A11 (1993,1994) 29 A12 (1994) 29 A13 Trefethen and Bau Numerical Linear Algebra (1997) 29 A14 (1999) 30 A15 (2003) 30 A16 (2004) 30 A17 (2007) 30 A18

Size: px
Start display at page:

Download "A11 (1993,1994) 29 A12 (1994) 29 A13 Trefethen and Bau Numerical Linear Algebra (1997) 29 A14 (1999) 30 A15 (2003) 30 A16 (2004) 30 A17 (2007) 30 A18"

Transcription

1 y, Jordan Jordan (1) 3 31 Jordan 4 32 Jordan 4 33 Jordan 6 34 Jordan Jordan (2) x x Jordan 26 A 26 A1 26 A2 Halmos Finite Dimensional Vector Spaces (1947) 27 A3 (1958) (1966) 27 A4 I,II (1966, 1969) 27 A5 (1971) 28 A6 Jordan (1976,1977) 28 A7 (1980) 28 A8 (1988, 1993) 28 A9 (1982) 29 A10 (1992) 29 1

2 A11 (1993,1994) 29 A12 (1994) 29 A13 Trefethen and Bau Numerical Linear Algebra (1997) 29 A14 (1999) 30 A15 (2003) 30 A16 (2004) 30 A17 (2007) 30 A18 : (2007) 30 A19 (2009) 30 A20 31 B 31 B1 E I 31 C misc 31 C1 Schur 31 C2 33 D 34 D1 34 D2 35 D21 35 D22 36 D3 36 D31 36 D ( ) Jordan 1 U(n) := {A M(n; C); A A = A A = I} SU(n) := {A U(n); det A = 1} A B def P GL(n) st P 1 AP = B 2 n A B def P GL(n) st P T AP = B n (symmetric group) S n, S n (L A TEX \mathfrak{s} n ), Sym(n) 2

3 2 Jordan 21 Jordan 3 (i) ( ) (ii) ( ) (iii) 1 ( [1]) ( [2]) ( [3]) (i) ( ) Jordan (i) ([4]) 2 T [5] ( ) ( ) ( ) [4] 1 ( ) 1 ( ) Jordan ( or ) [6] ( [2] ) [7] ( ) ( ) ( [7] ) Jordan 3 Jordan (1) Jordan 3

4 [3] 5 4 ( [8]) ( ) Jordan Jordan ( ) ( 1,2 ) 31 Jordan J n (a) a n Jordan ( ) a 1 0 a 1 J 1 (a) = (a), J 2 (a) =, J 3 (a) = 0 a 1, 0 a 0 0 a Jordan J m1 (a 1 ) (1) J m1 (a 1 ) J m2 (a 2 ) J mr (a r ) = J m2 (a 2 ) J mr (a r ) Jordan 31 Jordan Jordan 1, (1) m 1 = m 2 = = m r = 1 32 Jordan 32 ( Jordan ) K = R C, n N V K n T : V V (ie T n = O) V E T E Jordan T = O V T Jordan T O n n = 1 V T 1 Jordan n 2 n 1 ( Jordan ) T O, T n = O k {2, 3,, n} st T k 1 O T k = O T k 1 e 0 e V T k 1 e, T k 2 e,, T 2 e, T e, e 1 c 1 T k 1 e + c 2 T k 2 e + + c k 1 T e + c k e = 0, (c 1, c 2,, c k 1, c k K) T k 1, T k 2,, T c k = c k 1 = = c 2 = 0, c 1 = 0 4

5 W := span T k 1 e,, T e, e W T T (T k 1 e T k 2 e T e e) = (T k e T k 1 e T 2 e T e) = (0 T k 1 e T 2 e T e) = (T k 1 e T k 2 e T e e) = (T k 1 e T k 2 e T e e)j k (0) T T W : W W W T k 1 e,, T e, e J k (0) k = n W = V k < n V T U U W = {0} ( U = {0}) ( U ) V = U + W 5

6 V = U + W V U + W a V \ (U + W ) a T U dim U = dim U + 1, U W = {0} (U ) a U + W, T k = O T k a = 0 U + W l {1, 2,, k} st T l 1 a U + W T l a U + W u U, c 0, c 1,, c k 1 K st k 1 T l a = u + c i T i e T k 1 (T k = O ) i=0 0 = T l 1 (T k a) = T l+k 1 a = T k 1 u + c 0 T k 1 e T k 1 u = c 0 T k 1 e u U U T T k 1 u U c 0 T k 1 e W U W = {0} 0 c 0 = 0 k 1 b := T l 1 a c i T i 1 e i=1 k 1 k 1 T b = T l a c i T i e = T l a c i T i e = u i=1 k 1 b U + W ( b U + W T l 1 a = b + c i T i 1 e U + W l ) U b U dim U = dim U + 1 U T ( U T U U, T b = u U T U U U ) w U W w U v U, t K st w = v + tb tb = v + w U + W b U + W t = 0 w = v U W = {0} U W = {0} U U W = {0} V = U W T U : U U Jordan J E W T k 1 e,, T e, e E V T J k (0) J Jordan i=0 i=1 33 Jordan A = A 1 A 2 A r = A k = A k 1 A k k 2 A r 6

7 n Jordan J n (0) k = J n (0) = M(n; R) (1, k + 1) 1 (n k) rank J n (0) k = J n (0) k 1 = n k (k = 1, 2,, n), J n (0) n 1 O, J n (0) n = O 33 ( Jordan ) K = R C, n N V K n T : V V (ie T n = O) T Jordan Jordan T = O T O T k = O, T k 1 O (2 k n ) J Jordan (V ) T J k = O, J k 1 O J Jordan k 1 j k j J j Jordan m j (m j = 0 ) {m j } k j=1 T r i := rank T i (0 i k 1) : k k r i = rank J i = m j rank J j (0) i = m j (j i) j=0 j=i+1 7

8 i r k 1 = m k, r k 2 = m k 1 + 2m k, r k 3 = m k 2 + 2m k 1 + 3m k, r k j = m k j+1 + 2m k j (j 1)m k 1 + jm k, r 1 = m 2 + 2m (k 1)m k, r 0 = m 1 + 2m (k 1)m k 1 + km k m k, m k 1,, m 1 (r i ) {m j } k j=1 34 Jordan ( ) 34 ( ) K = R C, n N V K n T : V V T Φ(λ) = det(λi T ) β 1,, β r, m 1,, m r f j (λ) := (λ β j ) m j, V j := ker f j (T ) = {u V ; (T β j I) m j u = 0} (j = 1,, r) V j T V = V 1 V 2 V r V j T u V j T u V j (T β j I) mj (T u) = T [(T β j I) m j u] = T 0 = 0 V = V 1 + V V r j {1,, r} g j (λ) := Φ(λ) f j (λ) = (λ β i ) m i i j g 1 (λ),, g r (λ) 1 h 1 (λ),, h r (λ) K[λ] st (2) g 1 (λ)h 1 (λ) + + g r (λ)h r (λ) = 1 u V (2) u i := g i (T )h i (T )u u u r = u 8

9 u i V i (i {1,, r}) Cayley-Hamiltion Φ(T ) = O f i (T )u i = f i (T )g i (T )h i (T )u = Φ(T )h i (T )u = 0 i j V i V j = {0} f i (λ) f j (λ) φ i (λ), φ j (λ) K[λ] st φ i (λ)f i (λ) + φ j (λ)f j (λ) = 1 u V φ i (T )f i (T )u + φ j (T )f j (T )u = u u V i V j f i (T )u = f j (T )u = 0 u = 0 V i V j = {0} 35 ( Jordan ) n N V C n T : V V V E T E Jordan T β 1,, β r m 1,, m r V i := ker(β i I T ) m i V i T V = V 1 V r T β i I V i N i := (T β i I) Vi V i E i N i E i Jordan Jordan J i T Vi J i β i I mi (I mi m i ) E 1,, E r V E E T (J 1 β 1 I m1 ) (J r β r I mr ) Jordan 35 ( ) 36 (1 Jordan ) K = R C, n N V K n T : V V α K (n ) V E T E Jordan Jordan Jordan ( ) S := T αi T Φ T (λ) = (λ α) n S Φ S (λ) = λ n Hamilton-Cayley S n = Φ S (S) = O 32 V E S E 0 Jordan Jordan J d1 (0) J dr (0) 9

10 T = S + αi E J d1 (α) J dr (α) Jordan ( ) V 2 E, E T Jordan J, J J αi n, J αi n E, E T αi Jordan T αi J αi n, J αi n ( ) 0 k, l N, t 1,, t k, s 1,, s l 0 st J αi n = J t1 (0) J tk (0), J αi n = J s1 (0) J sl (0) J = J t1 (α) J tk (α), J = J s1 (α) J sl (α) 33 j m j k = l t 1,, t k s 1,, s k 37 n N V C n T : V V T Jordan Jordan V E T Jordan J J T ( ) T α 1,, α r, m 1,, m r α i T ker(α i I T ) m i W i J α i Jordan E ( ) : e i,1, e i,2,, e i,mi ( m i ) W i = span e i,1, e i,2,, e i,mi W i span e i,1, e i,2,, e i,mi 1 m i W i T E i := e i,1, e i,2,, e i,mi W i T Wi E i J i J ( α i ) Jordan : J i = J k1 (α i ) J k2 (α i ) J kni (α i ) 36 J i k E T α i 4 Jordan (2) ( ) 1 ( ) J 1 J k (α i ) E e l,,e l+k 1 T e l = α i e l, T e l+1 = e l + α i e l+1,, T e l+k 1 = e l+k 2 + α i e l+k 1 e l,, e l+k 1 W i 10

