0 4/

Size: px
Start display at page:

Download "0 4/"

Transcription

1 04 II 6 7 5

2 0 4/ / / /5 4/ Clebsch-Gordon 4/ / s = / / / Rr i

3 / LS 5/ /0 5/ /7 6/ A 6/ Zeeman 6/0 6/ / WKB 7/ WKB / p L 7/ p L / ii

4 iii

5 0 4/ /8, 4/5, 4/, 5/, 5/3, 5/0, 5/7 6/3, 6/0, 6/7, [6/4 ] 7/, 7/8, 7/5, 7/ 9/ III

6 0.3 i ii Shrödinger eq. iħ ψx, t = Ĥψx, t t ψ x, t = ψx, y, z, t iii = ħ Ĥ Ĥ = m x + V x Ĥφx = Eφx = iet ψx, t = exp φx ħ Shrödinger eq. ψx, t = φx t

7 iv α α β C α = α α 0 α α = 0 α = 0 α pβ + qγ = p α β + q α γ for p, q C α β = β α Â Â α α Â Â α = a α Â α Â β = β Â α Â = Â 3

8 v x φ n x φ n x = x n n ˆx x = x x ˆx = x ˆx ˆx ˆp = ħ ħ x n = x ˆp n ˆp ˆp i x i x [ˆx, ˆp] = iħ Ĥφ nx = E n φ n x Ĥ n = E n n 3 3 ˆp m + V ˆx n = E n n ˆp x m + V ˆx n = x E n n = m = m x ˆp n + x V ˆx n ħ x n + V x x n i x ħ = m = E n x n x + V x φ n x = E n φ n x 3 V x = /mω x φ n x n 4

9 0.4 Â, ˆB [ Â, ˆB] = 0 Â, ˆB n, m, k : { n, m, k = an n, m, k ˆB n, m, k = b m n, m, k  n, m, k k [ˆL, ˆL i ] = 0 ˆL. V = V r [Ĥ, ˆL] = ˆr = ˆx, ŷ, ẑ = ˆx, ˆx, ˆx 3 ˆp = ˆp x, ˆp y, ˆp z = ˆp, ˆp, ˆp 3 [ˆx j, ˆp k ] = iħ δ jk 5

10 04 II 4/ / Â, ˆB [ Â, ˆB] = 0 Â, ˆB  n, m = a n n, m n, m : ˆB n, m = b m n, m  n, m  i  n  n = a n n. ii ˆB n  ˆB n = ˆB n = ˆBa n n = a n ˆB n iii ˆB n  a n  ˆB n n. ˆB n = b n n. iv  n ˆB  - - [-] 6

11 ... L = r p L i = ϵ ijk r j p k ˆL x = ŷˆp z ẑ ˆp y ˆL = ˆr ˆp ˆLi = ϵ ijkˆr j ˆp k = ˆL y = ẑ ˆp x ˆxˆp z ˆL z = ˆxˆp y ŷˆp x Comments + jkl = 3, 3, 3. ϵ jkl = jkl = 3, 3, 3 0 otherwise. ϵ ijk r j p k = 3 j,k= ϵ ijkr j p k 3.. ˆL x = ŷˆp z ẑ ˆp y = ˆp z ŷ ˆp y ẑ = ˆL x ˆL x = iħ y z z y ˆL = ˆr iħ = ˆL y = iħ z x x z ˆL z = iħ x y y x Comments. No. x, y, z r, θ, ϕ. [ˆr j, ˆp k ] = iħδ jk 7

12 .. ˆL = ˆL x + ˆL y + ˆL z ˆL = ħ θ + tan θ θ + sin θ ϕ No...3 4/8 [ˆL j, ˆL k ] = iħϵ jkl ˆLl ˆL x ˆL y [ˆL, ˆL j ] = 0 check [ˆL x, ˆL y ] = [ŷˆp z ẑ ˆp y, ẑ ˆp x ˆxˆp z ] = [ŷˆp z, ẑ ˆp x ] [ŷˆp z, ˆxˆp z ] [ẑ ˆp y, ẑ ˆp x ] + [ẑ ˆp y, ˆxˆp z ] = iħ ŷˆp x iħ ˆp y ˆx = iħˆl z [ˆL, L j ] = ˆL k [ˆL k, ˆL j ] + [ˆL k, ˆL j ]ˆL k = ˆL k iħϵ kjm ˆLm + iħϵ kjm ˆLm ˆL k =

13 [A, B] = 0... L = r p.. L..3 [L i, L j ]..4 4/5 [ˆL j, Ĥ] = 0 [ˆL, Ĥ] = 0. No. 9

14 . [ˆL j, ˆL k ] = iħϵ jkl ˆLl ˆL step 0 step 7 step 0 ˆL = ˆr ˆp.5 Ĵ Ĵ a a =,, 3 [Ĵa, Ĵb] = iħϵ abc Ĵ c step Ĵa = ħĵ a [ĵ a, ĵ b ] = iϵ abc ĵ c ĵ ± = ĵ ± iĵ ĵ = ĵ + ĵ + ĵ 3 [ĵ, ĵ 3 ] = [ĵ, ĵ ± ] = 0 [ĵ 3, ĵ ± ] = ±ĵ ± 3 ĵ = ĵ 3 + ĵ + ĵ + ĵ ĵ + = ĵ 3 ĵ ĵ ĵ + = ĵ 3 ĵ 3 + ĵ + ĵ 4 0

15 step [ĵ, ĵ 3 ] = ĵ ĵ 3 ĵ ĵ 3 λ, µ, k : {ĵ λ, µ, k = λ λ, µ, k ĵ 3 λ, µ, k = µ λ, µ, k k λ, µ λ, µ = δ λλ δ µµ step 3 4 λ, µ λ, µ ĵ λ, µ = λ, µ ĵ3 + + λ, µ ĵ+ĵ ĵ ĵ+ λ = µ + ĵ λ, µ + ĵ + λ, µ µ { λ 0 λ µ λ step 4 λ, µ ĵ ± λ, µ ĵ ĵ± λ, µ ĵ 3 ĵ± λ, µ = ĵ ± ĵ λ, µ = λ ĵ± λ, µ = ĵ ± ĵ 3 ± λ, µ 3 = µ ± ĵ± λ, µ ĵ ± λ, µ ĵ ĵ 3 ĵ ± λ, µ λ, µ ±

16 ĵ 3 µ + µ µ λ, µ + λ, µ λ, µ ĵ + ĵ } } n + n step 5 step 3 ĵ 3 45 { µmax = µ + n + λ µ min = µ n λ λ, µ max ĵ λ, µ max = λ, µ max ĵ + λ, µ max = 0 5 ĵ λ, µ min = 0 6 ĵ 3 ĵ ĵ 0 ĵ + λ, µ max 46 λ = µ max µ max + 7 λ = µ min µ min µ max + µ min µ max µ min + = 0 }{{} >0 µ max = µ min µ max = µ min + n + + n }{{} n 0 { µmax = n = µ min λ = n n +

17 step 6 [Ĵa, Ĵb] = iħϵ abc Ĵ c Ĵa Ĵ Ĵ3 Ĵ j, m = jj + ħ j, m Ĵ 3 j, m = mħ j, m j = n = 0,,, 3, m = j, j +, j, j }{{} j+ j step 7 j, m j, m = δ jj δ mm step 4 Ĵ ± j, m j, m ± ĵ ± j, m = j, m ĵ ĵ ± j, m ĵ = j, m ĵ 3 ĵ 3 ± j, m 4 = jj + mm ± j, m j, m }{{} Ĵ± j, m = jj + mm ± ħ j, m ± phase factor 3

18 .3 4/5 4/. Ĵ [Ĵ, Ĵ] = iħϵĵ] ˆL = ˆr ˆp. ˆL ˆL 3 ˆL l, m = ll + ħ l, m l = 0,, or, 3, ˆL 3 l, m = mħ l, m m = l, l +, l, l l, m r = x, x, x 3 ˆr = ˆx, ˆx, ˆx 3 ˆx i r = x i r for i =,, 3 r 3 r l, m φ l,m r r ˆL l, m = ll + ħ r l, m r ˆL 3 l, m = mħ r l, m 3 r ˆL 3 l, m = r ˆx ˆp y ŷ ˆp x l, m = x ħ i y y ħ r l, m i x = iħ r l, m ϕ r ˆp j α = ħ r α i x j x = r sin θ cos ϕ y = r sin θ sin ϕ z = r cos θ r ˆL l, m = ħ θ + tan θ θ + sin r l, m 5 θ ϕ }{{ } ˆΩθ,ϕ 4 4

19 3 4 5 φ l,m r = r l, m 6 7 ˆΩθ, ϕφ l,m r = ll + φ l,m r 6 ϕ φ l,mr = imφ l,m r 7 φ l,m r = φ l,m r, θ, ϕ Y l,m θ, ϕ Y l,m θ, ϕ by + No [J, J] = iϵħj J, J 3 j, m.3 J = L = r p r l, m Y lm r { l = 0,,, Y l,m θ, ϕ N l,m Pl m cos θe imϕ m = l, l +, l, l N l,m = m l + l m! 4π l + m! Pl m x = l l! x m/ dl+m dx l+m x l m 5

20 ˆL ˆΩθ, ϕy l,m θ, ϕ = ll + Y l,m θ, ϕ ˆL 3 ϕ Y l,mθ, ϕ = imy l,m θ, ϕ d cos θ l=0 m= π Y 0,0 = 4π Y,0 = 0 dϕy l,m θ, ϕy l,m θ, ϕ = δ ll δ mm Y l,m θ, ϕy l,mθ, ϕ = δcos θ cos θ δϕ ϕ 3 3 4π cos θ Y,± = ± 8π sin θe±iϕ r l, m = φ l,m r = φ l,m r, θ, ϕ Y l,m θ, ϕ Comments. Y l,m l, m. Ĵ j, m j, 3 ˆL = ˆr ˆp φr, θ, ϕ + π = φr, θ, ϕ ϕ e imϕ m = ĵ 3 m = ĵ x, y, z. r φ l,m r, θ, ϕ = RrY l,m θ, ϕ.3 Rr 6

21 .4 Clebsch-Gordon 4/ { L = r p L = r p L = L + L ˆL ˆL ˆL = ˆL + ˆL {ˆL l l + ħ ˆL l l + ħ ˆL. Ĵ [ĵ a, ĵ b ] = iϵ abc ĵ c Ĵa = ħĵ a [ĵ a, ĵ b ] = iϵ abc ĵ c [ĵ a, ĵ b ] = 0 ĵ, ĵ, ĵ z, ĵ z 0.4. j, j ; m, m ĵ j, j ; m, m = j j + j, j ; m, m ĵ j, j ; m, m = j j + j, j ; m, m ĵ z j, j ; m, m = m j, j ; m, m ĵ z j, j ; m, m = m j, j ; m, m 7

22 Ĵ a = ĵ a + ĵ a [Ĵa, Ĵb] = iϵ abc Ĵ c [Ĵz, Ĵ ] = 0 Ĵ = Ĵ + Ĵ + Ĵ 3 Ĵz Ĵ Ĵz, Ĵ, ĵ, ĵ Ĵ j, j ; J, M = JJ + j, j ; J, M Ĵ z j, j ; J, M = M j, j ; J, M 3 ĵ j, j ; J, M = j j + j, j ; J, M ĵ j, j ; J, M = j j + j, j ; J, M j, j ; J, M j, j ; m, m 3 j, j ; J, M = j, j ; J, M j j m = j m = j j, j ; m, m j, j ; J, M }{{} Clebsch-Gordan CG j, j ; m, m 8

