1. ( ) L L L Navier-Stokes η L/η η r L( ) r [1] r u r ( ) r Sq u (r) u q r r ζ(q) (1) ζ(q) u r (1) ( ) Kolmogorov, Obukov [2, 1] ɛ r r u r r 1 3

Size: px
Start display at page:

Download "1. ( ) L L L Navier-Stokes η L/η η r L( ) r [1] r u r ( ) r Sq u (r) u q r r ζ(q) (1) ζ(q) u r (1) ( ) Kolmogorov, Obukov [2, 1] ɛ r r u r r 1 3"

Transcription

1 Kolmogorov Toward Large Deviation Statistical Mechanics of Strongly Correlated Fluctuations - Another Legacy of A. N. Kolmogorov - Hirokazu FUJISAKA Abstract Recently, spatially or temporally strongly correlated fluctuations are observed in many different contexts such as price fluctuations in economic dynamics as well as, e.g., turbulence, intermittency in coupled chaotic systems. They are ubiquitous in nonlinear, nonequilibrium systems. Statistical mechanics so far developed for statistically independent or weakly correlated fluctuations faces the problem, how to construct the emergency mechanism as well as to characterize the fundamental statistics of strongly correlated fluctuations. They often exhibit self-similarity characteristics. The aim of the present paper is to suggest the possibility of constructing statistical mechanics for strongly correlated fluctuations by proposing a unified approach to several kinds of examples from the phenomenological viewpoint based on the large devition statistics in the probability theory. Keywords Turbulence, On-off intermittency, Price fluctuations, Strongly correlated fluctuations, Self-similarity, Multifractals 1

2 1. ( ) L L L Navier-Stokes η L/η η r L( ) r [1] r u r ( ) r Sq u (r) u q r r ζ(q) (1) ζ(q) u r (1) ( ) Kolmogorov, Obukov [2, 1] ɛ r r u r r 1 3 ɛ 1 3 r Sq(r) ɛ ɛ q r r τ(q) (2) 2

3 ζ(q) = q 3 + τ ( q 3 ) (3) [1, 3, 4] 1941 Kolmogorov (7) ɛ r r (ɛ r ɛ L ) τ(q) = min [ qz] (9) τ(q) = 0 ζ(q) = q 3 z E(k) ɛ 2 3 L k 5 3, (L 1 Kolmogorov(1962) k η 1, Kolmogorov ) (K62) = 1 2µ (z + µ 2 )2 K41 u r [2] (3) [5] µ ɛ r r 1 r 2 r 3 Taylor r P (ɛ j, r j ɛ k, r k ) r k [5] SL ɛ r ɛ k r j She-Leveque ɛ j ) η r 3 [3] r 2 r 1 L τ(q) = 2 ( ) q ] 2 [1 3 q + 2 (10) 3 P (ɛ 3, r 3 ɛ 1, r 1 ) = P (ɛ 3, r 3 ɛ 2, r 2 )P (ɛ 2, r 2 ɛ 1, r 1 )dɛ 2 (4) [4] K62 [2] P (7) P (ɛ j, r j ɛ k, r k ) ɛ 1 j ( ) S(z(ɛj,r j ɛ k,r k )) rk r j z(ɛ j, r j ɛ k, r k ) = P r (ɛ) ɛ 1 ( L r (5) ln ɛj ɛ k ln r k rj (6) Kolmogorov(1962) r k = L, r j = z r r r = L ɛ L ɛ r ( ) S(zr(ɛ)) )[5], (7) z r (ɛ) = ln ɛ ɛ L ln L r (8) [5] u r r 1 3 ɛ 1 3 r τ(q) Legendre 2 3 = 2 + z ( 2 3 ln 3 ln z ) 2 2e ln 3 (11) 2 (4) ɛ r r z r (12) z r (Extended Self- Similarity, ESS) 3

4 r/η =19 A t = 1 t t 0 r s ds (13) t T τ t T t T τ τ t T A q t t φ(q) (14) z 1: n t n = e n T, (15) (Generalized Extended Self-Similarity, GESS)[6] (n = 0, 1, 2, 3,, N(= ln τ 1 )) [5, 7] 3. A tn+1 A tn = e zn (16) z n z n n ( ) z j N A tn = A T e n z n, (17) z n 1 n 1 z j (18) n n z n [9] Q n (z) e n (19) A T A [9] T A t P r t t (a) ( ) T S(zt (a)) T P t (a) a 1, (20) t j=0 z t (a) = ln a/a T ln T/t (21) 4

5 4. 2 Ising ξ T T c ν ξ = ψ 2 G(r) ψ(r + r 0 )ψ(r 0 ) r (d 2+η), (24) z d η Fisher Ising r 2: m τ = 1, T = r (x 0 ) = 1 ψ(x 0 + r)dr, (25) V r r <r [10] φ(q) φ(q) = min z [ qz] (22) (V r r d ) q µ q (r) m q r r φ(q), (26) φ(q) 2 m r r t+1 = r t exp (λ r t + f t ), (23) (λ > 0, f t : ) µ 2 (r) r (d 2+η) z φ(2) = (d 2 + η) (27) (0 r t ) 2 Onsager φ(2) = η = 1 4 ( ) z m r r z r (28) [10] z r z r z r Q r (z) r S(z r(m)), (29) z r (m) = ln m m 0 ln r a (30) 5

6 z r r=64 m 0 a m 0 = 1 m r ( P r (m) m 1 r ) S(zr(m)), (31) a ( r a, a ) φ(q) = min z [ qz] z r : Ising φ(2)/2 z r z r 3 2 Ising ( ) Monte Carlo [14] P (s) s t r t (s) = ln P (s) (32) P (s t) 2 t r t (s) t 2 t( 1 ) [11, 12] r t r t volatility clustering ( ) (New York ) t s (1 ) [13] T ( 1 ) z r=32 r=128 6

7 t/ t 1 y t (s) r t (s k t) = r t (s) (33) k=0 20 t= n t = t n T e n, (n = 0, 1, 2,, N, N ln(t/t s )) y n = 14 y tn r t (s) 17 0 t=20 t= y n+1 y n = e z n (34) s (10 4 samples) z n z n n 4: y t t z(t) (35) z(t) z(t n ) = n 1 n 1 j=0 z j z j z t (y) = ln y y T ln T t (36) (T/t) 40 y t P t (y) y 1 ( T t ) S(zt(y)) (37) 5 (NYSE, New York ) S (37) t s t T 5: t t t = z 7

8 6. Kolmogorov - - ( ) [15] Tsallis [16] (a),, (b) z (c) Andrei Nikolaevich Kolmogorov ( ) (K41 ) 1962 Kolmogorov Frisch Kolmogorov ([8] ) (The Legacy of A. N. Kolmogorov) 8

9 [1] Kolmogorov [17] 30 ( ) (Kolmogorov ) Appendix Kolmogorov (K62 ) 30 (ζ(q) ) ( Navier-Stokes ) 1970 K62 (η r Kolmogorov L) Reynolds Re L/η = Re 3 4 Reynolds Kolmogorov 7. : ESS GESS 1993 Benzi (1) ζ(q) Sq u (r) Sp u (r)(p ) Sq u (r) [ Sp u (r) ] α(q p), (38) α(q p), r Langevin 9