11 41 x x ( x ) ( ) x 2 + 3x 1 2x A(x) = x x 3 34x 56 K = R K = C K[x] m n M(m, n; K[x]) m = n M(n; K[x]) K K[x] M(m, n; K) M(m, n; K[x]) A(x) M(m, n; K[x]) A(x) 2009 A(x) deg A(x) K x x (M(m, n; K[x]) M(m, n; K)[x]) ( ) ( ) ( ) ( ) x 2 + 2x + 3 4x = x x + 6x 2 + 7x n N A(x) M(n; K[x]) (3) A(x)B(x) = B(x)A(x) = I B(x) M(n; K[x]) (I n ) A(x) A(x) (3) B(x) A(x) A(x) 1 A(x) det A(x) K, det A(x) K, det A(x) 0 A(x) A(x) A(x) 1 41 K = R K = C n N A(x), B(x) M(n; K[x]) A(x) = A 0 x k + A 1 x k A k 1 x + A k, A 0 O, B(x) = B 0 x l + B 1 x l B l 1 x + B l, B 0 GL(n; K) A(x) = B(x)Q(x) + R(x), deg R(x) < deg B(x) x Q(x) R(x) ( A(x) = Q(x)B(x) + R(x) Q(x), R(x) ) ( A(x) = O B(x) B 0 GL(n; K) ) 11

12 42 x m, n N A, B M(m, n; K) A B def Q GL(m; K), P GL(n; K) st A = QBP M(m, n; K) E r = diag(1, 1,, 1, 0,, 0) ( 1 0 ) A E r rank A = r A E r A B (A B B A ) x 42 K = R K = C, m, n N A(x), B(x) M(m, n; K[x]) A(x) B(x) A(x) = Q(x)B(x)P (x) Q(x) M(m; K[x]), P (x) M(n; K[x]) A(x) B(x) A(x) B(x) 2 M(m, n; K[x]) 12

13 43 ( ) n (elementary matrix) 3 1) ( (interchange matrix)) i j P n (i, j) := ( i j ) 2) c K (ie, c K, c 0) Q n (i; c) := i diag(1 1 1 c 1 1) = 1 1 c 1 1 ( (i, i) c ) 3) i j, c(x) K[x] R n (i, j; c(x)) := I + c(x)e ij ( E ij ) ( (i, j) c(x) ) 44 ( ) ( ) P n (i, j) = E ij + E ji + k i,j E kk = I E ii E jj + E ij + E ji (i j), Q n (i; c) = I + (c 1)E ii, R n (i, j; c(x)) = I + c(x)e ij (i j) (I n ) 13

14 45 ( ) A(x) M(m, n; K[x]) (1) A(x) P m (i, j) A(x) i j (2) A(x) P n (i, j) A(x) i j (3) A(x) Q m (i; c) A(x) i c (4) A(x) Q n (i; c) A(x) i c (5) A(x) R m (i, j; c(x)) A(x) i j c(x) (6) A(x) R n (i, j; c(x)) A(x) i j c(x) 46 ( ) 45 (elementary transformation) (, elementary row operation) (, elementary column operation) 47 ( ) P n (i, j) 1 = P n (i, j) (i j), Q n (i; c) 1 = Q n (i; c 1 ) (c 0), R n (i, j; c(x)) 1 = R n (i, j; c(x)) (i j) 48 A(x) B(x) B(x) A(x) 49 A(x) B(x) A(x) B(x) 410 ( ) n N, A(x) M(n; K[x]) k {1,, n} A(x) k ( 1 ) A(x) k d k (x) k 0 d k (x) = A(x) k d k (x) (1) i j A(x) P n (i, j) k 14

15 d k (x) (2) c 0 A(x) Q n (i; c) k c d k (x) (3) i j, c(x) K[x] A(x) R n (i, j; c(x)) A(x) i j c(x) Ã(x) Ã(x) k d k (x) (a) A(x) k i Ã(x) (b) A(x) k i j Ã(x) ( ) (c) A(x) k i j Ã(x) det a i (x) + c(x)a j (x) = det a i (x) + c(x) det a j (x) 1 2 det A(x) k d k (x) d k (x) (a), (b), (c) d k (x) d k (x) d k (x) d k (x) d k (x) = d k (x) 15

16 (x ) K = R K = C, n N A(x) M(n; K[x]) r {0, 1,, n}, e 1 (x),, e r (x) K[x] st j {1,, r} e j (x) 1 e j (x) e j+1 (x) (j = 1, 2,, r 1) A(x) e 1 (x) e 2 (x) (4) e r (x) 0 = diag(e 1 (x), e 2 (x),, e r (x), 0,, 0) 0 r, e 1 (x),, e r (x) A(x) d k (x) := A(x) k 1 (5) e 1 (x) = d 1 (x), e j (x) = d j(x) d j 1 (x) (j = 2,, r) r A(x) e 1 (x),, e r (x) A(x) (elementary divisor) (4) A(x) ( ) (4) d 1 (x) = e 1 (x), d 2 (x) = e 1 (x)e 2 (x), d r (x) = e 1 (x)e 2 (x) e r (x), d r+1 (x) = = d n (x) = 0 (5) r, e 1 (x),, e r (x) A(x) ( ) n n = 1 ( ) n > 1 n 1 x A(x) M(n; K[x]) A(x) = O (4) A(x) O A(x) (1, 1) 0 ( ) 1 (1, 1) e 1 (x) b 12 (x) b 1n (x) b 21 (x) b 22 (x) b 2n (x) B(x) = b n1 (x) b n2 (x) b nn (x) 16

17 B(x) A(x) B(x) 1, 1 e 1 (x) e 1 (x) e 1 (x) b22 (x) b2n (x) B(x) = 0 bn2 (x) bnn (x) e 1 (x) b ij (x) ( ) B(x) = e 2 (x) b22 (x) b2n (x) bn2 (x) bnn (x) e r (x) e j (x) (j = 2,, r) 1 e 2 (x) e 3 (x) e r (x) e 2 (x) B(x) 1 e 1 (x) e 2 (x) A(x) e 1 (x) e 2 (x) e r (x) ( ) K = R K = C, n N, A(x) M(n; K[x]) (1) A(x) I ( ) (2) A(x) A(x) 0 0 (3) A(x) A(x) ( ) (1) 17

18 A(x) det A(x) 0 0 A(x) I det A(x) det I = 1 0 c K st det A(x) = c A(x) A(x) c K st det A(x) = c A(x) 0 K n e 1 (x) = e 2 (x) = = e n (x) = 1 A(x) (2) A(x) (1) P 1 (x),, P k (x), Q 1 (x),, Q l (x) Q 1 (x) Q l (x)a(x)p 1 (x) P k (x) = I A(x) = Q l (x) 1 Q 1 (x) 1 P k (x) 1 P 1 (x) 1 A(x) (3) A(x) (2) A(x)P 1 (x) P k (x)q 1 (x) Q l (x) = I, P 1 (x) P k (x)q 1 (x) Q l (x)a(x) = I A(x) I 414 K = R K = C, n N A(x), B(x) M(n; K[x]) 3 (i) A(x) B(x) P (x), Q(x) M(n; K[x]) B(x) = Q(x)A(x)P (x) (ii) A(x) B(x) (iii) A(x) B(x) ( ) (i) = (ii) (ii) = (i) (iii) = (ii) A(x) B(x) ( ) (ii) = (iii) 415 ( ) K = R K = C, n N A, B M(n; K) P GL(n; C) st B = P 1 AP xi A xi B ( ) B = P 1 AP xi B = xi P 1 AP = P 1 (xi A)P P xi A xi B 18

19 ( ) xi A xi B P (x) Q(x) (xi A)P (x) = Q(x)(xI B) P 1 (x), Q 1 (x), P, Q st P (x) = P 1 (x)(xi B) + P, Q(x) = (xi A)Q 1 (x) + Q (xi A)(P 1 (x)(xi B) + P ) = ((xi A)Q 1 (x) + Q)(xI B) (xi A)(P 1 (x) Q 1 (x))(xi B) = x(q P ) + AP QB P 1 (x) = Q 1 (x), P = Q, AP = QB 416 A M(n; C) xi A e 1 (x),, e n (x) e n (x) A e 1 (x) e n (x) A det(xi A) ( ) 1 ( ) ( ) 21 ( ) 2 19

20 442 Jordan A xi A ( Jordan ) xi A (i) e 1 (x) e 2 (x) e n (x) (ii) e j (x) 1 (j = 1,, n) e 1 (x),, e n (x) xi A e 1 (x),, e n (x) xi A d k (x) (k = 1,, n) ( ) ( d n (x) = det(xi A) ) ( ) α 0 (1) A = e 1 (x) = x α, e 2 (x) = x α 0 α xi A = ( ) x α 0 0 x α ( (x α) (x α)) d 1 (x) = x α, d 2 (x) = (x α) 2 ( ) α 0 (2) A = ( α β) e 1 (x) = 1, e 2 (x) = (x α)(x β) 0 β xi A = ( ) x α 0 0 x β GCD(x α, x β) = 1 ( ) ( ) ( ) x α 0 x α x β β α x β 1 x β β x 0 x β 0 x β β x x β β α x β 1 0 β x β x = 1 0 β x (x α)(x β) x β (x β) β α β α β α β α 1 0 ( ) (x α)(x β) (x α)(x β) β α ( 1 (x α)(x β)) d 1 (x) = GCD(x α, x β) = 1, d 2 (x) = det(xi A) = (x α)(x β) 20

