2 (2016 3Q N) c = o (11) Ax = b A x = c A n I n n n 2n (A I n ) (I n X) A A X A n A A A (1) (2) c 0 c (3) c A A i j n 1 ( 1) i+j A (i, j) A (i, j) ã i

Size: px
Start display at page:

Download "2 (2016 3Q N) c = o (11) Ax = b A x = c A n I n n n 2n (A I n ) (I n X) A A X A n A A A (1) (2) c 0 c (3) c A A i j n 1 ( 1) i+j A (i, j) A (i, j) ã i"

Transcription

1 [ ] (2016 3Q N) a 11 a 1n m n A A = a m1 a mn A a 1 A A = a n (1) A (a i a j, i j ) (2) A (a i ca i, c 0, i ) (3) A (a i a i + ca j, j i, i ) A 1 A 11 0 A A 1k 0 1 A A 2k A 3k 1 A rk ( 1 ) A rank A x 1,, x n (11) m n A b, x a 11 x a 1n x n = b 1 a m1 x a mn x n = b m a 11 a 1n b 1 A =, b = a m1 a mn 0 b m x 1, x = x n (11) Ax = b A b m (n + 1) Ã = (A b) Ã 1 A 11 0 A A 1k c A A 2k c A 3k c 3 (A c) = 0 1 A rk c r c 1

2 2 (2016 3Q N) c = o (11) Ax = b A x = c A n I n n n 2n (A I n ) (I n X) A A X A n A A A (1) (2) c 0 c (3) c A A i j n 1 ( 1) i+j A (i, j) A (i, j) ã ij A A = n a ik ã ik = k=1 n a kj ã kj a 11 a 12 a 1n a a 0 a 22 a 2n a = 21 a 22 a 2n 22 a 2n = a 11 a 0 a n2 a nn a n1 a n2 a n2 a nn nn f : A B A a B f(a) (1) b B b = f(a) a A f (2) a, a A a a f(a) f(a ) f f : A B a a f(a) f(a ) f(a) = f(a ) a = a f f f : A B, b B f 1 (b) k=1 f 1 (b) = {a A f(a) = b} A f b B f f 1 f 1 : B A f B S f S f 1 (S) = {a A f(a) S} A

3 (2016 3Q N) 3 [ ] K R ( ) C ( ) K n n ( R n C n ) x = (x i ), y = (y i ) K n, λ K K n x + y = (x i + y i ) K n λx = (λx i ) K n (1) ( ) x, y K n x + y = y + x (2) ( ) x, y, z K n (x + y) + z = x + (y + z) (3) ( ) o K n x K n x + o = x (4) ( ) x K n x + x = o x K n (5) ( ) x K n, λ, µ K (λ + µ)x = λx + µx (6) ( ) x, y K n, λ K λ(x + y) = λx + λy (7) ( ) x K n, λ, µ K (λµ)x = λ(µx) (8) ( ) x K n 1 x = x (3) o 0 x = (x i ) (4) x i x i V V x, y V x + y x + y V K V λ K x V λx λx V ( ) V K V K ( ) (1) (8) K R V K C V K n K n K K n V = {o} {o} (1) K m n M(m, n; K) = {(a ij ) a ij K} (2) K n P n (K) = {a 0 +a 1 X+ +a n X n a i K} (3) K K[X] = {a 0 +a 1 X+ +a n X n a i K, n N {0}} (4) K = R R C(R) = {f(x): R R f(x) } (5) K = R R C C (R) = {f(x): R R f(x) C } ( ) V K V r x 1,, x r λ 1 x λ r x r, (λ 1,, λ r K) x 1,, x r

4 4 (2016 3Q N) [ ] V K (R n C n ) V a 1,, a r a 1,, a r W = {λ 1 a 1 + λ 2 a λ r a r λ 1, λ 2,, λ r K} W x λ 1, λ 2,, λ r K x = λ 1 a 1 + λ 2 a λ r a r W ( ) V r a 1, a 2,, a r λ 1 a 1 + λ 2 a λ r a r = o λ 1 = λ 2 = = λ r = 0 a 1, a 2,, a r n λ 1 a 1 + λ 2 a λ r a r = o n r λ 1 A = (a 1 a 2 a r ) x = Ax = o λ r a 1, a 2,, a r Ax = o o ( ) a 1, a 2,, a r K n A = (a 1 a 2 (1) a 1, a 2,, a r (2) Ax = o x = o (3) rank A = r a r ) a 1, a 2,, a r x W x = λ 1 a 1 + λ 2 a λ r a r a 1, a 2,, a r ( ) V r a 1, a 2,, a r a 1, a 2,, a r λ 1 a 1 + λ 2 a λ r a r = o (λ 1, λ 2,, λ r ) (0, 0,, 0) ( ) V r a 1, a 2,, a r a i a 1,, a i 1, a i+1,, a r a 1,, a r V a 1 a 2,, a r a r a 1,, a r 1 a 1 a 2,, a r

5 (2016 3Q N) 5 [ ] K R C V K W V x, y W V x + y V λx V, (λ K) W W V ( ) K V W V W V W V o W x, y W, λ K x + y W, λx W V W o W x, y W, λ K x + y W, λx W V (1) (2) (5) (8) o W 1 K x = ( 1)x W x + ( x) = (1 1)x = o ( ) K V W V (1) x, y W x + y W (2) x W, λ K λx W {o} V V V W V o W o W V W V (1) V = C 0 (R) f, g C 0 (R) f + g λf (f + g)(x) = f(x) + g(x), (λf)(x) = λf(x) f + g, λf R C 0 (R) (x) 0 C C W = C (R) C 0 (R) C C C C (R) C 0 (R) (2) V = Seq(R) {a n } n=1, {b n } n=1 λ {a n } n=1 + {b n } n=1 = {a n + b n } n=1, λ{a n } n=1 = {λa n } n=1 Seq(R) {0} n=1 W = Conv(R) V 0 Conv 0 (R) W V c 1,, c k R a n+k + c 1 a n+k c n a n = 0 {a n } U = {{a n } n=1 Seq(R) a n+k + c 1 a n+k c k a n = 0} V

6 6 (2016 3Q N) [ ] V W 1, W 2 V W 1 + W 2 W 1 + W 2 = {x 1 + x 2 x 1 W 1, x 2 W 2 } W 1 + W 2 V W 1, W 2 W 1 + W 2 x x 1 W 1 x 2 W 2 x = x 1 + x 2 x W 1 + W 2 x 1, x 2 W 1 + W 2 W 1, W 2 W 1 W 2 ( ) V W 1, W 2 W 1 + W 2 = {x 1 + x 2 x 1 W 1, x 2 W 2 } V W 1 + W 2 W 1, W 2 W 1 + W 2 x 1 + x 2 = x 1 + x 2 (x i, x i W i) x i = x i W 1 + W 2 W 1 W 2 W 1 W 2 V W 1, W 2 W 1 W 2 = {x V x W 1 x W 2 } V W 1, W 2 W 1 W 2 V V K V a 1,, a k V W = {λ 1 a λ k a k λ i K} V a 1,, a k a 1,, a k a 1,, a k = {λ 1 a λ k a k λ i K} V W 1, W 2 W 1 = a 1,, a n, W 2 = b 1,, b m x W 1 a 1,, a n y W 2 b 1,, b m W 1 + W 2 a 1,, a n, b 1,, b m W 1 + W 2 = a 1,, a n, b 1,, b m a 1,, a n b 1,, b m W 2 a 1,, a n, b 1,, b m x W 1 W 2 x W 1 x W 2 λ 1,, λ n K µ 1,, µ m K x = λ 1 a λ n a n = µb µ m b m λ 1,, λ n µ 1, µ m λ 1 a λ n a n (µb µ m b m ) = o λ 1,, λ n ( µ 1,, µ n ) W 1 W 2

7 (2016 3Q N) 7 [ ] W V W a 1,, a r V W = a 1,, a r W x x = λ 1 a λ r a r (λ 1,, λ r K) a 1,, a r x K R C V K ( ) ( ) V a 1,, a n V (1) a 1,, a n (2) V a 1,, a n V R n e 1,, e n λ 1 λ 1 e λ n e n = λ λ n 0 = = o 0 1 λ 1 = = λ n = 0 e 1,, e n x = (x i ) R n x = x i e i R n e 1,, e n e 1,, e n R n R n R n f 1,, f n f i = e e i (1 i n) f 1,, f n R n V a 1,, a n ( ) a 1,, a n V x V λ n x = λ 1 a λ n a n x V x = λ 1 a λ n a n λ 1,, λ n x = µ 1 a µ n a n i λ i = µ i V V ( ) K V {o} n V n dim K V = n V = {o} dim K V = 0 K dim V W V W W dim W a 1 o W = a 1 R n W = {ta 1 t R} a 1 a 1 W dim W = 1

8 8 (2016 3Q N) V W W = a 1,, a r a 1,, a r W ( ) V W r dim W r W (dim W + 1) W V W W ( ) W {o} V a 1,, a s W a s+1,, a r W a 1,, a r W W V W V W V dim W dim V W r = dim W a 1,, a r a 1,, a r W x W a 1,, a r a 1,, a r = W ( ) W V (1) dim W dim V (2) dim W = dim V W = V ( ) V n (1) n + 1 (2) n W 1, W 2 V dim W 1 = r, dim W 2 = s W 1, W 2 W 1 = a 1,, a r, W 2 = b 1,, b s W 1 + W 2 W 1 + W 2 = a 1,, a r, b 1,, b s dim(w 1 + W 2 ) r + s = dim W 1 + dim W 2 ( ) W 1, W 2 V dim(w 1 + W 2 ) = dim W 1 + dim W 2 dim(w 1 W 2 )

