Microsoft PowerPoint - statistics pptx

Size: px
Start display at page:

Download "Microsoft PowerPoint - statistics pptx"

Transcription

1 統計学 第 16 回 講義 母平均の区間推定 Part 年 6 10 ( ) 1 限 担当教員 : 唐渡 広志 ( からと こうじ ) 研究室 : 経済学研究棟 4 階 43 号室 website: 1

2 講義の目的 標本平均は正規分布に従うという性質を いて, 集団の平均を推定する 法を理解する keywords: 中 極限定理, 標本平均の分布, 区間推定, 信頼区間 参考書 砂 pp 居 pp 屋 pp

3 p1 p 復習 標本平均の分布と正規分布 ( 中心極限定理 ) 例 0 集団 平均, 分散 集団はどのような分布でもよい Expoetial Distributio x 標本抽出 ~ N, ~ N 0,1 ( 十分に大きい ) 個の観測データ 計算される標本平均 は正規分布 における ( 数ある ) 実現値の一つ z 3

4 標本平均を 1000 回計算するときの分布 集団分布 = の平均の分布 = 5 の平均の分布 = 30 の平均の分布 Expoetial Distributio p

5 復習 標本平均の分布と正規分布 ( 中心極限定理 ) 実際には 集団全体の特徴はよくわからない しかしながら標本調査を うことができる 集団がどのような分布であったとしても, ある程度のサンプルサイズを持った標本があれば, その標本平均は正規分布の実現値の つと考えることができる どのようなデータであっても, そのデータから計算できるたった つの標本平均の背後には正規分布が控えていることを理解する 平均, 分散 の母集団分布からサンプルサイズの標本を抽出して 作られる標本平均 は平均, 分散 の正規分布にしたがう ~ N, の分散は ではなく, であることに注意 5

6 例 1 30 歳代独 性の貯蓄額は平均 = 600 万円, 標準偏差 = 400 万円の 集団分布にしたがうという 30 歳代独 性 100 をランダムに選び, 平均貯蓄額を計算するとき, その平均値はどのような分布に近似できるか 密度 集団分布 600, 貯蓄額 [ 万円 ] 標本抽出 標本平均の分布 ( 正規分布に近似 ) 密度 ~ N 600, 貯蓄額 [ 万円 ] 6

7 例 1. A 市内における全就業者の通勤時間の 集団分布は, 平均が = 35 分, 標準偏差が = 18 分である 就業者 56 の通勤時間を調査するとき, その標本平均は平均 35, 分散 18 /56 の正規分布に近似できる ~ N 35, B 市内のあるバス停に来るバスの到着時刻のラッシュ時の誤差分布は, 平均 8 分, 標準偏差 分である 平 の 40 間に渡ってバス停の到着時刻を調査するとき, その標本平均は平均 8, 分散 /40 の正規分布に近似できる ~ N 8, 40 7

8 例 3 = 30 個のサイコロを同時に投げるときの出 の平均値は平均 3.5, 分散 (1/3)*(35/1) の正規分布に近似できる 30 個のサイコロを同時に投げるときの出目の平均値の分布 1個のサイコロの出目の期待値は 3.5, 分散 35 1 ~ N, 30 個の平均値の分布 ~ N3.5,

9 実験. 30 個のサイコロを同時に投げたときの標本平均の分布 (500 回の繰り返し実験 ) 試 回数 #1 # #3 #4 #5 #6 #7 #8 #9 #10 #11 #1 #13 #14 #15 #16 #17 #18 #19 #0 #1 # #3 #4 #5 #6 #7 #8 #9 #30 平均値 の が500個 9

10 実験. 30 個のサイコロを同時に投げたときの標本平均の分布 (500 回の繰り返し実験 ) ~ N 3.5, で近似できる 標本 1 の標本平均 = 3. 標本 5 の標本平均 = 4 1 回の標本調査で得られる標本平均はたった つだけど, その背後には正規分布が控えている データとして得られる標本平均は正規分布の実現値の つであると考える

11 標本平均の分布における確率 30 歳代独 性の貯蓄額は平均 600 万円, 標準偏差 400 万円の 集団分布にしたがうという 30 歳代独 性 100 をランダムに選び, 平均貯蓄額を計算するとき, その平均値はどのような分布に近似できるか 貯蓄額は母平均 600, 分散 ただし, 母集団は正規分布ではないかもしれない 100人の貯蓄額の標本平均をとおくと, 中心極限定理の 近似できる 400 考え方により, その分布は平均, 分散 ~ 400 N 600, 100 の分布をしている. の正規分布に 問題 : これから計算する標本平均が 700万円を超える確率は何 % か? 11

12 標本平均の分布と確率 (1) 母平均, 母分散 を とおく の母集団からサイズの標本を抽出し, その標本平均 が A以上である確率 Pr A Pr Z と標準化して, 標準正規分布表からその確率を求める A を計算するには, 標準化のときの注意点 標本平均 の分散は なので, 標準偏差は である. 中 極限定理 ~ N, ~ N 0,1 標準化された標本平均は標準正規分布にしたがう 1

13 例題 1 30 歳代独 性の貯蓄額は平均 600 万円, 標準偏差 400 万円の 集団分布にしたがうという 30 歳代独 性 100 をランダムに選び, 平均貯蓄額を計算するとき, その平均値が700 万円を超える確率を計算しなさい 情報の整理 600, , 100, 標準化 Pr Pr Z 40 Pr Z Pr 0 Z 標準正規分布表を利 As. 平均値が 700 万円を超える確率は 0.6% 13

14 標本平均が 700 万円を超える確率 平均 = 600 万円, 標準偏差 = 400 万円の 集団分布 ( 点線 ) 100の標本平均 の分布 ( 実線 ) 100 の平均値の分布はばらつきがかなり さい ~ 400 N 600, 図を拡 Pr Pr Z 確率は標準化して考える Pr Z.5 14