21 ( ) α 1 (3) A = e 1 (x) = 1, e 2 (x) = (x α) 2 0 α ( ) ( ) ( ) xi A = x α 1 1 x α 1 x α 0 x α x α 0 (x α) 0 ( ) ( ) (x α) (x α) 2 0 (x α) 2 d 1 (x) = 1, d 2 (x) = (x α) 2 α 0 0 (4) A = 0 α 0 e 1 (x) = x α, e 2 (x) = x α, e 3 (x) = x α 0 0 α x α 0 0 xi A = 0 x α x α ( (x α) (x α) (x α)) d 1 (x) = x α, d 2 (x) = (x α) 2, d 3 (x) = det(xi A) = (x α) 3 α 1 0 (5) A = 0 α 0 e 1 (x) = 1, e 2 (x) = x α, e 3 (x) = (x α) α x α x α 0 1 x α 0 xi A = 0 x α 0 x α 0 0 α x x α 0 0 x α 0 0 x α 1 x α 0 α x 0 0 α x (x α) (x α) x α 0 0 x α 0 0 x α 0 0 x α 0 x α 0 0 (x α) (x α) 2 (1 (x α) (x α) 2 ) d 1 (x) = 1, d 3 (x) = det(xi A) = (x α) = (x α) 0 x α 2 d 2 (x) = x α e 1 (x) = d 1 (x) = 1, e 2 (x) = d 2(x) d 1 (x) = x α 1 = x α, e e (x) = d 3(x) d 2 (x) = (x α)3 x α = (x α)2 21

22 α 1 0 (6) A = 0 α 1 e 1 (x) = 1, e 2 (x) = 1, e 3 (x) = (x α) α x α x α 0 1 x α 0 xi A = 0 x α 1 x α 0 1 α x x α 0 0 x α 0 0 x α 1 x α 0 α x 0 1 α x (x α) (x α) x α 0 0 x α 0 0 x α 0 1 (x α) (x α) 2 0 x α 0 0 α x = (x α) 2 (α x)(x α) 2 0 (x α) 2 (x α) (x α) 3 (1 1 (x α) 3 ) d 1 (x) = 1, d 3 (x) = det(xi A) = (x α) x α 1 = 1 d 2 (x) = 1 e 1 (x) = d 1 (x) = 1, e 2 (x) = d 2(x) d 1 (x) = 1 1 = 1, e 3(x) = d 3(x) d 2 (x) = (x α)3 1 = (x α) 3 α 0 0 (7) A = 0 α 0 ( α β) e 1 (x) = 1, e 2 (x) = x α, e 3 (x) = (x α)(x β) 0 0 β 22

23 x α 0 0 x α 0 x β xi A = 0 x α 0 0 x α x β 0 0 x β β α 0 x β 1 0 x β 0 x α 0 0 x α 0 (x β) 0 x β x β 0 x β β α 1 0 x β 0 x α 0 x β 0 x β + (x β) x β = 0 x α 0 x β (x α)(x β) 0 β α β α β α β α 0 x α 0 (x α)(x β) 0 x α (x α)(x β) β α GCD(x α, x β) = 1 d 1 (x) = 1, d 3 (x) = det(xi A) = (x α) 2 (x β) 0 2 (x α) 2 (x α)(x β) d 2 (x) = x α e 1 (x) = d 1 (x) = 1, e 2 (x) = d 2(x) d 1 (x) = x α, e 3(x) = d 3(x) d 2 (x) = (x α)2 (x β) x α = (x α)(x β) α 1 0 (8) A = 0 α 0 ( α β) e 1 (x) = 1, e 2 (x) = 1, e 3 (x) = (x α) 2 (x β) 0 0 β x α x α 0 1 x α 0 xi A = 0 x α 0 x α 0 0 α x x β 0 0 x β 0 0 x β α x (x α)(α x) 0 = α x (x α) x β 0 0 x β 0 (x α) 2 0 = 0 (x α) x β 0 0 x β 0 0 x β 0 x β 0 0 (x α) (x α) 2 (β α) 2 = [ x + (2α β)] (x β) + (x α) 2 23

24 2 x + (2α β) x β 0 0 (β α) 2 (x α) 2 0 (β α) 2 (x α) 2 0 x β 0 0 (β α) 2 (x α) 2 (x α)2 (β α)2 (β α) 2 (x α)2 = 0 (β α) 2 0 (x β)(x α)2 0 x β 0 x β 0 (x β) (β α) 2 (β α) 2 0 (β α) 2 0 (x β)(x α) (x α) 2 (x β) (β α) 2 d 1 (x) = 1, d 3 (x) = det(xi A) = (x α) 2 (x β) 0 2 (x α) 2 1 0, (x α)(x β), = (x β) 0 x β d 2 (x)=1 e 1 (x) = d 1 (x) = 1, e 2 (x) = d 2(x) d 1 (x) = 1 1 = 1, e 3(x) = d 3(x) d 2 (x) = (x α)2 (x β) 1 = (x α) 2 (x β) α 0 0 (9) A = 0 β 0 ( α β, β γ, γ α) e 1 (x) = 1, e 2 (x) = 1, e 3 (x) = 0 0 γ (x α)(x β)(x γ) x α 0 0 xi A = 0 x β x γ d 1 (x) = GCD(x α, x β, x γ) = 1, d 2 (x) = GCD((x α)(x β), (x β)(x γ), (x γ)(x α)) = 1, d 3 (x) = det(xi A) = (x α)(x β)(x γ) e 1 (x) = d 1 (x) = 1, e 2 (x) = d 2(x) d 1 (x) = 1 1 = 1, e 3 (x) = d 3(x) d 2 (x) = (x α)(x β)(x γ) 1 = (x α)(x β)(x γ) 24

25 443 [9] A(x) = (a ij (x)) x n M(n; R) ( R := C[x]) (1) a ij (x) 0 a 11 (x) (2) j = 2, 3,, n a 1j (x) a 11 (x) : a 1j (x) = q 1j (x)a 11 (x) + r 1j (x), det r 1j (x) < deg a 11 (x) 1 q 1j (x) j (3) a 1j (x) (j = 2,, n) 0 a 11 (x) (2) a 1j (x) = 0 (j = 2,, n) (4) a 1j (x) = a j1 (x) = 0 (j = 2,, n) : a 11 (x) A(x) = A (x) 0 a 11 (x) a ij (x) (i, j = 1,, n) a 11 (x) 417 n N, A(x) M(n; C[x]) A(x) det A(x) C \ {0} A(x)B(x) = B(x)A(x) = I n B(x) M(n; C[x]]) (elementary divisor) 45 25

26 ( p ) A = xi A x x 3 1 x 3 xi A = 3 x 1 3 C 2 C 3 x x x x x 6 x 1 3 x x x = x 1 (x 1)(x + 2) 3(x 3) x 1 x x x 3 (x 1)(x + 2) 3(x 3) x x 3 (x 3)(x + 2) 3(x 3) 0 3 x x x 0 (x 3)(x + 2) 3(x 3) (x 3)(x + 2) = 0 3 x 0 (x 3)(x + 2) (x 1)(x 3) x 0 (x 1)(x 3) 0 x (x 1)(x 3) 2 e 1 (x) = 1, e 2 (x) = x 3, e 3 (x) = (x 1)(x 3) 5 Jordan [2], [10], [6], Strang [11], Moscow University Vestnik 26 Filippov, [12] A A1 [7] [10] 3 2 [1], 26

27 A2 Halmos Finite Dimensional Vector Spaces (1947) Halmos [13] A3 (1958) (1966) 1978 [1] [4] [1] ( ) ( [14] ) ( ) ([4] ) ( ) [4] ( ) Gauss LDU 3 [4] [1] (3 ) 2 2 ( ) 3 4 Jordan [4] [3] [3] 5 [1], [4] [15], [8] A4 I,II (1966, 1969) [16], [17] 3 ( 2 ) 4 5 [3] [4] 27

28 A5 (1971) [10] ( ) A6 Jordan (1976,1977) [2] ( ) Jordan Jordan A7 (1980) [18] [19] ( ) ( ) A8 (1988, 1993) ( 1 ) [20] 1 (CG ) 1 28

29 ( ) ( ) ( 2 ) 2 = 2, 2 > 0 ( 2 ) ( ) A9 (1982) [6] Jordan ( A A + εf (F ε R) Jordan ) Kato [21] [22] ( ) A10 (1992) [9] ( ) A11 (1993,1994) [23] A12 (1994) [24] A13 Trefethen and Bau Numerical Linear Algebra (1997) Trefethen and Bau[25] 6 29

30 A14 (1999) [26] A15 (2003) [27] A16 (2004) [28] A17 (2007) [29] A18 : (2007) [30] A19 (2009) [31] ( ) Version 2 ( ) 30

31 A20 [32] BASIC [33] [34] [35] ( ) [36] B B1 E I E [7], [4], [3], [1],[14], [26], [30], [16], [17], [37], [38] I [39] ( I E) I [2], [20], [24], [10], [31], [29], [20], [6], Strang [11], [28], [23], [40], [9] C misc C1 Schur [1] IV 3 C1 (Schur ) A M(n; C) U S(n) λ 1 U * AU = ( ) 0 λ n ( : [1] Schur ) n λ 1 A 1 u λ 1 u 1 := 1 u u u 1,, u n Q := (u 1 u n ) 31

32 v C n 1, A M(n 1; C) st ( Q AQ = λ 1 v 0 A Q O(n 1) st λ 2 Q A Q * = 0 λ n ( ) 1 0 T U := Q U O(n) 0 Q ( ) ( ) U 1 0 T AU = Q 1 0 T AQ = 0 Q 0 Q ( ) ( ) λ 1 v 1 0 T = = 0 Q A 0 Q λ 1 * = 0 λ n ) ) ( ) ( ) λ 1 v 1 0 T 0 Q ) 0 A 0 Q ( 1 0 T ( λ 1 v Q 0 Q A Q Hermite A W A (W := Span u 1 ) 1 ( v v Q ) C2 A M(n; R) λ 1 Q O(n) st Q T * AQ = 0 λ n C3 ( ) A n (AA = A A) U O(n), λ 1,, λ n C st U AU = diag(λ 1,, λ n ) U O(n) st U AU = λ 1 * 0 λ n C = (c ij ) A = UCU A A = AA UC CU = UCC U C C = CC i {1,, n} c ki c ki = c ik c ik i k n 1 k i 32

