地震動予測手法の現状

Size: px
Start display at page:

Download "地震動予測手法の現状"

Transcription

1 3 4) ( ) / 5) 6) 7) 8) 995 G 地震動の大きさ 性能レベル グレード Ⅰ グレード Ⅱ グレード Ⅲ Q 基準法稀地震 基準法極稀地震 軽微な被害 ~ 小破 ~ 中破 レベル クライテリア 内陸直下型地震 軽微な被害 ~ 小破 ~ 中破 軽微な被害 ~ 小破 ~ 中破 の領域の検証法の提案を目指す 耐力劣化点 レベル 3A ( 予測される地震動の強さに大きな幅がある ) レベル 3B レベル 3C P-Δ 効果考慮 倒壊 設計用地震動のレベル ( 仮 ) 限界状態 Ⅱ 限界状態 Ⅰ P-Δ 効果無視 変形 4

2 () 5cm/s Z=.,.9,.8,.7 7) 9) 4

3 ( ) 7) T ( = π/ ω) P Tp ( = π/ ω p ) n ( ) P ωpt t < ntp u sin + ω u = ( ntp t) () () T p T ( t nt p )() u = ( sinωpt τ sinωt) P ω τ () τ = ω p ω = T Tp (nt p t)() (a) ) T p P n= n= n=3 (b) Sa/P u τ nπ π nπ = sin cos t (3) P ω τ τ T τ () T p = T ( t nt p )() u = { ωtcosωt sinωt} (4) P ω (nt p t)() u = πcosωt P ω (5) T T p τ =T/T p S a S d S a = ω Sd ()(3) P S a /P ( t nt p ) () t = mt ( τ ± ) t nt p m t = mt ( τ + ) t = mt ( τ ) () g,m g,m πmτ g, m sin τ τ + (6) πmτ g, m sin τ + τ (nt p t) nt p t (3)(3) f n τ nπ f n = sin (7) τ τ f n g,m g,m Sa = max{ fn,g,m,g,m} (8) P T/Tp h= n= n= n=3 Sa/Sa(T=.5Tp) 4 3 n= n= n=3 Sa 3 4 T/Tp 43

4 3 (8) n=,, 3 T/T p = n T/T p = nπ T/T p =.5 T/T p.5 3 n T/ T p =.5 T=.5T p S a (T=.5T p ) 4 n=,, 3 4 n=, 7) (n=, ) S a g, () τ / f(. 5)(. 5 < τ <. 5) g, () τ / f(. 5)(. 5 τ <. 667) g, 3() τ / f(. 5)(. 667 τ <. 75) Sa() τ = () ( )( ) g 4 τ / f τ < (9), f() τ / f(. 5) ( < τ <. 5) f() τ / f(. 5) (. 5 τ ) 4 (9) S a S a F h h=.5 S a (τ =T/T p )(9) S a Sa( τ ) = Sa( T =. 5T p) Sa( τ ) () F h n F ( h) = (+.5nπ)/(+ nπ h) () h JMA (995 )()JMA (4 )JMA(7 )(7 ) 8 () ) () ) () ) 3 3 JMAEBCOSK5OSK T p V p h=.5 T p (cm/s) (s). 995 JMA 8.9 年鳥取県西部地震 9.7 JMA 川口 JMA V p JMAEBC 6.5 OSK5 8.7 OSK6 65. JMAEBC.9 OSK OSK6 6. JMAEBC 5.7 OSK5. OSK OSK5 Seg Seg JMAEBC Seg3 OSK6 44

5 T p.8t p.5t p V p 7 T/T p =.5 h=.5 T p T=.5T p S a (T=.5T p ) 8 8 n=, 8 n= N37W (a) () (b) () NS (c) () (d) OSK5 () (e) JMAEBC () (f) OSK6 () (g) OSK5 () (h) JMAEBC () (i) OSK6 () (j) OSK5 () (k) JMAEBC () (l) OSK6 () Sa(cm/s ) 4 3 h=.5 Sa(cm/s ) 4 3 h=.5 Sa(cm/s ) 4 3 h=.5 JMAEBC OSK5 OSK6 Sa/Sa(T=.5Tp) Period(s) Period(s) Period(s) 3 5 (a)( ) (b)( ) (c)( ) 4 3 h=.5 Sa/Sa(T=.5Tp) 4 3 h=.5 Sa/Sa(T=.5Tp) 4 3 h=.5 JMAEBC OSK5 OSK T/Tp T/Tp (a)( ) (b)( ) 3 4 T/Tp (c)( ) 45

6 () S a (T=.5T p )T p T p V p T p h=.5.8t p.5t p V p S a (T=.5T p ) T p, V p T p,v p (π/ T p )V p S a (T=.5T p ) 9 S a (T=.5T p )=.5(π/T p )V p () T p, V p () i S a (T=.5T p )() T p, V p 4) ) ) M w 6 8 km 3) Imperial ValleyNorthridge ChiChi Izmit 4) Somerville Bray S a (T=.5T p ) (cm/s ) 5 5 S a (Τ=.5T p )=.5 (π/t p )V p (π/t p )V p (cm/s ) ) Mavroeidis (3) Gabor Wavelet A πf p f ( t) = cos( ) cos(π + ν ) + t γ f p t (3) A f p ν γ (γ ) f p (3) A γ ν ) Somerville (3) T p PGV 3) Bray (4) T p PGV PGV 4) Aravi & Krawinkler () T p M w T p T p T p M w (a), (b) T p M w Somerville T dir 3 Somerville Bray 46

7 Rock Soil log Tdir= Mw log Tdir= Mw rock soil lntv= mw lntv= mw Mavroeidis log Tp=-.9+.5Mw Tdir (s) Tv (s) Tp (s) Mw Somerville Mw Mw Bray Marvoeidis Tv (s) (Bray) Tv =.99Tdir Tp (s) (Mavroeidis) Tp =.3Tdir Tp (s) (Alavi & krawinkler) Tp =.86Tdir Tdir(s) (Somerville) Tdir (s) (Somerville) Tdir (s) (Somerville) (cm/s) Mw< <Mw<7.5 Mw>7.5 (cm/s) Mw< <Mw< <Mw A(cm/s) Mw< <Mw<7.5 Mw>7.5 Somerville Bray Mavroeidis Tp(s) Somerville Tp(s) Bray Tp(s) Marvoeidis 文献 Somerville (3) Bray (4) Tp の定義 断層直交方向速度波形の最大パルス周期 速度が最大速度となる部分のゼロクロッシング時間 または 最大速度の % になるまでの時間 ( 速度波形に drift が見られる場合 ) Mavroeidis (3) 擬似速度応答スペクトルのピーク周期 Alavi & krawinkler () Rock Soil Rock Soil Tpの回帰式 log(tdir)= mw log(tdir)= mw log(tv)= mw log(tv)= mw 速度応答スペクトルのピーク周期 log(tp)= mw log(tp)=-.+.4mw log(tp)=-.9+.5mw ( 自己相似性考慮 ) 47

8 Alavi & Krawinkler Somerville.86 M w 3 M w M w M w M w T p, V p 3 Mavroeidis 3) M w Mavroeidis ) V p T p T p (s) Somerville(rock) Somerville(soil) Bray(rock) Bray(soil) Mavroeidis Alavi & Krawinkler M w T p () ( ) JMAEBC 4 T p =.7s 4 3 5(a) T p =s V p 75,, 5cm/s 5(b) V p =cm/s T p,, 3 s 5 T p V p, 6 T p V p 5) (n=) Sa(cm/s ) 3 Sa(T=.5Tp)=5 h=.5 Tp=.7 S a (cm/s ) 3 h=.5 Tp=. V p =75 V p = V p =5 S a (cm/s ) 3 h=.5 V p = T p = T p = T p = Period(s) Period(s) Period(s) (a)v p (b)t p 48

