() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n (

Size: px
Start display at page:

Download "() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n ("

Transcription

1 3 n nc k+ k + 3 () n C r n C n r nc r C r + C r ( r n ) () n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (4) n C n n C + n C + n C + + n C n (5) k k n C k n C k (6) n C + nc + 3 nc n nc n n (7) n C + nc + 3 nc n nc n n(n + ) n (8) nc k k + n+ C k+ n + n (9) nc k k + n + (n+ ) () n ( ) k n C k k + n +

2 () n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n (8) n () () (3) n nc k k + n ( ) k nc k+ k + n C k k + (3) 3 (5) n k ( k n) n C k () m m C m () p k p p C k p (3) p n (n + ) p n p p 6

3 n () nc r C r + C r ( r n ) n () ( + b) n nc r n r b r () C r + C r (n )! (n r )!r! + (n )! (n r)!(r )! (n )!(n r) (n r)!r! + (n )! {(n r) + r} (n r)!r! n! (n r)!r! (n )!r (n r)!r! n C r n,,..., n r n C r n r C r n r C r n C r C r + C r ( r n ) ( + x) n ( + x)( + x) ( + x) + x( + x) x r r n x r r n n C r x r r n C r x r + x C r x r ( C r + C r ) x r 3

4 x r r n C r + C r n C r C r + C r () (i) n () ( + b) + b, () ( r n ) C r r b r C b + C b + b (ii) n k (k ) + b ( + b) k k kc r k r b r k ( + b) k+ ( + b) kc r k r b r k k kc r k+ r b r + kc r k r b r+ k k k C k+ + kc r k+ r b r + kc r k r b r+ + k C k b k+ r k C k+ + k C }{{} k+ C k+ + k kc r k+ r b r + r k r ( k C r + k C r ) }{{} k+ C r k kc s k+ s b s + k C k b k+ s k+ r b r + k k+ C k+ + k+c r k+ r b r + k+ C k+ b k+ r k+ k+c r k+ r b r n k + (i)(ii) k C }{{} k b k+ k+ C k+ 4

5 f n (x) n C + n C x + n C x + + n C n x n nc r C r + C r ( r n ) x r r,,..., n nc r x r C r x r + x r r n nc r x r ( nc x + n C n x n) C r x r C x C r x r r ( n ) + x C r x r C x r f n (x) x n f (x) + x ( f (x) x ) f n (x) ( + x)f (x) f (x) C + C x + x f n (x) ( + x) n n ( + x) n nc r x r \ x b ( + b ) n n nc r b r r n n ( + b) n nc r n r b r ( ) ( ) ( ) 5

6 [ ] n C r r > n () ( ) n r ( ) n n C r r ( ) n r ( ) n r ( ) n + r [ ] f (x) + x, f n (x) ( + x)f (x) ( ) n r (n ) f n (x) x \ f n (x) ( + x)f (x) ( + x) n f n (x) ( + x) n f (x) ( + x) (n ) f n(x) ( + x) n f (x) ( + x) f n (x) ( + x) n ( ) x f n (x) ( + x)f (x) x f n ( ) ( ) 6

7 n () nc + n C + n C + + n C n n () nc + n C + n C 4 + n C + n C 3 + n C 5 + (3) nc n n C + n C + n C + + n C n nc + n C x + n C x + + n C n x n ( + x) n () x nc + n C + n C + + n C n n n {,,..., n } N k n C k N n C + n C + n C + + n C n N n nc + n C + n C + + n C n n () x nc n C + n C n C ( ) n nc n nc + n C + n C 4 + n C + n C 3 + n C 5 + () nc + n C + n C 4 + n C + n C 3 + n C 5 + n 7

8 (3) n n n n n C n n n r r n C r n r n C n r n C r n C r nc r n C r r,,,..., n n n n C n nc n n C + n C + n C + + n C n ( + x) n ( + x) n ( + x) n x n x n n C n x n ( + x) n n C + n C x + n C x + + n C n x n nc nc n x n + n C x nc x + + n C n x n nc ( n C nc n + n C nc + + n C n nc ) x n ( n C nc + n C nc + + n C n nc n ) x n nc n n C + n C + n C + + n C n () n (i) n nc + n C + n C n C n C + n C 3 + n C n C n (ii) n nc + n C + n C n C n n C + n C 3 + n C n C 8

9 n () n nc k n () k k! n ( k n) k n k (3 ) () () () n k n k n n! n! n n! k!(n k)! n n nc k n! k!(n k)! 9 r C r ( C r C r+ ) (3 ) ( + x) 4 ( + x) ( + x) x x 4 C x ( + x) C + C x + C x + + C x C C x + C x C 9 x C x C ( C C + C C C C ) x ( C C + C C + + C C ) x C r x 9

10 C r 4 C ( + x) 4 ( + x) ( + x) x 8 x 8 4 C 8 x 8 ( + x) C + C x + C x + + C x C C 8 x 8 + C x C 7 x C 8 x 8 C ( C C 8 + C C C 8 C ) x 8 ( C C + C C C 8 C ) x 8 9 ( C r C r+ ) x 8 r 9 r ( C r C r+ ) 4 C 8 9 r C r ( C r C r+ ) 4 C 4C 8 4!!! 8!! 4! 9 3 9

11 3 n () nc + nc + 3 nc n nc n () nc + nc + 3 nc n nc n () n, k k n C k k n! k!(n k)! n (n )! (k )!{(n ) (k )}! n C k ( + x) nc + n C + + n nc n C r x r x C r n n k n C r k n n C k k n k n nc + n C + + n nc n n n C k C r C r nc + n C + + n nc n n

12 ( + x) n n nc r x r x n n( + x) r n C r x r r x n r n C r n r nc + n C + + n nc n n () n n ( + x) n nc r x r x n nc r n C r m m mc r m ( ) n, k k n C k k n! k!(n k)! n (n )! (k )!{(n ) (k )}! n C k k n C k n C k (n, k ) ( )

13 n k nc k n n k k n C k k n k n C k n k n {(k ) + } C k k n (k ) C k + n k n r C r + n n, r ( ) n k C k C r n r r C r + n C r ( ) n r C r (n ) n C r r C r (n ) n C r r r n (n ) s n C s (n ) n ( ( ) ) C r n k nc k n r C r + n r C r n (n ) n + n n(n + ) n n k nc k C n n k nc k n(n + ) n 3

14 n, k n k(k ) n C k k(k ) n(n ) n(n ) n! k!(n k)! n(n ) n C k n k(k ) n C k k (n )! (k )!(n k)! (n )! (k )! {(n ) (k )}! n k(k ) n C k k n n(n ) n C k k n n(n ) n C k x () ( )( ) n ( + x) n n C k n n C k n n k(k ) n C k n(n ) n k n k n C k n k ( ) ( ) 4

15 n n n k nc k k(k ) n C k + k n C k k k k n(n ) n + n n(n + ) n n n ( + x) n n nc r x r x n n( + x) r n C r x r r x n n(n )( + x) n r(r ) n C r x r r x n r r n C r n, n r(r ) n C r n(n ) n r n n n n k nc k k nc k (k k) n C k + k n C k k k n k(k ) n C k + k k n k n C k k n(n ) n + n n(n + ) n n k nc k n(n + ) n n 5

16 3 n () nc + n C + n C + + n C n n () nc + nc + + n nc n n (3) n+c + n+ C + + n+ C n n 7 4 n n C + n C x + n C x + + n C n x n ( + x) n () nc n C + n C + ( ) n nc n () nc + nc + + n nc n n (3) nc + nc +3 nc + +(n+) nc n (n+) 4 5 () k n C k n C k (k,,..., n) n () () S k nc k 6 n 3 () k n k k(k ) n C k n(n ) n C k () (3) n k(k ) n C k k n k nc k k 8 6

17 4 n () () (3) n nc k k + n ( ) k nc k+ k + n C k k + (3) 3 () k n nc k k + k + n + n+ C k+ n + n! k!(n k)! (n + )! (k + )! {(n + ) (k + )}! n nc k k + n n+c k+ n + n + n+ k n+c k x n+ ( + x) n+ n+c k x k n+ n+c k n+ n+ n+ n+c k k n+c k n+ C n+ n nc k k + n + n+ k n+c k n + (n+ ) 7

18 ( + x) n n nc r x r x ( + x) n dx n nc r x r dx [ ( + x) n+ n + ] x n [ x r+ nc r r + ] x ( + x) n+ n + n nc r r + xr+ x n+ n + n nc r r + n nc k k + n + (n+ ) () k n nc k k + k + n + n+ C k+ n + n! k!(n k)! (n + )! (k + )! {(n + ) (k + )}! n ( ) k n C k k + n ( ) k n+ C k+ n + n + n+ ( ) k n+c k k n+ ( x) n+ n+c k ( x) k 8

19 x n+ ( ) k n+c k n+ n+ ( ) k n+c k ( ) k n+c k k n ( ) k k n C k k + n + ( n+ ) ( ) k n+c k n+ C n+ ( ) k n+c k n + ( x) n n ( ) r nc r x r (3) k n ( x) n dx [ ] ( x) n+ n + n + n ( ) k nc k+ k + k + k + n + n + k n ( ) r nc r x r dx n [ ( ) r x r+ nc r r + n ( ) r nc r r + n C k k + n + ] (n)! (k + )!{n (k + )}! (n)! (k + )!(n k )! (n + )(n)! (k + )(k + )!{n + (k + )}! (n + )! (k + )!{n + (k + )}! n + n+ C k+ 9

20 ( + x) n+ nc k+ k + n + n + n+ C k+ n l n+c l n+ C + n+ C x + n+ C x + + n+ C n x n + n+ C n+ x n+ x ± n n+ C + n+ C + n+ C + + n+ C n + n+ C n+ n+ C n+ C + n+ C + n+ C n n+ C n+ n+ ( n+ C + n+ C + + n+ C n+ ) n+c + n+ C + + n+ C n+ n ( + x) n n nc k+ k + n + n + n l n+c l ( n ) n+c l n+ C l n + (n ) nc r x r x ( + x) n dx n nc r x r dx

21 [ ( + x) n+ n + ] x n [ ] x x r+ nc r r + x ± ( + x) n+ n + n nc r r + xr+ n+ n + n n n + nc r r + nc r r + ( )r+ + n+ n + n r nc r r + nc k+ k + nc k+ k + n n + 7 n A n nc + 3 nc nc n (n ) nc n B n n C n C A n B + n C 3 + ( ) n ( n + nc n n + ) n+

22 8 () n n ( ) k nc k () k k n (n + ) n C k (k + ) n+ C k+ n ( ) k (3) k + n C k n + 9 () n ( ) m nc m n m m n! nc m 3 n ( ) m m + n C m n + m () f(x) f n+ (x) (n,,,... ) f n+ (x) n! (n )! C m f(t)(x t) n dt () d dx f n+(x) f n (x) (n,,... ) f(x) f n (x) (98 ) () [] 6

23 6 () (b) (c) () f(x) n (x t) f(t) dt f(x) x n (n )! (b) f (x) f(t) dt, f (x) (k ) () f (x) () f k (x) (k )! f (t) dt,, f k (x) f k (t) dt (x t)f(t) dt (x t) k f(t) dt (k ) 69 () (x t) n f(t) (c) F n (x) dt (n ) n! d dx F n(x) F (x) (n ) ()(b)() n k () n () n (x t) (n )! f(t) dt (x t)! f(t) dt f(t) dt f(x) x () n k, f(x) x k n k + F (x) (x t) k (k )! f(t) dt F (x) f(x), F () 3 f(t) dt f(x)