33 c ii 2 i = 1 i = 2 i = 3 i<k n c ik 2 = 1 k<i c ki 2 n c 1k 2 = 0 c 12 = c 13 = = c 1n = 0 k=2 n c 2k 2 = c 12 2 = 0 c 23 = c 24 = = c 2n = 0 k=3 n c 3k 2 = c c 23 2 = 0 c 34 = c 35 = = c 3n = 0 k=4 C 0 C C2 C4 ( ) A M(m, n; C) r := rank(a A), A A 0 r1, 2, rr 2 (r i > 0) U 1 U(m), U 2 U(n) st r 1 0 r r U 1 AU 2 = m = n B := A A Hermite ( B = (A A) = A (A ) = A A = B) ( (Bx, x) = (A Ax, x) = (Ax, Ax) 0) U U(n) st β 1 U 0 BU =, β i 0 0 β n B β i 0 U β 1 = = β r > 0, β r+1 = = β n = 0 (0 r n) AU (t 1 t 1 t n t n ) (t 1 t n ) = (AU) (AU) = U A AU = U BU = β β n = β β r (t i, t j ) = β i δ ij (1 i n, 1 j n) 33

34 1 r 1 t 1,, 1 r r t r t i = 0 (r + 1 i n) u 1 := 1 r 1 t 1,, u r := 1 r r t r u 1,, u n C n u i (r + 1 i n) t j (1 j r) u 1 u r u r+1 u n (t 1 t n ) = r r r 0 0 ( 2 0 t i = 0 (r + 1 i n) 0 (u i, t j ) = 0 (r + 1 i n, 1 j r) ) T 2 := (u 1 u n ), T 1 := U u 1 u r u r+1 (t 1 t n ) = T2 AU = T2 AT 1 u n T a 2 stat 1 = Σ A = T 2 ΣT 1 A (singular value decomposition, SVD) [1] III 3 Schmidt (p 101) QR ( ( ) ) IV 4 (p 162) Cholesky (, QR, Cholesky, Schur, ) ( ) LU 1 ( ) D D1 V K V V V := {f; f : V K } f, g V, α K f + g, αf (f + g)(x) = f(x) + g(x), 34

35 (αf)(x) = α f(x) (e 1,, e n ) V i f i : V K f i ( n j=1 c j e j ) = c i f i V (f 1,, f n ) V (e 1,, e n ) D1 V K n V K n V V (V ) V a V ϕ a : V K, ϕ a (f) = f(a) f V ϕ a ϕ a (V ) D2 V K n V α ϕ a V D2 D21 V W V e 1,, e n W f 1,, f m n m c ij e i f j i=1 j=1 ( e i f j 1 ) V W 35

36 D3 V W K (1) (T1), (T1 ), (T2) T Φ: V W T (T1) x 1,, x r V 1 y 1,, y r W r Φ(x i, y i ) = 0 y i = 0 (1 i r) r=1 (T1 ) y 1,, y r W 1 x 1,, x r V r Φ(x i, y i ) = 0 x i = 0 (1 i r) r=1 (T2) T Φ(x, y) (x V, w W ) (2) T Φ : V W T Φ (x, y) = ρ(φ(x, y)) (x V, y W ) ϕ: T T (6) T = V W, Φ(x, y) = x y D22 (7) L (V, W ) W V D3 D31 V 2 T T = V 1 V r, V i = V V r T T r V i = V i p V i = V i q T p q r i V i = V T r {}}{ V V 36

37 r i V i = V T r {}}{ V V dim V = n, T r dim T = n r D32 r N S r r r T r = T r (V ) := σ S n P σ : T r T r r {}}{ V V P σ (e i1 e ir ) = e σ(i1 ) e σ(ir) (i 1,, i r {1,, n}) x 1,, x r V P σ (x 1 x r ) = x σ(1) x σ(r) P σ V P σ P τ = P τσ τσ := τ σ r t σ S r P σ (t) = t r t σ S r P σ (t) = sign σ t S := σ S r P σ, A := σ S r sign σ P σ [1], (1958, 1974), [2], Jordan, (1990),, Jordan I, II, (1976,1977) [3], (1985) 37

38 [4], (1966) [5], (1987) [6],, (1982) [7], (1957) [8],, pp ( ),,, (2007) ( UP ) [9], (1992, 1992, 1994) [10], (1971, 2002) [11] Strang, G S: Linear algebra and its applications, Academic Press (1976) [12] Jordan,, , pp (2003) [13] Halmos, P R: Finite Dimensional Vector Spaces, Princeton University Press (1947) [14], (1997) [15], , pp (2000) [16] I, (1966) [17] II, (1969) [18], (1980) [19], (1980) [20] Chatelin, F: Valeurs propres de matrices, Masson, Paris (1988), ( ) F,,,, (1993) [21] Kato, T: Perturbation Theory for Linear Oprators, Springer Verlag (1966) [22], (1999) [23], (2003),, I, II,, (1993, 1994) [24],,,, (1994) [25] Trefethen, L N and Bau III, D: Numerical Linear Algebra, SIAM (1997) [26], (1999) [27], (2003) 38

39 [28],, (2004) [29] David A,, (2007),, [30] :, (2007) [31],,,, (2009) [32] BASIC, (1985) [33], (1971) [34], (1977) [35], (1993) [36], (1995) [37], (2002) [38], (1992) [39] 30, (1991) [40], (2000) 39

1 n A a 11 a 1n A =.. a m1 a mn Ax = λx (1) x n λ (eigenvalue problem) x = 0 ( x 0 ) λ A ( ) λ Ax = λx x Ax = λx y T A = λy T x Ax = λx cx ( 1) 1.1 Th

1 n A a 11 a 1n A =.. a m1 a mn Ax = λx (1) x n λ (eigenvalue problem) x = 0 ( x 0 ) λ A ( ) λ Ax = λx x Ax = λx y T A = λy T x Ax = λx cx ( 1) 1.1 Th 1 n A a 11 a 1n A = a m1 a mn Ax = λx (1) x n λ (eigenvalue problem) x = ( x ) λ A ( ) λ Ax = λx x Ax = λx y T A = λy T x Ax = λx cx ( 1) 11 Th9-1 Ax = λx λe n A = λ a 11 a 12 a 1n a 21 λ a 22 a n1 a n2

More information

linearal1.dvi

linearal1.dvi 19 4 30 I 1 1 11 1 12 2 13 3 131 3 132 4 133 5 134 6 14 7 2 9 21 9 211 9 212 10 213 13 214 14 22 15 221 15 222 16 223 17 224 20 3 21 31 21 32 21 33 22 34 23 341 23 342 24 343 27 344 29 35 31 351 31 352

More information

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K II. () 7 F 7 = { 0,, 2, 3, 4, 5, 6 }., F 7 a, b F 7, a b, F 7,. (a) a, b,,. (b) 7., 4 5 = 20 = 2 7 + 6, 4 5 = 6 F 7., F 7,., 0 a F 7, ab = F 7 b F 7. (2) 7, 6 F 6 = { 0,, 2, 3, 4, 5 },,., F 6., 0 0 a F

More information

2 (2016 3Q N) c = o (11) Ax = b A x = c A n I n n n 2n (A I n ) (I n X) A A X A n A A A (1) (2) c 0 c (3) c A A i j n 1 ( 1) i+j A (i, j) A (i, j) ã i

2 (2016 3Q N) c = o (11) Ax = b A x = c A n I n n n 2n (A I n ) (I n X) A A X A n A A A (1) (2) c 0 c (3) c A A i j n 1 ( 1) i+j A (i, j) A (i, j) ã i [ ] (2016 3Q N) a 11 a 1n m n A A = a m1 a mn A a 1 A A = a n (1) A (a i a j, i j ) (2) A (a i ca i, c 0, i ) (3) A (a i a i + ca j, j i, i ) A 1 A 11 0 A 12 0 0 A 1k 0 1 A 22 0 0 A 2k 0 1 0 A 3k 1 A rk

More information

x V x x V x, x V x = x + = x +(x+x )=(x +x)+x = +x = x x = x x = x =x =(+)x =x +x = x +x x = x ( )x = x =x =(+( ))x =x +( )x = x +( )x ( )x = x x x R

x V x x V x, x V x = x + = x +(x+x )=(x +x)+x = +x = x x = x x = x =x =(+)x =x +x = x +x x = x ( )x = x =x =(+( ))x =x +( )x = x +( )x ( )x = x x x R V (I) () (4) (II) () (4) V K vector space V vector K scalor K C K R (I) x, y V x + y V () (x + y)+z = x +(y + z) (2) x + y = y + x (3) V x V x + = x (4) x V x + x = x V x x (II) x V, α K αx V () (α + β)x

More information

ad bc A A A = ad bc ( d ) b c a n A n A n A A det A A ( ) a b A = c d det A = ad bc σ {,,,, n} {,,, } {,,, } {,,, } ( ) σ = σ() = σ() = n sign σ sign(

ad bc A A A = ad bc ( d ) b c a n A n A n A A det A A ( ) a b A = c d det A = ad bc σ {,,,, n} {,,, } {,,, } {,,, } ( ) σ = σ() = σ() = n sign σ sign( I n n A AX = I, YA = I () n XY A () X = IX = (YA)X = Y(AX) = YI = Y X Y () XY A A AB AB BA (AB)(B A ) = A(BB )A = AA = I (BA)(A B ) = B(AA )B = BB = I (AB) = B A (BA) = A B A B A = B = 5 5 A B AB BA A

More information

数学Ⅱ演習(足助・09夏)

数学Ⅱ演習(足助・09夏) II I 9/4/4 9/4/2 z C z z z z, z 2 z, w C zw z w 3 z, w C z + w z + w 4 t R t C t t t t t z z z 2 z C re z z + z z z, im z 2 2 3 z C e z + z + 2 z2 + 3! z3 + z!, I 4 x R e x cos x + sin x 2 z, w C e z+w

More information

1 4 1 ( ) ( ) ( ) ( ) () 1 4 2

1 4 1 ( ) ( ) ( ) ( ) () 1 4 2 7 1995, 2017 7 21 1 2 2 3 3 4 4 6 (1).................................... 6 (2)..................................... 6 (3) t................. 9 5 11 (1)......................................... 11 (2)