9 (2016 3Q N) 9 [ ] K R C V K V x, y V λ K x + y V λx K V, V K f : V V V V x V f(x) V x, y V, λ K x + y V f(x + y) V λx V f(λx) V f(x), f(y) V f(x) + f(y) V λf(x) V (1) f(x + y) = f(x) + f(y), (2) f(λx) = λf(x) f V = V ( ) K V V f : V V x, y V, λ K (1) f(x + y) = f(x) + f(y), (2) f(λx) = λf(x) V = V (1) V = R n, V = R m A m n f : R n R m f(x) = Ax x, y V λ R f(x + y) = A(x + y) = Ax + Ay = f(x) + f(y) f(λx) = A(λx) = λax = λf(x) f (2) V = C (R) d dx : V V f C (R) d dx (f + g) = (f + g) = f + g = d dx f + d dx g d dx (λf) = (λf) = λf = λ d dx f d dx f = df dx d dx f : V V V a 1,, a n x V x = λ 1 a λ n a n f f(x) = λ 1 f(a 1 ) + + λ n f(a n ) V a 1,, a n f f(a 1 ),, f(a n ) x V f

10 10 (2016 3Q N) V K id V : V V id V (x) = x id V V ( ) K V, V f : V V g : V V g f = id V, f g = id V V V V = V V V f : V V (g : V V ) V V f : V V g : V V g f = id V, f g = id V x V x = g(x ) f g = id V f(x) = f(g(x )) = id V (x ) = x f f(x) = o g f = id V x = g(f(x)) = g(o) = o f f : V V f : V V f g : V V x, y V x = g(x ), y = g(y ) f f(x + y) = f(x) + f(y) = f(g(x )) + f(g(y )) = x + y g(x ) + g(y ) = x + y = g(f(x + y)) = g(x + y ) λ K f(λx) = λx λx = g(f(λx)) = g(λx ) λg(x ) = g(λx ) g ( ) V, V K f : V V f V V K = R A m n B l m f : R n R m, g : R m R l f(x) = Ax, g(y) = By g f g f(x) = g(f(x)) = B(f(x)) = B(Ax) = (BA)x l = m = n g f = id R n x R n R n e 1,, e n x = g f(x) = (BA)x (e 1 e n ) = (BA)(e 1 e n ) BA = I n B A f(x) = Ax A

11 (2016 3Q N) 11 [ ] V K n V e 1,, e n e 1,, e n V x V x = a 1 e 1 + a 2 e a n e n (a i K) x V a K n a 1 V x = a 1 e 1 + a 2 e a n e n a = K n a n E = (e 1,, e n ) V K n φ E φ E (a 1 e 1 + a 2 e a n e n ) = x = a 1 e a n e n, y = b 1 e n + + b n e n a 1 + b 1 φ E (x + y) = φ E ((a 1 + b 1 )e (a n + b n )e n ) = a n + b n a 1 b 1 = + = φ E (x) + φ E (y) a 1 a n a n b n c K ca 1 φ E (cx) = φ E (ca 1 e ca n e n ) = ca n a 1 = c = cφ E (x) a n φ E φ V K n x = a 1 e 1 + a 2 e a n e n V K n a 1 a = a n x E V K dim V

12 12 (2016 3Q N) F = (f 1,, f n ) V x = a 1 e a n e n F x = b 1 f 1 + b 2 f b n f n F φ F : V K n b 1 b = φ F (x) = F b f j V E = (e 1,, e n ) b n f j = p 1j e p nj e n e i ( ) p 1j f j = (e 1 e n ) p nj p 11 p 12 p 1n p (f 1 f n ) = (e 1 e n ) 21 p 22 p 2n p n1 p n2 p nn F x = b 1 f b n f n E p b 11 p 12 p 1n 1 b p x = (f 1 f n ) = (e 1 e n ) 21 p 22 p 2n 1 b n b p n1 p n2 p n nn P = (p ij ) E F a 1 x V E a n a 1 x = (e 1 e n ) E p a 11 p 12 p 1n 1 b p = 21 p 22 p 2n 1 a n b p n1 p n2 p n nn a n

13 (2016 3Q N) 13 [ ] V, W K V E = (e 1,, e n ) W F = (f 1,, f m ) E V x V x 1 x = x 1 e x n e n = (e 1 e n ) F W y W y = y 1 f y m f m = (f 1 f m ) f : V W y = f(x) e j V f(e j ) W a 1j f(e j ) = a 1j f a mj f m = (f 1 f m ) a mj f x V f(x) = f(x 1 e x n e n ) = x 1 f(e 1 ) + + x n f(e n ) x 1 a 11 a 1n x 1 = (f(e 1 ) f(e n )) = (f 1 f m ) x n a m1 a mn x n y = f(x) y 1 a 11 a 1n x 1 = y m a m1 a mn x n A = (a ij ) V E W F f E V φ E V K n F W φ F W K m f K n K m f : K n K m f A f A x n y 1 y m V φ E K n f W φ F f A K m x = x 1 e x n e n φ E x = x 1 f f A A f(x) φ F x 1 = A x x n x n

14 14 (2016 3Q N) V E = (e 1,, e n) W F = (f 1,, f m) x V, y W E, F x 1 x = x 1e x ne n = (e 1 e n) y = y 1f y mf m = (f 1 f m) f E F x V E x, y = f(x) F ỹ ỹ = A x A E E P F F Q E = EP, F = F Q x = E x V E x = EP x f(x) = y = F ỹ x n y 1 y m f F AP x = F Q 1 AP x ỹ = Q 1 AP x f E, F Q 1 AP f V f : V V = V V V (F = E) a 11 a 1n f(x 1 e x n e n ) = (e 1 e n ) a n1 a nn A = (a ij ) f E E E P f E P 1 AP n A, A P A = P 1 AP A A f A f A x 1 x n V f W x K n φ E φ E φ F φ F P K n x f A K m f y = f(x) Q 1 K m φ E φ E φ F φ F P x = P x f A ỹ = AP x Q 1 ỹ = Q 1 AP x

15 (2016 3Q N) 15 [ ] V, W K f : V W f (1) x, x V f(x + x ) = f(x) + f(x ) (2) x V, λ K f(λx) = λf(x) V x f o f Ker f W y f f Im f Ker f V f (1) f(o) = o o Ker f (2) x, x Ker f x + x Ker f (3) x Ker f, λ K λx Ker f f(x + x ) = f(x) + f(x ) = o + o = o f(λx) = λf(x) = λo = o Ker f V Im f W f (1) o = f(o) Im f (2) y, y Im f Im f y = f(x), y = f(x ) x, x V y + y = f(x) + f(x ) = f(x + x ) x + x V y + y Im f (3) y Im f, λ K y = f(x) x V λy = λf(x) = f(λx) λx V λy Im f Im f W ( ) f : V W f Ker f V Ker f = {x V f(x) = o} V f Im f W Im f = {y W y = f(x) x V } W = {f(x) W x V } W

16 16 (2016 3Q N) V, W V W f : V W V x (V ) x 1 y 1 x = f( x) (W ) ỹ = m n x n A ỹ = f A ( x) = A x Ker f A A x = o A x = o r = rank A A x = o n r x = t 1 ũ t n r ũ n r, (t 1,, t n r K, ũ i K n ) ũ i V u i V Ker f = u 1,, u n r {u 1,, u n r } Ker f dim(ker f) = n r Im f A A x A = (ã 1 ã n ) Im f A = {x 1 ã x n ã n x i K} = ã 1,, ã n ã 1,, ã n Im f A A = (ã 1 ã n ) r = rank A dim(im f A ) = r ã i W a i W Im f W ( ) f : V W A dim(im f) = rank A ( ) V, W f : V W dim(ker f) + dim(im f) = dim V f : V W f y W f(x) = y x V f Im f = W f x Ker f f(x) = f(o) = o f Ker f = {o} y m

17 (2016 3Q N) 17 [ ] K R C V K V a, b a, b ( ) V a b (a, b) K (a, b) a b (1) ( ) (a, b) = (b, a), (2) ( ) (a 1 + a 2, b) = (a 1, b) + (a 2, b), (3) ( ) (λa, b) = λ(a, b) = (a, λb), (λ K), (4) ( ) (a, a) 0 (a, a) = 0 a = o K = R (1), (3) (1) ( ) (a, b) = (b, a), (3) ( ) (λa, b) = λ(a, b) = (a, λb), (λ R), K = R K = C V = K n a = (a i ), b = (b i ) (a, b) = a 1 b 1 + a 2 b a n b n = n a i b i = t ba = b a i=1 (a, b) K n K n K = C V a V (a, a) a V ( ) ( ) a = (a i ) V a (a, a) V = K n a = (a, a) = a a a n 2 ( ) a, b V λ K (1) ( ) a 0 a = 0 a = o (2) ( ) λa = λ a (3) ( ) (a, b) a b (4) ( ) a + b a + b

18 18 (2016 3Q N) x, y V (x, y) = 0 x y x y r x 1,, x r V x 1,, x r x 1,, x r x 1,, x r 1 ( ) x, y (x, y) = 0 x 1,, x r x i o x i x j (x i, x j ) = 0 x 1,, x r x i = 1 x 1,, x r x 1,, x r V x 1,, x r V 1 a, b V (a, b) a b 1 ( ) V a, b V θ (0 θ π) θ = cos 1 (a, b) a b V W V W W = {a V x W (a, x) = 0} V W W V = W + W x W W x W x W 0 (x, x) = 0 x = o V = W + W W W = {o} V W W V = W W x V dim W + dim W = dim V x = a + b, ( a W, b W ) W, W 1, W 2 V (1) (W ) = W (2) (W 1 + W 2 ) = W 1 W 2 (3) (W 1 W 2 ) = W 1 + W 2 V = K n a 1,, a r K n W = a 1,, a r W a i x W i (a i, x) = t a i x = 0 A = (a 1 a r ) W Ax = o