24 (x t) k k! (x t) k f(t) dt F (t) dt k! [ ] (x t) k x k(x t) k ( ) F (t) F (t) dt k! k! (x t) k (k )! F (t) dt. F (x) x k f(x) x k + n k + ()() n (b) () f (x) xf (x) t f (t) dt [ tf (t) ] x tf (t) dt tf(t) dt x f(t) dt () (i) k tf(t) dt (x t)f(t) dt. (ii) n k f (x) k f k+ (x) f k+ (x) (k )! (x t) k f (t) dt k! f k+ (x) (k )! (k )! (k )! (x t) k f (t) dt ( ) (x t)k f k (t) dt {[ (x t)k f k (t) ] x + k (x t) k f(t) dt ( f () ) n k + ()() n } (x t) k f (t) dt 4

25 (c) G n (x) (x t) n f(t) dt G n (x) d dx G n(x) { n } nc k x n k ( t) k f(t) dt n } {nc k x n k ( t) k f(t) dt n } {(n k) n C k x n k ( t) k f(t) dt + n C k x n k ( x) k f(x) (n k) n C k (n k) n! (n k)!k! n n nc k x n k ( x) k (x x) n (n )! (n k)!k! n C k, d dx G n(x) n n n n C k x k ( t) k f(t) dt { n } C k x k ( t) k f(t) dt (x t) f(t) dt ng (x). d dx G n(x) n G (x) n! d dx F n(x) F (x) 5

26 3 5 () n n ( x) n ( ) r nc r x r n ( ) r r + n C r ( x ) n dx () n ( ) r r + n C r n () ( x ) n n ( ) r nc r x r () I n ( x ) n dx ( x ) n dx n ( ) r nc r x r dx n [ ( ) r x r+ nc r r + n ( ) r r + n C r ] 6

27 I n ( x ) n dx (x) ( x ) n dx [ x( x ) n] x n( x ) ( x) dx n ( x )( x ) dx { n ( x )( x ) dx n (I n I ) } ( x ) dx I n n n + I I ( x ) dx [x 3 x3] 3 I n n n + I n n n n + n n + (n)!! (n + )!! (n ) n I n (n ) n 4 5 I (n ) n (n)!! n (n ) 4, (n )!! (n ) (n 3) 3 (n)!! (n + )!! {(n)!!} (n + )!!(n)!! {n n!} (n + )! 4n (n!) (n + )! 7

28 n ( ) r r + n C r 4n (n!) (n + )! n n (n + )! (n!), J n ( x ) n dx, K n n J n () n+ n n () K, K J n+ J n (3) J n+ K n+ x ( x ) n dx J n+ J n (x) ( x ) n+ dx J n+ J n K n (4) K n J n n (5) n ( ) k L n k + n C k n C 3 n C + 5 n C 7 n C ( )n n + n C n L n J n (4 ) J n x x 3 () ( x 3 ) n n ( ) r nc r x 3r () I n ( x 3 ) n dx ( x 3 ) n dx 8 n ( ) r nc r x 3r dx n [ ( ) r x 3r+ nc r 3r + n ( ) r 3r + n C r ]

29 I n ( x 3 ) n dx (x) ( x 3 ) n dx [ x( x 3 ) n] x n( x 3 ) ( 3x ) dx 3n ( x 3 )( x 3 ) dx { 3n ( x 3 )( x 3 ) dx 3n (I n I ) } ( x 3 ) dx I n 3n 3n + I I ( x 3 ) dx [x 4 x4] 3 4 I n 3n 3n + I 3n 3n n 3n + 3n 3n + (3n)!!! (3n + )!!! 3(n ) 3n I n 3(n ) 3n 6 7 I 3(n ) 3n (3n)!!! 3n 3(n ) 6 3, (3n )!!! (3n ) (3n 5) 4 (!!! ) n ( ) r 3r + n C r (3n)!!! (3n + )!!! 9

30 6 n, r r n () n+c r n C r + n C r () nc n C + n C + ( ) n nc n (3) nc n C + 3 n C 3 + ( ) n n C n n () (3) ( x) n n C n C x + n C x + ( ) n nc n x n nc x n C x + + ( ) nc n x n ( x) n x { nc n C x + + ( ) nc n x } ( x) n dx x dx { nc n C x + + ( ) nc n x } dx [ nc x n C x + x nc ( ) C x n n n C n C + 3 n C 3 + ( ) n n C n t x n n ] ( x) n x dx t n t t n t ( dt) dt ( + t + t + + t ) dt [ t + t + t tn n ] n 3

31 nc n C + 3 n C 3 +( ) n n C n n () (3) (i) n () C () (ii) n m (m ) () () mc m C + 3 m C 3 +( ) m m m C m m n m + m+c m+ C + 3 m+ C 3 + ( ) m m m+ C m + ( ) m m + m+ C m+ (mc m C + 3 m C 3 + ( ) m ) m m C m m+ C m C ( m+c m C ) + }{{} 3 ( m+c 3 m C 3 ) + }{{} m C m C + ( ) m m ( m m+c m m C m ) +( ) }{{} m + m+ C m+ m C m m C + 3 m C + + ( ) m m m C m + ( ) m m + m C m m C + 3 m C + +( ) m m m C m +( ) m m + m C m ( x) m m C m C x + m C x + ( ) m mc m x m m + n m + (i)(ii) n 3

32 n n ( ) r n nc r r r r r n C + n C + ( ) n n C n ( n ) n () () () nc r C r C r n, r n () ( ) r n C r r ( )n n r (3) n n n ( ) r nc r r r n n (6 ) 3

33 7 m, n I n, m x n ( x) m dx () m I n, m I n+, m () I n, m n!m! (n + m + )! (3) n!m! m C (n + m + )! n + m C n ( )m m C n n + m + () m I n, m x n ( x) m dx ( x n+ n + [ x n+ ( x)m n + m n + () m I n, m m n + I n+, m I n, m ) ( x) m dx ] x n+ ( x) m dx [ x n dx x n+ n + m n + I n+, m x n+ n + m( x)m ( ) dx ] m n + m n + I n+, m n + m n + m n + n + m I n+m, m n + m n + n + m m! (n + m + )(n + m) (n + ) n + m + m! n! (n + m + )(n + m) (n + ) n! n!m! (n + m + )! 33

34 m I n, m n!m! (n + m + )! (3) x n ( x) m m C m C x + + ( ) m m C m x m x n ( x) m m C x n m C x n+ + + ( ) m m C m x n+m x [ x n ( x) m dx m C x n+ n + m C x n+ n ( )m m C m x n+m+ n + m + ] () m C n + m C n ( )m m C n n + m + n!m! (n + m + )! m C n + m C n ( )m m C n n + m + m, n I n,m π () n I n, m I n, m+ () I n+, m+ x n ( x) m dx (3) n!m! m C (n + m + )! n + m C n ( )m! cos n θ sin m θ dθ m C n n + m + (4 ) 34

35 8 x, y () n, b n + y(y + ) (y + n)(y + n + ) y(y + ) (y + n) + b (y + )(y + ) (y + n + ) () n n! x(x + ) (x + n) n ( ) r n C r x + r 6 () () n + y(y + ) (y + n)(y + n + ) y(y + ) (y + n) + y(y + ) (y + n)(y + n + ) b (y + )(y + ) (y + n + ) n + (y + n + ) + by n + ( + b)y + (n + ) y + b, (n + ) n +, b () n! x(x + ) (x + n) n ( ) r n C r x + r (i) n! x(x + ) x(x + ) ( ) r C r x + r ( ) C x + ( ) C x + x x + x(x + ) 35

36 (ii) n n! y(y + ) (y + n) n + (n + )! x(x + ) (x + n)(x + n + ) n ( ) r n C r y + r n! n + x(x + ) (x + n)(x + n + ) { } n! x(x + ) (x + n) (x + )(x + ) (x + n + ) n! x(x + ) (x + n) n! (x + )(x + ) (x + n + ) n n ( ) r n C r x + r ( ) r n C r (x + ) + r ( ) n C x + ( ) n C x + + ( ) n C x ( )n n C n x + n { } ( ) n C x + + ( ) n C x ( ) n C x + n + ( )n n C n x + n + x + ( ) n C + n C x + + ( ) n C + n C x ( ) n n C n + n C x + n + ( ) n+ n C n x + n + x + ( ) n+ C x + + ( ) n+ C x ( )n n+ C n x + n }{{} + ( ) n+ n+ C n+ x + n + n+ ( ) r n+ C r x + r n ( ) r n+ C r x+r r n + (i)(ii) n [] () [4] 36

37 8 () n! x(x + ) (x + n) n ( ) r n C r x + r rising fctoril () n rising fctoril () n () n () n { ( + ) ( + n ) ( n ) ( n ) n ( ) r n C r x + r n! x(x + ) (x + n) n! (x) n+ ( ) ( ) x () n ( ) r ( ) x n C r + r n! (n + ) n + n ( ) r n C r r + ( n! ) n+ ( ) n+ 3 n (n + ) n+ 3 5 (n + ) 4 6 (n) n+ n n! (n + )! n! n+ 37

38 n ( ) r ( ) n C r r + n! n+ 4n (n!) (n + )! 5 (3) p ( ) x p n ( ) r ( ) p p n C r pr + n! n+ ( ) x m + ( m ) n ( ) r 7 (3) n C r m + + r + n! (m + )(m + ) (m + n + ) m!n! m!(m + )(m + ) (m + n + ) m!n! (m + n + )! ( ) x ( ) n ( ) r r n C r x + r n ( ) r n C r x + r x n! x(x + ) (x + n) x { } n! x (x + ) (x + n) f(x) n! (x + ) (x + n) f() 38

39 { f (x) n! (x + ) (x + ) (x + n) + (x + ) (x + ) (x + n) lim x r n ( ) r + + (x + ) (x + ) (x + n) } n C r x + r lim x x { lim x f(x) x lim x f(x) f() x } n! (x + ) (x + n) f () ( ) n! n + n + + n ( ) n n ( ) r n C r r r ( ) n 6 (3) 39

40 x n ( x) m dx 3 p, q B(p, q) () B(p, q) B(q, p) x p ( x) q dx () B(p, q + ) q B(p +, q), B(p +, q) + B(p, q + ) B(p, q) p (3) B(p +, q) p p + q (4) B(5, 4) B(p, q), B(p, q + ) q B(p, q) p + q (4 ) B(p, q) (p )!(q )! (p + q )! b (x ) p (b x) q dx (p )!(q )! (p + q )! (b ) p+q 4 p, q B(p, q) () q > B(p, q) q B(p +, q ) p (p )!(q )! () B(p, q) (p + q )! (3) b x p ( x) q dx () (x ) p (b x) q dx (b ) p+q B(p, q) () [] 4 4