More information

newmain.dvi

newmain.dvi 数論 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/008142 このサンプルページの内容は, 第 2 版 1 刷発行当時のものです. Daniel DUVERNEY: THÉORIE DES NOMBRES c Dunod, Paris, 1998, This book is published

More information

Macdonald, ,,, Macdonald. Macdonald,,,,,.,, Gauss,,.,, Lauricella A, B, C, D, Gelfand, A,., Heckman Opdam.,,,.,,., intersection,. Macdona

Macdonald, ,,, Macdonald. Macdonald,,,,,.,, Gauss,,.,, Lauricella A, B, C, D, Gelfand, A,., Heckman Opdam.,,,.,,., intersection,. Macdona Macdonald, 2015.9.1 9.2.,,, Macdonald. Macdonald,,,,,.,, Gauss,,.,, Lauricella A, B, C, D, Gelfand, A,., Heckman Opdam.,,,.,,., intersection,. Macdonald,, q., Heckman Opdam q,, Macdonald., 1 ,,. Macdonald,

More information

n ( (

n ( ( 1 2 27 6 1 1 m-mat@mathscihiroshima-uacjp 2 http://wwwmathscihiroshima-uacjp/~m-mat/teach/teachhtml 2 1 3 11 3 111 3 112 4 113 n 4 114 5 115 5 12 7 121 7 122 9 123 11 124 11 125 12 126 2 2 13 127 15 128

More information

(2016 2Q H) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = ( ) a c b d (a c, b d) P = (a, b) O P ( ) a p = b P = (a, b) p = ( ) a b R 2 {( ) } R 2 x = x, y

(2016 2Q H) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = ( ) a c b d (a c, b d) P = (a, b) O P ( ) a p = b P = (a, b) p = ( ) a b R 2 {( ) } R 2 x = x, y (2016 2Q H) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = a c b d (a c, b d) P = (a, b) O P a p = b P = (a, b) p = a b R 2 { } R 2 x = x, y R y 2 a p =, c q = b d p + a + c q = b + d q p P q a p = c R c b

More information

January 27, 2015

January 27, 2015 e-mail : kigami@i.kyoto-u.ac.jp January 27, 205 Contents 2........................ 2.2....................... 3.3....................... 6.4......................... 2 6 2........................... 6

More information

Dynkin Serre Weyl

Dynkin Serre Weyl Dynkin Naoya Enomoto 2003.3. paper Dynkin Introduction Dynkin Lie Lie paper 1 0 Introduction 3 I ( ) Lie Dynkin 4 1 ( ) Lie 4 1.1 Lie ( )................................ 4 1.2 Killing form...........................................

More information

1W II K =25 A (1) office(a439) (2) A4 etc. 12:00-13:30 Cafe David 1 2 TA appointment Cafe D

1W II K =25 A (1) office(a439) (2) A4 etc. 12:00-13:30 Cafe David 1 2 TA  appointment Cafe D 1W II K200 : October 6, 2004 Version : 1.2, kawahira@math.nagoa-u.ac.jp, http://www.math.nagoa-u.ac.jp/~kawahira/courses.htm TA M1, m0418c@math.nagoa-u.ac.jp TA Talor Jacobian 4 45 25 30 20 K2-1W04-00

More information

2 2 MATHEMATICS.PDF 200-2-0 3 2 (p n ), ( ) 7 3 4 6 5 20 6 GL 2 (Z) SL 2 (Z) 27 7 29 8 SL 2 (Z) 35 9 2 40 0 2 46 48 2 2 5 3 2 2 58 4 2 6 5 2 65 6 2 67 7 2 69 2 , a 0 + a + a 2 +... b b 2 b 3 () + b n a

More information

ver Web

ver Web ver201723 Web 1 4 11 4 12 5 13 7 2 9 21 9 22 10 23 10 24 11 3 13 31 n 13 32 15 33 21 34 25 35 (1) 27 4 30 41 30 42 32 43 36 44 (2) 38 45 45 46 45 5 46 51 46 52 48 53 49 54 51 55 54 56 58 57 (3) 61 2 3

More information

all.dvi

all.dvi 72 9 Hooke,,,. Hooke. 9.1 Hooke 1 Hooke. 1, 1 Hooke. σ, ε, Young. σ ε (9.1), Young. τ γ G τ Gγ (9.2) X 1, X 2. Poisson, Poisson ν. ν ε 22 (9.) ε 11 F F X 2 X 1 9.1: Poisson 9.1. Hooke 7 Young Poisson G

More information

LINEAR ALGEBRA I Hiroshi SUZUKI Department of Mathematics International Christian University

LINEAR ALGEBRA I Hiroshi SUZUKI Department of Mathematics International Christian University LINEAR ALGEBRA I Hiroshi SUZUKI Department of Mathematics International Christian University 2002 2 2 2 2 22 2 3 3 3 3 3 4 4 5 5 6 6 7 7 8 8 9 Cramer 9 0 0 E-mail:hsuzuki@icuacjp 0 3x + y + 2z 4 x + y

More information

20 9 19 1 3 11 1 3 111 3 112 1 4 12 6 121 6 122 7 13 7 131 8 132 10 133 10 134 12 14 13 141 13 142 13 143 15 144 16 145 17 15 19 151 1 19 152 20 2 21 21 21 211 21 212 1 23 213 1 23 214 25 215 31 22 33

More information

(2018 2Q C) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = ( ) a c b d (a c, b d) P = (a, b) O P ( ) a p = b P = (a, b) p = ( ) a b R 2 {( ) } R 2 x = x, y

(2018 2Q C) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = ( ) a c b d (a c, b d) P = (a, b) O P ( ) a p = b P = (a, b) p = ( ) a b R 2 {( ) } R 2 x = x, y (2018 2Q C) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = a c b d (a c, b d) P = (a, b) O P a p = b P = (a, b) p = a b R 2 { } R 2 x = x, y R y 2 a p =, c q = b d p + a + c q = b + d q p P q a p = c R c b

More information

2 7 V 7 {fx fx 3 } 8 P 3 {fx fx 3 } 9 V 9 {fx fx f x 2fx } V {fx fx f x 2fx + } V {{a n } {a n } a n+2 a n+ + a n n } 2 V 2 {{a n } {a n } a n+2 a n+

2 7 V 7 {fx fx 3 } 8 P 3 {fx fx 3 } 9 V 9 {fx fx f x 2fx } V {fx fx f x 2fx + } V {{a n } {a n } a n+2 a n+ + a n n } 2 V 2 {{a n } {a n } a n+2 a n+ R 3 R n C n V??,?? k, l K x, y, z K n, i x + y + z x + y + z iv x V, x + x o x V v kx + y kx + ky vi k + lx kx + lx vii klx klx viii x x ii x + y y + x, V iii o K n, x K n, x + o x iv x K n, x + x o x

More information

v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i

v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i 1. 1 1.1 1.1.1 1.1.1.1 v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) R ij R ik = δ jk (4) δ ij Kronecker δ ij = { 1 (i = j) 0 (i j) (5) 1 1.1. v1.1 2011/04/10 1. 1 2 v i = R ij v j (6) [

More information

X G P G (X) G BG [X, BG] S 2 2 2 S 2 2 S 2 = { (x 1, x 2, x 3 ) R 3 x 2 1 + x 2 2 + x 2 3 = 1 } R 3 S 2 S 2 v x S 2 x x v(x) T x S 2 T x S 2 S 2 x T x S 2 = { ξ R 3 x ξ } R 3 T x S 2 S 2 x x T x S 2

More information

I , : ~/math/functional-analysis/functional-analysis-1.tex

I , : ~/math/functional-analysis/functional-analysis-1.tex I 1 2004 8 16, 2017 4 30 1 : ~/math/functional-analysis/functional-analysis-1.tex 1 3 1.1................................... 3 1.2................................... 3 1.3.....................................

More information

untitled

untitled 1 1 Ax = b A R m m A b R m x R m A shift-and invert Lanczos - LU CG A = LU LU Ly = b Ux = y A LU A A = LL T 1 LU b,, Vol. 11, No. 4, pp. 14 18 (2006). x * x (0), x (1), x (2), A Ap A # x (n+1) = Cx (n)

More information

ii

ii ii iii 1 1 1.1..................................... 1 1.2................................... 3 1.3........................... 4 2 9 2.1.................................. 9 2.2...............................