10 α(q p) = ζ(q) ζ(p) (39) [ ] q [ Sq u (r) u q r ζ(q) L f(r) 1(r)] L g, (46) (Extended GESS r = η L Self-Similarity, ESS) α(q p) ζ(3) = 1 p = 1 ESS, ζ(q) GESS ESS (39) [ [ Sq u (r) u q r ζ(q) L 1(r)] L g Sq(r) ɛ ɛ q r τ(q), (ul = (Lɛ L ) 1 L 1(r)] 3 ) (40) L g, (47) (2) g 1 (r) η r L 1 r = η L 2 (47) 1 ESS η < r 3 < r 2 < L r 1 < L (4) ESS ESS ˆr = r g 1 (r), (48) S ɛ q(r) [ S ɛ p(r) ] β(q p), (41) β(q p) = τ(q) τ(p), (42) ( ˆr P r (ɛ) ɛ 1 L Benzi (1996) ESS zˆr (ɛ) ln ɛ (Generalized Extended Self-Similarity, GESS) (47) τ(q) (9) G q,p (r) Su q (r) ( S u p (r) ). (43) q/p Reynolds G q,p (r) [G q,p (r)]γ(q,p q,p ), (44) γ(q, p q, p ) r q, p, q, p (44) Sq u (r) (dˆr/dr > 0) (4) ) S(zˆr (ɛ)), (49) [1] U. Frisch, Turbulence: The Legacy of A. q γ(q, p q, p pζ(p) ζ(q) ) = (45) N. Kolmogorov, (Cambridge Univ. Press, q p ζ(p ) ζ(q ) Cambridge, 1995). ɛ L ln Ḽ r, (50) (r = η, L) 10

11 [2] A. N. Kolmogorov, J. Fluid Mech. 13, 82 (1962), A. M. Obukov, J. Fluid Mech. 13, 77 (1962). [3] Z.-S. She and E. Leveque, Phys. Rev. Lett. 72, 336 (1994). [4] T. Watanabe and H. Fujisaka, J. of Phys. Soc. Jpn 69, 1672 (2000) (1989). 4 ( 1998) 54 6, 423(1999) No.436, 29 (1999). C. Beck and F. Schlögl, Thermodynamics of Chaotic Systems, An Introduction, (Cambridge University Press, 1993) ( 1997) [5] H. Fujisaka, Y. Nakayama, T. Watanabe and S. Grossmann, Scaling hypothesis leading to generalized extended selfsimilarity in turbulence, Phys. Rev. E 65, (2002). [6] ESS(Extended Self-Similarity): R. Benzi et al., Phys. Rev. E 48, R29 (1993). R. Benzi et al., Physica D 80, (1995). GESS(Generalized Extended Self- Similarity): R. Benzi et al., Phys. Rev. E 53, R3025 (1996). R. Benzi et al., Physica D 96, 162 (1996). [7] H. Fujisaka and S. Grossmann, Phys. Rev. E 63, (2001). [8] [11] W. Stroock, An Introduction to the Theory of Large Deviations, (Springer, Berlin,,, 56 27pZC ), P. S. Ellis, Entropy, Large Deviations, and [12] Statistical Mechanics, (Springer, Berlin, N. Ito and M. Suzuki, Prog. Theor. Phys. 1985), 77, 1391 (1987). A. D. Wentzell, Limit Theorems on Large [13] : Deviations for Markov Stochastic Processes, (Kluwer Academic, Dortrecht and ( ) ( 2000). London, 1990). P. Gopikrishnan et al., Physica A 287, 362 (2000). : 11, 322 (2001). H. Fujisaka and M. Inoue, Prog. Theor. Phys. 77, 1334 (1987); Phys. Rev. A 39, [9] : 51 11, 813 (1996). 9 1, 28 (1999); No.462, 47 (2001).. : J. Becker et al., Phys. Rev. E 59, 1622 (1999). T. John, R. Stannarius and U. Behn, Phys. Rev. Lett. 83, 749 (1999). [10] : H. Fujisaka, H. Suetani and T. Watanabe, Prog. Theor. Phys. Suppl., No. 139, 70(2000). 11

12 [14] Y. Fujiwara and H. Fujisaka, Physica A, 294, Issue 3-4, 439 (2001). H. E. Stanley et al., Physica A 302, 126 (2001). [15] D. C. Lin and R. L. Hughson, Phys. Rev. Lett. 86, 1650 (2001). Y. Ashkenazy et al., Phys. Rev. Lett., 86, 199 (2001). T. H. Mäkikallio et al., J. of the American College of Cardiology 37, 1395 (2001). [16] Tsallis : Nonextensive Statistical Mechanics and Its Applications, eds. S. Abe and Y. Okamoto, (Springer-Verlag, Berlin, 2001). [17] H. Mori and H. Fujisaka, Prog. Theor. Phys. 49, 764 (1973). 12

,, Andrej Gendiar (Density Matrix Renormalization Group, DMRG) 1 10 S.R. White [1, 2] 2 DMRG ( ) [3, 2] DMRG Baxter [4, 5] 2 Ising 2 1 Ising 1 1 Ising

,, Andrej Gendiar (Density Matrix Renormalization Group, DMRG) 1 10 S.R. White [1, 2] 2 DMRG ( ) [3, 2] DMRG Baxter [4, 5] 2 Ising 2 1 Ising 1 1 Ising ,, Andrej Gendiar (Density Matrix Renormalization Group, DMRG) 1 10 S.R. White [1, 2] 2 DMRG ( ) [3, 2] DMRG Baxter [4, 5] 2 Ising 2 1 Ising 1 1 Ising Model 1 Ising 1 Ising Model N Ising (σ i = ±1) (Free

More information

Venkatram and Wyngaard, Lectures on Air Pollution Modeling, m km 6.2 Stull, An Introduction to Boundary Layer Meteorology,

Venkatram and Wyngaard, Lectures on Air Pollution Modeling, m km 6.2 Stull, An Introduction to Boundary Layer Meteorology, 65 6 6.1 No.4 1982 1 1981 J. C. Kaimal 1993 1994 Turbulence and Diffusion in the Atmosphere : Lectures in Environmental Sciences, by A. K. Blackadar, Springer, 1998 An Introduction to Boundary Layer Meteorology,

More information

1 (Contents) (1) Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji

1 (Contents) (1) Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji 8 4 2018 6 2018 6 7 1 (Contents) 1. 2 2. (1) 22 3. 31 1. Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji SETO 22 3. Editorial Comments Tadashi

More information

スケーリング理論とはなにか? - --尺度を変えて見えること--

スケーリング理論とはなにか?  - --尺度を変えて見えること-- ? URL: http://maildbs.c.u-tokyo.ac.jp/ fukushima mailto:hukusima@phys.c.u-tokyo.ac.jp DEX-SMI @ 2006 12 17 ( ) What is scaling theory? DEX-SMI 1 / 40 Outline Outline 1 2 3 4 ( ) What is scaling theory?

More information

d (i) (ii) 1 Georges[2] Maier [3] [1] ω = 0 1

d (i) (ii) 1 Georges[2] Maier [3] [1] ω = 0 1 16 5 19 10 d (i) (ii) 1 Georges[2] Maier [3] 2 10 1 [1] ω = 0 1 [4, 5] Dynamical Mean-Field Theory (DMFT) [2] DMFT I CPA [10] CPA CPA Σ(z) z CPA Σ(z) Σ(z) Σ(z) z - CPA Σ(z) DMFT Σ(z) CPA [6] 3 1960 [7]

More information

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence Hanbury-Brown Twiss (ver. 2.) 25 4 4 1 2 2 2 2.1 van Cittert - Zernike..................................... 2 2.2 mutual coherence................................. 4 3 Hanbury-Brown Twiss ( ) 5 3.1............................................

More information

kawa (Spin-Orbit Tomography: Kawahara and Fujii 21,Kawahara and Fujii 211,Fujii & Kawahara submitted) 2 van Cittert-Zernike Appendix A V 2

kawa (Spin-Orbit Tomography: Kawahara and Fujii 21,Kawahara and Fujii 211,Fujii & Kawahara submitted) 2 van Cittert-Zernike Appendix A V 2 Hanbury-Brown Twiss (ver. 1.) 24 2 1 1 1 2 2 2.1 van Cittert - Zernike..................................... 2 2.2 mutual coherence................................. 3 3 Hanbury-Brown Twiss ( ) 4 3.1............................................