41 4 m, n α, β I(m, n) β α () n I(m, n) () β α () I(m, n) (x α) m (β x) n dx (x α) m (β x) n dx β α { (x α) m+ n I(m +, n ) m + m + m!n! (β α)m+n+ (m + n + )! } (β x) n dx [ m + (x α)m+ (x β) n] β β + (x α) m+ n(β x) dx m + α n I(m +, n ). m + () I(m, n) n I(m +, n ) n!m! m + α I(m, n) m!n! I(m +, n ) (m + )!(n )!. J(m, n) I(m, n) m!n! J(m, n) J(m +, n ). J(m, n) J(m +, n ) J(m +, n ) J(m + n, ) β α I(m, n) β α (x α) m+n dx [ m + n + (x α)m+n+] β α m + n + (β α)m+n+. (x α) m (β x) n dx m!n! (m + n + )! (β α)m+n+ m!n! (m + n + )! (β α)m+n+. 4

42 5 f(x), g(x) (f g)(x) (f g)(x) f(t)g(x t) dt () f(x) x m, g(x) x n (m, n ) (f g)(x) m!n! (m + n + )! xm+n+ () m, n β α (x α) m (β x) n dx m!n! (β α)m+n+ (m + n + )! m n () (i) n m (f g)(x) t m dt xm+ m +, m!n! (m + n + )! xm+n+ m!! (m + + )! xm++ xm+ m + (f g)(x) m!n! (m + n + )! xm+n+ (ii) n k( ) m f m (x) x m, g k (x) x k (f m g k )(x) m m!k! (m + k + )! xm+k+ (f m+ g k )(x) (m + )!k! (m + + k + )! xm++k+ 4

43 n k + g k+ (x) x k+ (f m g k+ )(x) t m (x t) k+ dt ( ) t m+ (x t) k+ dt m + [ ] x t m+ x (x t)k+ m + k + m + t m+ (x t) k dt k + m + (f m+ g k )(x) dt k + m + t m+ m + (k + )(x t)k ( ) dt (m + )!k! (m + + k + )! xm++k+ ( ) m!(k + )! {m + (k + ) + }! xm+(k+)+. n k + (i)(ii) m, n () () t m (x t) n dt m!n! (m + n + )! xm+n+ β α (x α) m (β x) n dx β α t m (β α t) n dt ( x α t ) m!n! (β α)m+n+ (m + n + )! 4 43

44 5 m, n f m, n (x) f m, n (x) (x ) m (x b) n () m d dx () I m, n b I m, n { } n + f m, n+(x) f m, n (x) + m n + f m, n+(x) f m, n (x) dx m () m n + I m, n+ (3) () I m, n I m, n ( ) n m!n! (m + n + )! (b )m+n

45 9 F (x) x ()(b) () F () (b) F (x)f (y) F (x + y) (i) F (x + ) xf (x) π (ii) n F (n) (n )! (iii) F (x) > ( ) (iv) F π (v) F (x) x π F (x)f (x + F (x) Γ (x) π Γ (x) (cos θ) x (sin θ) y dθ ) e t t x dt (x > ) (cos θ) x (sin θ) y dθ B(x, y) p >, q > B(p, q) x p ( x) q dx ( ) ( ) x cos θ B(p, q) x p ( x) q dx (b) [] P.3 π Γ (x)γ (y) Γ (x + y)b(x, y) (cos θ) p (sin θ) q dθ 45

46 (v) Γ (x)γ [] P.97 () (i) (b) y ( x + ) π x Γ (x) F (x)f () F (x + ) F (x + ) F (x + ) x π [ x () F (x + ) xf (x)f () xf (x) (ii) () (i) F (n) (n )F (n ) (cos θ) x sin θ dθ (cos θ)x] π (n )(n )F (n ) (n )(n ) F () (n )! (iii) s F (s) > ( (b) y x ) {F (x)} F (x) π (cos θ sin θ) x dθ F (x) x π (sin θ) x dθ {F (x)}, π (sin θ) x dθ > F (x) s F (s) F (s) \ s n s F (s)f (n s) F (n) n (b) x s, y n s π (n )! (cos θ) s (sin θ) (n s) dθ π 46 (cos θ) s (sin θ) (n s) dθ >

47 F (s) \ s < 3 s + (i) F (s) F (s + ) s > x F (x) > (iv) x ( ) F > { ( )} F π F () dθ π ( ) F π (v) (b) y ( ) F (x)f F ( x + ) π (cos θ) x dθ π (sin θ) x dθ π π π x (sin t) dt x (sin t) dt + x (sin t) dt + [ t θ ] π π π x (sin t) dt x (sin(π u)) du [ u π t ] π π π π x (sin t) dt + (sin t) x dt π (sin u) x du [ ( )] sin π x [ v ( dv) v π ] t (cos v) x dv 3 47

48 F (x) x F π ( x + (sin θ) x dθ ) π (cos θ) x dθ {F (x)} ( ) F (x)f 3 x F F (x) ( x + ) F ( (x) ) F ( ) F π F (x) (x x π F (x)f + ) 6 F (x) x ()(b) () F () (b) F (x)f (y) F (x + y) π (cos θ) x (sin θ) y dθ (i) F (x + ) F (x) (ii) F (x) > ( ) (iii) F π (iv) F (x) (x x π F (x)f + ) (978 ) 48

49 4 k p C k p p C k n k ( k n) nc k () m m C m () p k p p C k p (3) p n (n + ) p n p p 6 () () m m(m ) mc m m(m ) mq q m q q m q + q m 3 () p k < p pc k p! (p k)!k! p k (p )! {(p ) (k )}!(k )! p k p C k p p k (k,,..., p ) p C k p 49

50 (3) p (n + ) p n p p C n p + p C n p + p C n p + + p C p n + p C p n p p C n p + p C n p + + p C p n ( ) () p C k p (k,,..., p ) p ( ) 7 p () k k < p p C k p () n p (n + )p p np p (3 ) p r () x, x,..., x r (x + x + + x r ) p p x p p x x r r p, p,..., p r p + p + + p r p () x, x,..., x r (x + x + + x r ) p (x p + x p + + x p r ) p (3) r p r p p () () (x + x + + x r ) p p x p p x x r r (x + x + + x r ) p (x + x + + x r )(x + x + + x r ) (x + x + + x r ) 5

51 p x p x p x r p r x p x p x r p r p! p!p! p r! () (x + x + + x r ) p x p, x p,, x r p (x + x + + x r ) p (x p + x p + + x r p ) p! p!p! p r! x p x p x r p r p + p + + p r p, p i p (i,,..., r) ( ) p! p!p! p r! p(p )! p!p! p r! p ( ) p!p! p r! p p! p p!p! p r! (3) () x x x r r p r r(r p ) p r p r p p 5

52 () n, r n, r n r nc r n C r () p r r p p C r p (3) p 3 (x + ) p p pc r x r p p (4) p 5 3 p p () ()() (3) (x + ) p p pc r x r x p p C + p C + p C + + p C p + p C p + p C + p C + + p C p ( ) () p C r (r,,..., p ) p p 3 ( ) p p (4) (x + ) p p pc r x r x 3 p p C + p C + pc + + p pc p + p pc p p + + p C + pc + + p pc p ( ) () p C r (r,,..., p ) p ( ) 3 p p p + 3 (3) p p p 5 3 p p () p r p r r p C r p p C r p C r p () p p p 998 5

53 3 p () r p r p C r p p C r p r () s q (q, s) q C s q (3) m, n (m + n) p (m p + n p ) p (4) n n p n p n 4 () () () 4 C 6 4 (3) m, n (m + n) p (m p + n p ) p C m p + p C m p n + p C m p n + + p C p mn p + p C p n p (m p + n p ) p C m p n + p C m p n + + p C p mn p ( ) () p C r (r,,..., p ) p ( ) p m, n (m + n) p (m p + n p ) p (4) n p n p (i) n p p (ii) n k (k ) k p k p (3) (k + ) p (k p + ) p (k + ) p (k + ) (k + ) p (k p + ) + k p k p n k + (i)(ii) n 53

54 4 m m mc, m C,..., m C m d m d m () m d m m () k k m k d m k (3) m d m 9 () () m m C m d m d m m k m mc k m! (m k)!k! m k (m )! {(m ) (k )}!(k )! m k m C k m m k (k,,..., m ) m C k m m C, m C,..., m C m, m d m m () k m k d m (i) k m d m (ii) k l (l ) l m l d m (l + ) m (l + ) l m + m C l m + m C l m + + m C m l + (l + ) (l m l) + m C l m + m C l m + + m C m l l m l d m,d m m C, m C,..., m C m m C l m + m C l m + + m C m l d m k l + 54

55 (i)(ii) k (3) m n (n ) ( + x) n + n C x + n C x + + n C x + x n x n C + n C + n C + nc n C + n C n + n C mc m C + m C m + m C m d m () d m \ d m k d m k k m k (d m ) m (d m ) m C d m m m C d m m + + m C r d m r m ( ) r + + m C m d m ( ) m + m C m ( ) m (d m ) d m (mc d m m m C d m m + + m C m ) + () k m k d m d m d m d m d m 55

56 5 nc k n p, q n pq n ( k n ) 997 () n C n pq n n C k ( k n ) p q n n C k ( k n ) p q n n C k ( k n ) nc p pq(pq )(pq ) (pq p + ) p(p )(p ) ( ) pq(pq )(pq ) (pq p + ) p p pq ( ) p n C q q n n C k ( k n ) 56

57 6, b > b p, d p > p b p d d p () 995 d p b p ( b)( p + p b + + b p ) d p >, > b ( p + p b + + b p ) > b d p + p b + + b p d p b p (b + ) p b p b p + p C b p + p C b p + + p C p b + b p + p C b p + p C b p + + p C p b pc b p + p C b p + + p C p b ( d ) ( ) p (i) k p pc k p! (p k)!k! p k (p )! {(p ) (k )}!(k )! p k p C k p p k (k,,..., p ) p C k p p C, p C,..., p C p p p C b p + p C b p + + pc p b p (ii) b pc b p + p C b p + + p C p b b ( pc b p + p C b p 3 ) + + p C p b d ( ) p C b p + p C b p + + p C p b d p > p (i)(ii) ( ) p p 57

58 9 p n n p n p n 977 () n p n p (i) n p p (ii) n k (k ) n k + (k + ) p (k + ) k p + p C k p + p C k p + + p C p k + (k + ) (k p k) + p C k p + p C k p + + p C p k ( ) k p pc k p! (p k)!k! p k (p )! {(p ) (k )}!(k )! p k p C k p p k (k,,..., p ) p C k p p C, p C,..., p C p p p C k p + p C k p + + pc p k p k p k p ( ) p n k + (i)(ii) k 58

59 5 7 n () < i < n i n C i C i + C i () m m n m nc i (3) i n i C i i ( ) j nc j ( ) i C i j 3 () ()() (3) i (i) i j ( ) j nc j ( ) nc ( ) C i (ii) i ( i n ) i+ i ( ) j nc j ( ) j nc j + ( ) i+ nc i+ j j ( ) i C i + ( ) i+ nc i+ ( ) i+ ( n C i+ C i ) ( ) i+ C i+ i + (i)(ii) i n i i ( ) j nc j ( ) i C i j 59

60 8 n s(n) n 6 s(n) k m s(n) m k n S(k, m) s(n) 3 n,, 3 S(, 3) 3 () k (k ) S(k, m) m S(k, i) (m,,......, 9) () n r n C r C n C r n r+ n ic n i r+ n, r (n r ) i (3) k (k ) S(k, m) k+m C m (m,,......, 9) i () () k n s(n) m n j ( j m ) k m j j ( j m ) S(k, m j) () n r+ S(k, m) i m j S(k, m j) S(k, m) + S(k, m ) + + S(k, ) + S(k, ) S(k, ) + S(k, ) + + S(k, m ) + S(k, m) m S(k, i) i n ic n i r+ n r+ i n ic r n r+ i n ic r n C r 6