More information

Appendix A BASIC BASIC Beginner s All-purpose Symbolic Instruction Code FORTRAN COBOL C JAVA PASCAL (NEC N88-BASIC Windows BASIC (1) (2) ( ) BASIC BAS

Appendix A BASIC BASIC Beginner s All-purpose Symbolic Instruction Code FORTRAN COBOL C JAVA PASCAL (NEC N88-BASIC Windows BASIC (1) (2) ( ) BASIC BAS Appendix A BASIC BASIC Beginner s All-purpose Symbolic Instruction Code FORTRAN COBOL C JAVA PASCAL (NEC N88-BASIC Windows BASIC (1 (2 ( BASIC BASIC download TUTORIAL.PDF http://hp.vector.co.jp/authors/va008683/

More information

d ϕ i) t d )t0 d ϕi) ϕ i) t x j t d ) ϕ t0 t α dx j d ) ϕ i) t dx t0 j x j d ϕ i) ) t x j dx t0 j f i x j ξ j dx i + ξ i x j dx j f i ξ i x j dx j d )

d ϕ i) t d )t0 d ϕi) ϕ i) t x j t d ) ϕ t0 t α dx j d ) ϕ i) t dx t0 j x j d ϕ i) ) t x j dx t0 j f i x j ξ j dx i + ξ i x j dx j f i ξ i x j dx j d ) 23 M R M ϕ : R M M ϕt, x) ϕ t x) ϕ s ϕ t ϕ s+t, ϕ 0 id M M ϕ t M ξ ξ ϕ t d ϕ tx) ξϕ t x)) U, x 1,...,x n )) ϕ t x) ϕ 1) t x),...,ϕ n) t x)), ξx) ξ i x) d ϕi) t x) ξ i ϕ t x)) M f ϕ t f)x) f ϕ t )x) fϕ

More information

1 1.1 R (ring) R1 R4 R1 R (commutative [abelian] group) R2 a, b, c R (ab)c = a(bc) (associative law) R3 a, b, c R a(b + c) = ab + ac, (a + b)c = ac +

1 1.1 R (ring) R1 R4 R1 R (commutative [abelian] group) R2 a, b, c R (ab)c = a(bc) (associative law) R3 a, b, c R a(b + c) = ab + ac, (a + b)c = ac + ALGEBRA II Hiroshi SUZUKI Department of Mathematics International Christian University 2004 1 1 1 2 2 1 3 3 1 4 4 1 5 5 1 6 6 1 7 7 1 7.1....................... 7 1 7.2........................... 7 4 8

More information

1. 1 A : l l : (1) l m (m 3) (2) m (3) n (n 3) (4) A α, β γ α β + γ = 2 m l lm n nα nα = lm. α = lm n. m lm 2β 2β = lm β = lm 2. γ l 2. 3

1. 1 A : l l : (1) l m (m 3) (2) m (3) n (n 3) (4) A α, β γ α β + γ = 2 m l lm n nα nα = lm. α = lm n. m lm 2β 2β = lm β = lm 2. γ l 2. 3 1. 1 A : l l : (1) l m (m 3) (2) m (3) n (n 3) (4) A 2 1 2 1 2 3 α, β γ α β + γ = 2 m l lm n nα nα = lm. α = lm n. m lm 2β 2β = lm β = lm 2. γ l 2. 3 4 P, Q R n = {(x 1, x 2,, x n ) ; x 1, x 2,, x n R}

More information

2S III IV K A4 12:00-13:30 Cafe David 1 2 TA 1 appointment Cafe David K2-2S04-00 : C

2S III IV K A4 12:00-13:30 Cafe David 1 2 TA 1  appointment Cafe David K2-2S04-00 : C 2S III IV K200 : April 16, 2004 Version : 1.1 TA M2 TA 1 10 2 n 1 ɛ-δ 5 15 20 20 45 K2-2S04-00 : C 2S III IV K200 60 60 74 75 89 90 1 email 3 4 30 A4 12:00-13:30 Cafe David 1 2 TA 1 email appointment Cafe

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

S K(S) = T K(T ) T S K n (1.1) n {}}{ n K n (1.1) 0 K 0 0 K Q p K Z/pZ L K (1) L K L K (2) K L L K [L : K] 1.1.

S K(S) = T K(T ) T S K n (1.1) n {}}{ n K n (1.1) 0 K 0 0 K Q p K Z/pZ L K (1) L K L K (2) K L L K [L : K] 1.1. () 1.1.. 1. 1.1. (1) L K (i) 0 K 1 K (ii) x, y K x + y K, x y K (iii) x, y K xy K (iv) x K \ {0} x 1 K K L L K ( 0 L 1 L ) L K L/K (2) K M L M K L 1.1. C C 1.2. R K = {a + b 3 i a, b Q} Q( 2, 3) = Q( 2

More information

i Version 1.1, (2012/02/22 24),.,..,.,,. R-space,, ( R- space),, Kahler (Kähler C-space)., R-space,., R-space, Hermite,.

i Version 1.1, (2012/02/22 24),.,..,.,,. R-space,, ( R- space),, Kahler (Kähler C-space)., R-space,., R-space, Hermite,. R-space ( ) Version 1.1 (2012/02/29) i Version 1.1, (2012/02/22 24),.,..,.,,. R-space,, ( R- space),, Kahler (Kähler C-space)., R-space,., R-space, Hermite,. ii 1 Lie 1 1.1 Killing................................

More information

i I II I II II IC IIC I II ii 5 8 5 3 7 8 iii I 3........................... 5......................... 7........................... 4........................ 8.3......................... 33.4...................

More information

D 24 D D D

D 24 D D D 5 Paper I.R. 2001 5 Paper HP Paper 5 3 5.1................................................... 3 5.2.................................................... 4 5.3.......................................... 6

More information

AI n Z f n : Z Z f n (k) = nk ( k Z) f n n 1.9 R R f : R R f 1 1 {a R f(a) = 0 R = {0 R 1.10 R R f : R R f 1 : R R 1.11 Z Z id Z 1.12 Q Q id

AI n Z f n : Z Z f n (k) = nk ( k Z) f n n 1.9 R R f : R R f 1 1 {a R f(a) = 0 R = {0 R 1.10 R R f : R R f 1 : R R 1.11 Z Z id Z 1.12 Q Q id 1 1.1 1.1 R R (1) R = 1 2 Z = 2 n Z (2) R 1.2 R C Z R 1.3 Z 2 = {(a, b) a Z, b Z Z 2 a, b, c, d Z (a, b) + (c, d) = (a + c, b + d), (a, b)(c, d) = (ac, bd) (1) Z 2 (2) Z 2? (3) Z 2 1.4 C Q[ 1] = {a + bi

More information

ax 2 + bx + c = n 8 (n ) a n x n + a n 1 x n a 1 x + a 0 = 0 ( a n, a n 1,, a 1, a 0 a n 0) n n ( ) ( ) ax 3 + bx 2 + cx + d = 0 4

ax 2 + bx + c = n 8 (n ) a n x n + a n 1 x n a 1 x + a 0 = 0 ( a n, a n 1,, a 1, a 0 a n 0) n n ( ) ( ) ax 3 + bx 2 + cx + d = 0 4 20 20.0 ( ) 8 y = ax 2 + bx + c 443 ax 2 + bx + c = 0 20.1 20.1.1 n 8 (n ) a n x n + a n 1 x n 1 + + a 1 x + a 0 = 0 ( a n, a n 1,, a 1, a 0 a n 0) n n ( ) ( ) ax 3 + bx 2 + cx + d = 0 444 ( a, b, c, d

More information

A

A A 2563 15 4 21 1 3 1.1................................................ 3 1.2............................................. 3 2 3 2.1......................................... 3 2.2............................................

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

SO(2)

SO(2) TOP URL http://amonphys.web.fc2.com/ 1 12 3 12.1.................................. 3 12.2.......................... 4 12.3............................. 5 12.4 SO(2).................................. 6

More information

2012 A, N, Z, Q, R, C

2012 A, N, Z, Q, R, C 2012 A, N, Z, Q, R, C 1 2009 9 2 2011 2 3 2012 9 1 2 2 5 3 11 4 16 5 22 6 25 7 29 8 32 1 1 1.1 3 1 1 1 1 1 1? 3 3 3 3 3 3 3 1 1, 1 1 + 1 1 1+1 2 2 1 2+1 3 2 N 1.2 N (i) 2 a b a 1 b a < b a b b a a b (ii)

More information

SAMA- SUKU-RU Contents p-adic families of Eisenstein series (modular form) Hecke Eisenstein Eisenstein p T

SAMA- SUKU-RU Contents p-adic families of Eisenstein series (modular form) Hecke Eisenstein Eisenstein p T SAMA- SUKU-RU Contents 1. 1 2. 7.1. p-adic families of Eisenstein series 3 2.1. modular form Hecke 3 2.2. Eisenstein 5 2.3. Eisenstein p 7 3. 7.2. The projection to the ordinary part 9 3.1. The ordinary

More information

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n (

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n ( 3 n nc k+ k + 3 () n C r n C n r nc r C r + C r ( r n ) () n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (4) n C n n C + n C + n C + + n C n (5) k k n C k n C k (6) n C + nc

More information

2016 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 1 16 2 1 () X O 3 (O1) X O, O (O2) O O (O3) O O O X (X, O) O X X (O1), (O2), (O3) (O2) (O3) n (O2) U 1,..., U n O U k O k=1 (O3) U λ O( λ Λ) λ Λ U λ O 0 X 0 (O2) n =

More information

2001 年度 『数学基礎 IV』 講義録

2001 年度 『数学基礎 IV』 講義録 4 A 95 96 4 1 n {1, 2,,n} n n σ ( ) 1 2 n σ(1) σ(2) σ(n) σ σ 2 1 n 1 2 {1, 2,,n} n n! n S n σ, τ S n {1, 2,,n} τ σ {1, 2,,n} n τ σ σ, τ τσ σ n σ 1 n σ 1 ( σ σ ) 1 σ = σσ 1 = ι 1 2 n ι 1 2 n 4.1. 4 σ =

More information

20 6 4 1 4 1.1 1.................................... 4 1.1.1.................................... 4 1.1.2 1................................ 5 1.2................................... 7 1.2.1....................................

More information

16 B

16 B 16 B (1) 3 (2) (3) 5 ( ) 3 : 2 3 : 3 : () 3 19 ( ) 2 ax 2 + bx + c = 0 (a 0) x = b ± b 2 4ac 2a 3, 4 5 1824 5 Contents 1. 1 2. 7 3. 13 4. 18 5. 22 6. 25 7. 27 8. 31 9. 37 10. 46 11. 50 12. 56 i 1 1. 1.1..