19 (2016 3Q N) 19 [ ] V V (x, y) a, b V 1 a, b θ b a ( ) h h = b cos θ cos θ = h = b cos θ a a (b, a) a b h = (b, a) a 2 a b = b h = b (b, a) a 2 a (b, a) = ( b ) (b, a) a 2 a, a = (b, a) (b, a) 2 (a, a) = 0 a b a V b a 1 {a 1,, a r } a 1,, a r (1) v 1 = a 1 (2) v 1,, v i 1 v i v i = a i i 1 k=1 (a i, v k ) v k 2 v k = a i (a i, v 1 ) ( ) (3) i u i = v i ( ) v i v 1 2 v 1 (a i, v i 1 ) v i 1 2 u 1,, u r a 1,, a r W u 1,, u r W ( ) V {o} v i 1

20 20 (2016 3Q N) [ ] n A A A = AA = I A A = A ( ) A A A = AA = I A A = A A t AA = A t A = I A t A = A V K a, b V n A (a, Ab) = (Ab) a = t (Ab)a = t b t Aa = b A a = (A a, b) (A ) = A (Aa, Ab) = (a, A Ab) A (Aa, Ab) = (a, b) A (Aa, b) = (a, Ab) ( ) A A A A A A = ±1 T n T f = f T : R n R n a, b R n (T a, T b) = (a, b) (f(a), f(b)) = (a, b) f R n R n U f = f U : C n C n ; f U (x) = Ux C n C n ( ) V f a, b V (f(a), f(b)) = (a, b) f K = R T R n C n K = R (U ) ( ) U (1) U (2) a, b V (Ua, Ub) = (a, b) (3) U = (u 1 u n ) u i = 1 i j (u i, u j ) = 0 (4) U = (u 1 u n ) u 1,, u n

21 (2016 3Q N) 21 [ ] V K T : V V λ K T (x) = λx o x V λ T x λ T λ W λ = {x V T (x) = λx} V W λ λ W λ λ V W T (W ) W W T V {o} T V x x T T λ : V V T λ (x) = T (x) λx Ker(T λ ) = {x V T λ (x) = o} = {x V T (x) λx = o} = W λ Ker(T λ ) λ i 1 W (i) λ = x V i {}}{ T λ T λ (x) = o T λ T (x) = T λ (T (x)) = T (T (x)) λt (x) = T (T (x) λx) = T T λ (x) W (i) λ V T V V = W 1 W 2 W k x = w 1 w 2 w k (w i W i ) T (x) = T (w 1 w 2 w k ) = T (w 1 ) + T (w 2 ) + + T (w k ) T (W i ) W i T (w i ) W i T (x) = T (w 1 ) T (w 2 ) T (w k ) W 1 W 2 W k T

22 22 (2016 3Q N) n A K n T A (x) = Ax A T A Ax = λx o x K n λ A x λ λ W λ W λ = {x K n Ax = λx} = {x K n (A λi n )x = o} λ W λ {o} dim W λ 1 A n A λ o x Ax = λx (A λi n )x = o x o A λi n A λi n = 0 A λi n = 0 (A λi n )x = o o A λi n = 0 A ( ) A n λ A λ A λi n = 0 x λ (A λi n )x = o o xi n A x A xi n A = 0 A A K = C A φ A (x) = xi n A φ A (x) = 0 ( A ) λ 1,, λ k φ A (x) φ A (x) = (x λ 1 ) m 1 (x λ k ) m k m i λ i W (i) λ x W (i) λ W (i) λ = {x Kn (A λi n ) i x = o} (A λi n ) i+1 x = (A λi n ) ( (A λi n ) i x ) = (A λi n )o = o x W (i+1) λ {o} W λ = W (1) λ W (i) λ W (i+1) λ K n n m W (m) λ = W (m+1) λ = W (m+2) λ = W (m) λ λ λ m W λ W λ = W (m) λ

23 (2016 3Q N) 23 [ ] A n A λ 1,, λ k λ i W λi V V = W λ1 W λk W λi m i W λi a i1,, a imi A Aa ij W λi W λi V a 11,, a 1m1, a 21,, a 2m2,, a kmk A B 1 W λi λ i B i = V P λ 1 m 1 P 1 λ AP = 1 λ 2 B k λ i λk A φ A (x) = xi A φ A (x) x n P φ A (x) = x n + a 1 x n a n 1 x + a n φ P 1 AP (x) = xi P 1 AP = P 1 (xi A)P = P 1 xi A P = xi A = φ A (x) φ P 1 AP (x) = φ A (x) = x n + a 1 x n a n 1 x + a n P 1 AP x = A φ P 1 AP (x) = (x λ 1 ) m 1 (x λ k ) m k φ P 1 AP (A) = (A λ 1 I) m 1 (A λ k I) m k = A n + a 1 A n a n 1 A + a n I = 0 φ P 1 AP (x) = φ A (x) φ A (A) = A n + a 1 A n a n 1 A + a n I = 0

24 24 (2016 3Q N) [ ] A n K n A K n a 1,, a n λ i Aa i = λ i a i a 1,, a n n P = (a 1 a n ) a 1,, a n P a i AP = A(a 1 a n ) = (Aa 1 Aa n ) = (λ 1 a 1 λ n a n ) λ 1 λ 1 = (a 1 a n ) = P P 1 AP = λ 1 λ n {a 1,, a n } P = (a 1 a n ) P 1 AP A {a 1,, a n } A P P 1 AP A A A P A ( ) n A (1) A n (2) A λ λ W λ A n a 1,, a n P = (a 1 a n ) P 1 AP A λ m λ (A λi)x = o W λ 1 W λ m + 1 W λ V λ m + 1 λ x λ m + 1 λ W λ m A λ 1,, λ k m 1,, m k dim W λi = m i W λi m i ( ) a i1,, a imi a 11,, a 1m1, a 21,, a kmk n P = (a 11 a 1m1 a 21 a kmk ) P 1 AP P A xi A = 0 1 dim W λ m = 1 n A n A A λ n λ n

25 [ ] n A (2016 3Q N) 25 (1) (2) (3) (4) (5) (1) x n A xi n = 0 A xi n A xi n = ( 1) n (x λ 1 ) m 1 (x λ k ) m k A xi n = 0 λ 1,, λ k A xi n x n x n ( 1) n A xi n n x xi n A ( 1) n (2) λ i W λi (A λ i I n )x = o λ i A λ i I n 1 A 11 0 A A 1k A A 2k A A λ i I 3k A ri k (A λ i I n )x = o x = c 1 x i1 + + c ri x iri x i1,, x iri W λi (1) (A λ i I n )x = o 1 m i (2) x ij Ax ij = λ i x ij A λ i I n A λ i I n n m i

26 26 (2016 3Q N) (3) λ i m i dim W λi (1) (x λ 1 ) m 1 (x λ k ) m k λ i m i W λi (2) r i n rank(a λ i I n ) i r i = dim W λi = m i A i r i m i A (4) P 1 AP n P (2) x ij P P = (x 11 x 1m1 x 21 x 2m2 x k1 x kmk ) A ( ) W λi W λi x i1,, x imi u i1,, u im1 P = (u 11 u 1m1 u 21 u 2m2 u k1 u kmk ) ( ) P (P P = I n ) (AA = A A ) (5) (4) P P 1 AP P P P 1 AP = λ 1 λ1 λ 2 λ k λ 1 AP = P λ k

27 (2016 3Q N) 27 [ ] K R C A n A K n A ( ) ( ) u 1 A λ 1 u 1 = 1 u 1 K n {u 1, p 2,, p n } U 1 = (u 1 p 2 p n ) ( ) U1 1 AU 1 = U1 1 (λ λ1 1u 1 Ap 1 Ap n ) = o A 1 A 1 n 1 A 1 u 2 λ 2, u 2 = 1 u 2 K n 1 U 2 ( ) (U 2) 1 AU 2 λ2 = o A 2 ( ) 1 o U 2 = o U 2 ( ) ( ) ( ) U2 1 o 1 o 1 o U 2 = o (U 2) o U 2 = o (U 2) = I U n 2 U 2 ( ) ( ) ( ) U2 1 U o AU λ1 1 o 1U 2 = o (U 2) 1 o A 1 o U 2 = U = U 1 U 2 U n 1 λ 1 λ U 1 AU = 2 λ n λ 1 λ 2 A 2 U i U A ( ) A n U U 1 AU U 1 AU U U 1 A U = U A U = (U AU) = (U 1 AU) = λ 1 λ n U 1 AA U = (U 1 AU)(U 1 A U) = (U 1 A U)(U 1 AU) = U 1 A AU AA = A A

28 28 (2016 3Q N) ( ) A A A = AA ( ) A A A A A = AA P P = P P = I P P 1 AP = P AP A α i W αi x i1 x imi (m i α i ) P = (x 11 x 1m1 x 21 x 2m2 x k1 x kmk ) P 1 AP W αi x ij u i1,, u imi U = (u 11 u 1m1 u 21 u 2m2 u k1 u kmk ) U U 1 AU = U AU A i j W αi W αj i j a, b (u ia, u jb ) = 0 (1) H H = H A A = t A = A (2) U U U = UU = I A t AA = A t A = I ( ) ( ) a b a (3) A = (a, b ) AA b a = A A = 2 + b a 2 + b 2 ( ) 1 1 A = 1 1 ( ) ( ) ( ) ( ) ( ) ( )