More information

/ Christopher Essex Radiation and the Violation of Bilinearity in the Thermodynamics of Irreversible Processes, Planet.Space Sci.32 (1984) 1035 Radiat

/ Christopher Essex Radiation and the Violation of Bilinearity in the Thermodynamics of Irreversible Processes, Planet.Space Sci.32 (1984) 1035 Radiat / Christopher Essex Radiation and the Violation of Bilinearity in the Thermodynamics of Irreversible Processes, Planet.Space Sci.32 (1984) 1035 Radiation and the Continuing Failure of the Bilinear Formalism,

More information

T g T 0 T 0 fragile * ) 1 9) η T g T g /T *1. τ τ η = Gτ. G τ

T g T 0 T 0 fragile * ) 1 9) η T g T g /T *1. τ τ η = Gτ. G τ 615-851 ryoichi@chemekyoto-uacjp 66-852 onuki@scphyskyoto-uacjp 1 T g T T fragile *2 1 11) 1 9) η T g T g /T *1 τ 198 τ η = Gτ G τ T c η τ 12) strong fragile T c strong η η exp(e/k B T ) 1 2/3 E SiO 2

More information

L. S. Abstract. Date: last revised on 9 Feb translated to Japanese by Kazumoto Iguchi. Original papers: Received May 13, L. Onsager and S.

L. S. Abstract. Date: last revised on 9 Feb translated to Japanese by Kazumoto Iguchi. Original papers: Received May 13, L. Onsager and S. L. S. Abstract. Date: last revised on 9 Feb 01. translated to Japanese by Kazumoto Iguchi. Original papers: Received May 13, 1953. L. Onsager and S. Machlup, Fluctuations and Irreversibel Processes, Physical

More information

(a) (b) (c) (d) 1: (a) (b) (c) (d) (a) (b) (c) 2: (a) (b) (c) 1(b) [1 10] 1 degree k n(k) walk path 4

(a) (b) (c) (d) 1: (a) (b) (c) (d) (a) (b) (c) 2: (a) (b) (c) 1(b) [1 10] 1 degree k n(k) walk path 4 1 vertex edge 1(a) 1(b) 1(c) 1(d) 2 (a) (b) (c) (d) 1: (a) (b) (c) (d) 1 2 6 1 2 6 1 2 6 3 5 3 5 3 5 4 4 (a) (b) (c) 2: (a) (b) (c) 1(b) [1 10] 1 degree k n(k) walk path 4 1: Zachary [11] [12] [13] World-Wide

More information

Black-Scholes [1] Nelson [2] Schrödinger 1 Black Scholes [1] Black-Scholes Nelson [2][3][4] Schrödinger Nelson Parisi Wu [5] Nelson Parisi-W

Black-Scholes [1] Nelson [2] Schrödinger 1 Black Scholes [1] Black-Scholes Nelson [2][3][4] Schrödinger Nelson Parisi Wu [5] Nelson Parisi-W 003 7 14 Black-Scholes [1] Nelson [] Schrödinger 1 Black Scholes [1] Black-Scholes Nelson [][3][4] Schrödinger Nelson Parisi Wu [5] Nelson Parisi-Wu Nelson e-mail: takatoshi-tasaki@nifty.com kabutaro@mocha.freemail.ne.jp

More information

(Stochastic Thermodynsmics) Langevin Langevin

(Stochastic Thermodynsmics) Langevin Langevin 6 8 5 (Stochastic Thermodynsmics) Langevin Langevin 1 3 1.1 Markov....................................... 3 1. Master.................................. 3 1..1 Liouville........................ 3 1.. Poisson.................................

More information

Trapezoidal Rule θ = 1/ x n x n 1 t = 1 [f(t n 1, x n 1 ) + f(t n, x n )] (6) 1. dx dt = f(t, x), x(t 0) = x 0 (7) t [t 0, t 1 ] f t [t 0, t 1 ], x x

Trapezoidal Rule θ = 1/ x n x n 1 t = 1 [f(t n 1, x n 1 ) + f(t n, x n )] (6) 1. dx dt = f(t, x), x(t 0) = x 0 (7) t [t 0, t 1 ] f t [t 0, t 1 ], x x University of Hyogo 8 8 1 d x(t) =f(t, x(t)), dt (1) x(t 0 ) =x 0 () t n = t 0 + n t x x n n x n x 0 x i i = 0,..., n 1 x n x(t) 1 1.1 1 1 1 0 θ 1 θ x n x n 1 t = θf(t n 1, x n 1 ) + (1 θ)f(t n, x n )

More information

1: Sheldon L. Glashow (Ouroboros) [1] 1 v(r) u(r, r ) ( e 2 / r r ) H 2 [2] H = ( dr ψ σ + (r) 1 2 ) σ 2m r 2 + v(r) µ ψ σ (r) + 1 dr dr ψ σ + (r)ψ +

1: Sheldon L. Glashow (Ouroboros) [1] 1 v(r) u(r, r ) ( e 2 / r r ) H 2 [2] H = ( dr ψ σ + (r) 1 2 ) σ 2m r 2 + v(r) µ ψ σ (r) + 1 dr dr ψ σ + (r)ψ + 1 1.1 21 11 22 10 33 cm 10 29 cm 60 6 8 10 12 cm 1cm 1 1.2 2 1 1 1: Sheldon L. Glashow (Ouroboros) [1] 1 v(r) u(r, r ) ( e 2 / r r ) H 2 [2] H = ( dr ψ σ + (r) 1 2 ) σ 2m r 2 + v(r) µ ψ σ (r) + 1 dr dr

More information

2 (March 13, 2010) N Λ a = i,j=1 x i ( d (a) i,j x j ), Λ h = N i,j=1 x i ( d (h) i,j x j ) B a B h B a = N i,j=1 ν i d (a) i,j, B h = x j N i,j=1 ν i

2 (March 13, 2010) N Λ a = i,j=1 x i ( d (a) i,j x j ), Λ h = N i,j=1 x i ( d (h) i,j x j ) B a B h B a = N i,j=1 ν i d (a) i,j, B h = x j N i,j=1 ν i 1. A. M. Turing [18] 60 Turing A. Gierer H. Meinhardt [1] : (GM) ) a t = D a a xx µa + ρ (c a2 h + ρ 0 (0 < x < l, t > 0) h t = D h h xx νh + c ρ a 2 (0 < x < l, t > 0) a x = h x = 0 (x = 0, l) a = a(x,

More information

Untitled

Untitled II 14 14-7-8 8/4 II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ 6/ ] Navier Stokes 3 [ ] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I 1 balance law t (ρv i )+ j

More information

1: (Emmy Noether; ) (Feynman) [3] [4] {C i } A {C i } (A A )C i = 0 [5] 2

1: (Emmy Noether; ) (Feynman) [3] [4] {C i } A {C i } (A A )C i = 0 [5] 2 2003 1 1 (Emmy Noether 1) [1] [2] [ (Paul Gordan Clebsch-Gordan ] 1915 habilitation habilitation außerordentlicher Professor Außerordentlich(=extraordinary) 1 1: (Emmy Noether; 1882-1935) (Feynman) [3]

More information

201711grade1ouyou.pdf

201711grade1ouyou.pdf 2017 11 26 1 2 52 3 12 13 22 23 32 33 42 3 5 3 4 90 5 6 A 1 2 Web Web 3 4 1 2... 5 6 7 7 44 8 9 1 2 3 1 p p >2 2 A 1 2 0.6 0.4 0.52... (a) 0.6 0.4...... B 1 2 0.8-0.2 0.52..... (b) 0.6 0.52.... 1 A B 2