15 練習問題 (1) 例題 1 のケースで平均貯蓄額が 650 万円以上である確率を計算しなさい 15

16 例題. 標本平均と確率 () 都市に隣接した A 市に住む就業者の通勤時間は平均 55 分, 標準偏差 0 分の 集団分布にしたがうという 就業者 81 をランダムに選び, 平均通勤時間を計算するとき, その平均値が60 分以内である確率を計算しなさい Pr 60 情報の整理 55, 0 0, 標本平均の分布 Pr Z.5 標準化 Pr Pr Z 0 81 Pr Z Pr Z As. その平均値が 1 時間以内である確率は 98.78% 標本平均の分布 16

17 練習問題 () [1]. 平均 563 万円, 分散 4000 の年収の 集団分布から =100 の標本を抽出するとき,100 の標本平均が 570 万円以上である確率は? []. 平均 563 万円, 分散 4000 の年収の 集団分布から =40 の標本を抽出するとき, 40 の標本平均が 570 万円以上である確率は? 17

18 例題 3. 標本平均の分布と臨界値 都市に隣接した A 市に住む就業者の通勤時間は平均 55 分, 標準偏差 0 分の 集団分布にしたがうという 就業者 11 をランダムに選び平均通勤時間を計算するとき, その平均値がA 分以下である確率が.5% であるような A の値を計算しなさい.5% A 分 標本平均の分布 標準化.5% 情報の整理 : P A 0.05 A 55 P 0.05 z 0 11 A A , , 11 平均通勤時間が 51.4 分以下である確率は.5% 分 標本平均の分布 18

19 練習問題 (3) 30 歳代独 性の貯蓄額は平均 600 万円, 標準偏差 400 万円の 集団分布にしたがうという 30 歳代独 性 100 をランダムに選び, 平均貯蓄額を計算するとき, その平均値が B 万円以上である確率が.5% であるような B の値を計算しなさい. 19

20 母平均の推定 集団分布 平均 :? 分散 : 標本抽出 点推定 : 観測データから つの推定値を計算して, 平均や 分散を推定する 法 標本平均を計算して, 平均の推定値とする 標本分散を計算して, 分散の推定値とする 標本標準偏差を計算して, 標準偏差の推定値とする 推定 : 平均 はどのような値か? 区間推定 :95%(99%) の確率で 平均や 分散を含む範囲を求める 法 0

21 復習 臨界値と有意な値 臨界値と確率 きわめて稀な値 であると判断される境界の値のことを臨界値(Critical Value) とよぶ したがって, 臨界値を定めている確率は 常に さな値である (5%,.5%, 1%, 0.1% など ) 有意な値 ( 分布の右裾 )[ 臨界値 ] 以上の値 ( きわめて きい値 ) のことを有意な値とよぶ ( 分布の左裾 ) [ 臨界値 ] 以下の値 ( きわめて さい値 ) のことを有意な値とよぶ そのようにめったに起こらないほど きい値であることを 有意に きい 有意に さい と表現する または, 有意である と表現する. 区間推定は有意でない値の集合を つけることであり, そのために両端の臨界値を求めなければならない.5% めずらしい値 ( 有意な値 ) 95% の確率で母平均 を含む範囲.5% めずらしい値 ( 有意な値 ) 臨界値 ( 有意でない値 ) + 臨界値 1

22 母集団と標本 例.A 市の 40 歳既婚 性の 供の数 に関する 集団分布 の実現値確率 x i Pr( = x i ) 合計 1 母平均 1.6 母分散 0.63 母標準偏差 標本 { i } = { 1, 0, 1,,,1 } サイズ = 64 の標本を抽出 たまたま得られた値 ( 標本変動 ) 標本平均 標本分散 s s 標本標準偏差 点推定値 s x は N 1.6, の実現値の一つと考えることができる 64

23 区間推定 (1) 例.A 市の 40 歳既婚 性の 供の数 に関する 集団分布 集団分布 平均 :? 分散 : 標本抽出 サンプル サイズ 64 わかっていること 64, 1.1, 0.63 調べたいこと 分散 はわかっているものと仮定 ( この仮定が成 しないケースは後で扱う ) 母平均 が95% の確率で存在する ような範囲 95% 信頼区間 64 の標本平均 1.1 標本抽出を何回も繰り返したとき, は 95% の確率で上記の区間に含まれるという考え 区間推定とは, 信頼区間を求めること 3

24 区間推定 () Step-1 標本平均を標準正規分布に直して考えてみる 0.63 ~ N, より, Pr 1.96 が95% で存在する範囲は ~ N 0,1 であるから Step- 確率関数の不等式を について解くと a b 4

25 区間推定 (3) b a 信頼区間 はの 母平均 % 下限と上限の値を計算する. Step-3

26 区間推定 (4) 95 % 信頼区間 母分散 ( 母標準偏差 ) の母集団分布からサイズの標本を抽出し, 標本平均をとする このとき母平均 の95% 信頼区間は次の式から 求める

27 例題 4. 区間推定 ランダムに 30 歳代独 性を 100 を選び平均貯蓄額を計算したところ,570 万円であった 貯蓄額の 平均 の 95% 信頼区間を求めなさい ただし, 標準偏差は = 00 万円であることがわかっている わかっていること 570, 100, 00 区間推定 a b 歳代独 性の貯蓄額の 平均 の 95% 信頼区間は

28 練習問題 (4) B 市に住む就業者をランダムに 64 を選び平均通勤時間を計算したところ,50 分であることがわかった.B 市における通勤時間の 平均 の 95% 信頼区間を求めなさい ただし, 標準偏差は = 0 [ 分 ] であることがわかっているものとする 8

29 言葉の定義 : 信頼区間, 信頼限界, 信頼係数, 信頼区間 Pr 下側信頼限界上側信頼限界 0.95 信頼係数 1.96, 1.96 を95% 信頼区間とよぶ 信頼区間の下限を下側信頼限界, 上限を上側信頼限界とよぶ 信頼区間を定めている確率を信頼係数とよぶ 9