9 6 S d 6(a), 7 6(a), 7 T p T () T/T p (<) T/T p >> T H ( ) T p (n=) S d S d D Sd = Sd( τ ) D (4) τ = T / Tp D V p T p D = VpTp / (5) Sd ( τ ) 3 τ π sin ( τ > ) πτ τ S d ( τ ) τ 4π (6) sin ( > τ ) π τ + τ T H, H e T =.3H =.4H e (7) R e 8 e d e p d ( ) R = S / H =. V S τ / τ (8) V p = m/s T T p R e (. ) T/T p < R e T/T p > D T/T p << () T T p T p T T p <T T p >T 49

10 t max t max =.5 {(T/T p )+} 6) T T p PΔ 7) ( 3) PΔ ( 9) D T/T p << T/T p >> T/T p >>ならば 最大応答変位は最大地動変位 D にが同じであれば 高い建物程 最大変形角は小さい R e /V p.5..5 D D D D (a) T/T p (b) (T/T p >>) T/T p (a) (b) 5

11 S-75S-5 9) (a),(b)s-75s-5 S-5 El Centro NS, Taft, Tokyo 3 5Gal 4Gal S-75S-5.5rad.rad. 7) ( (c)) ) (c) 3 S-75T.33 T.8 S-5 T 4.35 T.49 () ) 3 Case 7 () T p 3 (M8.8) ) YAE () R max ( ) S-75 R max.3 R max R max.4 R max S-5 R max. R max S-75 S-75 R max R 64.5m=7m S-75 S m=7m 3.6m=75.6m H ~H ~ H H-65 9H H ~H ~ H-8 9 H-8 9~H m=7m (a)s-75 m 7m m 3.3m=33m 3.3m=33m m=47.9m 3.3m=33m 3.3m=33m (b)s-5 S a (cm/s ) 4 3 魚骨柱 (c) 魚骨梁 東南海地震 ( 鶴来 :YAE) 新潟県中越沖地震 ( 刈羽村 ) 上町断層 ( 川辺 :OSK3) せん断ばね h= Period(s) (d) 5

12 ( ) T p V p : 4 4) 3 () 東南海地震 ( 鶴来 :YAE) 新潟県中越沖地震 ( 刈羽村 ) 上町断層 ( 川辺 :OSK3) 4 3 東南海地震 ( 鶴来 :YAE) 新潟県中越沖地震 ( 刈羽村 ) 上町断層 ( 川辺 :OSK3) Vel.cm/s Rrad OSK time(s). OSK3, time(s) 6 4 (a)( ) rad rad (a)osk5 (b)yae rad (a) S-75 (b) S rad Vel.cm/s Rrad Vel.cm/s Rrad time(s) time(s) (b) (YAE) time(s).4. (YAE), time(s) (c)( ) 5

13 4...4 T p <<T T / T p ( T T p T p h F h () F h h 室内被害 免震装置の破壊 構造体被害 擁壁衝突 装置破壊時の安全装置 (a) (b) T T / T p T p T T p 3) 53

14 5cm/s 3 ) G. P. Mavroeidis, A. S. Papageorgiou : A Mathematical Representation of Near-Fault Ground Motions, Bulletin of the Seismological Society of America, Vol. 93, No. 3, pp. 99-3, June, 3. ) P. G. Somerville : Magnitude Scaling of the Near Fault rupture directivity pulse, Physics of the Earth and Planetary Interiors, 37, pp.-, 3. 3) J. D. Bray, A. Rodriguez-Marek : Characterization of forwarddirectivity ground motions in the near-fault region,soil Dynamics and Earthquake Engineering, 4, pp.85-88, 4. 4) B. Alavi, H. Krawinkler : Consideration of near-fault ground motion effects in seismic design, Proc. of th WCEE, New Zealand,. 5),,,, pp.5-9,h.3. 6),, 36 ()-,pp ), No.647, pp.49-56,.. 8),,.8. 9),,.8.. ), pp7-4, 9. ) 5. ) html ) ( ),93. 4),, 76, No.665, pp.63-7,.7. 5),,, No.65, pp.73-74,.4. 6), No.649, pp ,.3. 7), Vol.6, No.33, pp ,.6. 8),,,, 5, pp.3-6,.6. 9),,,, - -,,6,pp.55-6,7.. ),,,,5,pp9-6, ),,Petukhin Anatoly,,,Vol.5A,5.3. ),,,,,,.8. 3),, 76, No.663, pp ,.5. 54

若狭ネット第 149 pp.6-31( ( S2) M Ss M7.2 M ( 1 ) /21/ / M6.4 (1997) M7.2 M

若狭ネット第 149 pp.6-31( ( S2) M Ss M7.2 M ( 1 ) /21/ / M6.4 (1997) M7.2 M 若狭ネット第 149 pp.6-31(2014.5.11) 2014 5 6 1 2 1 1 270 370 540 M6.5 1 540 Ss-1H Ss-1H 620 2004 Ss-2 2 Ss-1H 1000 2008 20 () 3 1/21/3 15.9MPa 2 1997 5 13 (1997) 2 the Global CMT project 25.1MPa 15.9MPa 1.5

More information

untitled

untitled ( ) c a sin b c b c a cos a c b c a tan b a b cos sin a c b c a ccos b csin (4) Ma k Mg a (Gal) g(98gal) (Gal) a max (K-E) kh Zck.85.6. 4 Ma g a k a g k D τ f c + σ tanφ σ 3 3 /A τ f3 S S τ A σ /A σ /A

More information

4 小川/小川

4 小川/小川 B p p B pp M p T p M p Tp T pt T p T p T p p Tp T T p T p T pt p Tp p p p p p p p p T p p T T M M p p p p p p T p p p T T p T B T T p T T p T p T T T p T p p T p Tp T p p Tp T p T Tp T T p T p T p T p

More information

小川/小川

小川/小川 T pt T T T T p T T T T T p T T T T T T p p T T T p p T p B T T T T T pt T Tp T p T T psp T p T p T p T p T p Tp T p T p T T p T T T T T T T Tp T p p p T T T T p T T T T T T T p T T T T T p p T T T T T

More information

8km M km M M8.4 1M M M 東北地方太平洋沖で想定されていた地震 Fig % 8 9% M8. 6 3m M % Fig.1 Distribution of

8km M km M M8.4 1M M M 東北地方太平洋沖で想定されていた地震 Fig % 8 9% M8. 6 3m M % Fig.1 Distribution of 東日本大震災 A Catastrophic Earthquake in Tohoku, Japan 1) 東北地方太平洋沖地震の地震 地震動について 1) Earthquake and Strong Ground Motion of the 211 off the Pacific Coast of Tohoku Earthquake 小林喜久二 Kikuji Kobayashi *1 211 3 11

More information

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0 1 1 1.1 1.) T D = T = D = kn 1. 1.4) F W = F = W/ = kn/ = 15 kn 1. 1.9) R = W 1 + W = 6 + 5 = 11 N. 1.9) W b W 1 a = a = W /W 1 )b = 5/6) = 5 cm 1.4 AB AC P 1, P x, y x, y y x 1.4.) P sin 6 + P 1 sin 45