More information

1 Tokyo Daily Rainfall (mm) Days (mm)

1 Tokyo Daily Rainfall (mm) Days (mm) ( ) r-taka@maritime.kobe-u.ac.jp 1 Tokyo Daily Rainfall (mm) 0 100 200 300 0 10000 20000 30000 40000 50000 Days (mm) 1876 1 1 2013 12 31 Tokyo, 1876 Daily Rainfall (mm) 0 50 100 150 0 100 200 300 Tokyo,

More information

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

II ( ) (7/31) II (  [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re II 29 7 29-7-27 ( ) (7/31) II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I Euler Navier

More information

03.Œk’ì

03.Œk’ì HRS KG NG-HRS NG-KG AIC Fama 1965 Mandelbrot Blattberg Gonedes t t Kariya, et. al. Nagahara ARCH EngleGARCH Bollerslev EGARCH Nelson GARCH Heynen, et. al. r n r n =σ n w n logσ n =α +βlogσ n 1 + v n w

More information

waseda2010a-jukaiki1-main.dvi

waseda2010a-jukaiki1-main.dvi November, 2 Contents 6 2 8 3 3 3 32 32 33 5 34 34 6 35 35 7 4 R 2 7 4 4 9 42 42 2 43 44 2 5 : 2 5 5 23 52 52 23 53 53 23 54 24 6 24 6 6 26 62 62 26 63 t 27 7 27 7 7 28 72 72 28 73 36) 29 8 29 8 29 82 3

More information

Feynman Encounter with Mathematics 52, [1] N. Kumano-go, Feynman path integrals as analysis on path space by time slicing approximation. Bull

Feynman Encounter with Mathematics 52, [1] N. Kumano-go, Feynman path integrals as analysis on path space by time slicing approximation. Bull Feynman Encounter with Mathematics 52, 200 9 [] N. Kumano-go, Feynman path integrals as analysis on path space by time slicing approximation. Bull. Sci. Math. vol. 28 (2004) 97 25. [2] D. Fujiwara and

More information

20 $P_{S}=v_{0}\tau_{0}/r_{0}$ (3) $v_{0}$ $r_{0}$ $l(r)$ $l(r)=p_{s}r$ $[3 $ $1+P_{s}$ $P_{s}\ll 1$ $P_{s}\gg 1$ ( ) $P_{s}$ ( ) 2 (2) (2) $t=0$ $P(t

20 $P_{S}=v_{0}\tau_{0}/r_{0}$ (3) $v_{0}$ $r_{0}$ $l(r)$ $l(r)=p_{s}r$ $[3 $ $1+P_{s}$ $P_{s}\ll 1$ $P_{s}\gg 1$ ( ) $P_{s}$ ( ) 2 (2) (2) $t=0$ $P(t 1601 2008 19-27 19 (Kentaro Kanatani) (Takeshi Ogasawara) (Sadayoshi Toh) Graduate School of Science, Kyoto University 1 ( ) $2 $ [1, ( ) 2 2 [3, 4] 1 $dt$ $dp$ $dp= \frac{dt}{\tau(r)}=(\frac{r_{0}}{r})^{\beta}\frac{dt}{\tau_{0}}$

More information

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2 1 6 6.1 (??) (P = ρ rad /3) ρ rad T 4 d(ρv ) + PdV = 0 (6.1) dρ rad ρ rad + 4 da a = 0 (6.2) dt T + da a = 0 T 1 a (6.3) ( ) n ρ m = n (m + 12 ) m v2 = n (m + 32 ) T, P = nt (6.4) (6.1) d [(nm + 32 ] )a

More information

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes ) ( 3 7 4 ) 2 2 ) 8 2 954 2) 955 3) 5) J = σe 2 6) 955 7) 9) 955 Statistical-Mechanical Theory of Irreversible Processes 957 ) 3 4 2 A B H (t) = Ae iωt B(t) = B(ω)e iωt B(ω) = [ Φ R (ω) Φ R () ] iω Φ R (t)

More information

proc.dvi

proc.dvi Equlbrum dstrbuton of two-dmensonal pont vortces at postve and negatve absolute temperature ( < 0 ) Yuch YATSUYANAGI Faculty of Educaton, Shzuoka Unversty 1 Onsager 1949 2 [1] Onsager Boltzmann exp( βe)

More information

1 2 LDA Local Density Approximation 2 LDA 1 LDA LDA N N N H = N [ 2 j + V ion (r j ) ] + 1 e 2 2 r j r k j j k (3) V ion V ion (r) = I Z I e 2 r

1 2 LDA Local Density Approximation 2 LDA 1 LDA LDA N N N H = N [ 2 j + V ion (r j ) ] + 1 e 2 2 r j r k j j k (3) V ion V ion (r) = I Z I e 2 r 11 March 2005 1 [ { } ] 3 1/3 2 + V ion (r) + V H (r) 3α 4π ρ σ(r) ϕ iσ (r) = ε iσ ϕ iσ (r) (1) KS Kohn-Sham [ 2 + V ion (r) + V H (r) + V σ xc(r) ] ϕ iσ (r) = ε iσ ϕ iσ (r) (2) 1 2 1 2 2 1 1 2 LDA Local

More information

N/m f x x L dl U 1 du = T ds pdv + fdl (2.1)

N/m f x x L dl U 1 du = T ds pdv + fdl (2.1) 23 2 2.1 10 5 6 N/m 2 2.1.1 f x x L dl U 1 du = T ds pdv + fdl (2.1) 24 2 dv = 0 dl ( ) U f = T L p,t ( ) S L p,t (2.2) 2 ( ) ( ) S f = L T p,t p,l (2.3) ( ) U f = L p,t + T ( ) f T p,l (2.4) 1 f e ( U/

More information

φ 4 Minimal subtraction scheme 2-loop ε 2008 (University of Tokyo) (Atsuo Kuniba) version 21/Apr/ Formulas Γ( n + ɛ) = ( 1)n (1 n! ɛ + ψ(n + 1)

φ 4 Minimal subtraction scheme 2-loop ε 2008 (University of Tokyo) (Atsuo Kuniba) version 21/Apr/ Formulas Γ( n + ɛ) = ( 1)n (1 n! ɛ + ψ(n + 1) φ 4 Minimal subtraction scheme 2-loop ε 28 University of Tokyo Atsuo Kuniba version 2/Apr/28 Formulas Γ n + ɛ = n n! ɛ + ψn + + Oɛ n =,, 2, ψn + = + 2 + + γ, 2 n ψ = γ =.5772... Euler const, log + ax x

More information

第5章 偏微分方程式の境界値問題

第5章 偏微分方程式の境界値問題 October 5, 2018 1 / 113 4 ( ) 2 / 113 Poisson 5.1 Poisson ( A.7.1) Poisson Poisson 1 (A.6 ) Γ p p N u D Γ D b 5.1.1: = Γ D Γ N 3 / 113 Poisson 5.1.1 d {2, 3} Lipschitz (A.5 ) Γ D Γ N = \ Γ D Γ p Γ N Γ

More information

( ) I( ) TA: ( M2)

( ) I( ) TA: ( M2) ( ) I( ) TA: ( M) 015 7 17 , 7 ( ) I( ).., M. (hatomura@spin.phys.s.u-tokyo.ac.jp).,,.. Keywords: 1. (gas-liquid phase transition). (critical point) 3. (lattice gas model) (Ising model) H = ϕ 0 i,j n i

More information

Kullback-Leibler

Kullback-Leibler Kullback-Leibler 206 6 6 http://www.math.tohoku.ac.jp/~kuroki/latex/206066kullbackleibler.pdf 0 2 Kullback-Leibler 3. q i.......................... 3.2........... 3.3 Kullback-Leibler.............. 4.4

More information

Vol. 29, No. 2, (2008) FDR Introduction of FDR and Comparisons of Multiple Testing Procedures that Control It Shin-ichi Matsuda Department of