30 信頼係数と信頼区間 信頼係数 90 % の信頼区間 Pr なので 信頼係数 99 % の信頼区間 Pr なので 30

31 信頼係数 ( 標準正規分布 ) Pr Z Pr Z Pr.576 Z 標準正規分布表には正確な数値が されていないが, 臨界値は を使 する 信頼係数 90% 信頼係数 99%

32 練習問題 (5) ある県の 齢者 11 をランダムに抽出して,1 のテレビ視聴時間を調査したところ, 標本平均は 8 分であった. 信頼係数 90%,95% および 99 % のもとで, 齢者の視聴時間の 平均を区間推定しなさい. ただし, 標準偏差は = 0 [ 分 ] であることがわかっているものとする. 3

Microsoft PowerPoint - stat-2014-[9] pptx

Microsoft PowerPoint - stat-2014-[9] pptx 統計学 第 17 回 講義 母平均の区間推定 Part-1 014 年 6 17 ( )6-7 限 担当教員 : 唐渡 広志 ( からと こうじ ) 研究室 : 経済学研究棟 4 階 43 号室 email: kkarato@eco.u-toyama.ac.j website: htt://www3.u-toyama.ac.j/kkarato/ 1 講義の目的 標本平均は正規分布に従うという性質を

More information

Microsoft PowerPoint - statistics pptx

Microsoft PowerPoint - statistics pptx 統計学 第 17 回 講義 母平均の区間推定 Part- 016 年 6 14 ( )3 限 担当教員 : 唐渡 広志 ( からと こうじ ) 研究室 : 経済学研究棟 4 階 43 号室 email: kkarato@eco.u toyama.ac.jp website: http://www3.u toyama.ac.jp/kkarato/ 1 講義の目的 標本平均は正規分布に従うという性質を

More information

Microsoft PowerPoint - Statistics[B]

Microsoft PowerPoint - Statistics[B] 講義の目的 サンプルサイズの大きい標本比率の分布は正規分布で近似できることを理解します 科目コード 130509, 130609, 110225 統計学講義第 19/20 回 2019 年 6 月 25 日 ( 火 )6/7 限 担当教員 : 唐渡広志 ( からと こうじ ) 研究室 : email: website: 経済学研究棟 4 階 432 号室 kkarato@eco.u-toyama.ac.jp

More information

Microsoft PowerPoint - statistics pptx

Microsoft PowerPoint - statistics pptx 統計学 第 回 講義 仮説検定 Part-3 06 年 6 8 ( )3 限 担当教員 唐渡 広志 ( からと こうじ ) 研究室 経済学研究棟 4 階 43 号室 email kkarato@eco.u-toyama.ac.j webite htt://www3.u-toyama.ac.j/kkarato/ 講義の目的 つの 集団の平均 ( 率 ) に差があるかどうかを検定する 法を理解します keyword:

More information

講義「○○○○」

講義「○○○○」 講義 信頼度の推定と立証 内容. 点推定と区間推定. 指数分布の点推定 区間推定 3. 指数分布 正規分布の信頼度推定 担当 : 倉敷哲生 ( ビジネスエンジニアリング専攻 ) 統計的推測 標本から得られる情報を基に 母集団に関する結論の導出が目的 測定値 x x x 3 : x 母集団 (populaio) 母集団の特性値 統計的推測 標本 (sample) 標本の特性値 分布のパラメータ ( 母数

More information

EBNと疫学

EBNと疫学 推定と検定 57 ( 復習 ) 記述統計と推測統計 統計解析は大きく 2 つに分けられる 記述統計 推測統計 記述統計 観察集団の特性を示すもの 代表値 ( 平均値や中央値 ) や ばらつきの指標 ( 標準偏差など ) 図表を効果的に使う 推測統計 観察集団のデータから母集団の特性を 推定 する 平均 / 分散 / 係数値などの推定 ( 点推定 ) 点推定値のばらつきを調べる ( 区間推定 ) 検定統計量を用いた検定

More information

基礎統計

基礎統計 基礎統計 第 11 回講義資料 6.4.2 標本平均の差の標本分布 母平均の差 標本平均の差をみれば良い ただし, 母分散に依存するため場合分けをする 1 2 3 分散が既知分散が未知であるが等しい分散が未知であり等しいとは限らない 1 母分散が既知のとき が既知 標準化変量 2 母分散が未知であり, 等しいとき 分散が未知であるが, 等しいということは分かっているとき 標準化変量 自由度 の t

More information

<4D F736F F D208EC08CB18C7689E68A E F AA957A82C682948C9F92E82E646F63>

<4D F736F F D208EC08CB18C7689E68A E F AA957A82C682948C9F92E82E646F63> 第 7 回 t 分布と t 検定 実験計画学 A.t 分布 ( 小標本に関する平均の推定と検定 ) 前々回と前回の授業では, 標本が十分に大きいあるいは母分散が既知であることを条件に正規分布を用いて推定 検定した. しかし, 母集団が正規分布し, 標本が小さい場合には, 標本分散から母分散を推定するときの不確実さを加味したt 分布を用いて推定 検定しなければならない. t 分布は標本分散の自由度 f(

More information

<4D F736F F D2090B695A8939D8C768A E F AA957A82C682948C9F92E8>

<4D F736F F D2090B695A8939D8C768A E F AA957A82C682948C9F92E8> 第 8 回 t 分布と t 検定 生物統計学 A.t 分布 ( 小標本に関する平均の推定と検定 ) 前々回と前回の授業では, 標本が十分に大きいあるいは母分散が既知であることを条件に正規分布を用いて推定 検定した. しかし, 母集団が正規分布し, 標本が小さい場合には, 標本分散から母分散を推定するときの不確実さを加味したt 分布を用いて推定 検定しなければならない. t 分布は標本分散の自由度 f(

More information

<4D F736F F D208EC08CB18C7689E68A E F1939D8C E82E646F63>

<4D F736F F D208EC08CB18C7689E68A E F1939D8C E82E646F63> 第 5 回統計的推定 実験計画学 A. 統計的推定と検定母集団から無作為抽出した標本から母集団についてなんらかの推論を行う. この場合, 統計から行う推論には統計的 ( ) と統計的 ( ) の 2つがある. 推定統計的に標本の統計量から母集団の母数 ( 母平均, 母標準偏差など ) を推論することを統計的推定という. 例 : 視聴率調査を 200 人に対して行い, 番組 Aの視聴率を推定した. 検定統計的に標本の統計量から母数に関する予想の真偽を検証することを統計的検定という.