29 (2016 3Q N) 29 [ ] A A A n α = a + bi A α W α v 1,, v s A Av = Av = αv α α A v α (v i, v j ) = t (v j )v i = t v j v i = (v i, v j ) = 0 v j 2 = (v j, v j ) = (v j, v j ) = 1 v 1,, v s α W α α α α j (v j, v j ) = 0 u 2j 1 = 1 2 (v j + v j ), u 2j = i 2 (v j v j ) u 2j 1, u 2j (u 2j 1, u 2j ) = u 2j 1 = u 2j = ( 1 2 (v j + v j ), ( 1 2 (v j + v j ), ) i (v j v j ) 2 ) 1 (v j + v j ) 2 = i 2 (v j + v j, v j v j ) = 0, = 1 2 (v j + v j, v j + v j ) = 1, ( ) i i (v j v j ), (v j v j ) = (v j v j, v j v j ) = 1 Au 2j 1 = 1 2 A(v j + v j ) = 1 2 (αv j + αv j ) = au 2j 1 + bu 2j Au 2j = i 2 A(v j v j ) = i 2 (αv j αv j ) = bu 2j 1 + au 2j ( ) a b A(u 2j 1 u 2j ) = (au 2j 1 + bu 2j bu 2j 1 + au 2j ) = (u 2j 1 u 2j ) b a

30 30 (2016 3Q N) A λ 1,, λ k, α 1 = a 1 + b 1 i,, α r = a r + b r i α 1,, α r {v 1,, v r } u 2j 1 = 1 (v j + v j ), u 2j = i (v j v j ) 2 2 {u 1, u 2,, u 2r 1, u 2r } λ 1,, λ k p 1,, p k P P = (p 1 p k u 1 u 2 u 2r 1 u 2r ) P P ( ) A P P 1 AP λ i, a j, b j P 1 AP = λ 1 λ k a 1 b 1 b 1 a 1 a r b r b r a r ( ) α = a + bi 2 a b b a (1) A k = n, r = 0 (2) A λ 1 = = λ k = 0, a 1 = = a r = 0, b j (3) A θ j λ i = ±1, a j = cos θ j, b j = sin θ j

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K II. () 7 F 7 = { 0,, 2, 3, 4, 5, 6 }., F 7 a, b F 7, a b, F 7,. (a) a, b,,. (b) 7., 4 5 = 20 = 2 7 + 6, 4 5 = 6 F 7., F 7,., 0 a F 7, ab = F 7 b F 7. (2) 7, 6 F 6 = { 0,, 2, 3, 4, 5 },,., F 6., 0 0 a F

More information

(2016 2Q H) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = ( ) a c b d (a c, b d) P = (a, b) O P ( ) a p = b P = (a, b) p = ( ) a b R 2 {( ) } R 2 x = x, y

(2016 2Q H) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = ( ) a c b d (a c, b d) P = (a, b) O P ( ) a p = b P = (a, b) p = ( ) a b R 2 {( ) } R 2 x = x, y (2016 2Q H) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = a c b d (a c, b d) P = (a, b) O P a p = b P = (a, b) p = a b R 2 { } R 2 x = x, y R y 2 a p =, c q = b d p + a + c q = b + d q p P q a p = c R c b

More information

(2018 2Q C) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = ( ) a c b d (a c, b d) P = (a, b) O P ( ) a p = b P = (a, b) p = ( ) a b R 2 {( ) } R 2 x = x, y

(2018 2Q C) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = ( ) a c b d (a c, b d) P = (a, b) O P ( ) a p = b P = (a, b) p = ( ) a b R 2 {( ) } R 2 x = x, y (2018 2Q C) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = a c b d (a c, b d) P = (a, b) O P a p = b P = (a, b) p = a b R 2 { } R 2 x = x, y R y 2 a p =, c q = b d p + a + c q = b + d q p P q a p = c R c b

More information

数学Ⅱ演習(足助・09夏)

数学Ⅱ演習(足助・09夏) II I 9/4/4 9/4/2 z C z z z z, z 2 z, w C zw z w 3 z, w C z + w z + w 4 t R t C t t t t t z z z 2 z C re z z + z z z, im z 2 2 3 z C e z + z + 2 z2 + 3! z3 + z!, I 4 x R e x cos x + sin x 2 z, w C e z+w

More information

i I II I II II IC IIC I II ii 5 8 5 3 7 8 iii I 3........................... 5......................... 7........................... 4........................ 8.3......................... 33.4...................

More information

2 7 V 7 {fx fx 3 } 8 P 3 {fx fx 3 } 9 V 9 {fx fx f x 2fx } V {fx fx f x 2fx + } V {{a n } {a n } a n+2 a n+ + a n n } 2 V 2 {{a n } {a n } a n+2 a n+

2 7 V 7 {fx fx 3 } 8 P 3 {fx fx 3 } 9 V 9 {fx fx f x 2fx } V {fx fx f x 2fx + } V {{a n } {a n } a n+2 a n+ + a n n } 2 V 2 {{a n } {a n } a n+2 a n+ R 3 R n C n V??,?? k, l K x, y, z K n, i x + y + z x + y + z iv x V, x + x o x V v kx + y kx + ky vi k + lx kx + lx vii klx klx viii x x ii x + y y + x, V iii o K n, x K n, x + o x iv x K n, x + x o x

More information

20 9 19 1 3 11 1 3 111 3 112 1 4 12 6 121 6 122 7 13 7 131 8 132 10 133 10 134 12 14 13 141 13 142 13 143 15 144 16 145 17 15 19 151 1 19 152 20 2 21 21 21 211 21 212 1 23 213 1 23 214 25 215 31 22 33

More information

ver Web

ver Web ver201723 Web 1 4 11 4 12 5 13 7 2 9 21 9 22 10 23 10 24 11 3 13 31 n 13 32 15 33 21 34 25 35 (1) 27 4 30 41 30 42 32 43 36 44 (2) 38 45 45 46 45 5 46 51 46 52 48 53 49 54 51 55 54 56 58 57 (3) 61 2 3

More information

2S III IV K A4 12:00-13:30 Cafe David 1 2 TA 1 appointment Cafe David K2-2S04-00 : C

2S III IV K A4 12:00-13:30 Cafe David 1 2 TA 1  appointment Cafe David K2-2S04-00 : C 2S III IV K200 : April 16, 2004 Version : 1.1 TA M2 TA 1 10 2 n 1 ɛ-δ 5 15 20 20 45 K2-2S04-00 : C 2S III IV K200 60 60 74 75 89 90 1 email 3 4 30 A4 12:00-13:30 Cafe David 1 2 TA 1 email appointment Cafe

More information

1W II K =25 A (1) office(a439) (2) A4 etc. 12:00-13:30 Cafe David 1 2 TA appointment Cafe D

1W II K =25 A (1) office(a439) (2) A4 etc. 12:00-13:30 Cafe David 1 2 TA  appointment Cafe D 1W II K200 : October 6, 2004 Version : 1.2, kawahira@math.nagoa-u.ac.jp, http://www.math.nagoa-u.ac.jp/~kawahira/courses.htm TA M1, m0418c@math.nagoa-u.ac.jp TA Talor Jacobian 4 45 25 30 20 K2-1W04-00

More information

n ( (

n ( ( 1 2 27 6 1 1 m-mat@mathscihiroshima-uacjp 2 http://wwwmathscihiroshima-uacjp/~m-mat/teach/teachhtml 2 1 3 11 3 111 3 112 4 113 n 4 114 5 115 5 12 7 121 7 122 9 123 11 124 11 125 12 126 2 2 13 127 15 128

More information

D 24 D D D

D 24 D D D 5 Paper I.R. 2001 5 Paper HP Paper 5 3 5.1................................................... 3 5.2.................................................... 4 5.3.......................................... 6

More information

January 27, 2015

January 27, 2015 e-mail : kigami@i.kyoto-u.ac.jp January 27, 205 Contents 2........................ 2.2....................... 3.3....................... 6.4......................... 2 6 2........................... 6

More information

1. 1 A : l l : (1) l m (m 3) (2) m (3) n (n 3) (4) A α, β γ α β + γ = 2 m l lm n nα nα = lm. α = lm n. m lm 2β 2β = lm β = lm 2. γ l 2. 3

1. 1 A : l l : (1) l m (m 3) (2) m (3) n (n 3) (4) A α, β γ α β + γ = 2 m l lm n nα nα = lm. α = lm n. m lm 2β 2β = lm β = lm 2. γ l 2. 3 1. 1 A : l l : (1) l m (m 3) (2) m (3) n (n 3) (4) A 2 1 2 1 2 3 α, β γ α β + γ = 2 m l lm n nα nα = lm. α = lm n. m lm 2β 2β = lm β = lm 2. γ l 2. 3 4 P, Q R n = {(x 1, x 2,, x n ) ; x 1, x 2,, x n R}

More information

1 n A a 11 a 1n A =.. a m1 a mn Ax = λx (1) x n λ (eigenvalue problem) x = 0 ( x 0 ) λ A ( ) λ Ax = λx x Ax = λx y T A = λy T x Ax = λx cx ( 1) 1.1 Th

1 n A a 11 a 1n A =.. a m1 a mn Ax = λx (1) x n λ (eigenvalue problem) x = 0 ( x 0 ) λ A ( ) λ Ax = λx x Ax = λx y T A = λy T x Ax = λx cx ( 1) 1.1 Th 1 n A a 11 a 1n A = a m1 a mn Ax = λx (1) x n λ (eigenvalue problem) x = ( x ) λ A ( ) λ Ax = λx x Ax = λx y T A = λy T x Ax = λx cx ( 1) 11 Th9-1 Ax = λx λe n A = λ a 11 a 12 a 1n a 21 λ a 22 a n1 a n2