23 CG j =, j = j, j J, M = m,m =±/ m, m J, M m }{{}, m CG step m, m m = j, m = j, Ĵ z = ĵ z + ĵ z : Ĵ z, =, M = Ĵ = ĴzĴz + + Ĵ Ĵ+ : Ĵ }{{}, = +, J = ĵ + +ĵ, =, step Ĵ = ĵ +ĵ. step 7 jj + mm ±, 0 =, +,, =, 3 step 3 α =,, Ĵ α = 0 Ĵz α = 0 α = 0, 0 4 step 4 4 CG,, = ±,, 0 = ±, 0, 0 = ±,, = 9

24 CG M = m + m j j J j + j Ĵ± = ĵ ± + ĵ ± j, j ; m, m m = j j }{{}, m = j j, j }{{} +j + j + j + j, j ; J, M : M = J J J = j + j j + j + J = j j j j + j + j /. L = r p. j, m.3 r l, m Y l,m θ, ϕ.4 J + J CG 0

25 Clebsch-Gordan II j,j; J, M = j j m= j m= j j,j; m,m j,j; J, M j,j; m,m = + J J ± M + j,j; m,m j,j; J, M ± j ± j m + j,j; m,m j,j; J, M j ± j m + j,j; m,m j,j; J, M Racah j,j; m,m j,j; J, M = δm+m,m [ J +j + j J!j j + J! j + j + J! j + j + J +! ] / [j + m!j m!j + m!j m!j + M!J M!] / k Z k k!j + j J k!j m k!j + m k!j j + m + k!j j m + k! j = any /, j =/ j, ; J, M = m=±/ j, ; M m,m j, ; J, M j, ; M m,m j, ; M m,m j, ; J, M m =/ m = / J = j + J = j j+m+/ j+ j M+/ j+ j M+/ j+ j+m+/ j+ j = any, j = j, ; J, M = j, ; M m,m j, ; J, M j, ; M m,m m=,0, j, ; M m,m j, ; J, M m = m =0 m = J = j + J = j J = j j+mj+m+ j+j+ j+mj M+ jj+ j Mj M+ jj+ j M+j+M+ j+j+ j Mj M+ j+j+ M j Mj+M+ jj+ jj+ j Mj+M jj+ j+mj+m+ jj+ The Review of Particle Physics Particle Data Group, Clebsch-Gordan coefficients 40. CLEBSCH-GORDAN COEFFICIENTS, SPHERICAL HARMONICS, AND d FUNCTIONS Note: A square-root sign is to be understood over every coefficient, e.g., for 8/5 read 8/5. Y 0 3 = 4π cos θ Y 3 = 8π Y 0 sin θ eiφ 5 3 = 4π cos θ Y 5 = 8π Y = 4 sin θ cos θ eiφ 5 π sin θ e iφ Y l m = m Y l m jjmm jjjm d l 4π = J j j jjmm jjjm m,0 = l + Y l m e imφ d j m,m = m m d j m,m = d j m, m d 0,0 / =cosθ d /,/ =cosθ d, = +cosθ d / /, / = sin θ d,0 = sin θ d, = cos θ d 3/ 3/,3/ = +cosθ cos θ d 3/ 3/,/ = 3 +cosθ d 3/ 3/, / = 3 cos θ d 3/ 3/, 3/ = cos θ d 3/ /,/ = 3cosθ d 3/ /, / sin θ cos θ sin θ cos θ = 3cosθ + sin θ d, = +cosθ d, = +cosθ 6 d,0 = 4 sin θ d, = cos θ d, = cos θ sin θ sin θ d, = +cosθ cos θ 3 d,0 = sin θ cos θ d, = cos θ 3 cos θ + d 0,0 = cos θ Figure 40.: The sign convention is that of Wigner Group Theory, Academic Press, New York, 959, also used by Condon and Shortley The Theory of Atomic Spectra, CambridgeUniv. Press,NewYork,953,RoseElementary Theory of Angular Momentum, Wiley,NewYork,957, and Cohen Tables of the Clebsch-Gordan Coefficients, NorthAmericanRockwellScienceCenter, ThousandOaks, Calif., 974.

26 .5 5/ ˆ L = ˆ x ˆ p = Ĵ a j j, j z = l, m r x, y, z r, θ, ϕ Ĵ a = ˆ La l = 0,, j, j z = s, s z or + Ĵ a = ˆ Sa s = 0,, r; s, s z ˆ J a = ˆ La + ˆ Sa r, r, ; s, s ˆ J a = ˆ i Lia + ˆ Sia s = 0 π uū d d s = uud, udd s = W, Z 4 N s = 3 ++ uuu s =

27 .6 s = / j = s = { /, / j, m = /, m = /, / = {. {Ŝ3 = ħ Ŝ 3 = ħ Ŝ3 = ħ 0 0 Ŝ ± = Ŝ ± iŝ Ŝ = ħ 0 0 Ŝ = ħ 0 i i 0 Ŝa α = β=, [ ] ħ σ a σ a = βα β 0 0, 0 i i 0, 0 0 Ŝ }{{} a α = [ ] ħ β σ a β=, βα }{{} { [ Ŝ a, Ŝb] = iħϵ abc Ŝ c consistent [σ a, σ b ] = iϵ abc σ c β β Ŝa α = [ ] ħ σ a βα 3

28 . ħ : Ĥφr = m + V r φr = Eφr ˆp : Ĥ φ = m + V ˆr φ = E φ E, φx E, φ r = φr = r φ r = x, x, x 3 ˆx, ˆx, ˆx 3 ˆx j x, x, x 3 = x j x, x, x 3 j =,, 3 : Ĥφ n,l,mx = E n φ n,l,m x : Ĥ n, l, m = E n n, l, m E n = 3.6 ev n n =,, n l m..3 i φr = φr, θ, ϕ = RrY θ, ϕ Rr Y θ, ϕ ii ii i 4

29 . [ˆL j, Ĥ] = 0 [ˆL, Ĥ] = 0 No. [ˆL j, ˆr k ] [ˆL j, ˆp k ] [ˆL j, ˆr ] = [ˆL j, ˆp ] = 0 [ˆL j, Ĥ] = 0,, [ˆL j, ˆL ] = 0. [Ĥ, ˆL ] = [Ĥ, ˆL z ] = [ˆL, ˆL z ] = Ĥ Ĥ, ˆL, ˆL z E, l, m. ˆL ˆL 3 Ĥ E, l, m = E E, l, m 3 ˆL E, l, m = ll + ħ E, l, m 4 ˆL 3 E, l, m = mħ E, l, m 5.3 r E, l, m Y l,m θ, ϕ 5

30 .3 5/ r E, l, m = RrY l,m θ, ϕ r 3 ˆp r m + V ˆr E, l, m = E r E, l, m }{{} RrY l,m θ,ϕ = ħ m + V r r E, l, m }{{} RrY l,m θ,ϕ = r + r r + ˆΩθ, ϕ by r ˆΩθ, ϕy l,m θ, ϕ = ll + Y l,m θ, ϕ [ ħ m r + ] ll + + V r RrY r r r l,m θ, ϕ = ERrY l,m θ, ϕ Shrödinger eq. [ ħ d m dr + r ] d ll + + V r Rr = ERr dr r Comments. V = V r V r = A r 6

31 .4 A e 4πϵ 0 e A = kg m 3 s 37 ħc. V r = mω r = mω x + y + x. Rr = χ lr r [ ħ d V m dr + r + ll + ħ mr Shrödinger eq. V eff r = V r + ] χ l r = Eχ l r ll + ħ mr l V eff r V r ll + ħ mr 5/ 7

32 03 04 = d 3 x φr, θ, ϕ = r dr d cos θ dϕ RrY l,m θ, ϕ = r dr Rr = dr χ l r 3. lim r 0 r V r = 0 V r /r r l 0 r 0 χ l r r s r s ss + ll + = 0 s = l or l + χ l r r l l = 0 χ 0 r r 0 or r χ 0 r r 0 φr /r ħ Ĥφr m + V r r const δr + V r Eφr r r χ l r r l+ r 0 l l = 0 Rr = 0 = 0 8

33 GW. J. V r = V r.. L H.3 Rr r E, l, m = RrY lm θ, ϕ 5/3 9

34 .4 5/3 r V r = A r, A 37 ħc.4. Rr [ ħ d m dr + r d ll + Ar ] dr r E Rr = 0 E < 0 Rr = d 3 x φr, θ, ϕ = r dr d cos θ dϕ RrY l,m θ, ϕ = r dr Rr r = ħ 8mE ρ ρ [ d dρ + d ll + + λ ρ dρ ρ ρ ] Rρ = 0 Rr = 4 Rρ m λ = ħ E A comment Eb λ = where E b ma E ħ mc 3.6 ev 37 E ρ = r where a B = ħ E b ma 37 ħ mc m a B 30

35 Rρ = ρ l e ρ/ G l ρ 3 [ρ d dρ + l + ρ d ] + l λ G l ρ dρ No.4 { case : λ l +, l +, l + 3 case : λ = n n = l +, l +, l + 3 case G l ρ e ρ ρ 3 Rρ e ρ/ Rr r dr = λ = n = l +, l + case G l ρ L l+ n+l ρ 4 ] L m n x = [e dm x dn dx m dx n e x x n L m n n m L l+ n+l n = n = n = 3 l = 0 L = L = x 4 L 3 = 3x + 8x 8 l = L 3 3 = 6 L 3 4 = 4x 96 l = L 5 5 = 0 3

36 34 Rρ = N nl ρ l e ρ/ L l+ n+l ρ N nl Rr r dr = 3 Nnl n l! = na B n[n + l!] 3.4. λ = n= l +, l +, λ = Eb E E b = ma ħ = 3.6 ev E = E b n n = l +, l +, E ρ = r = r a B n E b a B a B = ħ ma = m 3

37 N nl 5/7 = R nl r r nab 3 dr = R nl ρ ρ dρ nab 3 = N nl ρ l+ e [ ρ L l+ n+l ρ] dρ k=m j=m = = L m k x yk k! = ym xy exp y m+ y k=m y k z j k! j! y m z m y m+ z m+ x m+ e x L m k xl m j x y m z m m +! y m+ z m+ = m +! ym z m y z yz m+ y k z k k m x m+ e x [L m k! k x] [ y x m+ exp y + z [ y y + z z + ] z + x dx ] m+ k +! k! = m +! + k m! m +! k m! m +! }{{}}{{} yz k m from yz m yz k m from yz m k + mk! = k m! ρ l+ e ρ [ L l+ n+l ρ] dρ = n[n + l!] 3 n l! N nl 33

38 .4.3 Schrödinger eq Ĥ φ = E φ H = p m + V r, V r = A r E < 0 E = E n = E b n E b = ma ħ = 3.6 ev Ĥ φ n = E n φ n φ n = l,m c l,m n, l, m Ĥ n, l, m = E n n, l, m n =, ˆL n, l, m = ll + ħ n, l, m l = 0,, n ˆL 3 n, l, m = mħ n, l, m E b m = l, l +, l r φ n = c }{{} l,m r n, l, m }{{} l,m =φ nr =φ n,l,m r,θ,ϕ φ n,l,m r, θ, ϕ = R n,l r Y l,m θ, ϕ na B R nl x = N nl e x/ x l L l+ n+l x 34

39 .4.4 3, l, m s, l, m s l, m = 0, 0,,,, 0,,, 0, 0 s s = / ŝ z ±/ r r, θ, ϕ n, l, m r; s z or n, l, m; s z s z = ± n, l, m = 0, 0, 0 0, 0, 0; ± Schrödinger eq. Dirac eq. 3 LS 35

40 m r p m r p r H = p m + p m + V r r = p CM M + p m + V r Schrödinger eq. M = m + m m = m m m + m r = r CM m /M m /M p m /M m /M = p CM Ĥφ total r, r CM = E total φ total r, r CM φ total r, r CM = φ CM r CM φr ˆp CM φ M CMr CM = E CM φ CM r CM φ CM e ik x ˆp + V r φr = Eφr m E total = E CM + E r r p p 36