More information

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a =

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a = [ ] 9 IC. dx = 3x 4y dt dy dt = x y u xt = expλt u yt λ u u t = u u u + u = xt yt 6 3. u = x, y, z = x + y + z u u 9 s9 grad u ux, y, z = c c : grad u = u x i + u y j + u k i, j, k z x, y, z grad u v =

More information

平成 15 年度 ( 第 25 回 ) 数学入門公開講座テキスト ( 京都大学数理解析研究所, 平成 ~8 15 月年 78 日開催月 4 日 ) X 2 = 1 ( ) f 1 (X 1,..., X n ) = 0,..., f r (X 1,..., X n ) = 0 X = (

平成 15 年度 ( 第 25 回 ) 数学入門公開講座テキスト ( 京都大学数理解析研究所, 平成 ~8 15 月年 78 日開催月 4 日 ) X 2 = 1 ( ) f 1 (X 1,..., X n ) = 0,..., f r (X 1,..., X n ) = 0 X = ( 1 1.1 X 2 = 1 ( ) f 1 (X 1,..., X n ) = 0,..., f r (X 1,..., X n ) = 0 X = (X 1,..., X n ) ( ) X 1,..., X n f 1,..., f r A T X + XA XBR 1 B T X + C T QC = O X 1.2 X 1,..., X n X i X j X j X i = 0, P i

More information

VI VI.21 W 1,..., W r V W 1,..., W r W W r = {v v r v i W i (1 i r)} V = W W r V W 1,..., W r V W 1,..., W r V = W 1 W

VI VI.21 W 1,..., W r V W 1,..., W r W W r = {v v r v i W i (1 i r)} V = W W r V W 1,..., W r V W 1,..., W r V = W 1 W 3 30 5 VI VI. W,..., W r V W,..., W r W + + W r = {v + + v r v W ( r)} V = W + + W r V W,..., W r V W,..., W r V = W W r () V = W W r () W (W + + W + W + + W r ) = {0} () dm V = dm W + + dm W r VI. f n

More information

all.dvi

all.dvi 29 4 Green-Lagrange,,.,,,,,,.,,,,,,,,,, E, σ, ε σ = Eε,,.. 4.1? l, l 1 (l 1 l) ε ε = l 1 l l (4.1) F l l 1 F 30 4 Green-Lagrange Δz Δδ γ = Δδ (4.2) Δz π/2 φ γ = π 2 φ (4.3) γ tan γ γ,sin γ γ ( π ) γ tan

More information

untitled

untitled 1 ( 12 11 44 7 20 10 10 1 1 ( ( 2 10 46 11 10 10 5 8 3 2 6 9 47 2 3 48 4 2 2 ( 97 12 ) 97 12 -Spencer modulus moduli (modulus of elasticity) modulus (le) module modulus module 4 b θ a q φ p 1: 3 (le) module

More information

漸化式のすべてのパターンを解説しましたー高校数学の達人・河見賢司のサイト

漸化式のすべてのパターンを解説しましたー高校数学の達人・河見賢司のサイト https://www.hmg-gen.com/tuusin.html https://www.hmg-gen.com/tuusin1.html 1 2 OK 3 4 {a n } (1) a 1 = 1, a n+1 a n = 2 (2) a 1 = 3, a n+1 a n = 2n a n a n+1 a n = ( ) a n+1 a n = ( ) a n+1 a n {a n } 1,

More information

all.dvi

all.dvi 5,, Euclid.,..,... Euclid,.,.,, e i (i =,, ). 6 x a x e e e x.:,,. a,,. a a = a e + a e + a e = {e, e, e } a (.) = a i e i = a i e i (.) i= {a,a,a } T ( T ),.,,,,. (.),.,...,,. a 0 0 a = a 0 + a + a 0

More information

ii p ϕ x, t = C ϕ xe i ħ E t +C ϕ xe i ħ E t ψ x,t ψ x,t p79 やは時間変化しないことに注意 振動 粒子はだいたい このあたりにいる 粒子はだいたい このあたりにいる p35 D.3 Aψ Cϕdx = aψ ψ C Aϕ dx

ii p ϕ x, t = C ϕ xe i ħ E t +C ϕ xe i ħ E t ψ x,t ψ x,t p79 やは時間変化しないことに注意 振動 粒子はだいたい このあたりにいる 粒子はだいたい このあたりにいる p35 D.3 Aψ Cϕdx = aψ ψ C Aϕ dx i B5 7.8. p89 4. ψ x, tψx, t = ψ R x, t iψ I x, t ψ R x, t + iψ I x, t = ψ R x, t + ψ I x, t p 5.8 π π π F e ix + F e ix + F 3 e 3ix F e ix + F e ix + F 3 e 3ix dx πψ x πψx p39 7. AX = X A [ a b c d x

More information

1 Abstract 2 3 n a ax 2 + bx + c = 0 (a 0) (1) ( x + b ) 2 = b2 4ac 2a 4a 2 D = b 2 4ac > 0 (1) 2 D = 0 D < 0 x + b 2a = ± b2 4ac 2a b ± b 2

1 Abstract 2 3 n a ax 2 + bx + c = 0 (a 0) (1) ( x + b ) 2 = b2 4ac 2a 4a 2 D = b 2 4ac > 0 (1) 2 D = 0 D < 0 x + b 2a = ± b2 4ac 2a b ± b 2 1 Abstract n 1 1.1 a ax + bx + c = 0 (a 0) (1) ( x + b ) = b 4ac a 4a D = b 4ac > 0 (1) D = 0 D < 0 x + b a = ± b 4ac a b ± b 4ac a b a b ± 4ac b i a D (1) ax + bx + c D 0 () () (015 8 1 ) 1. D = b 4ac

More information

A S- hara/lectures/lectures-j.html r A = A 5 : 5 = max{ A, } A A A A B A, B A A A %

A S-   hara/lectures/lectures-j.html r A = A 5 : 5 = max{ A, } A A A A B A, B A A A % A S- http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html r A S- 3.4.5. 9 phone: 9-8-444, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office

More information

untitled

untitled ,, 2 2.,, A, PC/AT, MB, 5GB,,,, ( ) MB, GB 2,5,, 8MB, A, MB, GB 2 A,,,? x MB, y GB, A (), x + 2y () 4 (,, ) (hanba@eee.u-ryukyu.ac.jp), A, x + 2y() x y, A, MB ( ) 8 MB ( ) 5GB ( ) ( ), x x x 8 (2) y y

More information

numb.dvi

numb.dvi 11 Poisson kanenko@mbkniftycom alexeikanenko@docomonejp http://wwwkanenkocom/ , u = f, ( u = u+f u t, u = f t ) 1 D R 2 L 2 (D) := {f(x,y) f(x,y) 2 dxdy < )} D D f,g L 2 (D) (f,g) := f(x,y)g(x,y)dxdy (L

More information

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y)

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 1 1977 x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) ( x 2 y + xy 2 x 2 2xy y 2) = 15 (x y) (x + y) (xy

More information

2 A id A : A A A A id A def = {(a, a) A A a A} 1 { } 1 1 id 1 = α: A B β : B C α β αβ : A C αβ def = {(a, c) A C b B.((a, b) α (b, c) β)} 2.3 α

2 A id A : A A A A id A def = {(a, a) A A a A} 1 { } 1 1 id 1 = α: A B β : B C α β αβ : A C αβ def = {(a, c) A C b B.((a, b) α (b, c) β)} 2.3 α 20 6 18 1 2 2.1 A B α A B α: A B A B Rel(A, B) A B (A B) A B 0 AB A B AB α, β : A B α β α β def (a, b) A B.((a, b) α (a, b) β) 0 AB AB Rel(A, B) 1 2 A id A : A A A A id A def = {(a, a) A A a A} 1 { } 1

More information

n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................

More information

A A = a 41 a 42 a 43 a 44 A (7) 1 (3) A = M 12 = = a 41 (8) a 41 a 43 a 44 (3) n n A, B a i AB = A B ii aa

A A = a 41 a 42 a 43 a 44 A (7) 1 (3) A = M 12 = = a 41 (8) a 41 a 43 a 44 (3) n n A, B a i AB = A B ii aa 1 2 21 2 2 [ ] a 11 a 12 A = a 21 a 22 (1) A = a 11 a 22 a 12 a 21 (2) 3 3 n n A A = n ( 1) i+j a ij M ij i =1 n (3) j=1 M ij A i j (n 1) (n 1) 2-1 3 3 A A = a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33

More information

II K116 : January 14, ,. A = (a ij ) ij m n. ( ). B m n, C n l. A = max{ a ij }. ij A + B A + B, AC n A C (1) 1. m n (A k ) k=1,... m n A, A k k

II K116 : January 14, ,. A = (a ij ) ij m n. ( ). B m n, C n l. A = max{ a ij }. ij A + B A + B, AC n A C (1) 1. m n (A k ) k=1,... m n A, A k k : January 14, 28..,. A = (a ij ) ij m n. ( ). B m n, C n l. A = max{ a ij }. ij A + B A + B, AC n A C (1) 1. m n (A k ) k=1,... m n A, A k k, A. lim k A k = A. A k = (a (k) ij ) ij, A k = (a ij ) ij, i,

More information

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5. A 1. Boltzmann Planck u(ν, T )dν = 8πh ν 3 c 3 kt 1 dν h 6.63 10 34 J s Planck k 1.38 10 23 J K 1 Boltzmann u(ν, T ) T ν e hν c = 3 10 8 m s 1 2. Planck λ = c/ν Rayleigh-Jeans u(ν, T )dν = 8πν2 kt dν c

More information

量子力学 問題

量子力学 問題 3 : 203 : 0. H = 0 0 2 6 0 () = 6, 2 = 2, 3 = 3 3 H 6 2 3 ϵ,2,3 (2) ψ = (, 2, 3 ) ψ Hψ H (3) P i = i i P P 2 = P 2 P 3 = P 3 P = O, P 2 i = P i (4) P + P 2 + P 3 = E 3 (5) i ϵ ip i H 0 0 (6) R = 0 0 [H,

More information

n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz

n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz 1 2 (a 1, a 2, a n ) (b 1, b 2, b n ) A (1.1) A = a 1 b 1 + a 2 b 2 + + a n b n (1.1) n A = a i b i (1.2) i=1 n i 1 n i=1 a i b i n i=1 A = a i b i (1.3) (1.3) (1.3) (1.1) (ummation convention) a 11 x

More information

IA hara@math.kyushu-u.ac.jp Last updated: January,......................................................................................................................................................................................