Vol. 29, No. 2, (2008) FDR Introduction of FDR and Comparisons of Multiple Testing Procedures that Control It Shin-ichi Matsuda Department of Vol. 29, No. 2, 125 139 (2008) FDR Introduction of FDR and Comparisons of Multiple Testing Procedures that Control It Shin-ichi Matsuda Department of Information Systems and Mathematical Sciences, Faculty

More information

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2 2005 9/8-11 2 2.2 ( 2-5) γ ( ) γ cos θ 2πr πρhr 2 g h = 2γ cos θ ρgr (2.1) γ = ρgrh (2.2) 2 cos θ θ cos θ = 1 (2.2) γ = 1 ρgrh (2.) 2 2. p p ρgh p ( ) p p = p ρgh (2.) h p p = 2γ r 1 1 (Berry,1975) 2-6

More information

1 9 v.0.1 c (2016/10/07) Minoru Suzuki T µ 1 (7.108) f(e ) = 1 e β(e µ) 1 E 1 f(e ) (Bose-Einstein distribution function) *1 (8.1) (9.1)

1 9 v.0.1 c (2016/10/07) Minoru Suzuki T µ 1 (7.108) f(e ) = 1 e β(e µ) 1 E 1 f(e ) (Bose-Einstein distribution function) *1 (8.1) (9.1) 1 9 v..1 c (216/1/7) Minoru Suzuki 1 1 9.1 9.1.1 T µ 1 (7.18) f(e ) = 1 e β(e µ) 1 E 1 f(e ) (Bose-Einstein distribution function) *1 (8.1) (9.1) E E µ = E f(e ) E µ (9.1) µ (9.2) µ 1 e β(e µ) 1 f(e )

More information

untitled

untitled 18 1 2,000,000 2,000,000 2007 2 2 2008 3 31 (1) 6 JCOSSAR 2007pp.57-642007.6. LCC (1) (2) 2 10mm 1020 14 12 10 8 6 4 40,50,60 2 0 1998 27.5 1995 1960 40 1) 2) 3) LCC LCC LCC 1 1) Vol.42No.5pp.29-322004.5.

More information

( ) 1 1.1? ( ) ( ) ( ) 1.1(a) T m ( ) 1.1(a) T g ( ) T g T g 500 74% ( ) T K ( 1.1(b) 15 T g T g 10 13 T g T g T g [ ] A ( ) exp (1.1) T T 0 Vogel-Fulcher T 0 T 0 T K T K Ortho-Terphenil (OTP) SiO 2 (1.1)

More information

A

A A04-164 2008 2 13 1 4 1.1.......................................... 4 1.2..................................... 4 1.3..................................... 4 1.4..................................... 5 2

More information

d > 2 α B(y) y (5.1) s 2 = c z = x d 1+α dx ln u 1 ] 2u ψ(u) c z y 1 d 2 + α c z y t y y t- s 2 2 s 2 > d > 2 T c y T c y = T t c = T c /T 1 (3.

d > 2 α B(y) y (5.1) s 2 = c z = x d 1+α dx ln u 1 ] 2u ψ(u) c z y 1 d 2 + α c z y t y y t- s 2 2 s 2 > d > 2 T c y T c y = T t c = T c /T 1 (3. 5 S 2 tot = S 2 T (y, t) + S 2 (y) = const. Z 2 (4.22) σ 2 /4 y = y z y t = T/T 1 2 (3.9) (3.15) s 2 = A(y, t) B(y) (5.1) A(y, t) = x d 1+α dx ln u 1 ] 2u ψ(u), u = x(y + x 2 )/t s 2 T A 3T d S 2 tot S

More information

Proceedings of the 61st Annual Conference of the Institute of Systems, Control and Information Engineers (ISCIE), Kyoto, May 23-25, 2017 The Visual Se

Proceedings of the 61st Annual Conference of the Institute of Systems, Control and Information Engineers (ISCIE), Kyoto, May 23-25, 2017 The Visual Se The Visual Servo Control of Drone in Consideration of Dead Time,, Junpei Shirai and Takashi Yamaguchi and Kiyotsugu Takaba Ritsumeikan University Abstract Recently, the use of drones has been expected

More information

D v D F v/d F v D F η v D (3.2) (a) F=0 (b) v=const. D F v Newtonian fluid σ ė σ = ηė (2.2) ė kl σ ij = D ijkl ė kl D ijkl (2.14) ė ij (3.3) µ η visco

D v D F v/d F v D F η v D (3.2) (a) F=0 (b) v=const. D F v Newtonian fluid σ ė σ = ηė (2.2) ė kl σ ij = D ijkl ė kl D ijkl (2.14) ė ij (3.3) µ η visco post glacial rebound 3.1 Viscosity and Newtonian fluid f i = kx i σ ij e kl ideal fluid (1.9) irreversible process e ij u k strain rate tensor (3.1) v i u i / t e ij v F 23 D v D F v/d F v D F η v D (3.2)

More information

CVMに基づくNi-Al合金の

CVMに基づくNi-Al合金の CV N-A (-' by T.Koyama ennard-jones fcc α, β, γ, δ β α γ δ = or α, β. γ, δ α β γ ( αβγ w = = k k k ( αβγ w = ( αβγ ( αβγ w = w = ( αβγ w = ( αβγ w = ( αβγ w = ( αβγ w = ( αβγ w = ( βγδ w = = k k k ( αγδ

More information

SAMA- SUKU-RU Contents p-adic families of Eisenstein series (modular form) Hecke Eisenstein Eisenstein p T

SAMA- SUKU-RU Contents p-adic families of Eisenstein series (modular form) Hecke Eisenstein Eisenstein p T SAMA- SUKU-RU Contents 1. 1 2. 7.1. p-adic families of Eisenstein series 3 2.1. modular form Hecke 3 2.2. Eisenstein 5 2.3. Eisenstein p 7 3. 7.2. The projection to the ordinary part 9 3.1. The ordinary

More information

all.dvi

all.dvi I 1 Density Matrix 1.1 ( (Observable) Ô :ensemble ensemble average) Ô en =Tr ˆρ en Ô ˆρ en Tr  n, n =, 1,, Tr  = n n  n Tr  I w j j ( j =, 1,, ) ˆρ en j w j j ˆρ en = j w j j j Ô en = j w j j Ô j emsemble

More information

untitled

untitled c 645 2 1. GM 1959 Lindsey [1] 1960 Howard [2] Howard 1 25 (Markov Decision Process) 3 3 2 3 +1=25 9 Bellman [3] 1 Bellman 1 k 980 8576 27 1 015 0055 84 4 1977 D Esopo and Lefkowitz [4] 1 (SI) Cover and

More information

ms.dvi

ms.dvi ( ) 2010 11 21 1 review Onsager [1] 2 2 1 1 PPM 2010-09 図 1: 実験装置の図 写真中央にある円筒形の容器が超電導コイルで囲まれた真空 容器で この中に電子を閉じ込める 左側の四角い箱の中には光学系が設置されて おり 電子の像を箱左端の CCD カメラへ導く役割を担う このようにして超電導マ グネットから CCD カメラを遠ざけないと 強磁場の影響を受け正しい撮像が行え

More information

main.dvi

main.dvi CDMA 1 CDMA ( ) CDMA CDMA CDMA 1 ( ) Hopfield [1] Hopfield 1 E-mail: okada@brain.riken.go.jp 1 1: 1 [] Hopfield Sourlas Hopfield [3] Sourlas 1? CDMA.1 DS/BPSK CDMA (Direct Sequence; DS) (Binary Phase-Shift-Keying;

More information

: , 2.0, 3.0, 2.0, (%) ( 2.

