ξϕ t x)) U, x 1,...,x n )) ϕ t x) ϕ 1) t x),...,ϕ n) t x)), ξx) ξ i x) d ϕi) t x) ξ i ϕ t x)) M f ϕ t f)x) f ϕ t )x) fϕ

More information

zsj2017 (Toyama) program.pdf

zsj2017 (Toyama) program.pdf 88 th Annual Meeting of the Zoological Society of Japan Abstracts 88 th Annual Meeting of the Zoological Society of Japan Abstracts 88 th Annual Meeting of the Zoological Society of Japan Abstracts 88

More information

88 th Annual Meeting of the Zoological Society of Japan Abstracts 88 th Annual Meeting of the Zoological Society of Japan Abstracts 88 th Annual Meeting of the Zoological Society of Japan Abstracts 88

More information

_170825_<52D5><7269><5B66><4F1A>_<6821><4E86><5F8C><4FEE><6B63>_<518A><5B50><4F53><FF08><5168><9801><FF09>.pdf

_170825_<52D5><7269><5B66><4F1A>_<6821><4E86><5F8C><4FEE><6B63>_<518A><5B50><4F53><FF08><5168><9801><FF09>.pdf 88 th Annual Meeting of the Zoological Society of Japan Abstracts 88 th Annual Meeting of the Zoological Society of Japan Abstracts 88 th Annual Meeting of the Zoological Society of Japan Abstracts 88

More information

... 1... 1... 1... 4... 4... 5... 5...11... 12... 12... 12... 12... 13... 13... 14... 14... 18... 19

... 1... 1... 1... 4... 4... 5... 5...11... 12... 12... 12... 12... 13... 13... 14... 14... 18... 19 1 ... 1... 1... 1... 4... 4... 5... 5...11... 12... 12... 12... 12... 13... 13... 14... 14... 18... 19 1 ( ) 7,200 1,800 2,300 1,715 220 1,500 ( ) 5 14,735 8,186 710 ( ) 1 8,896 2,000 5,200 17,872 600

More information

1 1.1 H = µc i c i + c i t ijc j + 1 c i c j V ijklc k c l (1) V ijkl = V jikl = V ijlk = V jilk () t ij = t ji, V ijkl = V lkji (3) (1) V 0 H mf = µc

1 1.1 H = µc i c i + c i t ijc j + 1 c i c j V ijklc k c l (1) V ijkl = V jikl = V ijlk = V jilk () t ij = t ji, V ijkl = V lkji (3) (1) V 0 H mf = µc 013 6 30 BCS 1 1.1........................ 1................................ 3 1.3............................ 3 1.4............................... 5 1.5.................................... 5 6 3 7 4 8

More information