More information

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi) 0. A A = 4 IC () det A () A () x + y + z = x y z X Y Z = A x y z ( 5) ( s5590) 0. a + b + c b c () a a + b + c c a b a + b + c 0 a b c () a 0 c b b c 0 a c b a 0 0. A A = 7 5 4 5 0 ( 5) ( s5590) () A ()

More information

1. 2 P 2 (x, y) 2 x y (0, 0) R 2 = {(x, y) x, y R} x, y R P = (x, y) O = (0, 0) OP ( ) OP x x, y y ( ) x v = y ( ) x 2 1 v = P = (x, y) y ( x y ) 2 (x

1. 2 P 2 (x, y) 2 x y (0, 0) R 2 = {(x, y) x, y R} x, y R P = (x, y) O = (0, 0) OP ( ) OP x x, y y ( ) x v = y ( ) x 2 1 v = P = (x, y) y ( x y ) 2 (x . P (, (0, 0 R {(,, R}, R P (, O (0, 0 OP OP, v v P (, ( (, (, { R, R} v (, (, (,, z 3 w z R 3,, z R z n R n.,..., n R n n w, t w ( z z Ke Words:. A P 3 0 B P 0 a. A P b B P 3. A π/90 B a + b c π/ 3. +

More information

(1) 3 A B E e AE = e AB OE = OA + e AB = (1 35 e ) e OE z 1 1 e E xy e = 0 e = 5 OE = ( 2 0 0) E ( 2 0 0) (2) 3 E P Q k EQ = k EP E y 0

(1) 3 A B E e AE = e AB OE = OA + e AB = (1 35 e ) e OE z 1 1 e E xy e = 0 e = 5 OE = ( 2 0 0) E ( 2 0 0) (2) 3 E P Q k EQ = k EP E y 0 (1) 3 A B E e AE = e AB OE = OA + e AB = (1 35 e 0 1 15 ) e OE z 1 1 e E xy 5 1 1 5 e = 0 e = 5 OE = ( 2 0 0) E ( 2 0 0) (2) 3 E P Q k EQ = k EP E y 0 Q y P y k 2 M N M( 1 0 0) N(1 0 0) 4 P Q M N C EP

More information

20 6 4 1 4 1.1 1.................................... 4 1.1.1.................................... 4 1.1.2 1................................ 5 1.2................................... 7 1.2.1....................................

More information

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a =

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a = [ ] 9 IC. dx = 3x 4y dt dy dt = x y u xt = expλt u yt λ u u t = u u u + u = xt yt 6 3. u = x, y, z = x + y + z u u 9 s9 grad u ux, y, z = c c : grad u = u x i + u y j + u k i, j, k z x, y, z grad u v =

More information

II Time-stamp: <05/09/30 17:14:06 waki> ii

II Time-stamp: <05/09/30 17:14:06 waki> ii II waki@cc.hirosaki-u.ac.jp 18 1 30 II Time-stamp: ii 1 1 1.1.................................................. 1 1.2................................................... 3 1.3..................................................

More information

untitled

untitled 0. =. =. (999). 3(983). (980). (985). (966). 3. := :=. A A. A A. := := 4 5 A B A B A B. A = B A B A B B A. A B A B, A B, B. AP { A, P } = { : A, P } = { A P }. A = {0, }, A, {0, }, {0}, {}, A {0}, {}.

More information

all.dvi

all.dvi 5,, Euclid.,..,... Euclid,.,.,, e i (i =,, ). 6 x a x e e e x.:,,. a,,. a a = a e + a e + a e = {e, e, e } a (.) = a i e i = a i e i (.) i= {a,a,a } T ( T ),.,,,,. (.),.,...,,. a 0 0 a = a 0 + a + a 0

More information

[ ] 0.1 lim x 0 e 3x 1 x IC ( 11) ( s114901) 0.2 (1) y = e 2x (x 2 + 1) (2) y = x/(x 2 + 1) 0.3 dx (1) 1 4x 2 (2) e x sin 2xdx (3) sin 2 xdx ( 11) ( s

[ ] 0.1 lim x 0 e 3x 1 x IC ( 11) ( s114901) 0.2 (1) y = e 2x (x 2 + 1) (2) y = x/(x 2 + 1) 0.3 dx (1) 1 4x 2 (2) e x sin 2xdx (3) sin 2 xdx ( 11) ( s [ ]. lim e 3 IC ) s49). y = e + ) ) y = / + ).3 d 4 ) e sin d 3) sin d ) s49) s493).4 z = y z z y s494).5 + y = 4 =.6 s495) dy = 3e ) d dy d = y s496).7 lim ) lim e s49).8 y = e sin ) y = sin e 3) y =

More information

ii

ii ii iii 1 1 1.1..................................... 1 1.2................................... 3 1.3........................... 4 2 9 2.1.................................. 9 2.2...............................

More information

DVIOUT-HYOU

DVIOUT-HYOU () P. () AB () AB ³ ³, BA, BA ³ ³ P. A B B A IA (B B)A B (BA) B A ³, A ³ ³ B ³ ³ x z ³ A AA w ³ AA ³ x z ³ x + z +w ³ w x + z +w ½ x + ½ z +w x + z +w x,,z,w ³ A ³ AA I x,, z, w ³ A ³ ³ + + A ³ A A P.

More information

Morse ( ) 2014

Morse ( ) 2014 Morse ( ) 2014 1 1 Morse 1 1.1 Morse................................ 1 1.2 Morse.............................. 7 2 12 2.1....................... 12 2.2.................. 13 2.3 Smale..............................

More information

A S- hara/lectures/lectures-j.html r A = A 5 : 5 = max{ A, } A A A A B A, B A A A %

A S-   hara/lectures/lectures-j.html r A = A 5 : 5 = max{ A, } A A A A B A, B A A A % A S- http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html r A S- 3.4.5. 9 phone: 9-8-444, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office

More information

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x [ ] IC. f(x) = e x () f(x) f (x) () lim f(x) lim f(x) x + x (3) lim f(x) lim f(x) x + x (4) y = f(x) ( ) ( s46). < a < () a () lim a log xdx a log xdx ( ) n (3) lim log k log n n n k=.3 z = log(x + y ),

More information

2016 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 1 16 2 1 () X O 3 (O1) X O, O (O2) O O (O3) O O O X (X, O) O X X (O1), (O2), (O3) (O2) (O3) n (O2) U 1,..., U n O U k O k=1 (O3) U λ O( λ Λ) λ Λ U λ O 0 X 0 (O2) n =

More information

°ÌÁê¿ô³ØII

°ÌÁê¿ô³ØII July 14, 2007 Brouwer f f(x) = x x f(z) = 0 2 f : S 2 R 2 f(x) = f( x) x S 2 3 3 2 - - - 1. X x X U(x) U(x) x U = {U(x) x X} X 1. U(x) A U(x) x 2. A U(x), A B B U(x) 3. A, B U(x) A B U(x) 4. A U(x),

More information

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =,

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =, [ ] IC. r, θ r, θ π, y y = 3 3 = r cos θ r sin θ D D = {, y ; y }, y D r, θ ep y yddy D D 9 s96. d y dt + 3dy + y = cos t dt t = y = e π + e π +. t = π y =.9 s6.3 d y d + dy d + y = y =, dy d = 3 a, b

More information

3/4/8:9 { } { } β β β α β α β β

3/4/8:9 { } { } β β β α β α β β α β : α β β α β α, [ ] [ ] V, [ ] α α β [ ] β 3/4/8:9 3/4/8:9 { } { } β β β α β α β β [] β [] β β β β α ( ( ( ( ( ( [ ] [ ] [ β ] [ α β β ] [ α ( β β ] [ α] [ ( β β ] [] α [ β β ] ( / α α [ β β ] [ ] 3

More information

7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa, f a g b g f a g f a g bf a

7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa, f a g b g f a g f a g bf a 9 203 6 7 WWW http://www.math.meiji.ac.jp/~mk/lectue/tahensuu-203/ 2 8 8 7. 7 7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa,

More information

: : : : ) ) 1. d ij f i e i x i v j m a ij m f ij n x i =

: : : : ) ) 1. d ij f i e i x i v j m a ij m f ij n x i = 1 1980 1) 1 2 3 19721960 1965 2) 1999 1 69 1980 1972: 55 1999: 179 2041999: 210 211 1999: 211 3 2003 1987 92 97 3) 1960 1965 1970 1985 1990 1995 4) 1. d ij f i e i x i v j m a ij m f ij n x i = n d ij

More information

December 28, 2018

December 28, 2018 e-mail : kigami@i.kyoto-u.ac.jp December 28, 28 Contents 2............................. 3.2......................... 7.3..................... 9.4................ 4.5............. 2.6.... 22 2 36 2..........................