More information

(.3) 式 z / の計算, alpha( ), sigma( ) から, 値 ( 区間幅 ) を計算 siki.3<-fuctio(, alpha, sigma) elta <- qorm(-alpha/) sigma /sqrt() elta [ 例 ]., 信頼率 として, サイ

(.3) 式 z / の計算, alpha( ), sigma( ) から, 値 ( 区間幅 ) を計算 siki.3<-fuctio(, alpha, sigma) elta <- qorm(-alpha/) sigma /sqrt() elta [ 例 ]., 信頼率 として, サイ 区間推定に基づくサンプルサイズの設計方法 7.7. 株式会社応用数理研究所佐々木俊久 永田靖 サンプルサイズの決め方 朝倉書店 (3) の 章です 原本とおなじ 6 種類を記述していますが 平均値関連 4 つをから4 章とし, 分散の つを 5,6 章に順序を変更しました 推定手順 サンプルサイズの設計方法は, 原本をそのまま引用しています R(S-PLUS) 関数での計算方法および例を追加しました.

More information

Microsoft PowerPoint - Econometrics pptx

Microsoft PowerPoint - Econometrics pptx 計量経済学講義 第 4 回回帰モデルの診断と選択 Part 07 年 ( ) 限 担当教員 : 唐渡 広志 研究室 : 経済学研究棟 4 階 43 号室 emal: kkarato@eco.u-toyama.ac.p webste: http://www3.u-toyama.ac.p/kkarato/ 講義の目的 誤差項の分散が不均 である場合や, 系列相関を持つ場合についての検定 法と修正 法を学びます

More information

統計学 - 社会統計の基礎 - 正規分布 標準正規分布累積分布関数の逆関数 t 分布正規分布に従うサンプルの平均の信頼区間 担当 : 岸 康人 資料ページ :

統計学 - 社会統計の基礎 - 正規分布 標準正規分布累積分布関数の逆関数 t 分布正規分布に従うサンプルの平均の信頼区間 担当 : 岸 康人 資料ページ : 統計学 - 社会統計の基礎 - 正規分布 標準正規分布累積分布関数の逆関数 t 分布正規分布に従うサンプルの平均の信頼区間 担当 : 岸 康人 資料ページ : https://goo.gl/qw1djw 正規分布 ( 復習 ) 正規分布 (Normal Distribution)N (μ, σ 2 ) 別名 : ガウス分布 (Gaussian Distribution) 密度関数 Excel:= NORM.DIST

More information

情報工学概論

情報工学概論 確率と統計 中山クラス 第 11 週 0 本日の内容 第 3 回レポート解説 第 5 章 5.6 独立性の検定 ( カイ二乗検定 ) 5.7 サンプルサイズの検定結果への影響練習問題 (4),(5) 第 4 回レポート課題の説明 1 演習問題 ( 前回 ) の解説 勉強時間と定期試験の得点の関係を無相関検定により調べる. データ入力 > aa

More information

統計学 Ⅱ( 章 ( 区間推定のシミュレーション 母平均 μ の区間推定 X ~ N, のとき X T ~ 自由度 1の t分布 1 自由度 -1のt 分布の97.5% 点 :t.975 P t T t この式に T を代入する t.975 母集団

統計学 Ⅱ( 章 ( 区間推定のシミュレーション 母平均 μ の区間推定 X ~ N, のとき X T ~ 自由度 1の t分布 1 自由度 -1のt 分布の97.5% 点 :t.975 P t T t この式に T を代入する t.975 母集団 統計学 Ⅱ(16 11-1 章 11 章母集団パラメータの推定 1. 信頼区間 (1 点推定と区間推定 ( 区間推定のシミュレーション (3 母平均 μの信頼区間 (4 母比率 pの信頼区間 (5 母比率 pのより厳密な信頼区間. 点推定量の特性 (1 標本平均 X の持つ望ましい性質 ( 不偏性 (3 推定量の分散と有効性 (4 平均 乗誤差 MEと最小分散性 (5 一致性 (6 チェビシェフの不等式

More information

Microsoft PowerPoint slide2forWeb.ppt [互換モード]

Microsoft PowerPoint slide2forWeb.ppt [互換モード] 講義内容 9..4 正規分布 ormal dstrbuto ガウス分布 Gaussa dstrbuto 中心極限定理 サンプルからの母集団統計量の推定 不偏推定量について 確率変数, 確率密度関数 確率密度関数 確率密度関数は積分したら. 平均 : 確率変数 分散 : 例 ある場所, ある日時での気温の確率. : 気温, : 気温 が起こる確率 標本平均とのアナロジー 類推 例 人の身長の分布と平均

More information

第7章

第7章 5. 推定と検定母集団分布の母数を推定する方法と仮説検定の方法を解説する まず 母数を一つの値で推定する点推定について 推定精度としての標準誤差を説明する また 母数が区間に存在することを推定する信頼区間も取り扱う 後半は統計的仮説検定について述べる 検定法の基本的な考え方と正規分布および二項確率についての検定法を解説する 5.1. 点推定先に述べた統計量は対応する母数の推定値である このように母数を一つの値およびベクトルで推定する場合を点推定

More information

母平均 母分散 母標準偏差は, が連続的な場合も含めて, すべての個体の特性値 のすべての実現値 の平均 分散 標準偏差であると考えてよい 有限母集団で が離散的な場合, まさにその意味になるが, そうでない場合も, このように理解してよい 5 母数 母集団から定まる定数のこと 母平均, 母分散,