More information

<4D F736F F D208C46967B926E906B82CC96C6906B8C9A95A8899E939A89F090CD>

<4D F736F F D208C46967B926E906B82CC96C6906B8C9A95A8899E939A89F090CD> 平成 29 年 9 月 1 日 観測記録に基づく免震住宅の地震応答解析 - 216 年熊本地震 - 1. はじめに 216 年 4 月 16 日 1 時 25 分に発生した熊本地震は マグニチュード 7.3 最大震度 7 と発表されています 防災科学技術研究所では 強震観測網 (K-NET KiK-net) により観測されたデータを公開データしています この観測地震動を用いて 免震住宅の地震応答解析を実施しました

More information

Microsoft Word - ⑩建築2森清.doc

Microsoft Word - ⑩建築2森清.doc 上町断層帯地震に対する免震建物 超高層建物の応答性状 Seismic Response of Base-isolated Buildings and High-rise Buildings for Uemachi Fault Earthquake 森清宣貴 *1 太田寛 *1 神澤宏明 *1 Nobuki Morikiyo Hiroshi Ohta Hiroaki Kamisawa 要旨 ( 社 )

More information

Key Words: probabilisic scenario earthquake, active fault data, Great Hanshin earthquake, low frequency-high impact earthquake motion, seismic hazard map 3) Cornell, C. A.: Engineering Seismic

More information

「発電用原子炉施設に関する耐震設計審査指針」の改訂に伴う島根原子力発電所3号機の耐震安全性評価結果中間報告書の提出について

「発電用原子炉施設に関する耐震設計審査指針」の改訂に伴う島根原子力発電所3号機の耐震安全性評価結果中間報告書の提出について 平成 年 9 月 日中国電力株式会社 発電用原子炉施設に関する耐震設計審査指針 の改訂に伴う島根原子力発電所 号機の耐震安全性評価結果中間報告書の提出について 当社は本日, 発電用原子炉施設に関する耐震設計審査指針 の改訂に伴う島根原子力発電所 号機の耐震安全性評価結果中間報告書を経済産業省原子力安全 保安院に提出しました また, 原子力安全 保安院の指示に基づく島根原子力発電所 号機原子炉建物の弾性設計用地震動

More information

untitled

untitled 8- My + Cy + Ky = f () t 8. C f () t ( t) = Ψq( t) () t = Ψq () t () t = Ψq () t = ( q q ) ; = [ ] y y y q Ψ φ φ φ = ( ϕ, ϕ, ϕ,3 ) 8. ψ Ψ MΨq + Ψ CΨq + Ψ KΨq = Ψ f ( t) Ψ MΨ = I; Ψ CΨ = C; Ψ KΨ = Λ; q

More information

小川/小川

小川/小川 p TRE p Mp p p M p S p p Tp M p p p p p p p p M T T T p p MT MR MR M M p p M M p p M T T T T T T T T S T M p M p T p M E M M p p p p TT T T p p p T T p T T T T T T T p p pt T T T p S T S S T p T T T T

More information

平成14年度仙台市地震被害想定調査報告書

平成14年度仙台市地震被害想定調査報告書 14 4 17 14 5 30 1978 6 12 37 12 11 20 80 30 90 13 7 1995 1 17 14 2 13 30 1 30 0.48 ( 7 8 ) 5 1 2 3 2 1/25,000 10 1km1km 4 250m250m 1/4 13 1 1 250m ( 13 10 1 ) 12 2 3.0m/s4.0m/s 1.5 4.5m/s 6.0m/s 1,500m

More information

) (M w ) km 100km M w SN 3) Hz Hz m S 12) (D) 30km (1) No. Earthquake Date Mw Focal Depth (

) (M w ) km 100km M w SN 3) Hz Hz m S 12) (D) 30km (1) No. Earthquake Date Mw Focal Depth ( 1) e-mailsmidorik@enveng.titech.ac.jp 2) e-mailootake@ctie.co.jp (M) M M M 1)4) 0.20.3( 0.40.7) 5) 6),7) 7)10) 6) 9) -59- 1968 2001 33 11) (M w ) 5.5 8.3 km 100km M w 3335 1980 SN 3) 0.2 0.3310Hz 0.15

More information

pdf

pdf http://www.ns.kogakuin.ac.jp/~ft13389/lecture/physics1a2b/ pdf I 1 1 1.1 ( ) 1. 30 m µm 2. 20 cm km 3. 10 m 2 cm 2 4. 5 cm 3 km 3 5. 1 6. 1 7. 1 1.2 ( ) 1. 1 m + 10 cm 2. 1 hr + 6400 sec 3. 3.0 10 5 kg

More information

Microsoft PowerPoint - bousaikensyukai.ppt

Microsoft PowerPoint - bousaikensyukai.ppt 研究集会 8K-6 使える地震予測を目指して - 最近 年間の地震予知研究における成果と展望 - 強震動予測とアスペリティ モデル 入倉孝次郎 26 年 6 月 8 ー 9 日 京都大学宇治キャンパス 木質ホール 強震動研究者 入倉孝次郎 ( いりくらこうじろう ) 所属 : むかし京都大学防災研究所ではたらいていました 愛知工業大学 出身地 : 中国青島市 ( ビールで有名なところ ) 専門 :

More information

小川/小川

小川/小川 p TB T T T T TT TT TT M p pp p p M p M p T M p M p p Mp T p Tp M p p Mp M p M p M p M p p T p p T p p T p M p M p M p M p T ptp p M p p p M p p M p Tp Tp p p pp p T T Tp Tp p T p T p T p T p T p T p Mp

More information

1-1 1-2 1-3 1-4 1-5 1-6 1-7 1-8 - 1-9 宮城県沖地震 ( 単独 ) 宮城県沖地震 ( 連動 ) 長町 - 利府線断層帯 図 1-4-2 図 1-4-1 液状化危険度判定結果震度分布 1-10 1-1 1-11 1-12 2-1 2-2 2-3 2-4 3-1 3-2 3-3 3-4 300m 3000m 200m 150m 125m 100m 2000m 1500m

More information

SEISMIC HAZARD ESTIMATION BASED ON ACTIVE FAULT DATA AND HISTORICAL EARTHQUAKE DATA By Hiroyuki KAMEDA and Toshihiko OKUMURA A method is presented for using historical earthquake data and active fault

More information

Microsoft Word - ★その1a.doc

Microsoft Word - ★その1a.doc パルス波に対する建築物の応答特性とその評価 ( その) 自由度系の応答特性と減衰補正係数 西影武知 ), 見上知広 ), 鈴木恭平 ) ), 林康裕 ) 株式会社大林組本店構造設計部 ( 大阪市中央区北浜東 -,nisikage.taketomo@obayasi.co.j) ) 株式会社大林組本店構造設計部 ( 大阪市中央区北浜東 -,mikami.tomoiro@obayasi.co.j) ) 京都大学大学院工学研究科建築学専攻,

More information

1

1 鉄筋コンクリート柱のせん断破壊実験 1 2 2-1 4 CS- 36N 2% CS-36A2 4% CS-36A4 2 CS-36HF -1 F C28 =36N/mm 2-1 CS-36N 普通コンクリート 36NC 2-3 CS-36A2 石炭灰 2% コンクリート 36CA2 2-4 2% CS-36A4 石炭灰 4% コンクリート 36CA4 2-5 4% CS-36HF 高流動コンクリート