More information

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ = 1 1.1 ( ). z = + bi,, b R 0, b 0 2 + b 2 0 z = + bi = ( ) 2 + b 2 2 + b + b 2 2 + b i 2 r = 2 + b 2 θ cos θ = 2 + b 2, sin θ = b 2 + b 2 2π z = r(cos θ + i sin θ) 1.2 (, ). 1. < 2. > 3. ±,, 1.3 ( ). A

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

x V x x V x, x V x = x + = x +(x+x )=(x +x)+x = +x = x x = x x = x =x =(+)x =x +x = x +x x = x ( )x = x =x =(+( ))x =x +( )x = x +( )x ( )x = x x x R

x V x x V x, x V x = x + = x +(x+x )=(x +x)+x = +x = x x = x x = x =x =(+)x =x +x = x +x x = x ( )x = x =x =(+( ))x =x +( )x = x +( )x ( )x = x x x R V (I) () (4) (II) () (4) V K vector space V vector K scalor K C K R (I) x, y V x + y V () (x + y)+z = x +(y + z) (2) x + y = y + x (3) V x V x + = x (4) x V x + x = x V x x (II) x V, α K αx V () (α + β)x

More information

I y = f(x) a I a x I x = a + x 1 f(x) f(a) x a = f(a + x) f(a) x (11.1) x a x 0 f(x) f(a) f(a + x) f(a) lim = lim x a x a x 0 x (11.2) f(x) x

I y = f(x) a I a x I x = a + x 1 f(x) f(a) x a = f(a + x) f(a) x (11.1) x a x 0 f(x) f(a) f(a + x) f(a) lim = lim x a x a x 0 x (11.2) f(x) x 11 11.1 I y = a I a x I x = a + 1 f(a) x a = f(a +) f(a) (11.1) x a 0 f(a) f(a +) f(a) = x a x a 0 (11.) x = a a f (a) d df f(a) (a) I dx dx I I I f (x) d df dx dx (x) [a, b] x a ( 0) x a (a, b) () [a,

More information

X G P G (X) G BG [X, BG] S 2 2 2 S 2 2 S 2 = { (x 1, x 2, x 3 ) R 3 x 2 1 + x 2 2 + x 2 3 = 1 } R 3 S 2 S 2 v x S 2 x x v(x) T x S 2 T x S 2 S 2 x T x S 2 = { ξ R 3 x ξ } R 3 T x S 2 S 2 x x T x S 2

More information

u V u V u u +( 1)u =(1+( 1))u =0 u = o u =( 1)u x = x 1 x 2. x n,y = y 1 y 2. y n K n = x 1 x 2. x n x + y x α αx x i K Kn α K x, y αx 1

u V u V u u +( 1)u =(1+( 1))u =0 u = o u =( 1)u x = x 1 x 2. x n,y = y 1 y 2. y n K n = x 1 x 2. x n x + y x α αx x i K Kn α K x, y αx 1 5 K K Q R C 5.1 5.1.1 V V K K- 1) u, v V u + v V (a) u, v V u + v = v + u (b) u, v, w V (u + v)+w = u +(v + w) (c) u V u + o = u o V (d) u V u + u = o u V 2) α K u V u α αv V (a) α, β K u V (αβ)u = α(βv)

More information

2000年度『数学展望 I』講義録

2000年度『数学展望 I』講義録 2000 I I IV I II 2000 I I IV I-IV. i ii 3.10 (http://www.math.nagoya-u.ac.jp/ kanai/) 2000 A....1 B....4 C....10 D....13 E....17 Brouwer A....21 B....26 C....33 D....39 E. Sperner...45 F....48 A....53

More information

A

A A 2563 15 4 21 1 3 1.1................................................ 3 1.2............................................. 3 2 3 2.1......................................... 3 2.2............................................

More information

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F F 1 F 2 F, (3) F λ F λ F λ F. 3., A λ λ A λ. B λ λ

More information

n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................

More information

AI n Z f n : Z Z f n (k) = nk ( k Z) f n n 1.9 R R f : R R f 1 1 {a R f(a) = 0 R = {0 R 1.10 R R f : R R f 1 : R R 1.11 Z Z id Z 1.12 Q Q id

AI n Z f n : Z Z f n (k) = nk ( k Z) f n n 1.9 R R f : R R f 1 1 {a R f(a) = 0 R = {0 R 1.10 R R f : R R f 1 : R R 1.11 Z Z id Z 1.12 Q Q id 1 1.1 1.1 R R (1) R = 1 2 Z = 2 n Z (2) R 1.2 R C Z R 1.3 Z 2 = {(a, b) a Z, b Z Z 2 a, b, c, d Z (a, b) + (c, d) = (a + c, b + d), (a, b)(c, d) = (ac, bd) (1) Z 2 (2) Z 2? (3) Z 2 1.4 C Q[ 1] = {a + bi

More information

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g(

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g( 06 5.. ( y = x x y 5 y 5 = (x y = x + ( y = x + y = x y.. ( Y = C + I = 50 + 0.5Y + 50 r r = 00 0.5Y ( L = M Y r = 00 r = 0.5Y 50 (3 00 0.5Y = 0.5Y 50 Y = 50, r = 5 .3. (x, x = (, u = = 4 (, x x = 4 x,

More information

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2) 3 215 4 27 1 1 u u(x, t) u tt a 2 u xx, a > (1) D : {(x, t) : x, t } u (, t), u (, t), t (2) u(x, ) f(x), u(x, ) t 2, x (3) u(x, t) X(x)T (t) u (1) 1 T (t) a 2 T (t) X (x) X(x) α (2) T (t) αa 2 T (t) (4)

More information

linearal1.dvi

linearal1.dvi 19 4 30 I 1 1 11 1 12 2 13 3 131 3 132 4 133 5 134 6 14 7 2 9 21 9 211 9 212 10 213 13 214 14 22 15 221 15 222 16 223 17 224 20 3 21 31 21 32 21 33 22 34 23 341 23 342 24 343 27 344 29 35 31 351 31 352

More information

, x R, f (x),, df dx : R R,, f : R R, f(x) ( ).,, f (a) d f dx (a), f (a) d3 f dx 3 (a),, f (n) (a) dn f dx n (a), f d f dx, f d3 f dx 3,, f (n) dn f

, x R, f (x),, df dx : R R,, f : R R, f(x) ( ).,, f (a) d f dx (a), f (a) d3 f dx 3 (a),, f (n) (a) dn f dx n (a), f d f dx, f d3 f dx 3,, f (n) dn f ,,,,.,,,. R f : R R R a R, f(a + ) f(a) lim 0 (), df dx (a) f (a), f(x) x a, f (a), f(x) x a ( ). y f(a + ) y f(x) f(a+) f(a) f(a + ) f(a) f(a) x a 0 a a + x 0 a a + x y y f(x) 0 : 0, f(a+) f(a)., f(x)

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

Jacobson Prime Avoidance

Jacobson Prime Avoidance 2016 2017 2 22 1 1 3 2 4 2.1 Jacobson................. 4 2.2.................... 5 3 6 3.1 Prime Avoidance....................... 7 3.2............................. 8 3.3..............................

More information

6 2 2 x y x y t P P = P t P = I P P P ( ) ( ) ,, ( ) ( ) cos θ sin θ cos θ sin θ, sin θ cos θ sin θ cos θ y x θ x θ P

6 2 2 x y x y t P P = P t P = I P P P ( ) ( ) ,, ( ) ( ) cos θ sin θ cos θ sin θ, sin θ cos θ sin θ cos θ y x θ x θ P 6 x x 6.1 t P P = P t P = I P P P 1 0 1 0,, 0 1 0 1 cos θ sin θ cos θ sin θ, sin θ cos θ sin θ cos θ x θ x θ P x P x, P ) = t P x)p ) = t x t P P ) = t x = x, ) 6.1) x = Figure 6.1 Px = x, P=, θ = θ P

More information

20 4 20 i 1 1 1.1............................ 1 1.2............................ 4 2 11 2.1................... 11 2.2......................... 11 2.3....................... 19 3 25 3.1.............................

More information

6 19,,,

6 19,,, 6 19,,, 15 6 19 4-2 à A si A s n + a n s n 1 + + a 2 s + a 1 à 0 1 0 0 1 0 0 0 1 a 1 a 2 a n 1 a n à ( 1, λ i, λ i 2,, λ i n 1 ) T ( λ i, λ 2 i,, λ n 1 i, a 1 a 2 λ i a n λ ) n 1 T i ( ) λ i 1, λ i,, λ

More information

6.1 (P (P (P (P (P (P (, P (, P.101

6.1 (P (P (P (P (P (P (, P (, P.101 (008 0 3 7 ( ( ( 00 1 (P.3 1 1.1 (P.3.................. 1 1. (P.4............... 1 (P.15.1 (P.15................. (P.18............3 (P.17......... 3.4 (P................ 4 3 (P.7 4 3.1 ( P.7...........