母平均 母分散 母標準偏差は, が連続的な場合も含めて, すべての個体の特性値 のすべての実現値 の平均 分散 標準偏差であると考えてよい 有限母集団で が離散的な場合, まさにその意味になるが, そうでない場合も, このように理解してよい 5 母数 母集団から定まる定数のこと 母平均, 母分散, . 無作為標本. 基本的用語 推測統計における基本的な用語を確認する 母集団 調査の対象になる集団のこと 最終的に, 判断の対象になる集団である 母集団の個体 母集団を構成する つ つのもののこと 母集団は個体の集まりである 個体の特性値 個体の特性を表す数値のこと 身長や体重など 特性値は, 変量ともいう 4 有限母集団と無限母集団 個体の個数が有限の母集団を 有限母集団, 個体の個数が無限の母集団を

More information

Python-statistics5 Python で統計学を学ぶ (5) この内容は山田 杉澤 村井 (2008) R によるやさしい統計学 (

Python-statistics5   Python で統計学を学ぶ (5) この内容は山田 杉澤 村井 (2008) R によるやさしい統計学 ( http://localhost:8888/notebooks/... Python で統計学を学ぶ (5) この内容は山田 杉澤 村井 (2008) R によるやさしい統計学 (http://shop.ohmsha.co.jp/shop /shopdetail.html?brandcode=000000001781&search=978-4-274-06710-5&sort=) を参考にしています

More information

不偏推定量

不偏推定量 不偏推定量 情報科学の補足資料 018 年 6 月 7 日藤本祥二 統計的推定 (statistical estimatio) 確率分布が理論的に分かっている標本統計量を利用する 確率分布の期待値の値をそのまま推定値とするのが点推定 ( 信頼度 0%) 点推定に ± で幅を持たせて信頼度を上げたものが区間推定 持たせた幅のことを誤差 (error) と呼ぶ 信頼度 (cofidece level)

More information

<4D F736F F D208D A778D5A8A778F4B8E7793B CC A7795D2816A2E646F6378>

<4D F736F F D208D A778D5A8A778F4B8E7793B CC A7795D2816A2E646F6378> 高等学校学習指導要領解説数学統計関係部分抜粋 第 部数学第 2 章各科目第 節数学 Ⅰ 3 内容と内容の取扱い (4) データの分析 (4) データの分析統計の基本的な考えを理解するとともに, それを用いてデータを整理 分析し傾向を把握できるようにする アデータの散らばり四分位偏差, 分散及び標準偏差などの意味について理解し, それらを用いてデータの傾向を把握し, 説明すること イデータの相関散布図や相関係数の意味を理解し,

More information

<4D F736F F D208EC08CB18C7689E68A E F193F18D8095AA957A C C839395AA957A814590B38B4B95AA957A2E646F63>

<4D F736F F D208EC08CB18C7689E68A E F193F18D8095AA957A C C839395AA957A814590B38B4B95AA957A2E646F63> 第 4 回二項分布, ポアソン分布, 正規分布 実験計画学 009 年 月 0 日 A. 代表的な分布. 離散分布 二項分布大きさ n の標本で, 事象 Eの起こる確率を p とするとき, そのうち x 個にEが起こる確率 P(x) は二項分布に従う. 例さいころを 0 回振ったときに の出る回数 x の確率分布は二項分布に従う. この場合, n = 0, p = 6 の二項分布になる さいころを

More information

第 3 回講義の項目と概要 統計的手法入門 : 品質のばらつきを解析する 平均と標準偏差 (P30) a) データは平均を見ただけではわからない 平均が同じだからといって 同一視してはいけない b) データのばらつきを示す 標準偏差 にも注目しよう c) 平均

第 3 回講義の項目と概要 統計的手法入門 : 品質のばらつきを解析する 平均と標準偏差 (P30) a) データは平均を見ただけではわからない 平均が同じだからといって 同一視してはいけない b) データのばらつきを示す 標準偏差 にも注目しよう c) 平均 第 3 回講義の項目と概要 016.8.9 1.3 統計的手法入門 : 品質のばらつきを解析する 1.3.1 平均と標準偏差 (P30) a) データは平均を見ただけではわからない 平均が同じだからといって 同一視してはいけない b) データのばらつきを示す 標準偏差 にも注目しよう c) 平均 :AVERAGE 関数, 標準偏差 :STDEVP 関数とSTDEVという関数 1 取得したデータそのものの標準偏差

More information

Microsoft PowerPoint - 測量学.ppt [互換モード]

Microsoft PowerPoint - 測量学.ppt [互換モード] 8/5/ 誤差理論 測定の分類 性格による分類 独立 ( な ) 測定 : 測定値がある条件を満たさなければならないなどの拘束や制約を持たないで独立して行う測定 条件 ( 付き ) 測定 : 三角形の 3 つの内角の和のように, 個々の測定値間に満たすべき条件式が存在する場合の測定 方法による分類 直接測定 : 距離や角度などを機器を用いて直接行う測定 間接測定 : 求めるべき量を直接測定するのではなく,

More information

untitled

untitled 分析の信頼性を支えるもの データ評価のための統計的方法 確率分布と平均値の推定 検定 田中秀幸 1 はじめに前回は, 統計的手法を適用するために意味のあるデータをどのように取得するのかについて, 母集団と標本について, 期待値 分散 標準偏差について解説した 今回は, 統計的推定 検定の基礎となる確率分布とその確率分布を用いた推定 検定について解説する 2 確率分布 測定データを取得したとき, そのデータのばらつきを視覚的に表すために,

More information

Excelによる統計分析検定_知識編_小塚明_5_9章.indd

Excelによる統計分析検定_知識編_小塚明_5_9章.indd 第7章57766 検定と推定 サンプリングによって得られた標本から, 母集団の統計的性質に対して推測を行うことを統計的推測といいます 本章では, 推測統計の根幹をなす仮説検定と推定の基本的な考え方について説明します 前章までの知識を用いて, 具体的な分析を行います 本章以降の知識は操作編での操作に直接関連していますので, 少し聞きなれない言葉ですが, 帰無仮説 有意水準 棄却域 などの意味を理解して,