More information

9 5 ( α+ ) = (α + ) α (log ) = α d = α C d = log + C C 5. () d = 4 d = C = C = 3 + C 3 () d = d = C = C = 3 + C 3 =

9 5 ( α+ ) = (α + ) α (log ) = α d = α C d = log + C C 5. () d = 4 d = C = C = 3 + C 3 () d = d = C = C = 3 + C 3 = 5 5. 5.. A II f() f() F () f() F () = f() C (F () + C) = F () = f() F () + C f() F () G() f() G () = F () 39 G() = F () + C C f() F () f() F () + C C f() f() d f() f() C f() f() F () = f() f() f() d =

More information

Pacific Conf. on Earthquake Engineering Auckland (New Zealand) The New Zealand National Society for Earthquake Engineering Areas of particular interest are : Seismotectonics Seismic hazard and risk assessment

More information

untitled

untitled 27 年新潟県中越沖地震の強震動 ーなぜ柏崎刈羽原子力発電所は想定以上の破壊的強震動に襲われたのか? ー 28 年 3 月 19 日再修正版 入倉孝次郎 ( 愛知工業大学地域防災センター ) 香川敬生 宮腰研 ( 地域地盤環境研究所 ) 倉橋奨 ( 愛知工業大学 ) 3 AspAsp Asp AspAsp GPS SAR 2 277 16 1 km 6.8 6.6 6 9 km 6 (, 22)

More information

Gmech08.dvi

Gmech08.dvi 51 5 5.1 5.1.1 P r P z θ P P P z e r e, z ) r, θ, ) 5.1 z r e θ,, z r, θ, = r sin θ cos = r sin θ sin 5.1) e θ e z = r cos θ r, θ, 5.1: 0 r

More information

科学9月特集C_青井.indd

科学9月特集C_青井.indd 特集 216 年熊本地震の強震動と震源過程 青井真あおいしん国立研究開発法人防災科学技術研究所地震津波火山ネットワークセンター長 216 年 4 月 14 日 21:26 に熊本地方を震央とする Mj 6.5(Mw 6.1) の地震が, またその 28 時間後の 16 日 1:25 には Mj 7.3(Mw 7.1) の地震が発生した これは 1995 年兵庫県南部地震以来 21 年ぶりに発生した都市直下における

More information

構造と連続体の力学基礎

構造と連続体の力学基礎 II 37 Wabash Avenue Bridge, Illinois 州 Winnipeg にある歩道橋 Esplanade Riel 橋6 6 斜張橋である必要は多分無いと思われる すぐ横に道路用桁橋有り しかも塔基部のレストランは 8 年には営業していなかった 9 9. 9.. () 97 [3] [5] k 9. m w(t) f (t) = f (t) + mg k w(t) Newton

More information

検討の背景 10Hz を超える地震動成分の扱いに関する日 - 米の相違 米国 OBE (SSE ) EXCEEDANCE CRITERIA 観測された地震動が設計基準地震動を超えたか否かの判定振動数範囲 : 1Hz - 10Hz (10Hz 以上は評価対象外 ) 地震ハザードのスクリーニング (Ne

検討の背景 10Hz を超える地震動成分の扱いに関する日 - 米の相違 米国 OBE (SSE ) EXCEEDANCE CRITERIA 観測された地震動が設計基準地震動を超えたか否かの判定振動数範囲 : 1Hz - 10Hz (10Hz 以上は評価対象外 ) 地震ハザードのスクリーニング (Ne 第 14 回日本地震工学シンポジウム G011-Fri-6 10Hz を超える地震動成分と機械設備の健全性 に関する考察 2014 年 12 月 5 日 落合兼寛 ( 一般社団法人 ) 原子力安全推進協会 Copyright 2012 by. All Rights Reserved. 検討の背景 10Hz を超える地震動成分の扱いに関する日 - 米の相違 米国 OBE (SSE ) EXCEEDANCE

More information

経済論集 46‐2(よこ)(P)☆/2.三崎

経済論集 46‐2(よこ)(P)☆/2.三崎 1 2 1869 11 17 5 10 1 3 1914 5 15 5 1872 9 12 3 1870 1 26 14 1881 11 11 12 6 11 1878 5 9 13 1880 6 17 1 15 1882 1 2 3 11 1828 2 26 24 1891 4 22 2 1849 12 1 3 1856 pp 20 21. 1971 p.429. 1973 1, pp.440 444.

More information

2 3 5 5 5 5 6 6 7 7 8 10 10 10 10 11 11 12 12 13 16 16 16 16 17 19 21 21 22 5

2 3 5 5 5 5 6 6 7 7 8 10 10 10 10 11 11 12 12 13 16 16 16 16 17 19 21 21 22 5 1D000425-2 1 2 3 5 5 5 5 6 6 7 7 8 10 10 10 10 11 11 12 12 13 16 16 16 16 17 19 21 21 22 5 3 29 29 29 30 31 31 32 35 35 35 36 41 41 41 46 48 48 48 52 57 4 700 13 1988 4 5 4 5 21 1 1 3 4 5 6 21 10 1888

More information

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H 199 1 1 199 1 1. Vx) m e V cos x π x π Vx) = x < π, x > π V i) x = Vx) V 1 x /)) n n d f dξ ξ d f dξ + n f = H n ξ) ii) H n ξ) = 1) n expξ ) dn dξ n exp ξ )) H n ξ)h m ξ) exp ξ )dξ = π n n!δ n,m x = Vx)

More information

untitled

untitled 27 9 27 7 16 1 km 6.8 6.6 6 9 km 6 GPS 2427 2. 27 (27 7 26 2 M JMA 5.8, 27 8 8 JAMSTEC, 27 9 1 NHK , 1999 (Fukushima and Tanaka, 1989) 5m/s 1 27 1 1-1 1 2 3 4 8-8 1 2 3 4 5-5 1 2 3 4 3-3 1 2 3 4 3-3 1

More information

0-

0- 5 6 7 Seismic observation station Agency Seismic intensity South- North (NS) Maximum acceleration (Gal ) East-West (EW) Vertical (UD) Combining threecomponent Epicentral distance (km) Kawaguchi* JMA 7

More information

untitled

untitled 9118 154 B-1 B-3 B- 5cm 3cm 5cm 3m18m5.4m.5m.66m1.3m 1.13m 1.134m 1.35m.665m 5 , 4 13 7 56 M 1586.1.18 7.77.9 599.5.8 7 1596.9.5 7.57.75 684.11.9 8.5 165..3 7.9 87.8.11 6.57. 166.6.16 7.57.6 856 6.6.5

More information

Microsoft Word doc

Microsoft Word doc . 正規線形モデルのベイズ推定翠川 大竹距離減衰式 (PGA(Midorikawa, S., and Ohtake, Y. (, Attenuation relationships of peak ground acceleration and velocity considering attenuation characteristics for shallow and deeper earthquakes,

More information

Note.tex 2008/09/19( )

Note.tex 2008/09/19( ) 1 20 9 19 2 1 5 1.1........................ 5 1.2............................. 8 2 9 2.1............................. 9 2.2.............................. 10 3 13 3.1.............................. 13 3.2..................................