More information

1 1, 2016 D B. 1.1,.,,. (1). (2). (3) Milnor., (1) (2)., (3). 1.2,.,, ( )..,.,,. 1.3, webpage,.,,.

1 1, 2016 D B. 1.1,.,,. (1). (2). (3) Milnor., (1) (2)., (3). 1.2,.,, ( )..,.,,. 1.3, webpage,.,,. 1 1, 2016 D B. 1.1,.,,. (1). (2). (3) Milnor., (1) (2)., (3). 1.2,.,, ( )..,.,,. 1.3, 2015. webpage,.,,. 2 1 (1),, ( ). (2),,. (3),.,, : Hashinaga, T., Tamaru, H.: Three-dimensional solvsolitons and the

More information

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4 1. k λ ν ω T v p v g k = π λ ω = πν = π T v p = λν = ω k v g = dω dk 1) ) 3) 4). p = hk = h λ 5) E = hν = hω 6) h = h π 7) h =6.6618 1 34 J sec) hc=197.3 MeV fm = 197.3 kev pm= 197.3 ev nm = 1.97 1 3 ev

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x [ ] IC. f(x) = e x () f(x) f (x) () lim f(x) lim f(x) x + x (3) lim f(x) lim f(x) x + x (4) y = f(x) ( ) ( s46). < a < () a () lim a log xdx a log xdx ( ) n (3) lim log k log n n n k=.3 z = log(x + y ),

More information

Microsoft Word - 表紙.docx

Microsoft Word - 表紙.docx 黒住英司 [ 著 ] サピエンティア 計量経済学 訂正および練習問題解答 (206/2/2 版 ) 訂正 練習問題解答 3 .69, 3.8 4 (X i X)U i i i (X i μ x )U i ( X μx ) U i. i E [ ] (X i μ x )U i i E[(X i μ x )]E[U i ]0. i V [ ] (X i μ x )U i i 2 i j E [(X i

More information

, = = 7 6 = 42, =

, = = 7 6 = 42, = http://www.ss.u-tokai.ac.jp/~mahoro/2016autumn/alg_intro/ 1 1 2016.9.26, http://www.ss.u-tokai.ac.jp/~mahoro/2016autumn/alg_intro/ 1.1 1 214 132 = 28258 2 + 1 + 4 1 + 3 + 2 = 7 6 = 42, 4 + 2 = 6 2 + 8

More information

等質空間の幾何学入門

等質空間の幾何学入門 2006/12/04 08 tamaru@math.sci.hiroshima-u.ac.jp i, 2006/12/04 08. 2006, 4.,,.,,.,.,.,,.,,,.,.,,.,,,.,. ii 1 1 1.1 :................................... 1 1.2........................................ 2 1.3......................................

More information

lecture

lecture 5 3 3. 9. 4. x, x. 4, f(x, ) :=x x + =4,x,.. 4 (, 3) (, 5) (3, 5), (4, 9) 95 9 (g) 4 6 8 (cm).9 3.8 6. 8. 9.9 Phsics 85 8 75 7 65 7 75 8 85 9 95 Mathematics = ax + b 6 3 (, 3) 3 ( a + b). f(a, b) ={3 (a

More information

Z: Q: R: C:

Z: Q: R: C: 0 Z: Q: R: C: 3 4 4 4................................ 4 4.................................. 7 5 3 5...................... 3 5......................... 40 5.3 snz) z)........................... 4 6 46 x

More information

(Basic of Proability Theory). (Probability Spacees ad Radom Variables , (Expectatios, Meas) (Weak Law

(Basic of Proability Theory). (Probability Spacees ad Radom Variables , (Expectatios, Meas) (Weak Law I (Radom Walks ad Percolatios) 3 4 7 ( -2 ) (Preface),.,,,...,,.,,,,.,.,,.,,. (,.) (Basic of Proability Theory). (Probability Spacees ad Radom Variables...............2, (Expectatios, Meas).............................

More information

入試の軌跡

入試の軌跡 4 y O x 4 Typed by L A TEX ε ) ) ) 6 4 ) 4 75 ) http://kumamoto.s.xrea.com/plan/.. PDF) Ctrl +L) Ctrl +) Ctrl + Ctrl + ) ) Alt + ) Alt + ) ESC. http://kumamoto.s.xrea.com/nyusi/kumadai kiseki ri i.pdf

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

Jacobson Prime Avoidance

Jacobson Prime Avoidance 2016 2017 2 22 1 1 3 2 4 2.1 Jacobson................. 4 2.2.................... 5 3 6 3.1 Prime Avoidance....................... 7 3.2............................. 8 3.3..............................

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

II R n k +1 v 0,, v k k v 1 v 0,, v k v v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ k σ dimσ = k 1.3. k

II R n k +1 v 0,, v k k v 1 v 0,, v k v v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ k σ dimσ = k 1.3. k II 231017 1 1.1. R n k +1 v 0,, v k k v 1 v 0,, v k v 0 1.2. v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ kσ dimσ = k 1.3. k σ {v 0,...,v k } {v i0,...,v il } l σ τ < τ τ σ 1.4.

More information

2011de.dvi

2011de.dvi 211 ( 4 2 1. 3 1.1............................... 3 1.2 1- -......................... 13 1.3 2-1 -................... 19 1.4 3- -......................... 29 2. 37 2.1................................ 37

More information

20 4 20 i 1 1 1.1............................ 1 1.2............................ 4 2 11 2.1................... 11 2.2......................... 11 2.3....................... 19 3 25 3.1.............................

More information

熊本県数学問題正解

熊本県数学問題正解 00 y O x Typed by L A TEX ε ( ) (00 ) 5 4 4 ( ) http://www.ocn.ne.jp/ oboetene/plan/. ( ) (009 ) ( ).. http://www.ocn.ne.jp/ oboetene/plan/eng.html 8 i i..................................... ( )0... (

More information

1 Edward Waring Lagrange n {(x i, y i )} n i=1 x i p i p i (x j ) = δ ij P (x) = p i p i (x) = n y i p i (x) (1) i=1 n j=1 j i x x j x i x j (2) Runge

1 Edward Waring Lagrange n {(x i, y i )} n i=1 x i p i p i (x j ) = δ ij P (x) = p i p i (x) = n y i p i (x) (1) i=1 n j=1 j i x x j x i x j (2) Runge Edwrd Wring Lgrnge n {(x i, y i )} n x i p i p i (x j ) = δ ij P (x) = p i p i (x) = n y i p i (x) () n j= x x j x i x j (2) Runge [] [2] = ξ 0 < ξ < ξ n = b [, b] [ξ i, ξ i ] y = /( + 25x 2 ) 5 2,, 0,,

More information

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 第 2 版 1 刷発行時のものです. 医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/009192 このサンプルページの内容は, 第 2 版 1 刷発行時のものです. i 2 t 1. 2. 3 2 3. 6 4. 7 5. n 2 ν 6. 2 7. 2003 ii 2 2013 10 iii 1987

More information

I II III IV V

I II III IV V I II III IV V N/m 2 640 980 50 200 290 440 2m 50 4m 100 100 150 200 290 390 590 150 340 4m 6m 8m 100 170 250 µ = E FRVβ β N/mm 2 N/mm 2 1.1 F c t.1 3 1 1.1 1.1 2 2 2 2 F F b F s F c F t F b F s 3 3 3

More information

Step 2 O(3) Sym 0 (R 3 ), : a + := λ 1 λ 2 λ 3 a λ 1 λ 2 λ 3. a +. X a +, O(3).X. O(3).X = O(3)/O(3) X, O(3) X. 1.7 Step 3 O(3) Sym 0 (R 3 ),

Step 2 O(3) Sym 0 (R 3 ), : a + := λ 1 λ 2 λ 3 a λ 1 λ 2 λ 3. a +. X a +, O(3).X. O(3).X = O(3)/O(3) X, O(3) X. 1.7 Step 3 O(3) Sym 0 (R 3 ), 1 1 1.1,,. 1.1 1.2 O(2) R 2 O(2).p, {0} r > 0. O(3) R 3 O(3).p, {0} r > 0.,, O(n) ( SO(n), O(n) ): Sym 0 (R n ) := {X M(n, R) t X = X, tr(x) = 0}. 1.3 O(n) Sym 0 (R n ) : g.x := gxg 1 (g O(n), X Sym 0

More information

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2 No.2 1 2 2 δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i δx j (5) δs 2 = δx i δx i + 2 u i δx i δx j = δs 2 + 2s ij δx i δx j

More information

Armstrong culture Web

Armstrong culture Web 2004 5 10 M.A. Armstrong, Groups and Symmetry, Springer-Verlag, NewYork, 1988 (2000) (1989) (2001) (2002) 1 Armstrong culture Web 1 3 1.1................................. 3 1.2.................................

More information

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 () - 1 - - 2 - - 3 - - 4 - - 5 - 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57

More information

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x (

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x ( II (1 4 ) 1. p.13 1 (x, y) (a, b) ε(x, y; a, b) f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a x a A = f x (a, b) y x 3 3y 3 (x, y) (, ) f (x, y) = x + y (x, y) = (, )

More information

?

? 240-8501 79-2 Email: nakamoto@ynu.ac.jp 1 3 1.1...................................... 3 1.2?................................. 6 1.3..................................... 8 1.4.......................................

More information

−g”U›ß™ö‡Æ…X…y…N…g…‰

−g”U›ß™ö‡Æ…X…y…N…g…‰ 1 / 74 ( ) 2019 3 8 URL: http://www.math.kyoto-u.ac.jp/ ichiro/ 2 / 74 Contents 1 Pearson 2 3 Doob h- 4 (I) 5 (II) 6 (III-1) - 7 (III-2-a) 8 (III-2-b) - 9 (III-3) Pearson 3 / 74 Pearson Definition 1 ρ

More information

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F F 1 F 2 F, (3) F λ F λ F λ F. 3., A λ λ A λ. B λ λ

More information