: , 2.0, 3.0, 2.0, (%) ( 2. 2017 1 2 1.1...................................... 2 1.2......................................... 4 1.3........................................... 10 1.4................................. 14 1.5..........................................

More information

橡超弦理論はブラックホールの謎を解けるか?

橡超弦理論はブラックホールの謎を解けるか? 1999 3 (Can String Theory Solve the Puzzles of Black Holes?) 305-0801 1-1 makoto.natsuume@kek.jp D-brane 1 Schwarzschild 60 80 2 [1] 1 1 1 2 2 [2] 25 2.2 2 2.1 [7,8] Schwarzschild 2GM/c 2 Schwarzschild

More information

sakigake1.dvi

sakigake1.dvi (Zin ARAI) arai@cris.hokudai.ac.jp http://www.cris.hokudai.ac.jp/arai/ 1 dynamical systems ( mechanics ) dynamical systems 3 G X Ψ:G X X, (g, x) Ψ(g, x) =:Ψ g (x) Ψ id (x) =x, Ψ gh (x) =Ψ h (Ψ g (x)) (

More information

薄膜結晶成長の基礎3.dvi

薄膜結晶成長の基礎3.dvi 3 464-8602 1 [1] 2 3 (epitaxy) (homoepitaxy) (heteroepitaxy) 1 Makio Uwaha. E-mail:uwaha@nagoya-u.jp; http://slab.phys.nagoya-u.ac.jp/uwaha/ 2 3.1 [2] (strain) r u(r) ɛ αγ (r) = 1 ( uα + u ) γ (3.1) 2

More information

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2 filename=mathformula58.tex ax + bx + c =, x = b ± b 4ac, (.) a x + x = b a, x x = c a, (.) ax + b x + c =, x = b ± b ac. a (.3). sin(a ± B) = sin A cos B ± cos A sin B, (.) cos(a ± B) = cos A cos B sin

More information

Z: Q: R: C: sin 6 5 ζ a, b

Z: Q: R: C: sin 6 5 ζ a, b Z: Q: R: C: 3 3 7 4 sin 6 5 ζ 9 6 6............................... 6............................... 6.3......................... 4 7 6 8 8 9 3 33 a, b a bc c b a a b 5 3 5 3 5 5 3 a a a a p > p p p, 3,

More information

untitled

untitled D nucleation 3 3D nucleation Glucose isomerase 10 V / nm s -1 5 0 0 5 10 C - C e / mg ml -1 kinetics µ R K kt kinetics kinetics kinetics r β π µ π r a r s + a s : β: µ πβ µ β s c s c a a r, & exp exp

More information

2 1 x 2 x 2 = RT 3πηaN A t (1.2) R/N A N A N A = N A m n(z) = n exp ( ) m gz k B T (1.3) z n z = m = m ρgv k B = erg K 1 R =

2 1 x 2 x 2 = RT 3πηaN A t (1.2) R/N A N A N A = N A m n(z) = n exp ( ) m gz k B T (1.3) z n z = m = m ρgv k B = erg K 1 R = 1 1 1.1 1827 *1 195 *2 x 2 t x 2 = 2Dt D RT D = RT N A 1 6πaη (1.1) D N A a η 198 *3 ( a =.212µ) *1 Robert Brown (1773-1858. *2 Albert Einstein (1879-1955 *3 Jean Baptiste Perrin (187-1942 2 1 x 2 x 2

More information

xia2.dvi

xia2.dvi Journal of Differential Equations 96 (992), 70-84 Melnikov method and transversal homoclinic points in the restricted three-body problem Zhihong Xia Department of Mathematics, Harvard University Cambridge,

More information

163 KdV KP Lax pair L, B L L L 1/2 W 1 LW = ( / x W t 1, t 2, t 3, ψ t n ψ/ t n = B nψ (KdV B n = L n/2 KP B n = L n KdV KP Lax W Lax τ KP L ψ τ τ Cha

163 KdV KP Lax pair L, B L L L 1/2 W 1 LW = ( / x W t 1, t 2, t 3, ψ t n ψ/ t n = B nψ (KdV B n = L n/2 KP B n = L n KdV KP Lax W Lax τ KP L ψ τ τ Cha 63 KdV KP Lax pair L, B L L L / W LW / x W t, t, t 3, ψ t n / B nψ KdV B n L n/ KP B n L n KdV KP Lax W Lax τ KP L ψ τ τ Chapter 7 An Introduction to the Sato Theory Masayui OIKAWA, Faculty of Engneering,

More information

Title 最適年金の理論 Author(s) 藤井, 隆雄 ; 林, 史明 ; 入谷, 純 ; 小黒, 一正 Citation Issue Date Type Technical Report Text Version publisher URL

Title 最適年金の理論 Author(s) 藤井, 隆雄 ; 林, 史明 ; 入谷, 純 ; 小黒, 一正 Citation Issue Date Type Technical Report Text Version publisher URL Title 最適年金の理論 Author(s) 藤井, 隆雄 ; 林, 史明 ; 入谷, 純 ; 小黒, 一正 Citation Issue 2012-06 Date Type Technical Report Text Version publisher URL http://hdl.handle.net/10086/23085 Right Hitotsubashi University Repository

More information

DVIOUT-fujin

DVIOUT-fujin 2005 Limit Distribution of Quantum Walks and Weyl Equation 2006 3 2 1 2 2 4 2.1...................... 4 2.2......................... 5 2.3..................... 6 3 8 3.1........... 8 3.2..........................

More information

(Onsager )

(Onsager ) 05819311 (Onsager ) 1 2 2 Onsager 4 3 11 3.1................ 11 3.2............ 14 3.3................... 16 4 18 4.1........... 18 4.2............. 20 5 25 A 27 A.1................. 27 A.2..............

More information

( ) ) AGD 2) 7) 1

( ) ) AGD 2) 7) 1 ( 9 5 6 ) ) AGD ) 7) S. ψ (r, t) ψ(r, t) (r, t) Ĥ ψ(r, t) = e iĥt/ħ ψ(r, )e iĥt/ħ ˆn(r, t) = ψ (r, t)ψ(r, t) () : ψ(r, t)ψ (r, t) ψ (r, t)ψ(r, t) = δ(r r ) () ψ(r, t)ψ(r, t) ψ(r, t)ψ(r, t) = (3) ψ (r,

More information

Kaluza-Klein(KK) SO(11) KK 1 2 1

Kaluza-Klein(KK) SO(11) KK 1 2 1 Maskawa Institute, Kyoto Sangyo University Naoki Yamatsu 2016 4 12 ( ) @ Kaluza-Klein(KK) SO(11) KK 1 2 1 1. 2. 3. 4. 2 1. 標準理論 物質場 ( フェルミオン ) スカラー ゲージ場 クォーク ヒッグス u d s b ν c レプトン ν t ν e μ τ e μ τ e h

More information

80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t = 0 i r 0 t(> 0) j r 0 + r < δ(r 0 x i (0))δ(r 0 + r x j (t)) > (4.2) r r 0 G i j (r, t) dr 0

80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t = 0 i r 0 t(> 0) j r 0 + r < δ(r 0 x i (0))δ(r 0 + r x j (t)) > (4.2) r r 0 G i j (r, t) dr 0 79 4 4.1 4.1.1 x i (t) x j (t) O O r 0 + r r r 0 x i (0) r 0 x i (0) 4.1 L. van. Hove 1954 space-time correlation function V N 4.1 ρ 0 = N/V i t 80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t

More information

Hilbert, von Neuman [1, p.86] kt 2 1 [1, 2] 2 2

Hilbert, von Neuman [1, p.86] kt 2 1 [1, 2] 2 2 hara@math.kyushu-u.ac.jp 1 1 1.1............................................... 2 1.2............................................. 3 2 3 3 5 3.1............................................. 6 3.2...................................