More information

7章 構造物の応答値の算定

7章 構造物の応答値の算定 (1) 2 (2) 5.4 5.8.4 2 5.2 (3) 1.8 1) 36 2) PS 3) N N PS 37 10 20m N G hg h PS N (1) G h G/G 0 h 3 1) G 0 PS PS 38 N V s G 0 40% Gh 1 S 0.11% G/G 0 h G/G 0 h H-D 2),3) R-O 4) 5),6),7) τ G 0 γ = 0 r 1 (

More information

9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) Ĥ0 ψ n (r) ω n Schrödinger Ĥ 0 ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ0 + Ĥint (

9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) Ĥ0 ψ n (r) ω n Schrödinger Ĥ 0 ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ0 + Ĥint ( 9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) 2. 2.1 Ĥ ψ n (r) ω n Schrödinger Ĥ ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ + Ĥint (t)] ψ (r, t), (2) Ĥ int (t) = eˆxe cos ωt ˆdE cos ωt, (3)

More information

CLT による木造建築物の設計法の開発 ( その 2)~ 構造設計法の開発 ~ 平成 26 年度建築研究所講演会 CLT による木造建築物の設計法の開発 ( その 2)~ 構造設計法の開発 ~ 構造研究グループ荒木康弘 CLT による木造建築物の設計法の開発 ( その 2)~ 構造設計法の開発 ~

CLT による木造建築物の設計法の開発 ( その 2)~ 構造設計法の開発 ~ 平成 26 年度建築研究所講演会 CLT による木造建築物の設計法の開発 ( その 2)~ 構造設計法の開発 ~ 構造研究グループ荒木康弘 CLT による木造建築物の設計法の開発 ( その 2)~ 構造設計法の開発 ~ CLT による木造建築物の設計法の開発 ( その 2)~ 構造設計法の開発 ~ 構造研究グループ荒木康弘 CLT 構造の特徴 構法上の特徴 構造上の特徴 講演内容 構造設計法の策定に向けた取り組み CLT 建物の現状の課題 設計法策定に向けた取り組み ( モデル化の方法 各種実験による検証 ) 今後の展望 2 構造の構法上の特徴軸組構法の建て方 鉛直荷重水平力 ( 自重 雪地震 風 ) 柱や梁で支持壁で抵抗

More information

December 28, 2018

December 28, 2018 e-mail : kigami@i.kyoto-u.ac.jp December 28, 28 Contents 2............................. 3.2......................... 7.3..................... 9.4................ 4.5............. 2.6.... 22 2 36 2..........................

More information

,, 2. Matlab Simulink 2018 PC Matlab Scilab 2

,, 2. Matlab Simulink 2018 PC Matlab Scilab 2 (2018 ) ( -1) TA Email : ohki@i.kyoto-u.ac.jp, ske.ta@bode.amp.i.kyoto-u.ac.jp : 411 : 10 308 1 1 2 2 2.1............................................ 2 2.2..................................................

More information

5 H Boltzmann Einstein Brown 5.1 Onsager [ ] Tr Tr Tr = dγ (5.1) A(p, q) Â 0 = Tr Âe βĥ0 Tr e βĥ0 = dγ e βh 0(p,q) A(p, q) dγ e βh 0(p,q) (5.2) e βĥ0

5 H Boltzmann Einstein Brown 5.1 Onsager [ ] Tr Tr Tr = dγ (5.1) A(p, q) Â 0 = Tr Âe βĥ0 Tr e βĥ0 = dγ e βh 0(p,q) A(p, q) dγ e βh 0(p,q) (5.2) e βĥ0 5 H Boltzmann Einstein Brown 5.1 Onsager [ ] Tr Tr Tr = dγ (5.1) A(p, q) Â = Tr Âe βĥ Tr e βĥ = dγ e βh (p,q) A(p, q) dγ e βh (p,q) (5.2) e βĥ A(p, q) p q Â(t) = Tr Â(t)e βĥ Tr e βĥ = dγ() e βĥ(p(),q())

More information

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k 63 3 Section 3.1 g 3.1 3.1: : 64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () 3 9.8 m/s 2 3.2 3.2: : a) b) 5 15 4 1 1. 1 3 14. 1 3 kg/m 3 2 3.3 1 3 5.8 1 3 kg/m 3 3 2.65 1 3 kg/m 3 4 6 m 3.1. 65 5

More information

(interferometer) 1 N *3 2 ω λ k = ω/c = 2π/λ ( ) r E = A 1 e iφ1(r) e iωt + A 2 e iφ2(r) e iωt (1) φ 1 (r), φ 2 (r) r λ 2π 2 I = E 2 = A A 2 2 +

(interferometer) 1 N *3 2 ω λ k = ω/c = 2π/λ ( ) r E = A 1 e iφ1(r) e iωt + A 2 e iφ2(r) e iωt (1) φ 1 (r), φ 2 (r) r λ 2π 2 I = E 2 = A A 2 2 + 7 1 (Young) *1 *2 (interference) *1 (1802 1804) *2 2 (2005) (1993) 1 (interferometer) 1 N *3 2 ω λ k = ω/c = 2π/λ ( ) r E = A 1 e iφ1(r) e iωt + A 2 e iφ2(r) e iωt (1) φ 1 (r), φ 2 (r) r λ 2π 2 I = E 2

More information

総研大恒星進化概要.dvi

総研大恒星進化概要.dvi The Structure and Evolution of Stars I. Basic Equations. M r r =4πr2 ρ () P r = GM rρ. r 2 (2) r: M r : P and ρ: G: M r Lagrange r = M r 4πr 2 rho ( ) P = GM r M r 4πr. 4 (2 ) s(ρ, P ) s(ρ, P ) r L r T

More information

朕醩佑宖醸æ−žã†®ã†�ã‡†ã†®æ··å’‹æŁ´æŁ°è¨‹çfl»ã…¢ã…⁄ã…«

朕醩佑宖醸æ−žã†®ã†�ã‡†ã†®æ··å’‹æŁ´æŁ°è¨‹çfl»ã…¢ã…⁄ã…« 1 / 34 Li-Yao,, Li-Yao The Life-Cycle Effects of House Price Changes (Li-Yao ),,,, ( ) 1 ω ( ) ω 1 γ Ct Ht t T βt U(C t, H t, N t) = N t N t t T βt N t 1 γ H t : t C t : t β : ω : γ : W. Li, R. Yao, The

More information

柏崎刈羽原子力発電所 1 号機 新潟県中越沖地震後の設備健全性に係る屋外重要土木構造物の点検 評価状況について 平成 21 年 5 月 19 日 東京電力株式会社

柏崎刈羽原子力発電所 1 号機 新潟県中越沖地震後の設備健全性に係る屋外重要土木構造物の点検 評価状況について 平成 21 年 5 月 19 日 東京電力株式会社 柏崎刈羽原子力発電所 1 号機 新潟県中越沖地震後の設備健全性に係る屋外重要土木構造物の点検 評価状況について 平成 21 年 5 月 19 日 東京電力株式会社 191106 2 19 11 9 - - - - - - - - - - - - - - - - - - - - - - (1) (2) (3) (1) (2) NO YES YES NO NO YES 1 - (1) (2) (3)

More information

) (M w ) km 1km M w SN 3).2.331Hz.15.21Hz 1.4 3m S 12) (D) 3km (1) No. Earthquake Date Mw Focal Depth (km) Number of rec

) (M w ) km 1km M w SN 3).2.331Hz.15.21Hz 1.4 3m S 12) (D) 3km (1) No. Earthquake Date Mw Focal Depth (km) Number of rec 1) e-mailsmidorik@enveng.titech.ac.jp 2) e-mailootake@ctie.co.jp (M) M M M 1)4).2.3(.4.7) 5) 6),7) 7)1) 6) 9) -59- 1968 21 33 11) (M w ) 5.5 8.3 km 1km M w 3335 198 SN 3).2.331Hz.15.21Hz 1.4 3m S 12) (D)

More information

IA hara@math.kyushu-u.ac.jp Last updated: January,......................................................................................................................................................................................