61 n r+ i n ic r n r i n ic r }{{} n i+ C r n i C r + r C r n r ( n i+ C r n i C r ) + i ( n C r C r ) + ( C r n C r ) + + ( r+ C r r C r ) + n C r r C r + n C r (3) k S(k, m) k+m C m ( ) (i) k () m S(, m) S(, i) i +m C m m C m m m m i ( ) (ii) k l (l ) ( ) () m S(l +, m) S(l, i) m i i l+i C i l++m C m l+m C l m i l+m ic m i l+m C m + l+m 3 C m + + l C + l C l C + l C + + l+m 3 C m + l+m C m m j l+j C j S(l +, m) l++m C m k l + ( ) (i)(ii) k (k ) ( ) 6

62 () nc k + n C k+ n+ C k+ (k,,,..., n ) () () n nc + n C + + n C n n () () () n (i) n () C + C + () (ii) n k k+c + k+ C + + k+ C k + k+ C k+ k C + ( k C + k C ) + + ( k C k + k C k ) + k C k ( k C + k C + + k C k ) k k+ (i)(ii) n nc + n C + + n C n n () ( + b) n n nc r n r b r () n nc r () () + (n)! (n!) 98 6

63 n C r () ( x ) 6 x 4 () ( + x) 6 ( y) 6 xy 3 x y (3) 6C 6 C 4 6 C 6 C C 6 C 6 C 3 6 C + 6 C 4 6 C (4) n n 4 f(n) n C n C 4 n C n C 3 + n C n C n C 3 n C + n C 4 n C f(n) n 7 () () ( x ) 6 6 C r 6 r ( x ) r ( ) r 6C r x r x 4 r 4 r x 4 ( ) 6C 5 () ( + x) 6 6 C p 6 p x p 6 C p x p ( y) 6 6 C q 6 q ( y) q ( ) q 6C q y q ( + x) 6 ( y) 6 ( ) q 6C p 6C q x p y q xy 3 p, q 3 ( ) 3 6C 6C 3 6 x y p, q ( ) 6C 6C (3) 6 C 6 C 4 6 C 6 C C 6 C 6 C 3 6 C + 6 C 4 6 C (+x) 6 ( y) 6 y 4, xy 3, x y, x 3 y, x 4 y x ( + x) 6 ( x) 6 ( x ) 6 x 4 () 5 (4) f(n) ( + x) n ( y) n y 4, xy 3, x y, x 3 y, x 4 y x ( + x) n ( x) n ( x ) n x 4 ( x ) n n C r n r ( x ) r ( ) r nc r x r x 4 r 4 r x 4 ( ) nc n(n ) n 63

64 () (4) n 4 f(n) n C n C 4 n C n C 3 + n C n C n C 3 n C + n C 4 n C ( n C n C 4 n C n C 3 ) + ( n C ) { } { n(n )(n )(n 3) n(n )(n ) n(n ) n n(n ) ((n )(n 3) 4n(n ) + 3n(n )) n(n ) ( n 5n + 6 4n + 8n + 3n 3n ) n(n ) 6 n(n ) n } 9 ω + ω + ω n () ω 3 () ( + ω) 3n ( ) n (3) 3nC 3k+ n 3nC 3k 3nC 3k+ 3nC 3k+ ( ) n 7 () () + ω + ω ω 3 (ω )(ω + ω + ) ω 3 () + ω + ω + ω ω (+ω) 3n ( ω ) 3n ( ) 3n (ω ) 3n { ( ) 3} n (ω 3 ) n ( ) n n ( ) n 64

65 (3) ( + ω) 3n 3n 3nC r ω r n 3nC 3k ω 3k + 3nC 3k+ ω 3k+ + n n ( n 3nC 3k + 3nC 3k+ ω + 3nC 3k + 3nC 3k+ ω 3nC 3k+ ω 3k+ 3nC 3k+ ω + 3nC 3k+ ( ω ) 3nC 3k ) 3nC 3k+ + () ( + ω) 3n ( ) n n ( ) n ( n 3nC 3k 3nC 3k ) 3nC 3k+ + 3nC 3k+, 3nC 3k+ ( 3nC 3k+ ( 3nC 3k+ 3nC 3k+ ) ω 3nC 3k+ ) ω 3nC 3k+ ω n 3nC 3k 3nC 3k+ n 3nC 3k 3nC 3k+ ( ) n 3nC 3k+ 3nC 3k+ ( ) n 65

66 ( + x + x ) n x r r () n r n+r () n 3 3 (3) () () ( + x + x ) n ( + x + x ) n + x + x + + n x n ( + x + x ) n x n ( + x + x ) n ( x n + x + ) n n x s x s x n+r n+r x r x x s ( + x + x ) n 3 ( x n + x + x ) n n s s x s ( + ) n n x + x s x n s s 3 ( + x + x ) n x r n s r (s n r) n r n r n+r () x n 3 3 (3) 3 ω ω 3 ω 3 (ω )(ω + ω + ) ω ω + ω + x ω 66

67 ( + ω + ω ) n n s [ n 3 ] [ n 3 ] [ n 3 ] s ω s 3k ω 3k + 3k + 3k + [ n 3 ] 3k + ω + ω [ n 3 ] 3k [ n 3 ] [ 3 ] [ 3 ] [ 3 ] [ n 3 ] 3k+ 3k+ ω 3k+ + 3k+ ω + 3k+ ω + 3k+ [ n 3 ] [ n 3 ] + + [ 3 ] [ n 3 ] 3k+ ω 3k+ ω 3k+ 3k+ ( ω ) [ 3 ] 3k+ 3k+ [ n 3 ] [ n 3 ] 3k+ 3k+ ω ω [ n 3 ] 3k [ n 3 ] 3k+, [ 3 ] 3k+ [ n 3 ] 3k+ ω [ n 3 ] 3k [ n 3 ] 3k+, [ 3 ] 3k+ [ n 3 ] 3k+ [ n 3 ] 3k [ 3 ] 3k+ [ n 3 ] 3k

68 n () n nc k n C + n C + + n C + n C n n () z z z + z z 4n (3) n ( ) k 4n C k 4n C 4n C + 4n C 4n + 4n C 4n ( 4) n () () ( + x) n x n nc k x k n nc k n () z z + z ± i z ± i [ ( cos ± π ) + sin 4 ( ± π 4 )] z 4n ( [ ( ) 4n cos ± π ) ( + sin ± π )] 4n 4 4 n [ cos ( ± nπ ) + sin (±nπ) ] 4 n ( ) n ( 4) n (3) ( + x) 4n 4n 4nC k x k x + i ( + i) 4n 4n 4nC k i k n n n 4nC 4r i 4r + 4nC 4r + 4nC 4r + 4nC 4r+ i 4r+ + 4nC 4r+ i + 4nC 4r+ i 68 4nC 4r+ i 4r+ + 4nC 4r+ i + 4nC 4r+ 4nC 4r+3 i 3 4nC 4r+3 i 4nC 4r+3 i 4r+3

69 () ( + i) 4n ( 4) n n 4nC 4r + 4nC 4r+ i n 4nC 4r 4nC 4r+ 4nC 4r+ ( 4) n 4nC 4r+3 i ( 4) n n ( ) k 4nC k 4n C 4n C + 4n C 4n + 4n C 4n ( 4) n [] () z 4n ( ± i) 4n { ( ± i) } n (±i) n { (±i) } n ( 4) n p, q (p q ) p C q! ( () n, k n+k+ C k+ n+kc k p! q!(p q)! n+k+c k ) n () m C 3 4C 3 5C 3 mc 3 3 () () n, k 69

70 ( n+k+c k+ (n + k + )! (k + )!n! n + k + k + k k + n () () n+k+c k+ n+kc k n + k + ( ( k!n! (n + k)! n+kc k n+k+c k ) k!(n + )! (n + k + )! n+k+c k ) ) k k + k n+3c 3 ( n+c n+3c ) 3 n+3c 3 3 ( n+c n+3c ) 3C 3 + 4C 3 + 5C mc m 3 m 3 k+3c 3 3 ( ( k+c C mc ( ) m(m ) 3 m m m(m ) 3(m + )(m ) m(m ) k+3c ) ) 7

71 [] : [] : [3] : [4] : () 7

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2 II No.1 [n/] [1]H n x) H n x) = 1) r n! r!n r)! x)n r r= []H n x) n,, H n x) = 1) n H n x) [3] H n x) = 1) n dn x e dx n e x [4] H n+1 x) = xh n x) nh n 1 x) ) d dx x H n x) = H n+1 x) d dx H nx) = nh

More information

2 2 MATHEMATICS.PDF 200-2-0 3 2 (p n ), ( ) 7 3 4 6 5 20 6 GL 2 (Z) SL 2 (Z) 27 7 29 8 SL 2 (Z) 35 9 2 40 0 2 46 48 2 2 5 3 2 2 58 4 2 6 5 2 65 6 2 67 7 2 69 2 , a 0 + a + a 2 +... b b 2 b 3 () + b n a

More information

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x [ ] IC. f(x) = e x () f(x) f (x) () lim f(x) lim f(x) x + x (3) lim f(x) lim f(x) x + x (4) y = f(x) ( ) ( s46). < a < () a () lim a log xdx a log xdx ( ) n (3) lim log k log n n n k=.3 z = log(x + y ),

More information

i

i i 3 4 4 7 5 6 3 ( ).. () 3 () (3) (4) /. 3. 4/3 7. /e 8. a > a, a = /, > a >. () a >, a =, > a > () a > b, a = b, a < b. c c n a n + b n + c n 3c n..... () /3 () + (3) / (4) /4 (5) m > n, a b >, m > n,

More information

newmain.dvi

newmain.dvi 数論 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/008142 このサンプルページの内容は, 第 2 版 1 刷発行当時のものです. Daniel DUVERNEY: THÉORIE DES NOMBRES c Dunod, Paris, 1998, This book is published

More information

熊本県数学問題正解

熊本県数学問題正解 00 y O x Typed by L A TEX ε ( ) (00 ) 5 4 4 ( ) http://www.ocn.ne.jp/ oboetene/plan/. ( ) (009 ) ( ).. http://www.ocn.ne.jp/ oboetene/plan/eng.html 8 i i..................................... ( )0... (

More information

( )

( ) 18 10 01 ( ) 1 2018 4 1.1 2018............................... 4 1.2 2018......................... 5 2 2017 7 2.1 2017............................... 7 2.2 2017......................... 8 3 2016 9 3.1 2016...............................