More information

液晶の物理1:連続体理論(弾性,粘性)

液晶の物理1:連続体理論(弾性,粘性) The Physics of Liquid Crystals P. G. de Gennes and J. Prost (Oxford University Press, 1993) Liquid crystals are beautiful and mysterious; I am fond of them for both reasons. My hope is that some readers

More information

Jorgenson F, L : L: Inada lim F =, lim F L = k L lim F =, lim F L = 2 L F >, F L > 3 F <, F LL < 4 λ >, λf, L = F λ, λl 5 Y = Const a L a < α < CES? C

Jorgenson F, L : L: Inada lim F =, lim F L = k L lim F =, lim F L = 2 L F >, F L > 3 F <, F LL < 4 λ >, λf, L = F λ, λl 5 Y = Const a L a < α < CES? C 27 nabe@ier.hit-u.ac.jp 27 4 3 Jorgenson Tobin q : Hayashi s Theorem Jordan Saddle Path. GDP % GDP 2. 3. 4.. Tobin q 2 2. Jorgenson F, L : L: Inada lim F =, lim F L = k L lim F =, lim F L = 2 L F >, F

More information

1/2 ( ) 1 * 1 2/3 *2 up charm top -1/3 down strange bottom 6 (ν e, ν µ, ν τ ) -1 (e) (µ) (τ) 6 ( 2 ) 6 6 I II III u d ν e e c s ν µ µ t b ν τ τ (2a) (

1/2 ( ) 1 * 1 2/3 *2 up charm top -1/3 down strange bottom 6 (ν e, ν µ, ν τ ) -1 (e) (µ) (τ) 6 ( 2 ) 6 6 I II III u d ν e e c s ν µ µ t b ν τ τ (2a) ( August 26, 2005 1 1 1.1...................................... 1 1.2......................... 4 1.3....................... 5 1.4.............. 7 1.5.................... 8 1.6 GIM..........................

More information

Aharonov-Bohm(AB) S 0 1/ 2 1/ 2 S t = 1/ 2 1/2 1/2 1/, (12.1) 2 1/2 1/2 *1 AB ( ) 0 e iθ AB S AB = e iθ, AB 0 θ 2π ϕ = e ϕ (ϕ ) ϕ

Aharonov-Bohm(AB) S 0 1/ 2 1/ 2 S t = 1/ 2 1/2 1/2 1/, (12.1) 2 1/2 1/2 *1 AB ( ) 0 e iθ AB S AB = e iθ, AB 0 θ 2π ϕ = e ϕ (ϕ ) ϕ 1 13 6 8 3.6.3 - Aharonov-BohmAB) S 1/ 1/ S t = 1/ 1/ 1/ 1/, 1.1) 1/ 1/ *1 AB ) e iθ AB S AB = e iθ, AB θ π ϕ = e ϕ ϕ ) ϕ 1.) S S ) e iθ S w = e iθ 1.3) θ θ AB??) S t = 4 sin θ 1 + e iθ AB e iθ AB + e

More information

ver.1 / c /(13)

ver.1 / c /(13) 1 -- 11 1 c 2010 1/(13) 1 -- 11 -- 1 1--1 1--1--1 2009 3 t R x R n 1 ẋ = f(t, x) f = ( f 1,, f n ) f x(t) = ϕ(x 0, t) x(0) = x 0 n f f t 1--1--2 2009 3 q = (q 1,..., q m ), p = (p 1,..., p m ) x = (q,

More information

untitled

untitled 2 : n =1, 2,, 10000 0.5125 0.51 0.5075 0.505 0.5025 0.5 0.4975 0.495 0 2000 4000 6000 8000 10000 2 weak law of large numbers 1. X 1,X 2,,X n 2. µ = E(X i ),i=1, 2,,n 3. σi 2 = V (X i ) σ 2,i=1, 2,,n ɛ>0

More information

a L = Ψ éiγ c pa qaa mc ù êë ( - )- úû Ψ 1 Ψ 4 γ a a 0, 1,, 3 {γ a, γ b } η ab æi O ö æo ö β, σ = ço I α = è - ø çèσ O ø γ 0 x iβ γ i x iβα i

a L = Ψ éiγ c pa qaa mc ù êë ( - )- úû Ψ 1 Ψ 4 γ a a 0, 1,, 3 {γ a, γ b } η ab æi O ö æo ö β, σ = ço I α = è - ø çèσ O ø γ 0 x iβ γ i x iβα i 解説 4 matsuo.mamoru jaea.go.jp 4 eizi imr.tohoku.ac.jp 4 maekawa.sadamichi jaea.go.jp i ii iii i Gd Tb Dy g khz Pt ii iii Keywords vierbein 3 dreibein 4 vielbein torsion JST-ERATO 1 017 1. 1..1 a L = Ψ

More information

01.Œk’ì/“²fi¡*

01.Œk’ì/“²fi¡* AIC AIC y n r n = logy n = logy n logy n ARCHEngle r n = σ n w n logσ n 2 = α + β w n 2 () r n = σ n w n logσ n 2 = α + β logσ n 2 + v n (2) w n r n logr n 2 = logσ n 2 + logw n 2 logσ n 2 = α +β logσ

More information

2 1 1 (1) 1 (2) (3) Lax : (4) Bäcklund : (5) (6) 1.1 d 2 q n dt 2 = e q n 1 q n e q n q n+1 (1.1) 1 m q n n ( ) r n = q n q n 1 r ϕ(r) ϕ (r)

2 1 1 (1) 1 (2) (3) Lax : (4) Bäcklund : (5) (6) 1.1 d 2 q n dt 2 = e q n 1 q n e q n q n+1 (1.1) 1 m q n n ( ) r n = q n q n 1 r ϕ(r) ϕ (r) ( ( (3 Lax : (4 Bäcklud : (5 (6 d q = e q q e q q + ( m q ( r = q q r ϕ(r ϕ (r 0 5 0 q q q + 5 3 4 5 m d q = ϕ (r + ϕ (r + ( Hooke ϕ(r = κr (κ > 0 ( d q = κ(q q + κ(q + q = κ(q + + q q (3 ϕ(r = a b e br

More information

チャネル乱流における流体線の伸長

チャネル乱流における流体線の伸長 69 d(l/l )/dt y + = 15 Re τ = 18 395 Kolmogorov τ η.1.18 Kolmogorov.65τ η,min 1 Stretching Rate of Material Lines in Turbulent Channel Flow Takahiro TSUKAHARA, Faculty of Science and Technology, Tokyo

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

研修コーナー

研修コーナー l l l l l l l l l l l α α β l µ l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l

More information

fiš„v8.dvi

fiš„v8.dvi (2001) 49 2 333 343 Java Jasp 1 2 3 4 2001 4 13 2001 9 17 Java Jasp (JAva based Statistical Processor) Jasp Jasp. Java. 1. Jasp CPU 1 106 8569 4 6 7; fuji@ism.ac.jp 2 106 8569 4 6 7; nakanoj@ism.ac.jp

More information

講義ノート 物性研究 電子版 Vol.3 No.1, (2013 年 T c µ T c Kammerlingh Onnes 77K ρ 5.8µΩcm 4.2K ρ 10 4 µωcm σ 77K ρ 4.2K σ σ = ne 2 τ/m τ 77K

講義ノート 物性研究 電子版 Vol.3 No.1, (2013 年 T c µ T c Kammerlingh Onnes 77K ρ 5.8µΩcm 4.2K ρ 10 4 µωcm σ 77K ρ 4.2K σ σ = ne 2 τ/m τ 77K 2 2 T c µ T c 1 1.1 1911 Kammerlingh Onnes 77K ρ 5.8µΩcm 4.2K ρ 1 4 µωcm σ 77K ρ 4.2K σ σ = ne 2 τ/m τ 77K τ 4.2K σ 58 213 email:takada@issp.u-tokyo.ac.jp 1933 Meissner Ochsenfeld λ = 1 5 cm B = χ B =