More information

2

2 http://www.hitachi-kizai.co.jp/ E-mail:naisou@hitachi-kizai.com E-mail:naisou_chuubu@hitachi-kizai.com E-mail:naisou_kansai@hitachi-kizai.com 2 P3 P4P5 P6 P7 P8P11 P12P13 P14P16 P17 P18P21 P22P23 P24P30

More information

The Physics of Atmospheres CAPTER :

The Physics of Atmospheres CAPTER : The Physics of Atmospheres CAPTER 4 1 4 2 41 : 2 42 14 43 17 44 25 45 27 46 3 47 31 48 32 49 34 41 35 411 36 maintex 23/11/28 The Physics of Atmospheres CAPTER 4 2 4 41 : 2 1 σ 2 (21) (22) k I = I exp(

More information

2009 年 11 月 16 日版 ( 久家 ) 遠地 P 波の変位波形の作成 遠地 P 波の変位波形 ( 変位の時間関数 ) は 波線理論をもとに P U () t = S()* t E()* t P() t で近似的に計算できる * は畳み込み積分 (convolution) を表す ( 付録

2009 年 11 月 16 日版 ( 久家 ) 遠地 P 波の変位波形の作成 遠地 P 波の変位波形 ( 変位の時間関数 ) は 波線理論をもとに P U () t = S()* t E()* t P() t で近似的に計算できる * は畳み込み積分 (convolution) を表す ( 付録 遠地 波の変位波形の作成 遠地 波の変位波形 ( 変位の時間関数 ) は 波線理論をもとに U () t S() t E() t () t で近似的に計算できる は畳み込み積分 (convolution) を表す ( 付録 参照 ) ここで St () は地震の断層運動によって決まる時間関数 1 E() t は地下構造によって生じる種々の波の到着を与える時間関数 ( ここでは 直達 波とともに 震源そばの地表での反射波や変換波を与える時間関数

More information

Microsoft Word - 11問題表紙(選択).docx

Microsoft Word - 11問題表紙(選択).docx A B A.70g/cm 3 B.74g/cm 3 B C 70at% %A C B at% 80at% %B 350 C γ δ y=00 x-y ρ l S ρ C p k C p ρ C p T ρ l t l S S ξ S t = ( k T ) ξ ( ) S = ( k T) ( ) t y ξ S ξ / t S v T T / t = v T / y 00 x v S dy dx

More information

201711grade1ouyou.pdf

201711grade1ouyou.pdf 2017 11 26 1 2 52 3 12 13 22 23 32 33 42 3 5 3 4 90 5 6 A 1 2 Web Web 3 4 1 2... 5 6 7 7 44 8 9 1 2 3 1 p p >2 2 A 1 2 0.6 0.4 0.52... (a) 0.6 0.4...... B 1 2 0.8-0.2 0.52..... (b) 0.6 0.52.... 1 A B 2

More information

Gmech08.dvi

Gmech08.dvi 145 13 13.1 13.1.1 0 m mg S 13.1 F 13.1 F /m S F F 13.1 F mg S F F mg 13.1: m d2 r 2 = F + F = 0 (13.1) 146 13 F = F (13.2) S S S S S P r S P r r = r 0 + r (13.3) r 0 S S m d2 r 2 = F (13.4) (13.3) d 2

More information

日本建築学会技術報告集第 19 巻第 42 号, ,2013 年 6 月 AIJ J. Technol. Des. Vol. 19, No.42, , Jun., 2013 軟弱地盤に建つ超高層 RC 造集合住宅の地震応答評価と被害との対応 2011 年東北地方太平洋沖地震

日本建築学会技術報告集第 19 巻第 42 号, ,2013 年 6 月 AIJ J. Technol. Des. Vol. 19, No.42, , Jun., 2013 軟弱地盤に建つ超高層 RC 造集合住宅の地震応答評価と被害との対応 2011 年東北地方太平洋沖地震 日本建築学会技術報告集第 19 巻第 42 号,447-452,213 年 6 月 AIJ J. Technol. Des. Vol. 19, No.42, 447-452, Jun., 213 軟弱地盤に建つ超高層 RC 造集合住宅の地震応答評価と被害との対応 211 年東北地方太平洋沖地震時の強震記録に基づく検討 RELATION BETWEEN EVALUATION OF SEISMIC RESPONSE

More information

untitled

untitled MRR Physical Basis( 1.8.4) METEK MRR 1 MRR 1.1 MRR 24GHz FM-CW(frequency module continuous wave) 30 r+ r f+ f 1.2 1 4 MRR 24GHz 1.3 50mW 1 rf- (waveguide) (horn) 60cm ( monostatic radar) (continuous wave)

More information

n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................

More information

keisoku01.dvi

keisoku01.dvi 2.,, Mon, 2006, 401, SAGA, JAPAN Dept. of Mechanical Engineering, Saga Univ., JAPAN 4 Mon, 2006, 401, SAGA, JAPAN Dept. of Mechanical Engineering, Saga Univ., JAPAN 5 Mon, 2006, 401, SAGA, JAPAN Dept.

More information

I

I I 6 4 10 1 1 1.1............... 1 1................ 1 1.3.................... 1.4............... 1.4.1.............. 1.4................. 1.4.3........... 3 1.4.4.. 3 1.5.......... 3 1.5.1..............

More information

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

II ( ) (7/31) II (  [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re II 29 7 29-7-27 ( ) (7/31) II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I Euler Navier

More information

Microsoft Word - セッション1(表紙)

Microsoft Word - セッション1(表紙) 2014 年 3 月 27 日於東京都市大学 地震 PRA 実施基準の改訂について 機器 建屋フラジリティ評価 標準委員会セッションリスク専門部会フラジリティ作業会主査 大阪大学 山口彰 1 x R フラジリティ評価とは 発電用原子炉施設において地震リスクの観点で影響を及ぼしうるものとして選定された機器 建物 構築物等を対象とする 地震時の現実的な応答と現実的な耐力を評価する 両者の関係をもとに任意の地震動強さに対する機器

More information

K E N Z U 2012 7 16 HP M. 1 1 4 1.1 3.......................... 4 1.2................................... 4 1.2.1..................................... 4 1.2.2.................................... 5................................