More information

/ 2 n n n n x 1,..., x n 1 n 2 n R n n ndimensional Euclidean space R n vector point R n set space R n R n x = x 1 x n y = y 1 y n distance dx,

/ 2 n n n n x 1,..., x n 1 n 2 n R n n ndimensional Euclidean space R n vector point R n set space R n R n x = x 1 x n y = y 1 y n distance dx, 1 1.1 R n 1.1.1 3 xyz xyz 3 x, y, z R 3 := x y : x, y, z R z 1 3. n n x 1,..., x n x 1. x n x 1 x n 1 / 2 n n n n x 1,..., x n 1 n 2 n R n n ndimensional Euclidean space R n vector point 1.1.2 R n set

More information

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) (

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) ( 6 20 ( ) sin, cos, tan sin, cos, tan, arcsin, arccos, arctan. π 2 sin π 2, 0 cos π, π 2 < tan < π 2 () ( 2 2 lim 2 ( 2 ) ) 2 = 3 sin (2) lim 5 0 = 2 2 0 0 2 2 3 3 4 5 5 2 5 6 3 5 7 4 5 8 4 9 3 4 a 3 b

More information

LINEAR ALGEBRA I Hiroshi SUZUKI Department of Mathematics International Christian University

LINEAR ALGEBRA I Hiroshi SUZUKI Department of Mathematics International Christian University LINEAR ALGEBRA I Hiroshi SUZUKI Department of Mathematics International Christian University 2002 2 2 2 2 22 2 3 3 3 3 3 4 4 5 5 6 6 7 7 8 8 9 Cramer 9 0 0 E-mail:hsuzuki@icuacjp 0 3x + y + 2z 4 x + y

More information

A11 (1993,1994) 29 A12 (1994) 29 A13 Trefethen and Bau Numerical Linear Algebra (1997) 29 A14 (1999) 30 A15 (2003) 30 A16 (2004) 30 A17 (2007) 30 A18

A11 (1993,1994) 29 A12 (1994) 29 A13 Trefethen and Bau Numerical Linear Algebra (1997) 29 A14 (1999) 30 A15 (2003) 30 A16 (2004) 30 A17 (2007) 30 A18 2013 8 29y, 2016 10 29 1 2 2 Jordan 3 21 3 3 Jordan (1) 3 31 Jordan 4 32 Jordan 4 33 Jordan 6 34 Jordan 8 35 9 4 Jordan (2) 10 41 x 11 42 x 12 43 16 44 19 441 19 442 20 443 25 45 25 5 Jordan 26 A 26 A1

More information

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4 1. k λ ν ω T v p v g k = π λ ω = πν = π T v p = λν = ω k v g = dω dk 1) ) 3) 4). p = hk = h λ 5) E = hν = hω 6) h = h π 7) h =6.6618 1 34 J sec) hc=197.3 MeV fm = 197.3 kev pm= 197.3 ev nm = 1.97 1 3 ev

More information

1 I

1 I 1 I 3 1 1.1 R x, y R x + y R x y R x, y, z, a, b R (1.1) (x + y) + z = x + (y + z) (1.2) x + y = y + x (1.3) 0 R : 0 + x = x x R (1.4) x R, 1 ( x) R : x + ( x) = 0 (1.5) (x y) z = x (y z) (1.6) x y =

More information

,.,. 2, R 2, ( )., I R. c : I R 2, : (1) c C -, (2) t I, c (t) (0, 0). c(i). c (t)., c(t) = (x(t), y(t)) c (t) = (x (t), y (t)) : (1)

,.,. 2, R 2, ( )., I R. c : I R 2, : (1) c C -, (2) t I, c (t) (0, 0). c(i). c (t)., c(t) = (x(t), y(t)) c (t) = (x (t), y (t)) : (1) ( ) 1., : ;, ;, ; =. ( ).,.,,,., 2.,.,,.,.,,., y = f(x), f ( ).,,.,.,., U R m, F : U R n, M, f : M R p M, p,, R m,,, R m. 2009 A tamaru math.sci.hiroshima-u.ac.jp 1 ,.,. 2, R 2, ( ).,. 2.1 2.1. I R. c

More information

i

i i 3 4 4 7 5 6 3 ( ).. () 3 () (3) (4) /. 3. 4/3 7. /e 8. a > a, a = /, > a >. () a >, a =, > a > () a > b, a = b, a < b. c c n a n + b n + c n 3c n..... () /3 () + (3) / (4) /4 (5) m > n, a b >, m > n,

More information

() Remrk I = [0, ] [x i, x i ]. (x : ) f(x) = 0 (x : ) ξ i, (f) = f(ξ i )(x i x i ) = (x i x i ) = ξ i, (f) = f(ξ i )(x i x i ) = 0 (f) 0.

() Remrk I = [0, ] [x i, x i ]. (x : ) f(x) = 0 (x : ) ξ i, (f) = f(ξ i )(x i x i ) = (x i x i ) = ξ i, (f) = f(ξ i )(x i x i ) = 0 (f) 0. () 6 f(x) [, b] 6. Riemnn [, b] f(x) S f(x) [, b] (Riemnn) = x 0 < x < x < < x n = b. I = [, b] = {x,, x n } mx(x i x i ) =. i [x i, x i ] ξ i n (f) = f(ξ i )(x i x i ) i=. (ξ i ) (f) 0( ), ξ i, S, ε >

More information

ad bc A A A = ad bc ( d ) b c a n A n A n A A det A A ( ) a b A = c d det A = ad bc σ {,,,, n} {,,, } {,,, } {,,, } ( ) σ = σ() = σ() = n sign σ sign(

ad bc A A A = ad bc ( d ) b c a n A n A n A A det A A ( ) a b A = c d det A = ad bc σ {,,,, n} {,,, } {,,, } {,,, } ( ) σ = σ() = σ() = n sign σ sign( I n n A AX = I, YA = I () n XY A () X = IX = (YA)X = Y(AX) = YI = Y X Y () XY A A AB AB BA (AB)(B A ) = A(BB )A = AA = I (BA)(A B ) = B(AA )B = BB = I (AB) = B A (BA) = A B A B A = B = 5 5 A B AB BA A

More information

x = a 1 f (a r, a + r) f(a) r a f f(a) 2 2. (a, b) 2 f (a, b) r f(a, b) r (a, b) f f(a, b)

x = a 1 f (a r, a + r) f(a) r a f f(a) 2 2. (a, b) 2 f (a, b) r f(a, b) r (a, b) f f(a, b) 2011 I 2 II III 17, 18, 19 7 7 1 2 2 2 1 2 1 1 1.1.............................. 2 1.2 : 1.................... 4 1.2.1 2............................... 5 1.3 : 2.................... 5 1.3.1 2.....................................

More information

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2 II No.1 [n/] [1]H n x) H n x) = 1) r n! r!n r)! x)n r r= []H n x) n,, H n x) = 1) n H n x) [3] H n x) = 1) n dn x e dx n e x [4] H n+1 x) = xh n x) nh n 1 x) ) d dx x H n x) = H n+1 x) d dx H nx) = nh

More information

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A .. Laplace ). A... i),. ω i i ). {ω,..., ω } Ω,. ii) Ω. Ω. A ) r, A P A) P A) r... ).. Ω {,, 3, 4, 5, 6}. i i 6). A {, 4, 6} P A) P A) 3 6. ).. i, j i, j) ) Ω {i, j) i 6, j 6}., 36. A. A {i, j) i j }.

More information

1 4 1 ( ) ( ) ( ) ( ) () 1 4 2

1 4 1 ( ) ( ) ( ) ( ) () 1 4 2 7 1995, 2017 7 21 1 2 2 3 3 4 4 6 (1).................................... 6 (2)..................................... 6 (3) t................. 9 5 11 (1)......................................... 11 (2)

More information

ii p ϕ x, t = C ϕ xe i ħ E t +C ϕ xe i ħ E t ψ x,t ψ x,t p79 やは時間変化しないことに注意 振動 粒子はだいたい このあたりにいる 粒子はだいたい このあたりにいる p35 D.3 Aψ Cϕdx = aψ ψ C Aϕ dx

ii p ϕ x, t = C ϕ xe i ħ E t +C ϕ xe i ħ E t ψ x,t ψ x,t p79 やは時間変化しないことに注意 振動 粒子はだいたい このあたりにいる 粒子はだいたい このあたりにいる p35 D.3 Aψ Cϕdx = aψ ψ C Aϕ dx i B5 7.8. p89 4. ψ x, tψx, t = ψ R x, t iψ I x, t ψ R x, t + iψ I x, t = ψ R x, t + ψ I x, t p 5.8 π π π F e ix + F e ix + F 3 e 3ix F e ix + F e ix + F 3 e 3ix dx πψ x πψx p39 7. AX = X A [ a b c d x

More information

,2,4

,2,4 2005 12 2006 1,2,4 iii 1 Hilbert 14 1 1.............................................. 1 2............................................... 2 3............................................... 3 4.............................................

More information

d ϕ i) t d )t0 d ϕi) ϕ i) t x j t d ) ϕ t0 t α dx j d ) ϕ i) t dx t0 j x j d ϕ i) ) t x j dx t0 j f i x j ξ j dx i + ξ i x j dx j f i ξ i x j dx j d )

d ϕ i) t d )t0 d ϕi) ϕ i) t x j t d ) ϕ t0 t α dx j d ) ϕ i) t dx t0 j x j d ϕ i) ) t x j dx t0 j f i x j ξ j dx i + ξ i x j dx j f i ξ i x j dx j d ) 23 M R M ϕ : R M M ϕt, x) ϕ t x) ϕ s ϕ t ϕ s+t, ϕ 0 id M M ϕ t M ξ ξ ϕ t d ϕ tx) ξϕ t x)) U, x 1,...,x n )) ϕ t x) ϕ 1) t x),...,ϕ n) t x)), ξx) ξ i x) d ϕi) t x) ξ i ϕ t x)) M f ϕ t f)x) f ϕ t )x) fϕ

More information

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C 8 ( ) 8 5 4 I II III A B C( ),,, 5 I II A B ( ),, I II A B (8 ) 6 8 I II III A B C(8 ) n ( + x) n () n C + n C + + n C n = 7 n () 7 9 C : y = x x A(, 6) () A C () C P AP Q () () () 4 A(,, ) B(,, ) C(,,

More information

f(x) = x (1) f (1) (2) f (2) f(x) x = a y y = f(x) f (a) y = f(x) A(a, f(a)) f(a + h) f(x) = A f(a) A x (3, 3) O a a + h x 1 f(x) x = a

f(x) = x (1) f (1) (2) f (2) f(x) x = a y y = f(x) f (a) y = f(x) A(a, f(a)) f(a + h) f(x) = A f(a) A x (3, 3) O a a + h x 1 f(x) x = a 3 3.1 3.1.1 A f(a + h) f(a) f(x) lim f(x) x = a h 0 h f(x) x = a f 0 (a) f 0 (a) = lim h!0 f(a + h) f(a) h = lim x!a f(x) f(a) x a a + h = x h = x a h 0 x a 3.1 f(x) = x x = 3 f 0 (3) f (3) = lim h 0 (

More information

6.1 (P (P (P (P (P (P (, P (, P.