41 I S 3 3. n B n B H = µ B where µ = IS n 3. 5/3 e L = mrv n I = e πr/v S = πr µ = IS n = e m L ˆ µ L = e ˆ m L l 0 Ĥ B = ˆ µ L B = e ˆ L m B ˆ µ S g = }{{} + Dirac eq. 5/3 α π + }{{} QED e ˆ S m ˆ µ S = g e ˆ S m = }{{} vs 0 37

42 5/0.4. L 3 3x = 6 V = V r H = µ B µ L = e m L µ S = g e m S g =.00 5/0 3 6 or III 38

43 3.3 LS 5/0 Ĥ LS = ξrˆ L ˆ S LS ξr = mc dv r Dirac eq. r dr Ĥ = ˆp m + V r + ξrˆ L ˆ S.4 A ˆL, Ŝ, ˆL 3, Ŝ3 ˆL l, s; m, s z = ll + ħ l, s; m, s z Ŝ = ss + ħ l, s; m, s z : ˆL 3 = mħ Ŝ 3 = s z ħ n, l, m ĤLS ˆ L ˆ S [ Ĥ, ˆL 3 ] 0 [Ĥ, Ŝ3] 0 l, s; m, s z Ĥ B ˆL, Ŝ, Ĵ, Ĵ3 Ĵa = ˆL a + Ŝa ˆL l, s; J, M = ll + ħ l, s; J, M Ŝ = ss + ħ l, s; m, s z : Ĵ = JJ + ħ Ĵ 3 = Mħ ˆL, Ŝ, Ĵ, Ĵ3 Ĥ l, s; J, M r Ĥ A B.4 CG 39

44 3.4 Ĥ = Ĥ0 +ĤLS +ĤB = ˆp m + V r +ξrˆ L ˆ S e B m ˆ L + g ˆ S Ĥ = g e ˆ S m B / ψt = αt + βt Schrödinger eq. iħ ψt = Ĥ ψt t αt = g e B βt m ħ σ αt βt iħ t αt βt T = π ω [ = exp i g e B 4m σ = [ cos ωt = π 4m ge B 0 0 ] α0 t β0 + i sin ωt B σ B ψt Ŝ ψt T/ ] α0 β0 where ω = g e B 4m S B 40

45 5/0 σ i 0 = for i =,, σ i σ j + σ j σ i = δ ij 0 v σ = v i σ i = v + v + v3 i 0 v n for n = even v σ n = 0 v n v σ for n = odd v e i v σ = i v σn n! n=0 = i n 0 n! v n + 0 n=even n=odd 0 v σ = cos v + i sin v 0 v 0 0 = v i n σ v n v n! v 0 0 4

46 Ĥ ψ n = E n ψ n Ĥ = Ĥ0 + Ĥ Ĥ 0 n = E n 0 n E n 0 n Ĥ0 = ˆp + m mω x Ĥ = Ax Ĥ = λx 4 Ĥ 0 ψ n n E n E 0 n Ĥ 0 E 0 n n Ĥ 0 Ĥ = Ĥ0 + Ĥ E n ψ n ψ n E n Ĥ Ĥ = λx 4 Ĥ = Ax 4

47 4.. 5/0 5/7 Ĥ0 + λĥ ψ n λ = E n λ ψ n λ Ĥ0 n = E n 0 n { m n = δmn n n n = Ĥ 0 n E 0 m E 0 n for m n n λ E n λ = ψ n λ = p=0 λ p E p n = E 0 n + λe n + λ E n + 3 λ p n p = n + λ n + λ n + 4 p=0 λ 0 ψ n λ n E n λ E 0 n 4 ψ n λ + cλ ψ n λ ψ n λ ψ n λ ψ n λ = * n ψ n λ = ** 34 Ĥ0 + λĥ λ p n p = λ q E n q λ p n p 43

48 λ p Ĥ 0 n p + Ĥ n p = p k=0 E n p k n k Ĥ0 + λĥ ψ n λ = E n λ ψ n λ E n λ = ψ n λ = = Ĥ0 n p + Ĥ n p = p=0 λ p E p n λ p n p p=0 p k=0 E n p k n k E n p n p E p n p = n Ĥ n p k= E p k n n n k 5 n p = c p n n + m n m n p m 6 where, for m n, m n p = E n 0 E m 0 [ p m Ĥ n p k= E p k n m n k ] 7 c p n 44

49 proof m Ĥ0 n p }{{} + m Ĥ n p = E m 0 m n p p k=0 E p k n m n k p + k= = m n =δ mn = E n p m n 0 }{{} E p k n m n k + E 0 n m n p m = n p n Ĥ n p = E n p + E n p k n n k = 5 k= m n p E m 0 m n p + m Ĥ n p = E n p k m n k +E n 0 m n p = 7 proof k= 45

50 567 n Ĥ m = H nm p = E n = H nn 8 n = c n n + H mn m m n E n 0 E m 0 p = E n = n Ĥ n E n n n = c n n Ĥ n }{{} =H nn=e n H mn = m n n = c n n + m n = E n 0 E m 0 + m n H mn E n 0 E m 0 n Ĥ m E n c n }{{} =H nm=h mn 9 E n 0 E m 0 m Ĥ E n n m comments. n p c p n E n p. E n 0 E m 0 0 E n 0 E m 0 =

51 Stark Ĥ 0 = ˆp m A A r 37 ħc Ĥ = eez z Ĥ0 Ĥ 0 n, l, m = E 0 n,l,m E 0 n,l,m = A a B n n, l, m, a B = ħ ma 37 ħ mc Ĥ0 n, l, m =, 0, 0 E,0,0 Ĥ Ĥ = λ A a B z λ = ee a B A λ 89 E,0,0 =, 0, 0 Ĥ, 0, 0 n, l, E m Ĥ, 0, 0,0,0 = E 0,0,0 E 0 n,l,m n,l,m,0,0 47

52 n, l, m Ĥ, 0, 0 = = d 3 x d 3 x d 3 x n, l, m x x Ĥ x x, 0, 0 d 3 x φ n,l,m x λ A a B zδ 3 x x φ,0,0 x = λ A a B.4.3 φ n,l,m r, θ, ϕ = R nl ry l,m θ, ϕ R nl r = R nl r na B n, l, m Ĥ, 0, 0 =λ A a B 0 π r dr d cos θ dϕ φ n,l,m x r cos θ φ,0,0 x 0, Rnl x = N nl e x/ x l L l+ n+l x d cos θdϕ Yl,mθ, ϕ cos θ Y 0,0 θ, ϕ } {{} = 3 δ l,δ m,0 r dr Rnlr r R }{{},0 r a B l= }{{} = I n = = 6n 7/ n n 5/ n + n 5/ E 0,0,0 = A a B E,0,0 = 0 E,0,0 = = n,, 0 Ĥ, 0, 0 n= n= E n,,0 E n,l,m λ A a B 3 I n A a B = λ A a B 3 n n= I n /n } {{ }

53 Stark z V Ĥ = Ĥ0 + λĥ E,0,0 λ = E 0,0,0 + λ E,0,0 + ψ,0,0 λ =, 0, 0 k e /λ k=0 5/7 d cos θdϕ Yl,mθ, ϕ cos θ Y 0,0 θ, ϕ = = d cos θdϕ Yl,mθ, ϕ 3 4π 3 Y,0θ, ϕ d cos θdϕ Yl,mθ, ϕy,0 θ, ϕ } {{ } =δ l, δ m,0 4π d cos θdϕ = [ r = na ] B x 0 0 = n4 a 3 B 6 = n4 a 3 B 6 r drrn,r r R,0 r a B r dr R r n, na B 0 0 = n4 a 3 B 6 N n,n,0 r a B R,0 r a B x dx R n, x x R,0 nx x dx [ N n, e x/ xl 3 n+x ] x [N,0 e nx/ L nx ] 0 dx x 4 exp n + x L 3 n+x 49

54 .4 3 n! N n, = na B n[n +!] = 3 n n +!a 3/ n + nn B 3 N,0 = a B = a 3/ B L m k x yk k! = ym y y k k! k=3 k=m dx x 4 exp n + x m+ exp L 3kx = y3 xy y y 4 = y3 y 4 y n+ dx x 4 exp n + x L 3 n +! n+x [ ] n 3 4! 5 = n + n n +! 5 n 3! n + 4! = 6 n n n n + n+ 0 = n4 a 3 B 6 = 6 n 7/ r drrn,r r R,0 r a B n n +!a 3/ B n n 5/ n + n+5/ = n + nn 0 n + [ n + dx x 4 exp + y ] x y + y 5 4! 4! 5 n + 5 y3 y a 3/ B n! I n y n n + y [ n n + 5 ] n n +! 4! n +! 6 n n n n + n+ 50

55 4..3 5/7 6/3 Stark n = Ĥ 0 = ˆp m A r λĥ = eez 4.., l, m Ĥ 0, l, m = E 0, l, m Ĥ 0 λ = 0, 0, 0,, 0,, ± E 0 = A 8a B Ĥ = Ĥ0 + λĥ E 0, l, m 3 5/7 5

56 6/3 4..A 6/3 step Ĥ ψ a = E a ψ a { n } n m = δ nm n n = n n Ĥ m Ĥ ψ a = E a ψ a A n H ψ a = n E a ψ a m m n H m m ψ }{{} a = E }{{} a n ψ a H nm u a,m H nm u a,m = E a u a,n H H H u a, u a, = E a u a, u a, B AB H nm E a Ĥ E a u a, u a = u a, = ψ a ψ a ψ a = m m m ψ a = m u a,m m 5

57 H nm E a Hnm = n Ĥ m = m }{{} Ĥ n = H mn =Ĥ ψ a ψ a ψ b = δ ab u a u b = n ψ a n n ψ b = ψ a ψ b = δ ab u a U = u u u U U = u u u = = H nm u a,m = E a u a,n m H u u = u u }{{}}{{} U U U HU = E E E E 53

58 step Ĥ0 + λĥ ψ n λ = E n λ ψ n λ n : Ĥ 0 n = E n 0 n H nm = n Ĥ0 + λĥ m = E n 0 δ nm + λ n Ĥ m }{{} H nm E 0 E 0 + λ H H H H ψ n λ ψ n λ } {{ } u n λ E n λ = E n 0 + λe n + λ E n + u n λ = u 0 n + λ u n + λ u n + k ψn λ = k n 0 + λ k n + λ k n + = E n λ ψ n λ ψ n λ } {{ } u n λ λ 0 E 0 E 0 u 0 n = E 0 n u 0 n u 0 n = n 0 λ E 0 E 0 u n + H H H H u 0 n = E n 0 u n +E n u 0 n 54

59 n E n 0 u n n + H nn = E n 0 u n n + E n E n = H nn m n E m 0 u n m + H mn = E n 0 u n + 0 m 4.. step 3 u n m = H mn E n 0 E m 0 = m n Ĥ 0 n, α = E 0 n n, α α =,, N n Ĥ 0 n Ĥ0 m = E 0 E 0 E 0 n E 0 n E 0 n N n N n n, α Ĥ0 n, β = E n 0 δ αβ E 0 E n 0 Nn Nn + λ H u = E u λ 0 E E n 0 E n,α λ = E 0 u n,α λ = u 0 n + n,α + k= k= λ k E k n,α λ k u k n,α 55 α =, N n