More information

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y [ ] 7 0.1 2 2 + y = t sin t IC ( 9) ( s090101) 0.2 y = d2 y 2, y = x 3 y + y 2 = 0 (2) y + 2y 3y = e 2x 0.3 1 ( y ) = f x C u = y x ( 15) ( s150102) [ ] y/x du x = Cexp f(u) u (2) x y = xey/x ( 16) ( s160101)

More information

1 (1) 3 4 (2) 5 () 30 35 40 45 50 55 60 410 519 599 975 1,176 1,362 1,840 250 298 426 691 735 829 693 865 1,287 1,838 2,209 2,718 2,776 3,361 888 1,061 1,448 1,598 1,849 2,157 2,214 1,324 1,172 964 808

More information

2015/11/ ( 公財 ) 建築技術教育センター平成 27 年度普及事業第 4 回勉強会於 : 大垣ガスほんのりプラザ 近似応答計算の要点 (1 質点系の応答 ) 齋藤建築構造研究室齋藤幸雄 現行の耐震規定 ( 耐震性能評価法 ) 超高層建築物等を除いて 静的計算 (

2015/11/ ( 公財 ) 建築技術教育センター平成 27 年度普及事業第 4 回勉強会於 : 大垣ガスほんのりプラザ 近似応答計算の要点 (1 質点系の応答 ) 齋藤建築構造研究室齋藤幸雄 現行の耐震規定 ( 耐震性能評価法 ) 超高層建築物等を除いて 静的計算 ( 2015.11.29 ( 公財 ) 建築技術教育センター平成 27 年度普及事業第 4 回勉強会於 : 大垣ガスほんのりプラザ 近似応答計算の要点 (1 質点系の応答 ) 齋藤建築構造研究室齋藤幸雄 現行の耐震規定 ( 耐震性能評価法 ) 超高層建築物等を除いて 静的計算 ( 地震時の応力計算や保有水平耐力の算定等 ) によっており 地震時の応答変位等を直接算定 ( 動的応答計算 ) するものではない

More information

スライド 1

スライド 1 距離減衰式を用いた 長周期地震動予測に関する検討 気象庁地震火山部 地震津波監視課 1 長周期地震動予測技術に用いる距離減衰式に関する検討 第 1 回ワーキンググループでのご意見を踏まえ 緊急地震速報で推定する震源位置とマグニチュードから応答スペクトルの距離減衰式を用いて予測対象地点の長周期地震動を予測した場合 どのような結果となるかを検討 検討に用いた距離減衰式 応答スペクトルの距離減衰式は多数提案されている

More information

http://www.ike-dyn.ritsumei.ac.jp/ hyoo/wave.html 1 1, 5 3 1.1 1..................................... 3 1.2 5.1................................... 4 1.3.......................... 5 1.4 5.2, 5.3....................

More information

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 2 ), ϕ(t) = B 1 cos(ω 1 t + α 1 ) + B 2 cos(ω 2 t

More information

(5 B m e i 2π T mt m m B m e i 2π T mt m m B m e i 2π T mt B m (m < 0 C m m (6 (7 (5 g(t C 0 + m C m e i 2π T mt (7 C m e i 2π T mt + m m C m e i 2π T

(5 B m e i 2π T mt m m B m e i 2π T mt m m B m e i 2π T mt B m (m < 0 C m m (6 (7 (5 g(t C 0 + m C m e i 2π T mt (7 C m e i 2π T mt + m m C m e i 2π T 2.6 FFT(Fast Fourier Transform 2.6. T g(t g(t 2 a 0 + { a m b m 2 T T 0 2 T T 0 (a m cos( 2π T mt + b m sin( 2π mt ( T m 2π g(t cos( T mtdt m 0,, 2,... 2π g(t sin( T mtdt m, 2, 3... (2 g(t T 0 < t < T

More information

4174 20106 2 () 19 21 18 20 I 4124 4124 : 1. 1 2. 3 2.1... 3 2.2... 4 2.3... 9 2.4... 9 3. 10 3.1... 10 3.2... 11 3.3... 14 4. 16 4.1... 16 4.2... 18 4.3 I... 22 4.4 I... 23 5. 25 5.1... 25 5.2... 33

More information

数学の基礎訓練I

数学の基礎訓練I I 9 6 13 1 1 1.1............... 1 1................ 1 1.3.................... 1.4............... 1.4.1.............. 1.4................. 3 1.4.3........... 3 1.4.4.. 3 1.5.......... 3 1.5.1..............

More information

006 11 8 0 3 1 5 1.1..................... 5 1......................... 6 1.3.................... 6 1.4.................. 8 1.5................... 8 1.6................... 10 1.6.1......................

More information

. 2015 2013 2014 2015 2 3 4 1 33 2. 1 2-1 2010 3,018 399 0.7 0.8 2005 2010 2-2 2010 4,944 1,112 3.9 8.9 2005 2010 9,400 2-1 2-2 2 2-1 NITAS ver2.2 [ 2 ] 30 30 10 5m 20 30 10km 2-3 30 10 2 34 35 36 (2)

More information

[ ] [ ] [ ] [ ] [ ] [ ] ADC

[ ] [ ] [ ] [ ] [ ] [ ] ADC [ ] [ ] [ ] [ ] [ ] [ ] ADC BS1 m1 PMT m2 BS2 PMT1 PMT ADC PMT2 α PMT α α = n ω n n Pn TMath::Poisson(x,[0]) 0.35 0.3 0.25 0.2 0.15 λ 1.5 ω n 2 = ( α 2 ) n n! e α 2 α 2 = λ = λn n! e λ Poisson Pn 0.1

More information

SO(2)

SO(2) TOP URL http://amonphys.web.fc2.com/ 1 12 3 12.1.................................. 3 12.2.......................... 4 12.3............................. 5 12.4 SO(2).................................. 6

More information

r d 2r d l d (a) (b) (c) 1: I(x,t) I(x+ x,t) I(0,t) I(l,t) V in V(x,t) V(x+ x,t) V(0,t) l V(l,t) 2: 0 x x+ x 3: V in 3 V in x V (x, t) I(x, t

r d 2r d l d (a) (b) (c) 1: I(x,t) I(x+ x,t) I(0,t) I(l,t) V in V(x,t) V(x+ x,t) V(0,t) l V(l,t) 2: 0 x x+ x 3: V in 3 V in x V (x, t) I(x, t 1 1 2 2 2r d 2r d l d (a) (b) (c) 1: I(x,t) I(x+ x,t) I(0,t) I(l,t) V in V(x,t) V(x+ x,t) V(0,t) l V(l,t) 2: 0 x x+ x 3: V in 3 V in x V (x, t) I(x, t) V (x, t) I(x, t) V in x t 3 4 1 L R 2 C G L 0 R 0

More information

1. 地震情報発生日時 :2018 年 6 月 18 日午前 7 時 58 分震源地 : 大阪府北部 ( 北緯 34.8 度 東経 度 ) 震源深さ: 約 13km 地震の規模 ( マグニチュード ):6.1 震度 6 弱の地域 :* 印は気象庁以外の震度観測点についての情報 大阪府震度

1. 地震情報発生日時 :2018 年 6 月 18 日午前 7 時 58 分震源地 : 大阪府北部 ( 北緯 34.8 度 東経 度 ) 震源深さ: 約 13km 地震の規模 ( マグニチュード ):6.1 震度 6 弱の地域 :* 印は気象庁以外の震度観測点についての情報 大阪府震度 平成 30 年 6 月 18 日大阪府北部の地震での免震建物の地震後調査 ( 速報 ) ( 高槻市 茨木市 枚方市地域 ) 大阪大学 宮本裕司 ( 教授 ) 川辺秀憲 ( 准教授 ) 中野尊治 ( 助教 ) 佐藤綾香 (M1 生 ) 建築都市耐震研究所 田村和夫 ( 代表 元千葉工大教授 ) 1. 地震情報発生日時 :2018 年 6 月 18 日午前 7 時 58 分震源地 : 大阪府北部 ( 北緯

More information

図 東北地方太平洋沖地震以降の震源分布図 ( 福島第一 第二原子力発電所周辺 ) 図 3 東北地方太平洋沖地震前後の主ひずみ分布図 ( 福島第一 第二原子力発電所周辺 )