More information

入試の軌跡

入試の軌跡 4 y O x 4 Typed by L A TEX ε ) ) ) 6 4 ) 4 75 ) http://kumamoto.s.xrea.com/plan/.. PDF) Ctrl +L) Ctrl +) Ctrl + Ctrl + ) ) Alt + ) Alt + ) ESC. http://kumamoto.s.xrea.com/nyusi/kumadai kiseki ri i.pdf

More information

2000年度『数学展望 I』講義録

2000年度『数学展望 I』講義録 2000 I I IV I II 2000 I I IV I-IV. i ii 3.10 (http://www.math.nagoya-u.ac.jp/ kanai/) 2000 A....1 B....4 C....10 D....13 E....17 Brouwer A....21 B....26 C....33 D....39 E. Sperner...45 F....48 A....53

More information

17 ( ) II III A B C(100 ) 1, 2, 6, 7 II A B (100 ) 2, 5, 6 II A B (80 ) 8 10 I II III A B C(80 ) 1 a 1 = 1 2 a n+1 = a n + 2n + 1 (n = 1,

17 ( ) II III A B C(100 ) 1, 2, 6, 7 II A B (100 ) 2, 5, 6 II A B (80 ) 8 10 I II III A B C(80 ) 1 a 1 = 1 2 a n+1 = a n + 2n + 1 (n = 1, 17 ( ) 17 5 1 4 II III A B C(1 ) 1,, 6, 7 II A B (1 ), 5, 6 II A B (8 ) 8 1 I II III A B C(8 ) 1 a 1 1 a n+1 a n + n + 1 (n 1,,, ) {a n+1 n } (1) a 4 () a n OA OB AOB 6 OAB AB : 1 P OB Q OP AQ R (1) PQ

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ = 1 1.1 ( ). z = + bi,, b R 0, b 0 2 + b 2 0 z = + bi = ( ) 2 + b 2 2 + b + b 2 2 + b i 2 r = 2 + b 2 θ cos θ = 2 + b 2, sin θ = b 2 + b 2 2π z = r(cos θ + i sin θ) 1.2 (, ). 1. < 2. > 3. ±,, 1.3 ( ). A

More information

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1)

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1) 1. 1.1...,. 1.1.1 V, V x, y, x y x + y x + y V,, V x α, αx αx V,, (i) (viii) : x, y, z V, α, β C, (i) x + y = y + x. (ii) (x + y) + z = x + (y + z). 1 (iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y

More information

2012 A, N, Z, Q, R, C

2012 A, N, Z, Q, R, C 2012 A, N, Z, Q, R, C 1 2009 9 2 2011 2 3 2012 9 1 2 2 5 3 11 4 16 5 22 6 25 7 29 8 32 1 1 1.1 3 1 1 1 1 1 1? 3 3 3 3 3 3 3 1 1, 1 1 + 1 1 1+1 2 2 1 2+1 3 2 N 1.2 N (i) 2 a b a 1 b a < b a b b a a b (ii)

More information

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y)

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 1 1977 x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) ( x 2 y + xy 2 x 2 2xy y 2) = 15 (x y) (x + y) (xy

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

(1) (2) (1) (2) 2 3 {a n } a 2 + a 4 + a a n S n S n = n = S n

(1) (2) (1) (2) 2 3 {a n } a 2 + a 4 + a a n S n S n = n = S n . 99 () 0 0 0 () 0 00 0 350 300 () 5 0 () 3 {a n } a + a 4 + a 6 + + a 40 30 53 47 77 95 30 83 4 n S n S n = n = S n 303 9 k d 9 45 k =, d = 99 a d n a n d n a n = a + (n )d a n a n S n S n = n(a + a n

More information

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C 8 ( ) 8 5 4 I II III A B C( ),,, 5 I II A B ( ),, I II A B (8 ) 6 8 I II III A B C(8 ) n ( + x) n () n C + n C + + n C n = 7 n () 7 9 C : y = x x A(, 6) () A C () C P AP Q () () () 4 A(,, ) B(,, ) C(,,

More information

9 5 ( α+ ) = (α + ) α (log ) = α d = α C d = log + C C 5. () d = 4 d = C = C = 3 + C 3 () d = d = C = C = 3 + C 3 =

9 5 ( α+ ) = (α + ) α (log ) = α d = α C d = log + C C 5. () d = 4 d = C = C = 3 + C 3 () d = d = C = C = 3 + C 3 = 5 5. 5.. A II f() f() F () f() F () = f() C (F () + C) = F () = f() F () + C f() F () G() f() G () = F () 39 G() = F () + C C f() F () f() F () + C C f() f() d f() f() C f() f() F () = f() f() f() d =

More information

f(x) = x (1) f (1) (2) f (2) f(x) x = a y y = f(x) f (a) y = f(x) A(a, f(a)) f(a + h) f(x) = A f(a) A x (3, 3) O a a + h x 1 f(x) x = a

f(x) = x (1) f (1) (2) f (2) f(x) x = a y y = f(x) f (a) y = f(x) A(a, f(a)) f(a + h) f(x) = A f(a) A x (3, 3) O a a + h x 1 f(x) x = a 3 3.1 3.1.1 A f(a + h) f(a) f(x) lim f(x) x = a h 0 h f(x) x = a f 0 (a) f 0 (a) = lim h!0 f(a + h) f(a) h = lim x!a f(x) f(a) x a a + h = x h = x a h 0 x a 3.1 f(x) = x x = 3 f 0 (3) f (3) = lim h 0 (

More information

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google I4 - : April, 4 Version :. Kwhir, Tomoki TA (Kondo, Hirotk) Google http://www.mth.ngoy-u.c.jp/~kwhir/courses/4s-biseki.html pdf 4 4 4 4 8 e 5 5 9 etc. 5 6 6 6 9 n etc. 6 6 6 3 6 3 7 7 etc 7 4 7 7 8 5 59

More information

4 4 4 a b c d a b A c d A a da ad bce O E O n A n O ad bc a d n A n O 5 {a n } S n a k n a n + k S n a a n+ S n n S n n log x x {xy } x, y x + y 7 fx

4 4 4 a b c d a b A c d A a da ad bce O E O n A n O ad bc a d n A n O 5 {a n } S n a k n a n + k S n a a n+ S n n S n n log x x {xy } x, y x + y 7 fx 4 4 5 4 I II III A B C, 5 7 I II A B,, 8, 9 I II A B O A,, Bb, b, Cc, c, c b c b b c c c OA BC P BC OP BC P AP BC n f n x xn e x! e n! n f n x f n x f n x f k x k 4 e > f n x dx k k! fx sin x cos x tan

More information

M3 x y f(x, y) (= x) (= y) x + y f(x, y) = x + y + *. f(x, y) π y f(x, y) x f(x + x, y) f(x, y) lim x x () f(x,y) x 3 -

M3 x y f(x, y) (= x) (= y) x + y f(x, y) = x + y + *. f(x, y) π y f(x, y) x f(x + x, y) f(x, y) lim x x () f(x,y) x 3 - M3............................................................................................ 3.3................................................... 3 6........................................... 6..........................................

More information

2011de.dvi

2011de.dvi 211 ( 4 2 1. 3 1.1............................... 3 1.2 1- -......................... 13 1.3 2-1 -................... 19 1.4 3- -......................... 29 2. 37 2.1................................ 37

More information

応用数学III-4.ppt

応用数学III-4.ppt III f x ( ) = 1 f x ( ) = P( X = x) = f ( x) = P( X = x) =! x ( ) b! a, X! U a,b f ( x) =! " e #!x, X! Ex (!) n! ( n! x)!x! " x 1! " x! e"!, X! Po! ( ) n! x, X! B( n;" ) ( ) ! xf ( x) = = n n!! ( n

More information

DVIOUT

DVIOUT A. A. A-- [ ] f(x) x = f 00 (x) f 0 () =0 f 00 () > 0= f(x) x = f 00 () < 0= f(x) x = A--2 [ ] f(x) D f 00 (x) > 0= y = f(x) f 00 (x) < 0= y = f(x) P (, f()) f 00 () =0 A--3 [ ] y = f(x) [, b] x = f (y)

More information

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω ω α 3 3 2 2V 3 33+.6T m T 5 34m Hz. 34 3.4m 2 36km 5Hz. 36km m 34 m 5 34 + m 5 33 5 =.66m 34m 34 x =.66 55Hz, 35 5 =.7 485.7Hz 2 V 5Hz.5V.5V V

More information

1

1 1 1 7 1.1.................................. 11 2 13 2.1............................ 13 2.2............................ 17 2.3.................................. 19 3 21 3.1.............................

More information

名古屋工業大の数学 2000 年 ~2015 年 大学入試数学動画解説サイト

名古屋工業大の数学 2000 年 ~2015 年 大学入試数学動画解説サイト 名古屋工業大の数学 年 ~5 年 大学入試数学動画解説サイト http://mathroom.jugem.jp/ 68 i 4 3 III III 3 5 3 ii 5 6 45 99 5 4 3. () r \= S n = r + r + 3r 3 + + nr n () x > f n (x) = e x + e x + 3e 3x + + ne nx f(x) = lim f n(x) lim

More information

6. Euler x

6. Euler x ...............................................................................3......................................... 4.4................................... 5.5......................................

More information

chap1.dvi

chap1.dvi 1 1 007 1 e iθ = cos θ + isin θ 1) θ = π e iπ + 1 = 0 1 ) 3 11 f 0 r 1 1 ) k f k = 1 + r) k f 0 f k k = 01) f k+1 = 1 + r)f k ) f k+1 f k = rf k 3) 1 ) ) ) 1+r/)f 0 1 1 + r/) f 0 = 1 + r + r /4)f 0 1 f

More information

Note.tex 2008/09/19( )

Note.tex 2008/09/19( ) 1 20 9 19 2 1 5 1.1........................ 5 1.2............................. 8 2 9 2.1............................. 9 2.2.............................. 10 3 13 3.1.............................. 13 3.2..................................

More information

t θ, τ, α, β S(, 0 P sin(θ P θ S x cos(θ SP = θ P (cos(θ, sin(θ sin(θ P t tan(θ θ 0 cos(θ tan(θ = sin(θ cos(θ ( 0t tan(θ

t θ, τ, α, β S(, 0 P sin(θ P θ S x cos(θ SP = θ P (cos(θ, sin(θ sin(θ P t tan(θ θ 0 cos(θ tan(θ = sin(θ cos(θ ( 0t tan(θ 4 5 ( 5 3 9 4 0 5 ( 4 6 7 7 ( 0 8 3 9 ( 8 t θ, τ, α, β S(, 0 P sin(θ P θ S x cos(θ SP = θ P (cos(θ, sin(θ sin(θ P t tan(θ θ 0 cos(θ tan(θ = sin(θ cos(θ ( 0t tan(θ S θ > 0 θ < 0 ( P S(, 0 θ > 0 ( 60 θ

More information

i 18 2H 2 + O 2 2H 2 + ( ) 3K

i 18 2H 2 + O 2 2H 2 + ( ) 3K i 18 2H 2 + O 2 2H 2 + ( ) 3K ii 1 1 1.1.................................. 1 1.2........................................ 3 1.3......................................... 3 1.4....................................

More information

1 1 n 0, 1, 2,, n n 2 a, b a n b n a, b n a b (mod n) 1 1. n = (mod 10) 2. n = (mod 9) n II Z n := {0, 1, 2,, n 1} 1.

1 1 n 0, 1, 2,, n n 2 a, b a n b n a, b n a b (mod n) 1 1. n = (mod 10) 2. n = (mod 9) n II Z n := {0, 1, 2,, n 1} 1. 1 1 n 0, 1, 2,, n 1 1.1 n 2 a, b a n b n a, b n a b (mod n) 1 1. n = 10 1567 237 (mod 10) 2. n = 9 1567 1826578 (mod 9) n II Z n := {0, 1, 2,, n 1} 1.2 a b a = bq + r (0 r < b) q, r q a b r 2 1. a = 456,

More information

4................................. 4................................. 4 6................................. 6................................. 9.................................................... 3..3..........................