60 λ 0 E n 0 Nn Nn u 0 n,α = E 0 n u 0 n,α u 0 n,α 0 u 0 n,α = χ α } N n 0 λ E n 0 Nn N n u n,α+ H u 0 n,α = E 0 n u n,α+e n u 0 n,α [H ] Nn N }{{ n } χ α = E n χ α n, α Ĥ n, β α, β =, N n χ α [H ] Nn N n u 0 n,α E n [H ] Nn N n [H ] Nn N n λ Ĥ 0 λ = 0 Ĥ = Ĥ0 + λĥ E n 0 n, α E n, 3 E n,nn ψ n, λ ψ n,nn λ 56

61 λ 0 ψ n,α λ λ 0 n, α 0 = β = β n, β n, α 0 n, β χ α β n, β n, α u n,α λ λ 0 u 0 n,α = 0 χ α 0 57

62 4..3 Stark n = Ĥ0 = E 0 E 0 E 0 E 0 E 0, 0, 0, l, m 4 4, l, m Ĥ, l, m λĥ = eez = eer cos θ 4.., l, m Ĥ, l, m δ l,l±δ m,m [H ] 4 4 =, 0, 0,, 0,,,,, 0, 0,, 0,,,, 0 H H λh 0 = λh 0 = 3eEa B E 0 Ĥ 0, l, m 3 Ĥ E 0 + λh 0 E 0 E 0 λh 0 +Oλ, 0, 0 +,, 0,, &,,, 0, 0 +,, 0 +Oλ 58

63 , l, m λĥ, l, m = ee, l, m ẑ, l, m = ee d 3 xd 3 x, l, m x x ẑ x x, l, m = ee d 3 xd 3 x φ,l,m x r cos θδ3 x x φ,l,m x = ee r drr,l rrr,lr d cos θdϕyl,m θ, ϕ cos θy l,mθ, ϕ d cos θdϕ ϕ δ m,m Y l,m θ, ϕ l cos θ θ l, l, or, l, l =, 0 or 0, m, m = 0, 0 d cos θdϕy0,0θ, ϕ cos θy,0 θ, ϕ = d cos θdϕy,0θ, ϕ cos θy 0,0 θ, ϕ = d cos θdϕ 3 4π cos θ 4π cos θ = 3 r drr,rrr,0 r = r drr,0rrr, r = r dr R r,0 r a R r, B a B = a 4 B x dx R,0x x R, x = a 4 BN,0 N, x dx e x/ L x x e x/ xl 3 3x = a 4 B 96 dx e x x 4 x 4 6 3a 3 B, l, m λĥ, l, m = = 3 3a B { 3eEaB for l, l, m, m =, 0, 0, 0, 0,, 0, 0 0 otherwise 59

64 4..4 Zeeman 6/0 6/7 3.4 Ĥ = Ĥ0 +ĤLS +ĤB = ˆp m + V r +ξrˆ L ˆ S e m B ˆ L + g ˆ S ξ = const. z g =.003 H B = e m B zˆl z + Ŝz Ĥ case. Ĥ0 + ĤLS ĤB Zeeman case. Ĥ0 + ĤB ĤLS Paschen-Back case 3. Ĥ l = s = / Ĥ 0, ˆL, Ŝ, ˆL z, }{{ Ŝz n, l, s, l } z, s z Ĥ0, ˆL, Ŝ, Ĵ, }{{ Ĵz n, l, s, J, M } 60

65 Ĥ0, Ĥ LS, Ĥ B Ĥ0, ˆL, Ŝ n, l, s,, Ĥ n, l, s,, δ n nδ l lδs s = n, l, s =, 0, / n, l, s =, 0, / n, l, s =,, / n, l, s n, l, s Ĥ ξ = ξr Ĥ0 ĤLS n, ĤLS n, n n n 0 = n [Ĥ, Ĥ0] n = n ĤĤ0 Ĥ0Ĥ n = n n n Ĥ n ˆL, Ŝ 6

66 case. step B 0 Ĥ0 + ĤLS Ĥ0 + ĤLS J, M = Ĥ LS = ξ ˆ L ˆ S = ξĵ ˆL Ŝ n, l, s, }{{}}{{} J, }{{} M Ĵ Ĵ z E n + ξħ }{{} E LS [JJ + ll + ss + ] J, M s = / l J = l ± Ĥ0 ĤLS + J = l +, M = E n + l E LS J = l +, M Ĥ0 ĤLS + J = l, M l + = E n + E LS J = l, M Ĥ 0 Ĥ 0 + ĤLS J = l + / E n + l E LS J + = l + E n 3 E n + l+ E LS J + = l J = l / J, M Ĥ0 + ĤLS J, M l E n 4l+ 4l+ + E LS l+ l+ J = l + l+ E LS l l J = l 6

67 step ĤB Ĥ B = eb z m ˆL z + Ŝz = eb z m Ĵz + Ŝz Ĵ z J, M Ĵz J, M = Mħδ MM Ŝ z CG J = l ± l ± M + /, M = ± l + l z = M, s z = l M + / + l + l z = M +, s z = [ l ± M + / J, M Ŝz J, M = + l M + / l + ħ + ] l + ħ δ MM = ± l + Mħδ MM ĤB J, M ĤB J, M = ± l + JJ + ll + + ss + g j = + JJ + s 0 g j M eħb z } m {{} E B δ MM [ ] Lande g-factor 63

68 Ĥ 0 + ĤLS J = l + / l + E n + l E LS 3 +ĤB + l + E l+ B + l E l+ B l E n + l+ E LS J = l / 3 l+ l E B l+ l 3 E B s = 0 J = l l + s = / J = l ± l + l + s s = J = s + l + } }{{} l s 64

69 case. step ĤLS 0 Ĥ0 + ĤB n, l, s, l }{{} z, s }{{} z }{{} ˆL 3 Ŝ z Ĥ0+ Ĥ }{{} B l z, s z = E n + eħb l z +s z l z, s z m e m B }{{} zˆl z + Ŝz E B s = / l z + s z { m +, l z, s z = l z +s z = m, E = E n +me B m, l z, s z Ĥ0 + ĤB l z, s z E n 4l+ 4l+ l + l l +E B = l, / = l, / l = l, / = l, / m m = m +, / = m, / l + l + l l 65

70 step ĤLS ξ ˆ L ˆ S = ξ ˆL z Ŝ z + ˆL + Ŝ + ˆL Ŝ + ˆL z, ˆL +, ˆL l z ± [ĤLS ] m, ξ ˆ L ˆ S m +, = 0 l z, s z ξ ˆ L ˆ S mlz, s z = ξħ }{{} E LS l z s z m +, / m, / = m + m E LS l, / E n + l + E B + le LS l, / E n + le B + l E LS l, / E n + l E B + l E LS l, / 3 En + l E B le LS m +, / E n + me B + m E LS m, / 3 En + me B m + E LS 6/0 66

71 6/ case case case 3. l =, s = / l =, s = / E B A E n + E LS + 3 E B B case B 3 E B C E B A E n E LS + 3 E B B 3 E B C E n + E B + E LS A E n + E B + 0 B case B E n + 0 E LS BC l = l E n E B + 0 C E n E B + E LS A ĤB = E B /ħˆl z +Ŝz ĤLS = E LS /ħ ˆLz Ŝ z + ˆL + Ŝ + ˆL Ŝ + l z, s z Ĥ l z, s z, /, / 0, / 0, /, /, / E LS + E B E n E LS E LS E LS +E B E B LS E LS E LS E LS E B 67

72 r B = E B /E LS E n + E LS ± 4r B A E n + E LS r B ± rb + r B E n + E LS r B ± rb r B B C r B r B case r B r B case ABC 6/7 68

73 4. 6/7 iħ d ψt = Ĥ ψt dt 4. ħ = Ĥ/ħ Ĥ 4.. Ĥ = Ĥ0 Ĥ0 n = E n n E n, n i d dt ψt = Ĥ0 ψt ψt = e iĥ0t ψ0 iĥ0t k = ψ0 t d k! dt ψt = iĥ0 ψt k=0 [ n ψt = n n ψt n }{{} n ψt = m n e iĥ0t m m ψ0 }{{} e iemt m = e ie nt n ψ0 e ie nt ] 69

74 4.. Ĥ = Ĥ0 + Ĥ t Ĥ Ĥ 0 n i d ψt = Ĥ ψt 3 dt Ĥ = const ψt = e iĥt ψ0 e iĥ t e iĥ0t ψ0 = iĥ t + e iĥ0t ψ0 Ĥ ψt H 0 = } e iĥ0t {{} ψ0 t factorize ψt = e iĥ0t ψt I 4 ψt }{{} I e +iĥ0t ψt 4 3 i d dt e iĥ0t ψt I = Ĥ0 + Ĥ t e iĥ0t ψt I 70

75 i d dt ψt I = ĤIt ψt I 5 where ĤIt e +iĥ0t Ĥ te iĥ0t Ĥ t ĤIt t 5 ψt I 4 ψt [ψt I n ψt I = n n ψt }{{} I n 5 i d dt n ψt I = m n ĤIt m m ψt I 5 n ψt I 4 ψt = n ψt n n }{{} = n e iĥ0t ψt I ] = e ient n ψt I 5 5 i d ft = htft dt i ft = e 7 t 0 ht dt f0

76 5 i ψt I??? =??? e t No. 0 dt Ĥ I t ψo I 6 CHECK t 0 dt Ĥ I t = ˆϕt 6 = e i ˆ ϕt ψ0 I = i d dt 6 = = n=0 n= n! n! i d dt n k=0 n=0 i ˆ n ϕt ψ0 I n! i ˆ ϕt n ψ0 I k d ϕt dt ˆϕt }{{} Ĥ I t i ˆ = = i ˆ ϕt n k ψ0 I [ [ĤIt, ˆϕt] ] 0 ĤIt ĤIt n! n i ˆ n ϕt ψ0 I n= }{{} = ĤIt 6 i ˆϕt e 7

77 i ψt I = T e t 0 dt Ĥ I t ψ0 I 7 T: T {ât ˆbt t > t T ât ˆbt = ˆbt ât t > t CHECK [ 7 = T n! i d dt 7 = n= n=0 [ ˆϕt = n! T t 0 ] iϕt ˆ n ψ0 I [ n k=0 ] iϕt ˆ k ĤI t iϕt ˆ n k ψ0 I = = Ĥ I t dt t > t ĤIt [ = ĤIt n! T n i ˆ ] n ϕt ψ0 I n= }{{} i ˆϕt Te ] = ĤIt 7 [7 5 [ t exp i n ψt I = }{{} T t [ ] HI t m 0 [ ] ] dt HI t m ψ0 I nm ] [ HI t = kl k ĤIt l ] 73

78 7 ψt I = ψ0 I + n! T i n= = ψ0 I + n= = ψ0 I i t 0 t 0 tn dt n dt n t 0 0 dt Ĥ I t n ψ0 I t3 0 t dt dt Ĥ I t n ĤIt ψ0 I dt Ĥ I t ψ0 I Ĥ 0 i f f i P i f t = f e iĥt i = f ψt }{{} ψ0 }{{} ψt 3 = f e} iĥ0t {{} e ie f t t 8 = f i i dt f Ĥ }{{} I t i + OH 0 }{{} I =0 e +iĥ0t Ĥ te iĥ0t t = dt f Ĥ t i e ie f E i t + OH 0 ψt I = f ψt I Ĥ t = const for [0, t] sin E t/ f = Ĥ i E f Ĥ i E P i f πħ E 3 4 t 6/7

79 04 II 6/ / Wigner-Eckart

80 4.3 WKB 7/ 4.3. WKB Schrödinger eq. x ħ d m dx + V x φx = Eφx φx = e i ħ Sx Sx = S 0 x + ħs x + ħ S x m S x iħ m S x + V x E e i ħ Sx = 0 S x m E V x iħs x = 0 Schrödinger eq.. Sx = S 0 x + ħs x +ħ S }{{} x WKB [ ] Comments Sx Sx + const S 0 x, S x, const. term. ħ = ħ 3. S 0x E > V x px 76