More information

p *2 DSGEDynamic Stochastic General Equilibrium New Keynesian *2 2

p *2 DSGEDynamic Stochastic General Equilibrium New Keynesian *2 2 2013 1 nabe@ier.hit-u.ac.jp 2013 4 11 Jorgenson Tobin q : Hayashi s Theorem : Jordan : 1 investment 1 2 3 4 5 6 7 8 *1 *1 93SNA 1 p.180 1936 100 1970 *2 DSGEDynamic Stochastic General Equilibrium New Keynesian

More information

‚åŁÎ“·„´Šš‡ðŠp‡¢‡½‹âfi`fiI…A…‰…S…−…Y…•‡ÌMarkovŸA“½fiI›ð’Í

‚åŁÎ“·„´Šš‡ðŠp‡¢‡½‹âfi`fiI…A…‰…S…−…Y…•‡ÌMarkovŸA“½fiI›ð’Í Markov 2009 10 2 Markov 2009 10 2 1 / 25 1 (GA) 2 GA 3 4 Markov 2009 10 2 2 / 25 (GA) (GA) L ( 1) I := {0, 1} L f : I (0, ) M( 2) S := I M GA (GA) f (i) i I Markov 2009 10 2 3 / 25 (GA) ρ(i, j), i, j I

More information

1 a b cc b * 1 Helioseismology * * r/r r/r a 1.3 FTD 9 11 Ω B ϕ α B p FTD 2 b Ω * 1 r, θ, ϕ ϕ * 2 *

1 a b cc b * 1 Helioseismology * * r/r r/r a 1.3 FTD 9 11 Ω B ϕ α B p FTD 2 b Ω * 1 r, θ, ϕ ϕ * 2 * 448 8542 1 e-mail: ymasada@auecc.aichi-edu.ac.jp 1. 400 400 1.1 10 1 1 5 1 11 2 3 4 656 2015 10 1 a b cc b 22 5 1.2 * 1 Helioseismology * 2 6 8 * 3 1 0.7 r/r 1.0 2 r/r 0.7 3 4 2a 1.3 FTD 9 11 Ω B ϕ α B

More information

H.Haken Synergetics 2nd (1978)

H.Haken Synergetics 2nd (1978) 27 3 27 ) Ising Landau Synergetics Fokker-Planck F-P Landau F-P Gizburg-Landau G-L G-L Bénard/ Hopfield H.Haken Synergetics 2nd (1978) (1) Ising m T T C 1: m h Hamiltonian H = J ij S i S j h i S

More information

x 3 a (mod p) ( ). a, b, m Z a b m a b (mod m) a b m 2.2 (Z/mZ). a = {x x a (mod m)} a Z m 0, 1... m 1 Z/mZ = {0, 1... m 1} a + b = a +

x 3 a (mod p) ( ). a, b, m Z a b m a b (mod m) a b m 2.2 (Z/mZ). a = {x x a (mod m)} a Z m 0, 1... m 1 Z/mZ = {0, 1... m 1} a + b = a + 1 1 22 1 x 3 (mod ) 2 2.1 ( )., b, m Z b m b (mod m) b m 2.2 (Z/mZ). = {x x (mod m)} Z m 0, 1... m 1 Z/mZ = {0, 1... m 1} + b = + b, b = b Z/mZ 1 1 Z Q R Z/Z 2.3 ( ). m {x 0, x 1,..., x m 1 } modm 2.4

More information

2 A A 3 A 2. A [2] A A A A 4 [3]

2 A A 3 A 2. A [2] A A A A 4 [3] 1 2 A A 1. ([1]3 3[ ]) 2 A A 3 A 2. A [2] A A A A 4 [3] Xi 1 1 2 1 () () 1 n () 1 n 0 i i = 1 1 S = S +! X S ( ) 02 n 1 2 Xi 1 0 2 ( ) ( 2) n ( 2) n 0 i i = 1 2 S = S +! X 0 k Xip 1 (1-p) 1 ( ) n n k Pr

More information

(extended state) L (2 L 1, O(1), d O(V), V = L d V V e 2 /h 1980 Klitzing

(extended state) L (2 L 1, O(1), d O(V), V = L d V V e 2 /h 1980 Klitzing 1 2 2.1 [1] [2] 2.1 STM [3, 4, 5, 6] 2.1: 2 ( 3 [1] ) [7, 8] [9]( 2.2) 2 2 2.1.1 (extended state) L (2 L 1, O(1), d O(V), V = L d V V 2.1.2 1985 2 e 2 /h 1980 Klitzing 2.1. 3 [7, 8] 2.2 [10] [8] 2.2: (a)

More information

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [ 3 3. 3.. H H = H + V (t), V (t) = gµ B α B e e iωt i t Ψ(t) = [H + V (t)]ψ(t) Φ(t) Ψ(t) = e iht Φ(t) H e iht Φ(t) + ie iht t Φ(t) = [H + V (t)]e iht Φ(t) Φ(t) i t Φ(t) = V H(t)Φ(t), V H (t) = e iht V (t)e

More information

( ) (, ) arxiv: hgm OpenXM search. d n A = (a ij ). A i a i Z d, Z d. i a ij > 0. β N 0 A = N 0 a N 0 a n Z A (β; p) = Au=β,u N n 0 A

( ) (, ) arxiv: hgm OpenXM search. d n A = (a ij ). A i a i Z d, Z d. i a ij > 0. β N 0 A = N 0 a N 0 a n Z A (β; p) = Au=β,u N n 0 A ( ) (, ) arxiv: 1510.02269 hgm OpenXM search. d n A = (a ij ). A i a i Z d, Z d. i a ij > 0. β N 0 A = N 0 a 1 + + N 0 a n Z A (β; p) = Au=β,u N n 0 A-. u! = n i=1 u i!, p u = n i=1 pu i i. Z = Z A Au

More information

, 1.,,,.,., (Lin, 1955).,.,.,.,. f, 2,. main.tex 2011/08/13( )

, 1.,,,.,., (Lin, 1955).,.,.,.,. f, 2,. main.tex 2011/08/13( ) 81 4 2 4.1, 1.,,,.,., (Lin, 1955).,.,.,.,. f, 2,. 82 4.2. ζ t + V (ζ + βy) = 0 (4.2.1), V = 0 (4.2.2). (4.2.1), (3.3.66) R 1 Φ / Z, Γ., F 1 ( 3.2 ). 7,., ( )., (4.2.1) 500 hpa., 500 hpa (4.2.1) 1949,.,

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 3.............................. 3.............................. 4.3 4................... 5.4........................ 6.5........................ 8.6...........................7

More information

Nosé Hoover 1.2 ( 1) (a) (b) 1:

Nosé Hoover 1.2 ( 1) (a) (b) 1: 1 watanabe@cc.u-tokyo.ac.jp 1 1.1 Nosé Hoover 1. ( 1) (a) (b) 1: T ( f(p x, p y, p z ) exp p x + p y + p ) z (1) mk B T p x p y p = = z = 1 m m m k BT () k B T = 1.3 0.04 0.03 0.0 0.01 0-5 -4-3 - -1 0

More information

Sample function Re random process Flutter, Galloping, etc. ensemble (mean value) N 1 µ = lim xk( t1) N k = 1 N autocorrelation function N 1 R( t1, t1

Sample function Re random process Flutter, Galloping, etc. ensemble (mean value) N 1 µ = lim xk( t1) N k = 1 N autocorrelation function N 1 R( t1, t1 Sample function Re random process Flutter, Galloping, etc. ensemble (mean value) µ = lim xk( k = autocorrelation function R( t, t + τ) = lim ( ) ( + τ) xk t xk t k = V p o o R p o, o V S M R realization

More information