6.1 (P (P (P (P (P (P (, P (, P. (011 30 7 0 ( ( 3 ( 010 1 (P.3 1 1.1 (P.4.................. 1 1. (P.4............... 1 (P.15.1 (P.16................. (P.0............3 (P.18 3.4 (P.3............... 4 3 (P.9 4 3.1 (P.30........... 4 3.

More information

5. [1 ] 1 [], u(x, t) t c u(x, t) x (5.3) ξ x + ct, η x ct (5.4),u(x, t) ξ, η u(ξ, η), ξ t,, ( u(ξ,η) ξ η u(x, t) t ) u(x, t) { ( u(ξ, η) c t ξ ξ { (

5. [1 ] 1 [], u(x, t) t c u(x, t) x (5.3) ξ x + ct, η x ct (5.4),u(x, t) ξ, η u(ξ, η), ξ t,, ( u(ξ,η) ξ η u(x, t) t ) u(x, t) { ( u(ξ, η) c t ξ ξ { ( 5 5.1 [ ] ) d f(t) + a d f(t) + bf(t) : f(t) 1 dt dt ) u(x, t) c u(x, t) : u(x, t) t x : ( ) ) 1 : y + ay, : y + ay + by : ( ) 1 ) : y + ay, : yy + ay 3 ( ): ( ) ) : y + ay, : y + ay b [],,, [ ] au xx

More information

v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i

v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i 1. 1 1.1 1.1.1 1.1.1.1 v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) R ij R ik = δ jk (4) δ ij Kronecker δ ij = { 1 (i = j) 0 (i j) (5) 1 1.1. v1.1 2011/04/10 1. 1 2 v i = R ij v j (6) [

More information

newmain.dvi

newmain.dvi 数論 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/008142 このサンプルページの内容は, 第 2 版 1 刷発行当時のものです. Daniel DUVERNEY: THÉORIE DES NOMBRES c Dunod, Paris, 1998, This book is published

More information

2012 IA 8 I p.3, 2 p.19, 3 p.19, 4 p.22, 5 p.27, 6 p.27, 7 p

2012 IA 8 I p.3, 2 p.19, 3 p.19, 4 p.22, 5 p.27, 6 p.27, 7 p 2012 IA 8 I 1 10 10 29 1. [0, 1] n x = 1 (n = 1, 2, 3,...) 2 f(x) = n 0 [0, 1] 2. 1 x = 1 (n = 1, 2, 3,...) 2 f(x) = n 0 [0, 1] 1 0 f(x)dx 3. < b < c [, c] b [, c] 4. [, b] f(x) 1 f(x) 1 f(x) [, b] 5.

More information

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63> 電気電子数学入門 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/073471 このサンプルページの内容は, 初版 1 刷発行当時のものです. i 14 (tool) [ ] IT ( ) PC (EXCEL) HP() 1 1 4 15 3 010 9 ii 1... 1 1.1 1 1.

More information

68 A mm 1/10 A. (a) (b) A.: (a) A.3 A.4 1 1

68 A mm 1/10 A. (a) (b) A.: (a) A.3 A.4 1 1 67 A Section A.1 0 1 0 1 Balmer 7 9 1 0.1 0.01 1 9 3 10:09 6 A.1: A.1 1 10 9 68 A 10 9 10 9 1 10 9 10 1 mm 1/10 A. (a) (b) A.: (a) A.3 A.4 1 1 A.1. 69 5 1 10 15 3 40 0 0 ¾ ¾ É f Á ½ j 30 A.3: A.4: 1/10

More information

II R n k +1 v 0,, v k k v 1 v 0,, v k v v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ k σ dimσ = k 1.3. k

II R n k +1 v 0,, v k k v 1 v 0,, v k v v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ k σ dimσ = k 1.3. k II 231017 1 1.1. R n k +1 v 0,, v k k v 1 v 0,, v k v 0 1.2. v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ kσ dimσ = k 1.3. k σ {v 0,...,v k } {v i0,...,v il } l σ τ < τ τ σ 1.4.

More information

DVIOUT

DVIOUT A. A. A-- [ ] f(x) x = f 00 (x) f 0 () =0 f 00 () > 0= f(x) x = f 00 () < 0= f(x) x = A--2 [ ] f(x) D f 00 (x) > 0= y = f(x) f 00 (x) < 0= y = f(x) P (, f()) f 00 () =0 A--3 [ ] y = f(x) [, b] x = f (y)

More information

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google I4 - : April, 4 Version :. Kwhir, Tomoki TA (Kondo, Hirotk) Google http://www.mth.ngoy-u.c.jp/~kwhir/courses/4s-biseki.html pdf 4 4 4 4 8 e 5 5 9 etc. 5 6 6 6 9 n etc. 6 6 6 3 6 3 7 7 etc 7 4 7 7 8 5 59

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

( )/2 hara/lectures/lectures-j.html 2, {H} {T } S = {H, T } {(H, H), (H, T )} {(H, T ), (T, T )} {(H, H), (T, T )} {1

( )/2   hara/lectures/lectures-j.html 2, {H} {T } S = {H, T } {(H, H), (H, T )} {(H, T ), (T, T )} {(H, H), (T, T )} {1 ( )/2 http://www2.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html 1 2011 ( )/2 2 2011 4 1 2 1.1 1 2 1 2 3 4 5 1.1.1 sample space S S = {H, T } H T T H S = {(H, H), (H, T ), (T, H), (T, T )} (T, H) S

More information

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 0 < t < τ I II 0 No.2 2 C x y x y > 0 x 0 x > b a dx

More information

(1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10)

(1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10) 2017 12 9 4 1 30 4 10 3 1 30 3 30 2 1 30 2 50 1 1 30 2 10 (1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10) (1) i 23 c 23 0 1 2 3 4 5 6 7 8 9 a b d e f g h i (2) 23 23 (3) 23 ( 23 ) 23 x 1 x 2 23 x

More information

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω ω α 3 3 2 2V 3 33+.6T m T 5 34m Hz. 34 3.4m 2 36km 5Hz. 36km m 34 m 5 34 + m 5 33 5 =.66m 34m 34 x =.66 55Hz, 35 5 =.7 485.7Hz 2 V 5Hz.5V.5V V

More information

I , : ~/math/functional-analysis/functional-analysis-1.tex

I , : ~/math/functional-analysis/functional-analysis-1.tex I 1 2004 8 16, 2017 4 30 1 : ~/math/functional-analysis/functional-analysis-1.tex 1 3 1.1................................... 3 1.2................................... 3 1.3.....................................

More information

Chap9.dvi

Chap9.dvi .,. f(),, f(),,.,. () lim 2 +3 2 9 (2) lim 3 3 2 9 (4) lim ( ) 2 3 +3 (5) lim 2 9 (6) lim + (7) lim (8) lim (9) lim (0) lim 2 3 + 3 9 2 2 +3 () lim sin 2 sin 2 (2) lim +3 () lim 2 2 9 = 5 5 = 3 (2) lim

More information

function2.pdf

function2.pdf 2... 1 2009, http://c-faculty.chuo-u.ac.jp/ nishioka/ 2 11 38 : 5) i) [], : 84 85 86 87 88 89 1000 ) 13 22 33 56 92 147 140 120 100 80 60 40 20 1 2 3 4 5 7.1 7 7.1 1. *1 e = 2.7182 ) fx) e x, x R : 7.1)

More information

( 12 ( ( ( ( Levi-Civita grad div rot ( ( = 4 : 6 3 1 1.1 f(x n f (n (x, d n f(x (1.1 dxn f (2 (x f (x 1.1 f(x = e x f (n (x = e x d dx (fg = f g + fg (1.2 d dx d 2 dx (fg = f g + 2f g + fg 2... d n n

More information

9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x

9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x 2009 9 6 16 7 1 7.1 1 1 1 9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x(cos y y sin y) y dy 1 sin

More information

1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C

1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C 0 9 (1990 1999 ) 10 (2000 ) 1900 1994 1995 1999 2 SAT ACT 1 1990 IMO 1990/1/15 1:00-4:00 1 N 1990 9 N N 1, N 1 N 2, N 2 N 3 N 3 2 x 2 + 25x + 52 = 3 x 2 + 25x + 80 3 2, 3 0 4 A, B, C 3,, A B, C 2,,,, 7,

More information

VI VI.21 W 1,..., W r V W 1,..., W r W W r = {v v r v i W i (1 i r)} V = W W r V W 1,..., W r V W 1,..., W r V = W 1 W

VI VI.21 W 1,..., W r V W 1,..., W r W W r = {v v r v i W i (1 i r)} V = W W r V W 1,..., W r V W 1,..., W r V = W 1 W 3 30 5 VI VI. W,..., W r V W,..., W r W + + W r = {v + + v r v W ( r)} V = W + + W r V W,..., W r V W,..., W r V = W W r () V = W W r () W (W + + W + W + + W r ) = {0} () dm V = dm W + + dm W r VI. f n

More information

2 2 MATHEMATICS.PDF 200-2-0 3 2 (p n ), ( ) 7 3 4 6 5 20 6 GL 2 (Z) SL 2 (Z) 27 7 29 8 SL 2 (Z) 35 9 2 40 0 2 46 48 2 2 5 3 2 2 58 4 2 6 5 2 65 6 2 67 7 2 69 2 , a 0 + a + a 2 +... b b 2 b 3 () + b n a

More information