81 ħ 0 : S 0 = m E V x ħ : S 0S is 0 = 0 WKB ħ : S 0S + S is = 0 S 0x = S x = i { ±px ± me V x for E > V x ±iκx ±i mv x E for E < V x S 0 S 0 = i ln S 0 3 is x = ln S 0 + const e is x = S 0 x const φx = e i ħ S 0x+ħS x+ħ S x S 0 x e i ħ S 0x+ħS x 77

82 A: E > V x B: E < V x φx c e i x dx ħ px + c e +i x dx ħ px px p cl E = p cl m + V x p clx = ± me V x S 0x = ±px φx c e x dx ħ κx + c e x dx ħ κx κx WKB Schrödinger eq. C: E V x 3 px, κx 0 WKB 78

83 WKB S = S 0 + ħs + S 0 ħ S 3 ħ 4 m E V x 3/ V x 4 x = x 0 V x = V x 0 +V x }{{} 0 x x 0 + =E ħ 4 x x 0 3m V x 0 /3 E < V x x 0 Schrödinger eq. 79

84 4.3. V 0 Ae ikx/ħ Be ikx/ħ E = k m < V 0 κ = mv 0 E = T = j C = C j A A = a j = iħ m φ φ φφ Ce ikx/ħ V 0 κa + 4EV 0 E sinh ħ [ T exp ħ b a mv x Edx ] 80

85 φx = φ,in x + φ,out x = C i x px dx,in eħ px + C,out e i x px dx φx ħ px T = j 3 j,in = = C 3 C,in κx e ± ħ x κx dx iħ m φ φ φφ 3 iħ m φ φ φφ,in = [ exp ħ b a mv x Edx ] φx = φ 3 x = C i x px dx 3 eħ px x a, x b 8

86 とても 大雑把な説明 a < φx < b での波動関数を φx φ+ x + φ x x x κx dx κx dx C+ + ℏ C ℏ a a = e e + κx κx とすると 波動関数の変化は φx b C+ em/ℏ + C e M/ℏ, φx a C+ + C 一方 x b で進行波 φ ei/ℏ つなげるためには φ+ b φ b pdx where M = b dx mv x E a に 片方だけだと φ e i/ℏ pdx も出てくる 後でもうちょいちゃんと見る よって C+ em/ℏ C e M/ℏ 以上より C e M/ℏ φx b e M/ℏ M/ℏ φx a C e + C j3 j,in φx b φx a M ℏを仮定 e M/ℏ a < x < b の間に波動関数が e M/ℏ だけ減衰する というのが効い ている 7/ ココまで 8

87 /8 x a V a > 0 WKB V V x E + V ax a Schrödinger eq. 0 = ħ d m dx + V x E φx ħ d m dx + V ax a φx λ mv a ħ, y λ /3 x a d dy y φ = 0 83

88 φy = C A πai y + C B πbi y π Airy.5 B i y A i y y E Airy [ cos y /4 3 y3/ π ] y 4 [ cos y /4 3 y3/ + π ] y 4 a πai x πbi x x V x y y y /4 exp exp y/4 [ 3 y3/ ] [+ 3 y3/ ] y ± [ y C y φy /4 A cos 3 y3/ π ] [ + C B cos 4 3 y3/ + π ] 4 CA y + [ y /4 exp 3 ] y3/ + C B exp [+ 3 ] y3/ 3 84

89 3 WKB px = me V x mv aa x = ħλ /3 y κx = mv x E mv ax a = ħλ /3 y Lx ħ Mx ħ x a x a px dx = 3 y3/ κx dx = 3 y3/ 3 ħ / λ /6 [ x < a C A cos Lx + π ] [ + C B cos Lx π ] px 4 4 φx a = ħ/ λ /6 CA + ic B e ilx + ic A + C B e +ilx px + i + i ħ / λ /6 CA x > a κx e Mx + C B e +Mx WKB C = ħ / λ /6 C A C + = ħ / λ /6 C B ic + C + e +ilx + + i px } {{ } C,in C + ic + + i } {{ } C,out e ilx px x < a φx a x > a C e Mx + C + e +Mx 4 κx κx 85

90 x b V b < 0 C e Mx + C + e + Mx x < b φx b x > b κx κx C + + i C e +i Lx i + C + + C e i Lx 5 + i px + i px } {{ } C 3 }{{} C 3,out = 0! Lx x ħ b px dx Mx ħ x b κx dx 45 a < x < b C e Mx = C e Mx C + e +Mx = C + e + Mx C = C [ + = e C Mx Mx = exp C + ħ C 3,out = 0 b a ] κxdx e A i C + + C = 0 T = C 3 C,in = C + + i C ic + C + 4 = C + 4e A C + + e A C + = e A + e A 4 e A

91 x b V b < 0 Schrödinger eq. 0 V x E + V bx b ħ d d m dx + V bx b φx λ mv b ħ, z λ /3 x b dz + z φ = 0 φz = C A πai z + C B πbi z z ± CA z [ z φz /4 exp 3 ] z3/ [ z + C z /4 A cos 3 z3/ π ] 4 + C B exp [+ 3 ] z3/ ] [ + C B cos 3 z3/ + π 4 px = me V x mv bx b = ħλ /3 z κx = mv x E mv bb x = ħλ /3 z Lx ħ Mx ħ x b x b px dx = 3 z3/ κx dx = 3 z3/ ħ / λ /6 CA x < b κx e+ Mx + C B e Mx φx b ħ / λ /6 i x > b C A + C B e i Lx + C A + i C B e px + i + i C + = ħ / λ /6 CA / C = ħ / λ /6 CB i Lx

92 5 5. p L 7/8 5.. p a = real a check Û a = e i a ˆ p/ħ = n=0 Û a x = x + a i a ˆ p n n! ħ Û a = e ˆX [ ˆx j, ˆX ] = ia k ħ [ˆx j, ˆp k ] }{{} =iħδ jk ˆX i a ˆ p ħ = a j [ˆx j, ˆX ] = ˆX [ ˆx j, ˆX ] [ ˆX] + ˆx j, ˆX = aj ˆX [ˆx j, ˆX ] n = n ˆX n a j ] [ˆx j, Û a = Û a a j ˆx j Û a x = Û aˆx j + a j x = x j + a j Û a x Û a x x + a Û a x = f a x + a Û a Û a = x x = δ x x Û aû b = Û a + b f a = expi k 0 a with k 0 = const ˆ p ˆ p+ a f a = 88

93 5.. L n = θ = real Ûθ n = e iθ n ˆ L/ħ = k=0 n θ Rθ n Ûθ n x = Rθ n x n = 0, 0, Z check iθ n ˆ k L k! ħ Ûθ n = eŷ Ŷ iθ n ˆ L ħ ˆx ˆx ˆx 3 [ˆx j, Ŷ ] = iθ ħ [ˆx j, ˆL3 ] = }{{} =ˆx ˆp ˆx ˆp, Ŷ = θ θ 0 θˆx j = θˆx j = 0 j = 3 ˆx ˆx ˆx 3 or ˆX, Ŷ e Ŷ ˆXeŶ = ˆX + [ ˆX, Ŷ ] + [[ ˆX, Ŷ ], Ŷ ] +! ˆx e Ŷ ˆx ˆx 3 eŷ = n! θ θ 0 n ˆx ˆx ˆx 3 = cos θ sin θ sin θ cos θ } {{ } Rθ n ˆx ˆx ˆx 3 ˆx j Ûθ n = Ûθ n [Rθ nˆx] j 89

94 ˆx j Ûθ n x = Ûθ n [Rθ nˆx] j x = [Rθ nx] j Ûθ n x Ûθ n x Rθ n x Û Û = phase factor 7/8 7/5 5. 7/5 Â Â = Â Û Û Û = ÛÛ = Â e iâ = n=0 n! iân 90

95 5.3 [Ĥ, Â] = 0 e iĥt/ħ Âe iĥt/ħ = Â 5.4 e iαâĥe iαâ = Ĥ 5.5 Ĥ = ˆ p m [Ĥ, ˆp k] = 0 e iĥt/ħˆp k e iĥt/ħ = ˆp k 5.4 e i a ˆ p Ĥe i a ˆ p = Ĥ : p Ĥ = ˆ p m + V }{{} r [Ĥ, ˆL k ] = 0 e iĥt/ħ ˆLk e iĥt/ħ = ˆL k 5.4 e i θ ˆ L Ĥe i θ ˆ L = Ĥ : L 9

96 5.4 A  [Ĥ, Â] = 0 Schrödinger Schrödinger eq. αt, βt d d d dt αt  βt = dt αt  βt + αt  dt βt }{{}}{{} iħ αt Ĥ iħĥ βt = i ] [Ĥ, ħ αt  βt = 0 [ ]  time-independent  ψt  ψt time-indepedent. Heisenberg  H t = e iĥt/ħ Âe iĥt/ħ = ÂH0 =  time-independent Ĥ = ˆ p m [Ĥ, ˆ p] = 0 = p Ĥ = ˆ p m + V r [Ĥ, ˆ L] = 0 = L 9

97 対称性 5.5. ユニタリー演算子と対称性 5.5 U : U U = U U = ˆ 例 U a = ei a p a 実数 任意の α β に対して ユニタリー変換 { α α = U α β β = U β α β = α U U β = α β 系に対称性がある ユニタリー変換 U があって [H, U ] = 0 U H U = H このとき d ψt = H ψt なら dt d iℏ U ψt = U H ψt = H U ψt dt iℏ U ψt も ψt と同じ時間発展 あるいは β e ih t/ℏ α = β U e ih t/ℏ U α = β e ih t/ℏ α α β の振幅と α β の振幅が同じ 93

98 H Û H = p /m Ûa = e ia ˆp H = p /m + V x Û x = x Ĥ Û ÛÛ Û = Û 94

99 5.5. Û : {Û Û = [Ĥ, Û] = 0 Û N Ûϵ = + i N ϵ a ˆTa + Oϵ a= ˆT a Û Û = iϵ a ˆT a + iϵ a ˆTa = + Oϵ ˆT a = ˆT a [Ĥ, Û] = 0 [Ĥ, ˆT a ] = 0 ˆT a Ûϵ Ûϵ Ûϵ Ûϵ = Ûfϵ, ϵ [ ˆT a, ˆT b ] = i N fab c ˆT c c= Ûa = e ia ˆp/ħ Û θ = e i θ ˆ L/ħ Ûϵ = iϵˆp/ħ + Û ϵ = i ϵ ˆ L/ħ + ˆp ˆ L f c ab = ϵ abc SU 95

100 6 9/ 96

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5. A 1. Boltzmann Planck u(ν, T )dν = 8πh ν 3 c 3 kt 1 dν h 6.63 10 34 J s Planck k 1.38 10 23 J K 1 Boltzmann u(ν, T ) T ν e hν c = 3 10 8 m s 1 2. Planck λ = c/ν Rayleigh-Jeans u(ν, T )dν = 8πν2 kt dν c

More information

量子力学 問題

量子力学 問題 3 : 203 : 0. H = 0 0 2 6 0 () = 6, 2 = 2, 3 = 3 3 H 6 2 3 ϵ,2,3 (2) ψ = (, 2, 3 ) ψ Hψ H (3) P i = i i P P 2 = P 2 P 3 = P 3 P = O, P 2 i = P i (4) P + P 2 + P 3 = E 3 (5) i ϵ ip i H 0 0 (6) R = 0 0 [H,

More information

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2 II No.1 [n/] [1]H n x) H n x) = 1) r n! r!n r)! x)n r r= []H n x) n,, H n x) = 1) n H n x) [3] H n x) = 1) n dn x e dx n e x [4] H n+1 x) = xh n x) nh n 1 x) ) d dx x H n x) = H n+1 x) d dx H nx) = nh