図 東北地方太平洋沖地震以降の震源分布図 ( 福島第一 第二原子力発電所周辺 ) 図 3 東北地方太平洋沖地震前後の主ひずみ分布図 ( 福島第一 第二原子力発電所周辺 ) 平成 3 年 8 月 30 日東京電力株式会社 平成 3 年東北地方太平洋沖地震を踏まえた新耐震指針に照らした既設発電用原子炉施設等の耐震安全性の評価結果の報告に係る 原子力安全 保安院における検討に際しての意見の追加への対応について ( 追加指示 ) に基づく報告 概要版 当社は 平成 3 年 3 月 日に発生した東北地方太平洋沖地震 (M9.0) 以降の地震の発生状況及び地殻変動 ( 地盤の動き

More information

3. データベースの概要 3.1 検索画面の層構成図 -3 にデータベースの画面構成を示す 主となる検索画面 1( 前述の図 -2) において, 解析ケースを選択し, 建設地点の場所の地震波形を検索する (2) 検索結果は, 地図, 時刻歴波形, 擬似速度応答スペクトルを描画したレポート画面 3にま

3. データベースの概要 3.1 検索画面の層構成図 -3 にデータベースの画面構成を示す 主となる検索画面 1( 前述の図 -2) において, 解析ケースを選択し, 建設地点の場所の地震波形を検索する (2) 検索結果は, 地図, 時刻歴波形, 擬似速度応答スペクトルを描画したレポート画面 3にま 大成地震波データベースの構築 地震波シミュレーション結果の設計実務への迅速な適用 吉村智昭 *1 糸井達哉 *1 内山泰生 *1 *1 山本優 Keywords : subduction zone great earthquake, inland earthqukae, Kanto plain, Nobi plain, Osaka plain 海溝型巨大地震, 内陸型直下地震, 関東平野, 濃尾平野,

More information

, 1.,,,.,., (Lin, 1955).,.,.,.,. f, 2,. main.tex 2011/08/13( )

, 1.,,,.,., (Lin, 1955).,.,.,.,. f, 2,. main.tex 2011/08/13( ) 81 4 2 4.1, 1.,,,.,., (Lin, 1955).,.,.,.,. f, 2,. 82 4.2. ζ t + V (ζ + βy) = 0 (4.2.1), V = 0 (4.2.2). (4.2.1), (3.3.66) R 1 Φ / Z, Γ., F 1 ( 3.2 ). 7,., ( )., (4.2.1) 500 hpa., 500 hpa (4.2.1) 1949,.,

More information

Untitled

Untitled II 14 14-7-8 8/4 II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ 6/ ] Navier Stokes 3 [ ] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I 1 balance law t (ρv i )+ j

More information

1. ( ) 1.1 t + t [m]{ü(t + t)} + [c]{ u(t + t)} + [k]{u(t + t)} = {f(t + t)} (1) m ü f c u k u 1.2 Newmark β (1) (2) ( [m] + t ) 2 [c] + β( t)2

1. ( ) 1.1 t + t [m]{ü(t + t)} + [c]{ u(t + t)} + [k]{u(t + t)} = {f(t + t)} (1) m ü f c u k u 1.2 Newmark β (1) (2) ( [m] + t ) 2 [c] + β( t)2 212 1 6 1. (212.8.14) 1 1.1............................................. 1 1.2 Newmark β....................... 1 1.3.................................... 2 1.4 (212.8.19)..................................

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

地震の大きさの予測可能性と緊急地震速報

地震の大きさの予測可能性と緊急地震速報 12-1 地震の大きさの予測可能性と緊急地震速報 Predictability of Earthquake Magnitude and Earthquake Early Warning 気象庁 Japan Meteorological Agency 緊急地震速報は, 震源近傍の地震計で捉えた P 波を迅速に解析し, 予想される震度及び S 波の予想到達時刻を推定して大きく揺れ始める前に伝えることにより,

More information

<4D F736F F F696E74202D208E9197BF A957A8E9197BF816A205B8CDD8AB B83685D>

<4D F736F F F696E74202D208E9197BF A957A8E9197BF816A205B8CDD8AB B83685D> 資料 2 内閣府における 長周期地震動の検討 ( 内閣府検討結果の概要 ) 1 平成 27 年 12 月 17 日 内閣府の公表資料一覧 (1) 南海トラフ沿いの巨大地震による長周期地震動に関する報告 (2) 南海トラフ沿いの巨大地震による長周期地震動に関する報告図表集 (3) 別冊 1-1 南海トラフ沿いの過去地震の強震断層モデル及び津波断層モデル (4) 別冊 1-2 南海トラフ沿いの過去地震の強震断層モデル

More information

スライド 1

スライド 1 第 56 回コイシ塾 (2014/8/22) 建物の構造を設計する ということ ~ 基本を知り 未曾有 想定外の事態に臨む ~ 東京理科大学工学部第一部建築学科伊藤拓海 本日のトピックス 1. 建築とは ~ 計画 設計 施工 開発 ~ 2. 建築の構造を設計するということ 3. 想定外 で終わらせない 逃げない 想定外 を設計する 建築とは ~ 良い建築とは ~ Vitruvius (Roma, B.C.1C

More information

128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds = 0 (3.4) S 1, S 2 { B( r) n( r)}ds

128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds = 0 (3.4) S 1, S 2 { B( r) n( r)}ds 127 3 II 3.1 3.1.1 Φ(t) ϕ em = dφ dt (3.1) B( r) Φ = { B( r) n( r)}ds (3.2) S S n( r) Φ 128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 3.............................. 3.............................. 4.3 4................... 5.4........................ 6.5........................ 8.6...........................7

More information

( ) 2002 1 1 1 1.1....................................... 1 1.1.1................................. 1 1.1.2................................. 1 1.1.3................... 3 1.1.4......................................

More information

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

I A A441 : April 15, 2013 Version : 1.1 I   Kawahira, Tomoki TA (Shigehiro, Yoshida ) I013 00-1 : April 15, 013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida) http://www.math.nagoya-u.ac.jp/~kawahira/courses/13s-tenbou.html pdf * 4 15 4 5 13 e πi = 1 5 0 5 7 3 4 6 3 6 10 6 17

More information

100 100 6 1 8 10 18 5 12 9 26 2 9 80 2500 7 1400 1 20 7 5 1 3 16 16 16 16 No No.010101 020301 No.020302 021301 TP+3.00 3.06 TP+3.06 3.14 Ho To Ho 1.35m 3.0m To 5.6s 6.8s Ho 2.49m 3.0m

More information

[Ver. 0.2] 1 2 3 4 5 6 7 1 1.1 1.2 1.3 1.4 1.5 1 1.1 1 1.2 1. (elasticity) 2. (plasticity) 3. (strength) 4. 5. (toughness) 6. 1 1.2 1. (elasticity) } 1 1.2 2. (plasticity), 1 1.2 3. (strength) a < b F

More information

<4D F736F F F696E74202D E77906A82D682CC91CE899E82C982C282A282C DE895D28F5794C5816A7638>

<4D F736F F F696E74202D E77906A82D682CC91CE899E82C982C282A282C DE895D28F5794C5816A7638> 柏崎刈羽原子力発電所の透明性を確保する地域の会第 41 回定例会説明資料 耐震指針改訂に伴う原子力安全 保安院の対応 平成 18 年 11 月 1 日原子力安全 保安院柏崎刈羽原子力保安検査官事務所原子力安全地域広報官金城慎司 目 次 1. 耐震指針改訂までの経過 2. 新耐震指針の改訂内容 2.1 改訂の目的 2.2 改訂の概要 3. 新耐震指針への対応 1 1 1. 耐震指針改訂までの経過 (

More information