More information

n 2 + π2 6 x [10 n x] x = lim n 10 n n 10 k x 1.1. a 1, a 2,, a n, (a n ) n=1 {a n } n=1 1.2 ( ). {a n } n=1 Q ε > 0 N N m, n N a m

n 2 + π2 6 x [10 n x] x = lim n 10 n n 10 k x 1.1. a 1, a 2,, a n, (a n ) n=1 {a n } n=1 1.2 ( ). {a n } n=1 Q ε > 0 N N m, n N a m 1 1 1 + 1 4 + + 1 n 2 + π2 6 x [10 n x] x = lim n 10 n n 10 k x 1.1. a 1, a 2,, a n, (a n ) n=1 {a n } n=1 1.2 ( ). {a n } n=1 Q ε > 0 N N m, n N a m a n < ε 1 1. ε = 10 1 N m, n N a m a n < ε = 10 1 N

More information

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A .. Laplace ). A... i),. ω i i ). {ω,..., ω } Ω,. ii) Ω. Ω. A ) r, A P A) P A) r... ).. Ω {,, 3, 4, 5, 6}. i i 6). A {, 4, 6} P A) P A) 3 6. ).. i, j i, j) ) Ω {i, j) i 6, j 6}., 36. A. A {i, j) i j }.

More information

1 26 ( ) ( ) 1 4 I II III A B C (120 ) ( ) 1, 5 7 I II III A B C (120 ) 1 (1) 0 x π 0 y π 3 sin x sin y = 3, 3 cos x + cos y = 1 (2) a b c a +

1 26 ( ) ( ) 1 4 I II III A B C (120 ) ( ) 1, 5 7 I II III A B C (120 ) 1 (1) 0 x π 0 y π 3 sin x sin y = 3, 3 cos x + cos y = 1 (2) a b c a + 6 ( ) 6 5 ( ) 4 I II III A B C ( ) ( ), 5 7 I II III A B C ( ) () x π y π sin x sin y =, cos x + cos y = () b c + b + c = + b + = b c c () 4 5 6 n ( ) ( ) ( ) n ( ) n m n + m = 555 n OAB P k m n k PO +

More information

6 2 2 x y x y t P P = P t P = I P P P ( ) ( ) ,, ( ) ( ) cos θ sin θ cos θ sin θ, sin θ cos θ sin θ cos θ y x θ x θ P

6 2 2 x y x y t P P = P t P = I P P P ( ) ( ) ,, ( ) ( ) cos θ sin θ cos θ sin θ, sin θ cos θ sin θ cos θ y x θ x θ P 6 x x 6.1 t P P = P t P = I P P P 1 0 1 0,, 0 1 0 1 cos θ sin θ cos θ sin θ, sin θ cos θ sin θ cos θ x θ x θ P x P x, P ) = t P x)p ) = t x t P P ) = t x = x, ) 6.1) x = Figure 6.1 Px = x, P=, θ = θ P

More information

II Karel Švadlenka * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* u = au + bv v = cu + dv v u a, b, c, d R

II Karel Švadlenka * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* u = au + bv v = cu + dv v u a, b, c, d R II Karel Švadlenka 2018 5 26 * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* 5 23 1 u = au + bv v = cu + dv v u a, b, c, d R 1.3 14 14 60% 1.4 5 23 a, b R a 2 4b < 0 λ 2 + aλ + b = 0 λ =

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

ORIGINAL TEXT I II A B 1 4 13 21 27 44 54 64 84 98 113 126 138 146 165 175 181 188 198 213 225 234 244 261 268 273 2 281 I II A B 292 3 I II A B c 1 1 (1) x 2 + 4xy + 4y 2 x 2y 2 (2) 8x 2 + 16xy + 6y 2

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

85 4

85 4 85 4 86 Copright c 005 Kumanekosha 4.1 ( ) ( t ) t, t 4.1.1 t Step! (Step 1) (, 0) (Step ) ±V t (, t) I Check! P P V t π 54 t = 0 + V (, t) π θ : = θ : π ) θ = π ± sin ± cos t = 0 (, 0) = sin π V + t +V

More information

r 1 m A r/m i) t ii) m i) t B(t; m) ( B(t; m) = A 1 + r ) mt m ii) B(t; m) ( B(t; m) = A 1 + r ) mt m { ( = A 1 + r ) m } rt r m n = m r m n B

r 1 m A r/m i) t ii) m i) t B(t; m) ( B(t; m) = A 1 + r ) mt m ii) B(t; m) ( B(t; m) = A 1 + r ) mt m { ( = A 1 + r ) m } rt r m n = m r m n B 1 1.1 1 r 1 m A r/m i) t ii) m i) t Bt; m) Bt; m) = A 1 + r ) mt m ii) Bt; m) Bt; m) = A 1 + r ) mt m { = A 1 + r ) m } rt r m n = m r m n Bt; m) Aert e lim 1 + 1 n 1.1) n!1 n) e a 1, a 2, a 3,... {a n

More information

OABC OA OC 4, OB, AOB BOC COA 60 OA a OB b OC c () AB AC () ABC D OD ABC OD OA + p AB + q AC p q () OABC 4 f(x) + x ( ), () y f(x) P l 4 () y f(x) l P

OABC OA OC 4, OB, AOB BOC COA 60 OA a OB b OC c () AB AC () ABC D OD ABC OD OA + p AB + q AC p q () OABC 4 f(x) + x ( ), () y f(x) P l 4 () y f(x) l P 4 ( ) ( ) ( ) ( ) 4 5 5 II III A B (0 ) 4, 6, 7 II III A B (0 ) ( ),, 6, 8, 9 II III A B (0 ) ( [ ] ) 5, 0, II A B (90 ) log x x () (a) y x + x (b) y sin (x + ) () (a) (b) (c) (d) 0 e π 0 x x x + dx e

More information

D xy D (x, y) z = f(x, y) f D (2 ) (x, y, z) f R z = 1 x 2 y 2 {(x, y); x 2 +y 2 1} x 2 +y 2 +z 2 = 1 1 z (x, y) R 2 z = x 2 y

D xy D (x, y) z = f(x, y) f D (2 ) (x, y, z) f R z = 1 x 2 y 2 {(x, y); x 2 +y 2 1} x 2 +y 2 +z 2 = 1 1 z (x, y) R 2 z = x 2 y 5 5. 2 D xy D (x, y z = f(x, y f D (2 (x, y, z f R 2 5.. z = x 2 y 2 {(x, y; x 2 +y 2 } x 2 +y 2 +z 2 = z 5.2. (x, y R 2 z = x 2 y + 3 (2,,, (, 3,, 3 (,, 5.3 (. (3 ( (a, b, c A : (x, y, z P : (x, y, x

More information

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,.

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,. 24(2012) (1 C106) 4 11 (2 C206) 4 12 http://www.math.is.tohoku.ac.jp/~obata,.,,,.. 1. 2. 3. 4. 5. 6. 7.,,. 1., 2007 (). 2. P. G. Hoel, 1995. 3... 1... 2.,,. ii 3.,. 4. F. (),.. 5... 6.. 7.,,. 8.,. 1. (75%)

More information

, 3, 6 = 3, 3,,,, 3,, 9, 3, 9, 3, 3, 4, 43, 4, 3, 9, 6, 6,, 0 p, p, p 3,..., p n N = p p p 3 p n + N p n N p p p, p 3,..., p n p, p,..., p n N, 3,,,,

, 3, 6 = 3, 3,,,, 3,, 9, 3, 9, 3, 3, 4, 43, 4, 3, 9, 6, 6,, 0 p, p, p 3,..., p n N = p p p 3 p n + N p n N p p p, p 3,..., p n p, p,..., p n N, 3,,,, 6,,3,4,, 3 4 8 6 6................................. 6.................................. , 3, 6 = 3, 3,,,, 3,, 9, 3, 9, 3, 3, 4, 43, 4, 3, 9, 6, 6,, 0 p, p, p 3,..., p n N = p p p 3 p n + N p n N p p p,

More information

December 28, 2018

December 28, 2018 e-mail : kigami@i.kyoto-u.ac.jp December 28, 28 Contents 2............................. 3.2......................... 7.3..................... 9.4................ 4.5............. 2.6.... 22 2 36 2..........................

More information

( ) 2.1. C. (1) x 4 dx = 1 5 x5 + C 1 (2) x dx = x 2 dx = x 1 + C = 1 2 x + C xdx (3) = x dx = 3 x C (4) (x + 1) 3 dx = (x 3 + 3x 2 + 3x +

( ) 2.1. C. (1) x 4 dx = 1 5 x5 + C 1 (2) x dx = x 2 dx = x 1 + C = 1 2 x + C xdx (3) = x dx = 3 x C (4) (x + 1) 3 dx = (x 3 + 3x 2 + 3x + (.. C. ( d 5 5 + C ( d d + C + C d ( d + C ( ( + d ( + + + d + + + + C (5 9 + d + d tan + C cos (sin (6 sin d d log sin + C sin + (7 + + d ( + + + + d log( + + + C ( (8 d 7 6 d + 6 + C ( (9 ( d 6 + 8 d

More information

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y [ ] 7 0.1 2 2 + y = t sin t IC ( 9) ( s090101) 0.2 y = d2 y 2, y = x 3 y + y 2 = 0 (2) y + 2y 3y = e 2x 0.3 1 ( y ) = f x C u = y x ( 15) ( s150102) [ ] y/x du x = Cexp f(u) u (2) x y = xey/x ( 16) ( s160101)

More information

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d A 2. x F (t) =f sin ωt x(0) = ẋ(0) = 0 ω θ sin θ θ 3! θ3 v = f mω cos ωt x = f mω (t sin ωt) ω t 0 = f ( cos ωt) mω x ma2-2 t ω x f (t mω ω (ωt ) 6 (ωt)3 = f 6m ωt3 2.2 u ( v w) = v ( w u) = w ( u v) ma22-9

More information

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5. A 1. Boltzmann Planck u(ν, T )dν = 8πh ν 3 c 3 kt 1 dν h 6.63 10 34 J s Planck k 1.38 10 23 J K 1 Boltzmann u(ν, T ) T ν e hν c = 3 10 8 m s 1 2. Planck λ = c/ν Rayleigh-Jeans u(ν, T )dν = 8πν2 kt dν c

More information

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x (

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x ( II (1 4 ) 1. p.13 1 (x, y) (a, b) ε(x, y; a, b) f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a x a A = f x (a, b) y x 3 3y 3 (x, y) (, ) f (x, y) = x + y (x, y) = (, )

More information

ii 3.,. 4. F. ( ), ,,. 8.,. 1. (75% ) (25% ) =7 24, =7 25, =7 26 (. ). 1.,, ( ). 3.,...,.,.,.,.,. ( ) (1 2 )., ( ), 0., 1., 0,.

ii 3.,. 4. F. ( ), ,,. 8.,. 1. (75% ) (25% ) =7 24, =7 25, =7 26 (. ). 1.,, ( ). 3.,...,.,.,.,.,. ( ) (1 2 )., ( ), 0., 1., 0,. (1 C205) 4 10 (2 C206) 4 11 (2 B202) 4 12 25(2013) http://www.math.is.tohoku.ac.jp/~obata,.,,,..,,. 1. 2. 3. 4. 5. 6. 7. 8. 1., 2007 ( ).,. 2. P. G., 1995. 3. J. C., 1988. 1... 2.,,. ii 3.,. 4. F. ( ),..