More information

25 7 18 1 1 1.1 v.s............................. 1 1.1.1.................................. 1 1.1.2................................. 1 1.1.3.................................. 3 1.2................... 3

More information

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT I (008 4 0 de Broglie (de Broglie p λ k h Planck ( 6.63 0 34 Js p = h λ = k ( h π : Dirac k B Boltzmann (.38 0 3 J/K T U = 3 k BT ( = λ m k B T h m = 0.067m 0 m 0 = 9. 0 3 kg GaAs( a T = 300 K 3 fg 07345

More information

SO(3) 7 = = 1 ( r ) + 1 r r r r ( l ) (5.17) l = 1 ( sin θ ) + sin θ θ θ ϕ (5.18) χ(r)ψ(θ, ϕ) l ψ = αψ (5.19) l 1 = i(sin ϕ θ l = i( cos ϕ θ l 3 = i ϕ

SO(3) 7 = = 1 ( r ) + 1 r r r r ( l ) (5.17) l = 1 ( sin θ ) + sin θ θ θ ϕ (5.18) χ(r)ψ(θ, ϕ) l ψ = αψ (5.19) l 1 = i(sin ϕ θ l = i( cos ϕ θ l 3 = i ϕ SO(3) 71 5.7 5.7.1 1 ħ L k l k l k = iϵ kij x i j (5.117) l k SO(3) l z l ± = l 1 ± il = i(y z z y ) ± (z x x z ) = ( x iy) z ± z( x ± i y ) = X ± z ± z (5.118) l z = i(x y y x ) = 1 [(x + iy)( x i y )

More information

9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) Ĥ0 ψ n (r) ω n Schrödinger Ĥ 0 ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ0 + Ĥint (

9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) Ĥ0 ψ n (r) ω n Schrödinger Ĥ 0 ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ0 + Ĥint ( 9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) 2. 2.1 Ĥ ψ n (r) ω n Schrödinger Ĥ ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ + Ĥint (t)] ψ (r, t), (2) Ĥ int (t) = eˆxe cos ωt ˆdE cos ωt, (3)

More information

IA

IA IA 31 4 11 1 1 4 1.1 Planck.............................. 4 1. Bohr.................................... 5 1.3..................................... 6 8.1................................... 8....................................

More information

006 11 8 0 3 1 5 1.1..................... 5 1......................... 6 1.3.................... 6 1.4.................. 8 1.5................... 8 1.6................... 10 1.6.1......................

More information

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H 199 1 1 199 1 1. Vx) m e V cos x π x π Vx) = x < π, x > π V i) x = Vx) V 1 x /)) n n d f dξ ξ d f dξ + n f = H n ξ) ii) H n ξ) = 1) n expξ ) dn dξ n exp ξ )) H n ξ)h m ξ) exp ξ )dξ = π n n!δ n,m x = Vx)

More information

ii p ϕ x, t = C ϕ xe i ħ E t +C ϕ xe i ħ E t ψ x,t ψ x,t p79 やは時間変化しないことに注意 振動 粒子はだいたい このあたりにいる 粒子はだいたい このあたりにいる p35 D.3 Aψ Cϕdx = aψ ψ C Aϕ dx

ii p ϕ x, t = C ϕ xe i ħ E t +C ϕ xe i ħ E t ψ x,t ψ x,t p79 やは時間変化しないことに注意 振動 粒子はだいたい このあたりにいる 粒子はだいたい このあたりにいる p35 D.3 Aψ Cϕdx = aψ ψ C Aϕ dx i B5 7.8. p89 4. ψ x, tψx, t = ψ R x, t iψ I x, t ψ R x, t + iψ I x, t = ψ R x, t + ψ I x, t p 5.8 π π π F e ix + F e ix + F 3 e 3ix F e ix + F e ix + F 3 e 3ix dx πψ x πψx p39 7. AX = X A [ a b c d x

More information

3 filename=quantum-3dim110705a.tex ,2 [1],[2],[3] [3] U(x, y, z; t), p x ˆp x = h i x, p y ˆp y = h i y, p z ˆp z = h

3 filename=quantum-3dim110705a.tex ,2 [1],[2],[3] [3] U(x, y, z; t), p x ˆp x = h i x, p y ˆp y = h i y, p z ˆp z = h filename=quantum-dim110705a.tex 1 1. 1, [1],[],[]. 1980 []..1 U(x, y, z; t), p x ˆp x = h i x, p y ˆp y = h i y, p z ˆp z = h i z (.1) Ĥ ( ) Ĥ = h m x + y + + U(x, y, z; t) (.) z (U(x, y, z; t)) (U(x,

More information

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2 filename=mathformula58.tex ax + bx + c =, x = b ± b 4ac, (.) a x + x = b a, x x = c a, (.) ax + b x + c =, x = b ± b ac. a (.3). sin(a ± B) = sin A cos B ± cos A sin B, (.) cos(a ± B) = cos A cos B sin

More information

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c) yoshioka/education-09.html pdf 1

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c)   yoshioka/education-09.html pdf 1 2009 1 ( ) ( 40 )+( 60 ) 1 1. 2. Schrödinger 3. (a) (b) (c) http://goofy.phys.nara-wu.ac.jp/ yoshioka/education-09.html pdf 1 1. ( photon) ν λ = c ν (c = 3.0 108 /m : ) ɛ = hν (1) p = hν/c = h/λ (2) h

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 2 ), ϕ(t) = B 1 cos(ω 1 t + α 1 ) + B 2 cos(ω 2 t

More information

0 3 1 5 1.1.............................. 5 1. 3.................. 6 1.3.......................... 7 1.4.............................. 8 1.5.............................. 10 1.6.................................

More information

30

30 3 ............................................2 2...........................................2....................................2.2...................................2.3..............................

More information

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4 1. k λ ν ω T v p v g k = π λ ω = πν = π T v p = λν = ω k v g = dω dk 1) ) 3) 4). p = hk = h λ 5) E = hν = hω 6) h = h π 7) h =6.6618 1 34 J sec) hc=197.3 MeV fm = 197.3 kev pm= 197.3 ev nm = 1.97 1 3 ev

More information

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n 003...............................3 Debye................. 3.4................ 3 3 3 3. Larmor Cyclotron... 3 3................ 4 3.3.......... 4 3.3............ 4 3.3...... 4 3.3.3............ 5 3.4.........

More information

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x [ ] IC. f(x) = e x () f(x) f (x) () lim f(x) lim f(x) x + x (3) lim f(x) lim f(x) x + x (4) y = f(x) ( ) ( s46). < a < () a () lim a log xdx a log xdx ( ) n (3) lim log k log n n n k=.3 z = log(x + y ),

More information

1. 2 P 2 (x, y) 2 x y (0, 0) R 2 = {(x, y) x, y R} x, y R P = (x, y) O = (0, 0) OP ( ) OP x x, y y ( ) x v = y ( ) x 2 1 v = P = (x, y) y ( x y ) 2 (x

1. 2 P 2 (x, y) 2 x y (0, 0) R 2 = {(x, y) x, y R} x, y R P = (x, y) O = (0, 0) OP ( ) OP x x, y y ( ) x v = y ( ) x 2 1 v = P = (x, y) y ( x y ) 2 (x . P (, (0, 0 R {(,, R}, R P (, O (0, 0 OP OP, v v P (, ( (, (, { R, R} v (, (, (,, z 3 w z R 3,, z R z n R n.,..., n R n n w, t w ( z z Ke Words:. A P 3 0 B P 0 a. A P b B P 3. A π/90 B a + b c π/ 3. +

More information

( )

( ) 7..-8..8.......................................................................... 4.................................... 3...................................... 3..3.................................. 4.3....................................

More information

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T NHK 204 2 0 203 2 24 ( ) 7 00 7 50 203 2 25 ( ) 7 00 7 50 203 2 26 ( ) 7 00 7 50 203 2 27 ( ) 7 00 7 50 I. ( ν R n 2 ) m 2 n m, R = e 2 8πε 0 hca B =.09737 0 7 m ( ν = ) λ a B = 4πε 0ħ 2 m e e 2 = 5.2977

More information

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4 35-8585 7 8 1 I I 1 1.1 6kg 1m P σ σ P 1 l l λ λ l 1.m 1 6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m

More information

SO(3) 49 u = Ru (6.9), i u iv i = i u iv i (C ) π π : G Hom(V, V ) : g D(g). π : R 3 V : i 1. : u u = u 1 u 2 u 3 (6.10) 6.2 i R α (1) = 0 cos α

SO(3) 49 u = Ru (6.9), i u iv i = i u iv i (C ) π π : G Hom(V, V ) : g D(g). π : R 3 V : i 1. : u u = u 1 u 2 u 3 (6.10) 6.2 i R α (1) = 0 cos α SO(3) 48 6 SO(3) t 6.1 u, v u = u 1 1 + u 2 2 + u 3 3 = u 1 e 1 + u 2 e 2 + u 3 e 3, v = v 1 1 + v 2 2 + v 3 3 = v 1 e 1 + v 2 e 2 + v 3 e 3 (6.1) i (e i ) e i e j = i j = δ ij (6.2) ( u, v ) = u v = ij

More information

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes ) ( 3 7 4 ) 2 2 ) 8 2 954 2) 955 3) 5) J = σe 2 6) 955 7) 9) 955 Statistical-Mechanical Theory of Irreversible Processes 957 ) 3 4 2 A B H (t) = Ae iωt B(t) = B(ω)e iωt B(ω) = [ Φ R (ω) Φ R () ] iω Φ R (t)

More information

6 6.1 L r p hl = r p (6.1) 1, 2, 3 r =(x, y, z )=(r 1,r 2,r 3 ), p =(p x,p y,p z )=(p 1,p 2,p 3 ) (6.2) hl i = jk ɛ ijk r j p k (6.3) ɛ ijk Levi Civit

6 6.1 L r p hl = r p (6.1) 1, 2, 3 r =(x, y, z )=(r 1,r 2,r 3 ), p =(p x,p y,p z )=(p 1,p 2,p 3 ) (6.2) hl i = jk ɛ ijk r j p k (6.3) ɛ ijk Levi Civit 6 6.1 L r p hl = r p (6.1) 1, 2, 3 r =(x, y, z )=(r 1,r 2,r 3 ), p =(p x,p y,p z )=(p 1,p 2,p 3 ) (6.2) hl i = jk ɛ ijk r j p k (6.3) ɛ ijk Levi Civita ɛ 123 =1 0 r p = 2 2 = (6.4) Planck h L p = h ( h

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

1 (Contents) (1) Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji

1 (Contents) (1) Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji 8 4 2018 6 2018 6 7 1 (Contents) 1. 2 2. (1) 22 3. 31 1. Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji SETO 22 3. Editorial Comments Tadashi

More information

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d A 2. x F (t) =f sin ωt x(0) = ẋ(0) = 0 ω θ sin θ θ 3! θ3 v = f mω cos ωt x = f mω (t sin ωt) ω t 0 = f ( cos ωt) mω x ma2-2 t ω x f (t mω ω (ωt ) 6 (ωt)3 = f 6m ωt3 2.2 u ( v w) = v ( w u) = w ( u v) ma22-9

More information

215 11 13 1 2 1.1....................... 2 1.2.................... 2 1.3..................... 2 1.4...................... 3 1.5............... 3 1.6........................... 4 1.7.................. 4

More information

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0 1 1 1.1 1.) T D = T = D = kn 1. 1.4) F W = F = W/ = kn/ = 15 kn 1. 1.9) R = W 1 + W = 6 + 5 = 11 N. 1.9) W b W 1 a = a = W /W 1 )b = 5/6) = 5 cm 1.4 AB AC P 1, P x, y x, y y x 1.4.) P sin 6 + P 1 sin 45

More information

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d S I.. http://ayapin.film.s.dendai.ac.jp/~matuda /TeX/lecture.html PDF PS.................................... 3.3.................... 9.4................5.............. 3 5. Laplace................. 5....