More information

スライド 1

スライド 1 計測工学第 12 回以降 測定値の誤差と精度編 2014 年 7 月 2 日 ( 水 )~7 月 16 日 ( 水 ) 知能情報工学科 横田孝義 1 授業計画 4/9 4/16 4/23 5/7 5/14 5/21 5/28 6/4 6/11 6/18 6/25 7/2 7/9 7/16 7/23 2 誤差とその取扱い 3 誤差 = 測定値 真の値 相対誤差 = 誤差 / 真の値 4 誤差 (error)

More information

Probit , Mixed logit

Probit , Mixed logit Probit, Mixed logit 2016/5/16 スタートアップゼミ #5 B4 後藤祥孝 1 0. 目次 Probit モデルについて 1. モデル概要 2. 定式化と理解 3. 推定 Mixed logit モデルについて 4. モデル概要 5. 定式化と理解 6. 推定 2 1.Probit 概要 プロビットモデルとは. 効用関数の誤差項に多変量正規分布を仮定したもの. 誤差項には様々な要因が存在するため,

More information

Microsoft PowerPoint - 基礎・経済統計6.ppt

Microsoft PowerPoint - 基礎・経済統計6.ppt . 確率変数 基礎 経済統計 6 確率分布 事象を数値化したもの ( 事象ー > 数値 の関数 自然に数値されている場合 さいころの目 量的尺度 数値化が必要な場合 質的尺度, 順序的尺度 それらの尺度に数値を割り当てる 例えば, コインの表が出たら, 裏なら 0. 離散確率変数と連続確率変数 確率変数の値 連続値をとるもの 身長, 体重, 実質 GDP など とびとびの値 離散値をとるもの 新生児の性別

More information

平成 7 年度数学 (3) あるゲームを 回行ったときに勝つ確率が. 8のプレイヤーがいる このゲームは 回ごとに独 立であるとする a. このゲームを 5 回行う場合 中心極限定理を用いると このプレイヤーが 5 回以上勝つ確率 は である. 回以上ゲームをした場合 そのうちの勝ち数が 3 割以上

平成 7 年度数学 (3) あるゲームを 回行ったときに勝つ確率が. 8のプレイヤーがいる このゲームは 回ごとに独 立であるとする a. このゲームを 5 回行う場合 中心極限定理を用いると このプレイヤーが 5 回以上勝つ確率 は である. 回以上ゲームをした場合 そのうちの勝ち数が 3 割以上 平成 7 年度数学 数学 ( 問題 ) 問題 から問題 3 を通じて必要であれば ( 付表 ) に記載された数値を用いなさい 問題. 次の ()~() の各問について 空欄に当てはまる最も適切なものをそれぞれの選択肢 の中から選び 解答用紙の所定の欄にマークしなさい なお 同じ選択肢を複数回選択してもよい 各 5 点 ( 計 6 点 ) ()つのサイコロを振る試行を 回繰り返すこととする 回目と 回目の試行でともにの目が出る事象を

More information

スライド 1

スライド 1 データ解析特論第 10 回 ( 全 15 回 ) 2012 年 12 月 11 日 ( 火 ) 情報エレクトロニクス専攻横田孝義 1 終了 11/13 11/20 重回帰分析をしばらくやります 12/4 12/11 12/18 2 前回から回帰分析について学習しています 3 ( 単 ) 回帰分析 単回帰分析では一つの従属変数 ( 目的変数 ) を 一つの独立変数 ( 説明変数 ) で予測する事を考える

More information

Microsoft PowerPoint - e-stat(OLS).pptx

Microsoft PowerPoint - e-stat(OLS).pptx 経済統計学 ( 補足 ) 最小二乗法について 担当 : 小塚匡文 2015 年 11 月 19 日 ( 改訂版 ) 神戸大学経済学部 2015 年度後期開講授業 補足 : 最小二乗法 ( 単回帰分析 ) 1.( 単純 ) 回帰分析とは? 標本サイズTの2 変数 ( ここではXとY) のデータが存在 YをXで説明する回帰方程式を推定するための方法 Y: 被説明変数 ( または従属変数 ) X: 説明変数

More information

統計学の基礎から学ぶ実験計画法ー1

統計学の基礎から学ぶ実験計画法ー1 第 部統計学の基礎と. 統計学とは. 統計学の基本. 母集団とサンプル ( 標本 ). データ (data) 3. 集団の特性を示す統計量 基本的な解析手法 3. 統計量 (statistic) とは 3. 集団を代表する統計量 - 平均値など 3.3 集団のばらつきを表す値 - 平方和 分散 標準偏差 4. ばらつき ( 分布 ) を表す関数 4. 確率密度関数 4. 最も重要な正規分布 4.3

More information

統計学 Ⅱ(06) 0 章 0 章 統計学の基本的な考え方 データ = 母集団から抽出された標本とみなす 実際に標本抽出されたデータ 視聴率, 失業率 そうでないデータ GDP, 株価, 為替レート, 試験の得点 このようなデータも母集団からの標本とみなす ( 母集団を想定する ) cf. 例題 0

統計学 Ⅱ(06) 0 章 0 章 統計学の基本的な考え方 データ = 母集団から抽出された標本とみなす 実際に標本抽出されたデータ 視聴率, 失業率 そうでないデータ GDP, 株価, 為替レート, 試験の得点 このようなデータも母集団からの標本とみなす ( 母集団を想定する ) cf. 例題 0 統計学 Ⅱ(06) 0 章 0 章 0 章標本抽出と標本分布. 母集団と標本 () 視聴率調査 () 有限母集団と無限母集団 (3) データと母集団. 標本抽出法 () 全数調査と標本調査 () 無作為抽出と有意抽出 (3) 単純無作為抽出法 (4) 層別抽出法 (5) 多段抽出法 (6) 系統抽出法 (7) その他の抽出法 3. 標本平均 の標本分布 () 標本平均の標本分布の例 () 標本平均