More information

数学Ⅱ演習(足助・09夏)

数学Ⅱ演習(足助・09夏) II I 9/4/4 9/4/2 z C z z z z, z 2 z, w C zw z w 3 z, w C z + w z + w 4 t R t C t t t t t z z z 2 z C re z z + z z z, im z 2 2 3 z C e z + z + 2 z2 + 3! z3 + z!, I 4 x R e x cos x + sin x 2 z, w C e z+w

More information

(1) 3 A B E e AE = e AB OE = OA + e AB = (1 35 e ) e OE z 1 1 e E xy e = 0 e = 5 OE = ( 2 0 0) E ( 2 0 0) (2) 3 E P Q k EQ = k EP E y 0

(1) 3 A B E e AE = e AB OE = OA + e AB = (1 35 e ) e OE z 1 1 e E xy e = 0 e = 5 OE = ( 2 0 0) E ( 2 0 0) (2) 3 E P Q k EQ = k EP E y 0 (1) 3 A B E e AE = e AB OE = OA + e AB = (1 35 e 0 1 15 ) e OE z 1 1 e E xy 5 1 1 5 e = 0 e = 5 OE = ( 2 0 0) E ( 2 0 0) (2) 3 E P Q k EQ = k EP E y 0 Q y P y k 2 M N M( 1 0 0) N(1 0 0) 4 P Q M N C EP

More information

Chap11.dvi

Chap11.dvi . () x 3 + dx () (x )(x ) dx + sin x sin x( + cos x) dx () x 3 3 x + + 3 x + 3 x x + x 3 + dx 3 x + dx 6 x x x + dx + 3 log x + 6 log x x + + 3 rctn ( ) dx x + 3 4 ( x 3 ) + C x () t x t tn x dx x. t x

More information

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 0 < t < τ I II 0 No.2 2 C x y x y > 0 x 0 x > b a dx

More information

5. [1 ] 1 [], u(x, t) t c u(x, t) x (5.3) ξ x + ct, η x ct (5.4),u(x, t) ξ, η u(ξ, η), ξ t,, ( u(ξ,η) ξ η u(x, t) t ) u(x, t) { ( u(ξ, η) c t ξ ξ { (

5. [1 ] 1 [], u(x, t) t c u(x, t) x (5.3) ξ x + ct, η x ct (5.4),u(x, t) ξ, η u(ξ, η), ξ t,, ( u(ξ,η) ξ η u(x, t) t ) u(x, t) { ( u(ξ, η) c t ξ ξ { ( 5 5.1 [ ] ) d f(t) + a d f(t) + bf(t) : f(t) 1 dt dt ) u(x, t) c u(x, t) : u(x, t) t x : ( ) ) 1 : y + ay, : y + ay + by : ( ) 1 ) : y + ay, : yy + ay 3 ( ): ( ) ) : y + ay, : y + ay b [],,, [ ] au xx

More information

A (1) = 4 A( 1, 4) 1 A 4 () = tan A(0, 0) π A π

A (1) = 4 A( 1, 4) 1 A 4 () = tan A(0, 0) π A π 4 4.1 4.1.1 A = f() = f() = a f (a) = f() (a, f(a)) = f() (a, f(a)) f(a) = f 0 (a)( a) 4.1 (4, ) = f() = f () = 1 = f (4) = 1 4 4 (4, ) = 1 ( 4) 4 = 1 4 + 1 17 18 4 4.1 A (1) = 4 A( 1, 4) 1 A 4 () = tan

More information

?

? 240-8501 79-2 Email: nakamoto@ynu.ac.jp 1 3 1.1...................................... 3 1.2?................................. 6 1.3..................................... 8 1.4.......................................

More information

A S- hara/lectures/lectures-j.html r A = A 5 : 5 = max{ A, } A A A A B A, B A A A %

A S-   hara/lectures/lectures-j.html r A = A 5 : 5 = max{ A, } A A A A B A, B A A A % A S- http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html r A S- 3.4.5. 9 phone: 9-8-444, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office

More information

No2 4 y =sinx (5) y = p sin(2x +3) (6) y = 1 tan(3x 2) (7) y =cos 2 (4x +5) (8) y = cos x 1+sinx 5 (1) y =sinx cos x 6 f(x) = sin(sin x) f 0 (π) (2) y

No2 4 y =sinx (5) y = p sin(2x +3) (6) y = 1 tan(3x 2) (7) y =cos 2 (4x +5) (8) y = cos x 1+sinx 5 (1) y =sinx cos x 6 f(x) = sin(sin x) f 0 (π) (2) y No1 1 (1) 2 f(x) =1+x + x 2 + + x n, g(x) = 1 (n +1)xn + nx n+1 (1 x) 2 x 6= 1 f 0 (x) =g(x) y = f(x)g(x) y 0 = f 0 (x)g(x)+f(x)g 0 (x) 3 (1) y = x2 x +1 x (2) y = 1 g(x) y0 = g0 (x) {g(x)} 2 (2) y = µ

More information

Chap9.dvi

Chap9.dvi .,. f(),, f(),,.,. () lim 2 +3 2 9 (2) lim 3 3 2 9 (4) lim ( ) 2 3 +3 (5) lim 2 9 (6) lim + (7) lim (8) lim (9) lim (0) lim 2 3 + 3 9 2 2 +3 () lim sin 2 sin 2 (2) lim +3 () lim 2 2 9 = 5 5 = 3 (2) lim

More information

1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C

1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C 0 9 (1990 1999 ) 10 (2000 ) 1900 1994 1995 1999 2 SAT ACT 1 1990 IMO 1990/1/15 1:00-4:00 1 N 1990 9 N N 1, N 1 N 2, N 2 N 3 N 3 2 x 2 + 25x + 52 = 3 x 2 + 25x + 80 3 2, 3 0 4 A, B, C 3,, A B, C 2,,,, 7,

More information

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2) 3 215 4 27 1 1 u u(x, t) u tt a 2 u xx, a > (1) D : {(x, t) : x, t } u (, t), u (, t), t (2) u(x, ) f(x), u(x, ) t 2, x (3) u(x, t) X(x)T (t) u (1) 1 T (t) a 2 T (t) X (x) X(x) α (2) T (t) αa 2 T (t) (4)

More information

1 12 ( )150 ( ( ) ) x M x 0 1 M 2 5x 2 + 4x + 3 x 2 1 M x M 2 1 M x (x + 1) 2 (1) x 2 + x + 1 M (2) 1 3 M (3) x 4 +

1 12 ( )150 ( ( ) ) x M x 0 1 M 2 5x 2 + 4x + 3 x 2 1 M x M 2 1 M x (x + 1) 2 (1) x 2 + x + 1 M (2) 1 3 M (3) x 4 + ( )5 ( ( ) ) 4 6 7 9 M M 5 + 4 + M + M M + ( + ) () + + M () M () 4 + + M a b y = a + b a > () a b () y V a () V a b V n f() = n k= k k () < f() = log( ) t dt log () n+ (i) dt t (n + ) (ii) < t dt n+ n

More information

v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i

v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i 1. 1 1.1 1.1.1 1.1.1.1 v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) R ij R ik = δ jk (4) δ ij Kronecker δ ij = { 1 (i = j) 0 (i j) (5) 1 1.1. v1.1 2011/04/10 1. 1 2 v i = R ij v j (6) [

More information

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi) 0. A A = 4 IC () det A () A () x + y + z = x y z X Y Z = A x y z ( 5) ( s5590) 0. a + b + c b c () a a + b + c c a b a + b + c 0 a b c () a 0 c b b c 0 a c b a 0 0. A A = 7 5 4 5 0 ( 5) ( s5590) () A ()

More information

(1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10)

(1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10) 2017 12 9 4 1 30 4 10 3 1 30 3 30 2 1 30 2 50 1 1 30 2 10 (1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10) (1) i 23 c 23 0 1 2 3 4 5 6 7 8 9 a b d e f g h i (2) 23 23 (3) 23 ( 23 ) 23 x 1 x 2 23 x

More information

- II

- II - II- - -.................................................................................................... 3.3.............................................. 4 6...........................................

More information

1/1 lim f(x, y) (x,y) (a,b) ( ) ( ) lim limf(x, y) lim lim f(x, y) x a y b y b x a ( ) ( ) xy x lim lim lim lim x y x y x + y y x x + y x x lim x x 1

1/1 lim f(x, y) (x,y) (a,b) ( ) ( ) lim limf(x, y) lim lim f(x, y) x a y b y b x a ( ) ( ) xy x lim lim lim lim x y x y x + y y x x + y x x lim x x 1 1/5 ( ) Taylor ( 7.1) (x, y) f(x, y) f(x, y) x + y, xy, e x y,... 1 R {(x, y) x, y R} f(x, y) x y,xy e y log x,... R {(x, y, z) (x, y),z f(x, y)} R 3 z 1 (x + y ) z ax + by + c x 1 z ax + by + c y x +

More information

2012 IA 8 I p.3, 2 p.19, 3 p.19, 4 p.22, 5 p.27, 6 p.27, 7 p

2012 IA 8 I p.3, 2 p.19, 3 p.19, 4 p.22, 5 p.27, 6 p.27, 7 p 2012 IA 8 I 1 10 10 29 1. [0, 1] n x = 1 (n = 1, 2, 3,...) 2 f(x) = n 0 [0, 1] 2. 1 x = 1 (n = 1, 2, 3,...) 2 f(x) = n 0 [0, 1] 1 0 f(x)dx 3. < b < c [, c] b [, c] 4. [, b] f(x) 1 f(x) 1 f(x) [, b] 5.

More information

2 7 V 7 {fx fx 3 } 8 P 3 {fx fx 3 } 9 V 9 {fx fx f x 2fx } V {fx fx f x 2fx + } V {{a n } {a n } a n+2 a n+ + a n n } 2 V 2 {{a n } {a n } a n+2 a n+

2 7 V 7 {fx fx 3 } 8 P 3 {fx fx 3 } 9 V 9 {fx fx f x 2fx } V {fx fx f x 2fx + } V {{a n } {a n } a n+2 a n+ + a n n } 2 V 2 {{a n } {a n } a n+2 a n+ R 3 R n C n V??,?? k, l K x, y, z K n, i x + y + z x + y + z iv x V, x + x o x V v kx + y kx + ky vi k + lx kx + lx vii klx klx viii x x ii x + y y + x, V iii o K n, x K n, x + o x iv x K n, x + x o x

More information

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d S I.. http://ayapin.film.s.dendai.ac.jp/~matuda /TeX/lecture.html PDF PS.................................... 3.3.................... 9.4................5.............. 3 5. Laplace................. 5....