More information

δ ij δ ij ˆx ˆx ŷ ŷ ẑ ẑ 0, ˆx ŷ ŷ ˆx ẑ, ŷ ẑ ẑ ŷ ẑ, ẑ ˆx ˆx ẑ ŷ, a b a x ˆx + a y ŷ + a z ẑ b x ˆx + b

δ ij δ ij ˆx ˆx ŷ ŷ ẑ ẑ 0, ˆx ŷ ŷ ˆx ẑ, ŷ ẑ ẑ ŷ ẑ, ẑ ˆx ˆx ẑ ŷ, a b a x ˆx + a y ŷ + a z ẑ b x ˆx + b 23 2 2.1 n n r x, y, z ˆx ŷ ẑ 1 a a x ˆx + a y ŷ + a z ẑ 2.1.1 3 a iˆx i. 2.1.2 i1 i j k e x e y e z 3 a b a i b i i 1, 2, 3 x y z ˆx i ˆx j δ ij, 2.1.3 n a b a i b i a i b i a x b x + a y b y + a z b

More information

http://www1.doshisha.ac.jp/ bukka/qc.html 1. 107 2. 116 3. 1 119 4. 2 126 5. 132 6. 136 7. 1 140 8. 146 9. 2 150 10. 153 11. 157 12. π Hückel 159 13. 163 A-1. Laguerre 165 A-2. Hermite 167 A-3. 170 A-4.

More information

i

i 009 I 1 8 5 i 0 1 0.1..................................... 1 0.................................................. 1 0.3................................. 0.4........................................... 3

More information

B ver B

B ver B B ver. 2017.02.24 B Contents 1 11 1.1....................... 11 1.1.1............. 11 1.1.2.......................... 12 1.2............................. 14 1.2.1................ 14 1.2.2.......................

More information

2019 1 5 0 3 1 4 1.1.................... 4 1.1.1......................... 4 1.1.2........................ 5 1.1.3................... 5 1.1.4........................ 6 1.1.5......................... 6 1.2..........................

More information

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt S I. x yx y y, y,. F x, y, y, y,, y n http://ayapin.film.s.dendai.ac.jp/~matuda n /TeX/lecture.html PDF PS yx.................................... 3.3.................... 9.4................5..............

More information

http://www.ike-dyn.ritsumei.ac.jp/ hyoo/wave.html 1 1, 5 3 1.1 1..................................... 3 1.2 5.1................................... 4 1.3.......................... 5 1.4 5.2, 5.3....................

More information

2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n

2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n . X {x, x 2, x 3,... x n } X X {, 2, 3, 4, 5, 6} X x i P i. 0 P i 2. n P i = 3. P (i ω) = i ω P i P 3 {x, x 2, x 3,... x n } ω P i = 6 X f(x) f(x) X n n f(x i )P i n x n i P i X n 2 G(k) e ikx = (ik) n

More information

Planck Bohr

Planck Bohr I 30 7 11 1 1 5 1.1 Planck.............................. 5 1. Bohr.................................... 6 1.3..................................... 7 9.1................................... 9....................................

More information

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq 49 2 I II 2.1 3 e e = 1.602 10 19 A s (2.1 50 2 I SI MKSA 2.1.1 r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = 3 10 8 m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq F = k r

More information

ʪ¼Á¤Î¥È¥Ý¥í¥¸¥«¥ë¸½¾Ý (2016ǯ¥Î¡¼¥Ù¥ë¾Þ¤Ë´ØÏ¢¤·¤Æ)

ʪ¼Á¤Î¥È¥Ý¥í¥¸¥«¥ë¸½¾Ý  (2016ǯ¥Î¡¼¥Ù¥ë¾Þ¤Ë´ØÏ¢¤·¤Æ) (2016 ) Dept. of Phys., Kyushu Univ. 2017 8 10 1 / 59 2016 Figure: D.J.Thouless F D.M.Haldane J.M.Kosterlitz TOPOLOGICAL PHASE TRANSITIONS AND TOPOLOGICAL PHASES OF MATTER 2 / 59 ( ) ( ) (Dirac, t Hooft-Polyakov)

More information

23 7 28 i i 1 1 1.1................................... 2 1.2............................... 3 1.2.1.................................... 3 1.2.2............................... 4 1.2.3 SI..............................

More information

I

I I 6 4 10 1 1 1.1............... 1 1................ 1 1.3.................... 1.4............... 1.4.1.............. 1.4................. 1.4.3........... 3 1.4.4.. 3 1.5.......... 3 1.5.1..............

More information

2011de.dvi

2011de.dvi 211 ( 4 2 1. 3 1.1............................... 3 1.2 1- -......................... 13 1.3 2-1 -................... 19 1.4 3- -......................... 29 2. 37 2.1................................ 37

More information

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n (

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n ( 3 n nc k+ k + 3 () n C r n C n r nc r C r + C r ( r n ) () n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (4) n C n n C + n C + n C + + n C n (5) k k n C k n C k (6) n C + nc

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

eto-vol2.prepri.dvi

eto-vol2.prepri.dvi ( 2) 3.4 5 (b),(c) [ 5 (a)] [ 5 (b)] [ 5 (c)] (extrinsic) skew scattering side jump [] [2, 3] (intrinsic) 2 Sinova 2 heavy-hole light-hole ( [4, 5, 6] ) Sinova Sinova 3. () 3 3 Ṽ = V (r)+ σ [p V (r)] λ

More information

n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

i

i i 3 4 4 7 5 6 3 ( ).. () 3 () (3) (4) /. 3. 4/3 7. /e 8. a > a, a = /, > a >. () a >, a =, > a > () a > b, a = b, a < b. c c n a n + b n + c n 3c n..... () /3 () + (3) / (4) /4 (5) m > n, a b >, m > n,

More information

sec13.dvi

sec13.dvi 13 13.1 O r F R = m d 2 r dt 2 m r m = F = m r M M d2 R dt 2 = m d 2 r dt 2 = F = F (13.1) F O L = r p = m r ṙ dl dt = m ṙ ṙ + m r r = r (m r ) = r F N. (13.2) N N = R F 13.2 O ˆn ω L O r u u = ω r 1 1:

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 3.............................. 3.............................. 4.3 4................... 5.4........................ 6.5........................ 8.6...........................7

More information

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google I4 - : April, 4 Version :. Kwhir, Tomoki TA (Kondo, Hirotk) Google http://www.mth.ngoy-u.c.jp/~kwhir/courses/4s-biseki.html pdf 4 4 4 4 8 e 5 5 9 etc. 5 6 6 6 9 n etc. 6 6 6 3 6 3 7 7 etc 7 4 7 7 8 5 59

More information

液晶の物理1:連続体理論(弾性,粘性)

液晶の物理1:連続体理論(弾性,粘性) The Physics of Liquid Crystals P. G. de Gennes and J. Prost (Oxford University Press, 1993) Liquid crystals are beautiful and mysterious; I am fond of them for both reasons. My hope is that some readers

More information

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g(

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g( 06 5.. ( y = x x y 5 y 5 = (x y = x + ( y = x + y = x y.. ( Y = C + I = 50 + 0.5Y + 50 r r = 00 0.5Y ( L = M Y r = 00 r = 0.5Y 50 (3 00 0.5Y = 0.5Y 50 Y = 50, r = 5 .3. (x, x = (, u = = 4 (, x x = 4 x,

More information

1. 4cm 16 cm 4cm 20cm 18 cm L λ(x)=ax [kg/m] A x 4cm A 4cm 12 cm h h Y 0 a G 0.38h a b x r(x) x y = 1 h 0.38h G b h X x r(x) 1 S(x) = πr(x) 2 a,b, h,π

1. 4cm 16 cm 4cm 20cm 18 cm L λ(x)=ax [kg/m] A x 4cm A 4cm 12 cm h h Y 0 a G 0.38h a b x r(x) x y = 1 h 0.38h G b h X x r(x) 1 S(x) = πr(x) 2 a,b, h,π . 4cm 6 cm 4cm cm 8 cm λ()=a [kg/m] A 4cm A 4cm cm h h Y a G.38h a b () y = h.38h G b h X () S() = π() a,b, h,π V = ρ M = ρv G = M h S() 3 d a,b, h 4 G = 5 h a b a b = 6 ω() s v m θ() m v () θ() ω() dθ()

More information

量子力学3-2013

量子力学3-2013 ( 3 ) 5 8 5 03 Email: hatsugai.yasuhiro.ge@u.tsukuba.ac.jp 3 5.............................. 5........................ 5........................ 6.............................. 8.......................

More information

2000年度『数学展望 I』講義録

2000年度『数学展望 I』講義録 2000 I I IV I II 2000 I I IV I-IV. i ii 3.10 (http://www.math.nagoya-u.ac.jp/ kanai/) 2000 A....1 B....4 C....10 D....13 E....17 Brouwer A....21 B....26 C....33 D....39 E. Sperner...45 F....48 A....53

More information

2016 ǯ¥Î¡¼¥Ù¥ëʪÍý³Ø¾Þ²òÀ⥻¥ß¥Ê¡¼ Kosterlitz-Thouless ž°Ü¤È Haldane ͽÁÛ

2016 ǯ¥Î¡¼¥Ù¥ëʪÍý³Ø¾Þ²òÀ⥻¥ß¥Ê¡¼  Kosterlitz-Thouless ž°Ü¤È Haldane ͽÁÛ 2016 Kosterlitz-Thouless Haldane Dept. of Phys., Kyushu Univ. 2016 11 29 2016 Figure: D.J.Thouless F D.M.Haldane J.M.Kosterlitz TOPOLOGICAL PHASE TRANSITIONS AND TOPOLOGICAL PHASES OF MATTER ( ) ( ) (Dirac,

More information

1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N m 1.

1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N m 1. 1.1 1. 1.3.1..3.4 3.1 3. 3.3 4.1 4. 4.3 5.1 5. 5.3 6.1 6. 6.3 7.1 7. 7.3 1 1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N

More information

数学の基礎訓練I

数学の基礎訓練I I 9 6 13 1 1 1.1............... 1 1................ 1 1.3.................... 1.4............... 1.4.1.............. 1.4................. 3 1.4.3........... 3 1.4.4.. 3 1.5.......... 3 1.5.1..............