More information

データ解析

データ解析 データ解析 ( 前期 ) 最小二乗法 向井厚志 005 年度テキスト 0 データ解析 - 最小二乗法 - 目次 第 回 Σ の計算 第 回ヒストグラム 第 3 回平均と標準偏差 6 第 回誤差の伝播 8 第 5 回正規分布 0 第 6 回最尤性原理 第 7 回正規分布の 分布の幅 第 8 回最小二乗法 6 第 9 回最小二乗法の練習 8 第 0 回最小二乗法の推定誤差 0 第 回推定誤差の計算 第

More information

ビジネス統計 統計基礎とエクセル分析 正誤表

ビジネス統計 統計基礎とエクセル分析 正誤表 ビジネス統計統計基礎とエクセル分析 ビジネス統計スペシャリスト エクセル分析スペシャリスト 公式テキスト正誤表と学習用データ更新履歴 平成 30 年 5 月 14 日現在 公式テキスト正誤表 頁場所誤正修正 6 知識編第 章 -3-3 最頻値の解説内容 たとえば, 表.1 のデータであれば, 最頻値は 167.5cm というたとえば, 表.1 のデータであれば, 最頻値は 165.0cm ということになります

More information

Microsoft PowerPoint - statistics-2016-15-0607.pptx

Microsoft PowerPoint - statistics-2016-15-0607.pptx 統 計 学 第 回 講 義 標 本 平 均 の 分 布 0 年 7 ( ) 3 限 担 当 教 員 : 唐 渡 広 志 (からと こうじ) 研 究 室 : 経 済 学 研 究 棟 4 階 43 号 室 emal: kkarato@eco.u-toyama.ac.j webste: htt://www3.u-toyama.ac.j/kkarato/ 講 義 の 目 的 中 極 限 定 理 を 利 すると,

More information

<4D F736F F D208EC08CB18C7689E68A E F193F18D8095AA957A C C839395AA957A814590B38B4B95AA957A2E646F63>

<4D F736F F D208EC08CB18C7689E68A E F193F18D8095AA957A C C839395AA957A814590B38B4B95AA957A2E646F63> 第 4 回二項分布, ポアソン分布, 正規分布 実験計画学 A. 代表的な分布. 離散分布 二項分布大きさ n の標本で, 事象 Eの起こる確率を p とするとき, そのうち x 個にEが起こる確率 P(x) は二項分布に従う. 例さいころを 0 回振ったときに の出る回数 x の確率分布は二項分布に従う. この場合, n 0, p 6 の二項分布になる さいころを 0 回振ったときに が 0 回出る

More information

スライド 1

スライド 1 データ解析特論重回帰分析編 2017 年 7 月 10 日 ( 月 )~ 情報エレクトロニクスコース横田孝義 1 ( 単 ) 回帰分析 単回帰分析では一つの従属変数 ( 目的変数 ) を 一つの独立変数 ( 説明変数 ) で予測する事を考える 具体的には y = a + bx という回帰直線 ( モデル ) でデータを代表させる このためにデータからこの回帰直線の切片 (a) と傾き (b) を最小

More information

禁無断転載 第 3 章統計的手法に用いられる分布 All rights reserved (C) 芳賀 第 1 節我々の身の回りにある代表的分布と性質 1. 分布の表わし方我々の身の回りにある全てのものは ばらつきを持っています 収集したデータを分析していくためには このばらつきがどのような分布にな

禁無断転載 第 3 章統計的手法に用いられる分布 All rights reserved (C) 芳賀 第 1 節我々の身の回りにある代表的分布と性質 1. 分布の表わし方我々の身の回りにある全てのものは ばらつきを持っています 収集したデータを分析していくためには このばらつきがどのような分布にな 第 3 章統計的手法に用いられる分布 第 節我々の身の回りにある代表的分布と性質. 分布の表わし方我々の身の回りにある全てのものは ばらつきを持っています 収集したデータを分析していくためには このばらつきがどのような分布になっているかを明確に表現し 分析 比較を行えるようにしなければなりません この手法を覚えるようにしましょう () 分布の示し方収集した分布の全体的状態を目視で確認 比較するためには

More information

RSS Higher Certificate in Statistics, Specimen A Module 3: Basic Statistical Methods Solutions Question 1 (i) 帰無仮説 : 200C と 250C において鉄鋼の破壊応力の母平均には違いはな

RSS Higher Certificate in Statistics, Specimen A Module 3: Basic Statistical Methods Solutions Question 1 (i) 帰無仮説 : 200C と 250C において鉄鋼の破壊応力の母平均には違いはな RSS Higher Certiicate in Statistics, Specimen A Module 3: Basic Statistical Methods Solutions Question (i) 帰無仮説 : 00C と 50C において鉄鋼の破壊応力の母平均には違いはない. 対立仮説 : 破壊応力の母平均には違いがあり, 50C の方ときの方が大きい. n 8, n 7, x 59.6,

More information

Medical3

Medical3 Chapter 1 1.4.1 1 元配置分散分析と多重比較の実行 3つの治療法による測定値に有意な差が認められるかどうかを分散分析で調べます この例では 因子が1つだけ含まれるため1 元配置分散分析 one-way ANOVA の適用になります また 多重比較法 multiple comparison procedure を用いて 具体的のどの治療法の間に有意差が認められるかを検定します 1. 分析メニュー

More information

統計的データ解析

統計的データ解析 統計的データ解析 011 011.11.9 林田清 ( 大阪大学大学院理学研究科 ) 連続確率分布の平均値 分散 比較のため P(c ) c 分布 自由度 の ( カイ c 平均値 0, 標準偏差 1の正規分布 に従う変数 xの自乗和 c x =1 が従う分布を自由度 の分布と呼ぶ 一般に自由度の分布は f /1 c / / ( c ) {( c ) e }/ ( / ) 期待値 二乗 ) 分布 c

More information

_KyoukaNaiyou_No.4

_KyoukaNaiyou_No.4 理科教科内容指導論 I : 物理分野 物理現象の定量的把握第 4 回 ( 実験 ) データの眺め ~ 統計学の基礎続き 統計のはなし 基礎 応 娯楽 (Best selected business books) 村平 科技連出版社 1836 円 前回の復習と今回以降の 標 東京 学 善 郎 Web サイトより データ ヒストグラム 代表値 ( 平均値 最頻値 中間値 ) 分布の散らばり 集団の分布