More information

1 1 3 ABCD ABD AC BD E E BD 1 : 2 (1) AB = AD =, AB AD = (2) AE = AB + (3) A F AD AE 2 = AF = AB + AD AF AE = t AC = t AE AC FC = t = (4) ABD ABCD 1 1

1 1 3 ABCD ABD AC BD E E BD 1 : 2 (1) AB = AD =, AB AD = (2) AE = AB + (3) A F AD AE 2 = AF = AB + AD AF AE = t AC = t AE AC FC = t = (4) ABD ABCD 1 1 ABCD ABD AC BD E E BD : () AB = AD =, AB AD = () AE = AB + () A F AD AE = AF = AB + AD AF AE = t AC = t AE AC FC = t = (4) ABD ABCD AB + AD AB + 7 9 AD AB + AD AB + 9 7 4 9 AD () AB sin π = AB = ABD AD

More information

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt S I. x yx y y, y,. F x, y, y, y,, y n http://ayapin.film.s.dendai.ac.jp/~matuda n /TeX/lecture.html PDF PS yx.................................... 3.3.................... 9.4................5..............

More information

A

A A05-132 2010 2 11 1 1 3 1.1.......................................... 3 1.2..................................... 3 1.3..................................... 3 2 4 2.1............................... 4 2.2

More information

1.2 y + P (x)y + Q(x)y = 0 (1) y 1 (x), y 2 (x) y 1 (x), y 2 (x) (1) y(x) c 1, c 2 y(x) = c 1 y 1 (x) + c 2 y 2 (x) 3 y 1 (x) y 1 (x) e R P (x)dx y 2

1.2 y + P (x)y + Q(x)y = 0 (1) y 1 (x), y 2 (x) y 1 (x), y 2 (x) (1) y(x) c 1, c 2 y(x) = c 1 y 1 (x) + c 2 y 2 (x) 3 y 1 (x) y 1 (x) e R P (x)dx y 2 1 1.1 R(x) = 0 y + P (x)y + Q(x)y = R(x)...(1) y + P (x)y + Q(x)y = 0...(2) 1 2 u(x) v(x) c 1 u(x)+ c 2 v(x) = 0 c 1 = c 2 = 0 c 1 = c 2 = 0 2 0 2 u(x) v(x) u(x) u (x) W (u, v)(x) = v(x) v (x) 0 1 1.2

More information

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2 2005 9/8-11 2 2.2 ( 2-5) γ ( ) γ cos θ 2πr πρhr 2 g h = 2γ cos θ ρgr (2.1) γ = ρgrh (2.2) 2 cos θ θ cos θ = 1 (2.2) γ = 1 ρgrh (2.) 2 2. p p ρgh p ( ) p p = p ρgh (2.) h p p = 2γ r 1 1 (Berry,1975) 2-6

More information

f : R R f(x, y) = x + y axy f = 0, x + y axy = 0 y 直線 x+y+a=0 に漸近し 原点で交叉する美しい形をしている x +y axy=0 X+Y+a=0 o x t x = at 1 + t, y = at (a > 0) 1 + t f(x, y

f : R R f(x, y) = x + y axy f = 0, x + y axy = 0 y 直線 x+y+a=0 に漸近し 原点で交叉する美しい形をしている x +y axy=0 X+Y+a=0 o x t x = at 1 + t, y = at (a > 0) 1 + t f(x, y 017 8 10 f : R R f(x) = x n + x n 1 + 1, f(x) = sin 1, log x x n m :f : R n R m z = f(x, y) R R R R, R R R n R m R n R m R n R m f : R R f (x) = lim h 0 f(x + h) f(x) h f : R n R m m n M Jacobi( ) m n

More information

(, ) (, ) S = 2 = [, ] ( ) 2 ( ) 2 2 ( ) 3 2 ( ) 4 2 ( ) k 2,,, k =, 2, 3, 4 S 4 S 4 = ( ) 2 + ( ) ( ) (

(, ) (, ) S = 2 = [, ] ( ) 2 ( ) 2 2 ( ) 3 2 ( ) 4 2 ( ) k 2,,, k =, 2, 3, 4 S 4 S 4 = ( ) 2 + ( ) ( ) ( B 4 4 4 52 4/ 9/ 3/3 6 9.. y = x 2 x x = (, ) (, ) S = 2 = 2 4 4 [, ] 4 4 4 ( ) 2 ( ) 2 2 ( ) 3 2 ( ) 4 2 ( ) k 2,,, 4 4 4 4 4 k =, 2, 3, 4 S 4 S 4 = ( ) 2 + ( ) 2 2 + ( ) 3 2 + ( 4 4 4 4 4 4 4 4 4 ( (

More information

1 θ i (1) A B θ ( ) A = B = sin 3θ = sin θ (A B sin 2 θ) ( ) 1 2 π 3 < = θ < = 2 π 3 Ax Bx3 = 1 2 θ = π sin θ (2) a b c θ sin 5θ = sin θ f(sin 2 θ) 2

1 θ i (1) A B θ ( ) A = B = sin 3θ = sin θ (A B sin 2 θ) ( ) 1 2 π 3 < = θ < = 2 π 3 Ax Bx3 = 1 2 θ = π sin θ (2) a b c θ sin 5θ = sin θ f(sin 2 θ) 2 θ i ) AB θ ) A = B = sin θ = sin θ A B sin θ) ) < = θ < = Ax Bx = θ = sin θ ) abc θ sin 5θ = sin θ fsin θ) fx) = ax bx c ) cos 5 i sin 5 ) 5 ) αβ α iβ) 5 α 4 β α β β 5 ) a = b = c = ) fx) = 0 x x = x =

More information

(4) P θ P 3 P O O = θ OP = a n P n OP n = a n {a n } a = θ, a n = a n (n ) {a n } θ a n = ( ) n θ P n O = a a + a 3 + ( ) n a n a a + a 3 + ( ) n a n

(4) P θ P 3 P O O = θ OP = a n P n OP n = a n {a n } a = θ, a n = a n (n ) {a n } θ a n = ( ) n θ P n O = a a + a 3 + ( ) n a n a a + a 3 + ( ) n a n 3 () 3,,C = a, C = a, C = b, C = θ(0 < θ < π) cos θ = a + (a) b (a) = 5a b 4a b = 5a 4a cos θ b = a 5 4 cos θ a ( b > 0) C C l = a + a + a 5 4 cos θ = a(3 + 5 4 cos θ) C a l = 3 + 5 4 cos θ < cos θ < 4

More information

ii

ii ii iii 1 1 1.1..................................... 1 1.2................................... 3 1.3........................... 4 2 9 2.1.................................. 9 2.2...............................

More information

2. 2 P M A 2 F = mmg AP AP 2 AP (G > : ) AP/ AP A P P j M j F = n j=1 mm j G AP j AP j 2 AP j 3 P ψ(p) j ψ(p j ) j (P j j ) A F = n j=1 mgψ(p j ) j AP

2. 2 P M A 2 F = mmg AP AP 2 AP (G > : ) AP/ AP A P P j M j F = n j=1 mm j G AP j AP j 2 AP j 3 P ψ(p) j ψ(p j ) j (P j j ) A F = n j=1 mgψ(p j ) j AP 1. 1 213 1 6 1 3 1: ( ) 2: 3: SF 1 2 3 1: 3 2 A m 2. 2 P M A 2 F = mmg AP AP 2 AP (G > : ) AP/ AP A P P j M j F = n j=1 mm j G AP j AP j 2 AP j 3 P ψ(p) j ψ(p j ) j (P j j ) A F = n j=1 mgψ(p j ) j AP

More information

2014 S hara/lectures/lectures-j.html r 1 S phone: ,

2014 S hara/lectures/lectures-j.html r 1 S phone: , 14 S1-1+13 http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html r 1 S1-1+13 14.4.11. 19 phone: 9-8-4441, e-mail: hara@math.kyushu-u.ac.jp Office hours: 1 4/11 web download. I. 1. ϵ-δ 1. 3.1, 3..

More information

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g(

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g( 06 5.. ( y = x x y 5 y 5 = (x y = x + ( y = x + y = x y.. ( Y = C + I = 50 + 0.5Y + 50 r r = 00 0.5Y ( L = M Y r = 00 r = 0.5Y 50 (3 00 0.5Y = 0.5Y 50 Y = 50, r = 5 .3. (x, x = (, u = = 4 (, x x = 4 x,

More information

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s ... x, y z = x + iy x z y z x = Rez, y = Imz z = x + iy x iy z z () z + z = (z + z )() z z = (z z )(3) z z = ( z z )(4)z z = z z = x + y z = x + iy ()Rez = (z + z), Imz = (z z) i () z z z + z z + z.. z

More information

x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ dt iωζ = ẍ + ω2 x (2.1) ζ ζ = Aωe iωt = Aω cos ωt + iaω sin

x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ dt iωζ = ẍ + ω2 x (2.1) ζ ζ = Aωe iωt = Aω cos ωt + iaω sin 2 2.1 F (t) 2.1.1 mẍ + kx = F (t). m ẍ + ω 2 x = F (t)/m ω = k/m. 1 : (ẋ, x) x = A sin ωt, ẋ = Aω cos ωt 1 2-1 x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ

More information

C:/KENAR/0p1.dvi

C:/KENAR/0p1.dvi 2{3. 53 2{3 [ ] 4 2 1 2 10,15 m 10,10 m 2 2 54 2 III 1{I U 2.4 U r (2.16 F U F =, du dt du dr > 0 du dr < 0 O r 0 r 2.4: 1 m =1:00 10 kg 1:20 10 kgf 8:0 kgf g =9:8 m=s 2 (a) x N mg 2.5: N 2{3. 55 (b) x

More information

30

30 3 ............................................2 2...........................................2....................................2.2...................................2.3..............................

More information

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4 1. k λ ν ω T v p v g k = π λ ω = πν = π T v p = λν = ω k v g = dω dk 1) ) 3) 4). p = hk = h λ 5) E = hν = hω 6) h = h π 7) h =6.6618 1 34 J sec) hc=197.3 MeV fm = 197.3 kev pm= 197.3 ev nm = 1.97 1 3 ev

More information

高校生の就職への数学II

高校生の就職への数学II II O Tped b L A TEX ε . II. 3. 4. 5. http://www.ocn.ne.jp/ oboetene/plan/ 7 9 i .......................................................................................... 3..3...............................

More information

= M + M + M + M M + =.,. f = < ρ, > ρ ρ. ρ f. = ρ = = ± = log 4 = = = ± f = k k ρ. k

= M + M + M + M M + =.,. f = < ρ, > ρ ρ. ρ f. = ρ = = ± = log 4 = = = ± f = k k ρ. k 7 b f n f} d = b f n f d,. 5,. [ ] ɛ >, n ɛ + + n < ɛ. m. n m log + < n m. n lim sin kπ sin kπ } k π sin = n n n. k= 4 f, y = r + s, y = rs f rs = f + r + sf y + rsf yy + f y. f = f =, f = sin. 5 f f =.

More information

2010 II / y = e x y = log x = log e x 2. ( e x ) = e x 3. ( ) log x = 1 x 1.2 Warming Up 1 u = log a M a u = M a 0

2010 II / y = e x y = log x = log e x 2. ( e x ) = e x 3. ( ) log x = 1 x 1.2 Warming Up 1 u = log a M a u = M a 0 2010 II 6 10.11.15/ 10.11.11 1 1 5.6 1.1 1. y = e x y = log x = log e x 2. e x ) = e x 3. ) log x = 1 x 1.2 Warming Up 1 u = log a M a u = M a 0 log a 1 a 1 log a a a r+s log a M + log a N 1 0 a 1 a r

More information