More information

chap1.dvi

chap1.dvi 1 1 007 1 e iθ = cos θ + isin θ 1) θ = π e iπ + 1 = 0 1 ) 3 11 f 0 r 1 1 ) k f k = 1 + r) k f 0 f k k = 01) f k+1 = 1 + r)f k ) f k+1 f k = rf k 3) 1 ) ) ) 1+r/)f 0 1 1 + r/) f 0 = 1 + r + r /4)f 0 1 f

More information

数学Ⅱ演習(足助・09夏)

数学Ⅱ演習(足助・09夏) II I 9/4/4 9/4/2 z C z z z z, z 2 z, w C zw z w 3 z, w C z + w z + w 4 t R t C t t t t t z z z 2 z C re z z + z z z, im z 2 2 3 z C e z + z + 2 z2 + 3! z3 + z!, I 4 x R e x cos x + sin x 2 z, w C e z+w

More information

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 +

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 + 2.6 2.6.1 ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.121) Z ω ω j γ j f j

More information

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8)

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8) 4 4 ) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8) a b a b = 6i j 4 b c b c 9) a b = 4 a b) c = 7

More information

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a =

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a = II 6 ishimori@phys.titech.ac.jp 6.. 5.4.. f Rx = f Lx = fx fx + lim = lim x x + x x f c = f x + x < c < x x x + lim x x fx fx x x = lim x x f c = f x x < c < x cosmx cosxdx = {cosm x + cosm + x} dx = [

More information

構造と連続体の力学基礎

構造と連続体の力学基礎 II 37 Wabash Avenue Bridge, Illinois 州 Winnipeg にある歩道橋 Esplanade Riel 橋6 6 斜張橋である必要は多分無いと思われる すぐ横に道路用桁橋有り しかも塔基部のレストランは 8 年には営業していなかった 9 9. 9.. () 97 [3] [5] k 9. m w(t) f (t) = f (t) + mg k w(t) Newton

More information

v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i

v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i 1. 1 1.1 1.1.1 1.1.1.1 v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) R ij R ik = δ jk (4) δ ij Kronecker δ ij = { 1 (i = j) 0 (i j) (5) 1 1.1. v1.1 2011/04/10 1. 1 2 v i = R ij v j (6) [

More information

I ( ) 2019

I ( ) 2019 I ( ) 2019 i 1 I,, III,, 1,,,, III,,,, (1 ) (,,, ), :...,, : NHK... NHK, (YouTube ),!!, manaba http://pen.envr.tsukuba.ac.jp/lec/physics/,, Richard Feynman Lectures on Physics Addison-Wesley,,,, x χ,

More information

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2) 3 215 4 27 1 1 u u(x, t) u tt a 2 u xx, a > (1) D : {(x, t) : x, t } u (, t), u (, t), t (2) u(x, ) f(x), u(x, ) t 2, x (3) u(x, t) X(x)T (t) u (1) 1 T (t) a 2 T (t) X (x) X(x) α (2) T (t) αa 2 T (t) (4)

More information

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi) 0. A A = 4 IC () det A () A () x + y + z = x y z X Y Z = A x y z ( 5) ( s5590) 0. a + b + c b c () a a + b + c c a b a + b + c 0 a b c () a 0 c b b c 0 a c b a 0 0. A A = 7 5 4 5 0 ( 5) ( s5590) () A ()

More information

振動と波動

振動と波動 Report JS0.5 J Simplicity February 4, 2012 1 J Simplicity HOME http://www.jsimplicity.com/ Preface 2 Report 2 Contents I 5 1 6 1.1..................................... 6 1.2 1 1:................ 7 1.3

More information

untitled

untitled 0. =. =. (999). 3(983). (980). (985). (966). 3. := :=. A A. A A. := := 4 5 A B A B A B. A = B A B A B B A. A B A B, A B, B. AP { A, P } = { : A, P } = { A P }. A = {0, }, A, {0, }, {0}, {}, A {0}, {}.

More information

II 2 II

II 2 II II 2 II 2005 yugami@cc.utsunomiya-u.ac.jp 2005 4 1 1 2 5 2.1.................................... 5 2.2................................. 6 2.3............................. 6 2.4.................................

More information

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

I A A441 : April 15, 2013 Version : 1.1 I   Kawahira, Tomoki TA (Shigehiro, Yoshida ) I013 00-1 : April 15, 013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida) http://www.math.nagoya-u.ac.jp/~kawahira/courses/13s-tenbou.html pdf * 4 15 4 5 13 e πi = 1 5 0 5 7 3 4 6 3 6 10 6 17

More information

Maxwell

Maxwell I 2018 12 13 0 4 1 6 1.1............................ 6 1.2 Maxwell......................... 8 1.3.......................... 9 1.4..................... 11 1.5..................... 12 2 13 2.1...................

More information

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i July 8, 4. H H H int H H H int H int (x)d 3 x Schrödinger Picture Ψ(t) S e iht Ψ H O S Heisenberg Picture Ψ H O H (t) e iht O S e iht Interaction Picture Ψ(t) D e iht Ψ(t) S O D (t) e iht O S e ih t (Dirac

More information

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) =

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) = 1 9 8 1 1 1 ; 1 11 16 C. H. Scholz, The Mechanics of Earthquakes and Faulting 1. 1.1 1.1.1 : - σ = σ t sin πr a λ dσ dr a = E a = π λ σ πr a t cos λ 1 r a/λ 1 cos 1 E: σ t = Eλ πa a λ E/π γ : λ/ 3 γ =

More information

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 0 < t < τ I II 0 No.2 2 C x y x y > 0 x 0 x > b a dx

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

m dv = mg + kv2 dt m dv dt = mg k v v m dv dt = mg + kv2 α = mg k v = α 1 e rt 1 + e rt m dv dt = mg + kv2 dv mg + kv 2 = dt m dv α 2 + v 2 = k m dt d

m dv = mg + kv2 dt m dv dt = mg k v v m dv dt = mg + kv2 α = mg k v = α 1 e rt 1 + e rt m dv dt = mg + kv2 dv mg + kv 2 = dt m dv α 2 + v 2 = k m dt d m v = mg + kv m v = mg k v v m v = mg + kv α = mg k v = α e rt + e rt m v = mg + kv v mg + kv = m v α + v = k m v (v α (v + α = k m ˆ ( v α ˆ αk v = m v + α ln v α v + α = αk m t + C v α v + α = e αk m

More information

4 2 Rutherford 89 Rydberg λ = R ( n 2 ) n 2 n = n +,n +2, n = Lyman n =2 Balmer n =3 Paschen R Rydberg R = cm 896 Zeeman Zeeman Zeeman Lorentz

4 2 Rutherford 89 Rydberg λ = R ( n 2 ) n 2 n = n +,n +2, n = Lyman n =2 Balmer n =3 Paschen R Rydberg R = cm 896 Zeeman Zeeman Zeeman Lorentz 2 Rutherford 2. Rutherford N. Bohr Rutherford 859 Kirchhoff Bunsen 86 Maxwell Maxwell 885 Balmer λ Balmer λ = 364.56 n 2 n 2 4 Lyman, Paschen 3 nm, n =3, 4, 5, 4 2 Rutherford 89 Rydberg λ = R ( n 2 ) n

More information

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,.

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,. 24(2012) (1 C106) 4 11 (2 C206) 4 12 http://www.math.is.tohoku.ac.jp/~obata,.,,,.. 1. 2. 3. 4. 5. 6. 7.,,. 1., 2007 (). 2. P. G. Hoel, 1995. 3... 1... 2.,,. ii 3.,. 4. F. (),.. 5... 6.. 7.,,. 8.,. 1. (75%)

More information

熊本県数学問題正解

熊本県数学問題正解 00 y O x Typed by L A TEX ε ( ) (00 ) 5 4 4 ( ) http://www.ocn.ne.jp/ oboetene/plan/. ( ) (009 ) ( ).. http://www.ocn.ne.jp/ oboetene/plan/eng.html 8 i i..................................... ( )0... (

More information

A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B

A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B 9 7 A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B x x B } B C y C y + x B y C x C C x C y B = A

More information

Note.tex 2008/09/19( )

Note.tex 2008/09/19( ) 1 20 9 19 2 1 5 1.1........................ 5 1.2............................. 8 2 9 2.1............................. 9 2.2.............................. 10 3 13 3.1.............................. 13 3.2..................................

More information

128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds = 0 (3.4) S 1, S 2 { B( r) n( r)}ds

128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds = 0 (3.4) S 1, S 2 { B( r) n( r)}ds 127 3 II 3.1 3.1.1 Φ(t) ϕ em = dφ dt (3.1) B( r) Φ = { B( r) n( r)}ds (3.2) S S n( r) Φ 128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds

More information

R = Ar l B r l. A, B A, B.. r 2 R r = r2 [lar r l B r l2 ]=larl l B r l.2 r 2 R = [lar l l Br ] r r r = ll Ar l ll B = ll R rl.3 sin θ Θ = ll.4 Θsinθ

R = Ar l B r l. A, B A, B.. r 2 R r = r2 [lar r l B r l2 ]=larl l B r l.2 r 2 R = [lar l l Br ] r r r = ll Ar l ll B = ll R rl.3 sin θ Θ = ll.4 Θsinθ .3.2 3.3.2 Spherical Coorinates.5: Laplace 2 V = r 2 r 2 x = r cos φ sin θ, y = r sin φ sin θ, z = r cos θ.93 r 2 sin θ sin θ θ θ r 2 sin 2 θ 2 V =.94 2.94 z V φ Laplace r 2 r 2 r 2 sin θ.96.95 V r 2 R

More information

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2 No.2 1 2 2 δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i δx j (5) δs 2 = δx i δx i + 2 u i δx i δx j = δs 2 + 2s ij δx i δx j

More information

Kroneher Levi-Civita 1 i = j δ i j = i j 1 if i jk is an even permutation of 1,2,3. ε i jk = 1 if i jk is an odd permutation of 1,2,3. otherwise. 3 4

Kroneher Levi-Civita 1 i = j δ i j = i j 1 if i jk is an even permutation of 1,2,3. ε i jk = 1 if i jk is an odd permutation of 1,2,3. otherwise. 3 4 [2642 ] Yuji Chinone 1 1-1 ρ t + j = 1 1-1 V S ds ds Eq.1 ρ t + j dv = ρ t dv = t V V V ρdv = Q t Q V jdv = j ds V ds V I Q t + j ds = ; S S [ Q t ] + I = Eq.1 2 2 Kroneher Levi-Civita 1 i = j δ i j =

More information

chap10.dvi

chap10.dvi . q {y j } I( ( L y j =Δy j = u j = C l ε j l = C(L ε j, {ε j } i.i.d.(,i q ( l= y O p ( {u j } q {C l } A l C l

More information

08-Note2-web

08-Note2-web r(t) t r(t) O v(t) = dr(t) dt a(t) = dv(t) dt = d2 r(t) dt 2 r(t), v(t), a(t) t dr(t) dt r(t) =(x(t),y(t),z(t)) = d 2 r(t) dt 2 = ( dx(t) dt ( d 2 x(t) dt 2, dy(t), dz(t) dt dt ), d2 y(t) dt 2, d2 z(t)

More information

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [ 3 3. 3.. H H = H + V (t), V (t) = gµ B α B e e iωt i t Ψ(t) = [H + V (t)]ψ(t) Φ(t) Ψ(t) = e iht Φ(t) H e iht Φ(t) + ie iht t Φ(t) = [H + V (t)]e iht Φ(t) Φ(t) i t Φ(t) = V H(t)Φ(t), V H (t) = e iht V (t)e

More information

C el = 3 2 Nk B (2.14) c el = 3k B C el = 3 2 Nk B

C el = 3 2 Nk B (2.14) c el = 3k B C el = 3 2 Nk B I ino@hiroshima-u.ac.jp 217 11 14 4 4.1 2 2.4 C el = 3 2 Nk B (2.14) c el = 3k B 2 3 3.15 C el = 3 2 Nk B 3.15 39 2 1925 (Wolfgang Pauli) (Pauli exclusion principle) T E = p2 2m p T N 4 Pauli Sommerfeld

More information

β

β β 01 7 1 1 3 4 5 6 7 8 9 10 11 1 13 14 15 16 17 18 s s s d 10 s p s p s p 3 s p 4 s p 5 s p 6 1 1H He 1.01 4.00 3Li 4Be 5B 6C 7N 8O 9F 10Ne 6.94 9.01 10.81 1.01 14.01 16.00 19.00 0.18 3 11Na 1Mg 13Al 14Si

More information

meiji_resume_1.PDF

meiji_resume_1.PDF β β β (q 1,q,..., q n ; p 1, p,..., p n ) H(q 1,q,..., q n ; p 1, p,..., p n ) Hψ = εψ ε k = k +1/ ε k = k(k 1) (x, y, z; p x, p y, p z ) (r; p r ), (θ; p θ ), (ϕ; p ϕ ) ε k = 1/ k p i dq i E total = E

More information