More information

統計学 Ⅱ8-9 章 確率分布 確率の条件 8 ページ p: 確率関数 p は の関数とみなせる 確率分布 : すべてのに関する = または p の分布 グラフや表で表わすことが多い サイコロの例 : 計 縦軸は p または = 棒の幅は 線 確率 p.. = / / / / / / サイコロの目の

統計学 Ⅱ8-9 章 確率分布 確率の条件 8 ページ p: 確率関数 p は の関数とみなせる 確率分布 : すべてのに関する = または p の分布 グラフや表で表わすことが多い サイコロの例 : 計 縦軸は p または = 棒の幅は 線 確率 p.. = / / / / / / サイコロの目の 統計学 Ⅱ8-9 章 章確率と確率分布. 確率変数と離散的確率分布 確率変数 確率分布. 確率変数の平均と分散 確率変数 の平均と期待値 確率変数 の分散 期待値の性質 期待値の一般的な定義 基準化確率変数 歪度 尖度. 同時確率 周辺確率 条件付確率 項確率モデル 同時確率と同時確率分布 周辺確率 一般的な場合の同時確率 周辺確率 条件付確率 ベイズの定理. つの確率変数の平均 分散 共分散 変数の関数の期待値

More information

数値計算法

数値計算法 数値計算法 011/5/5 林田清 ( 大阪大学大学院理学研究科 ) レポート課題 1( 締め切りは 5/5) 平均値と標準偏差を求めるプログラム 入力 : データの数 データ データは以下の 10 個 ( 例えばある月の最高気温 ( )10 日分 ) 34.3,5.0,3.,34.6,.9,7.7,30.6,5.8,3.0,31.3 出力 :( 標本 ) 平均値 標準偏差 ソースプログラムと出力結果をメイルの本文にして

More information

様々なミクロ計量モデル†

様々なミクロ計量モデル† 担当 : 長倉大輔 ( ながくらだいすけ ) この資料は私の講義において使用するために作成した資料です WEB ページ上で公開しており 自由に参照して頂いて構いません ただし 内容について 一応検証してありますが もし間違いがあった場合でもそれによって生じるいかなる損害 不利益について責任を負いかねますのでご了承ください 間違いは発見次第 継続的に直していますが まだ存在する可能性があります 1 カウントデータモデル

More information

モジュール1のまとめ

モジュール1のまとめ 数理統計学 第 0 回 復習 標本分散と ( 標本 ) 不偏分散両方とも 分散 というのが実情 二乗偏差計標本分散 = データ数 (0ページ) ( 標本 ) 不偏分散 = (03 ページ ) 二乗偏差計 データ数 - 分析ではこちらをとることが多い 復習 ここまで 実験結果 ( 万回 ) 平均 50Kg 標準偏差 0Kg 0 人 全体に小さすぎる > mea(jkke) [] 89.4373 標準偏差

More information

Microsoft PowerPoint - Econometrics

Microsoft PowerPoint - Econometrics 計量経済学講義 第 0 回回帰分析 Part 07 年 月 日 ( 水 ) 限 ( 金曜授業実施日 ) 担当教員 : 唐渡 広志 研究室 : 経済学研究棟 4 階 4 号室 mal: kkarato@co.-toama.ac.jp wbst: http://www.-toama.ac.jp/kkarato/ 講義の目的 ロジスティック関数の推定方法について学びます 多重回帰分析について学びます kwords:

More information

Microsoft PowerPoint - sc7.ppt [互換モード]

Microsoft PowerPoint - sc7.ppt [互換モード] / 社会調査論 本章の概要 本章では クロス集計表を用いた独立性の検定を中心に方法を学ぶ 1) 立命館大学経済学部 寺脇 拓 2 11 1.1 比率の推定 ベルヌーイ分布 (Bernoulli distribution) 浄水器の所有率を推定したいとする 浄水器の所有の有無を表す変数をxで表し 浄水器をもっている を 1 浄水器をもっていない を 0 で表す 母集団の浄水器を持っている人の割合をpで表すとすると

More information

統計Ⅰ 第1回 序説~確率

統計Ⅰ 第1回 序説~確率 授業担当 : 徳永伸一 東京医科歯科大学教養部 数学講座 あらためて注意しておきたいこと ( 前期のはじめに注意したこと +α) 後期の授業は今日を含め ( たった )6 回 成績評価は前期試験 + 後期試験で 後期の方が比重が大きいですが前期の出来が悪かった人はハンデがあると思ってください 後期試験の出題範囲には前期授業の内容も含まれます 復習も怠りなく 欠席した場合は次回までに要点の確認を 次回の授業までに授業スライドを

More information

森林水文 水資源学 2 2. 水文統計 豪雨があった時, 新聞やテレビのニュースで 50 年に一度の大雨だった などと報告されることがある. 今争点となっている川辺川ダムは,80 年に 1 回の洪水を想定して治水計画が立てられている. 畑地かんがいでは,10 年に 1 回の渇水を対象として計画が立て

森林水文 水資源学 2 2. 水文統計 豪雨があった時, 新聞やテレビのニュースで 50 年に一度の大雨だった などと報告されることがある. 今争点となっている川辺川ダムは,80 年に 1 回の洪水を想定して治水計画が立てられている. 畑地かんがいでは,10 年に 1 回の渇水を対象として計画が立て . 水文統計 豪雨があった時, 新聞やテレビのニュースで 50 年に一度の大雨だった などと報告されることがある. 今争点となっている川辺川ダムは,80 年に 回の洪水を想定して治水計画が立てられている. 畑地かんがいでは,0 年に 回の渇水を対象として計画が立てられる. このように, 水利構造物の設計や, 治水や利水の計画などでは, 年に 回起こるような降雨事象 ( 最大降雨強度, 最大連続干天日数など

More information

数値計算法

数値計算法 数値計算法 008 4/3 林田清 ( 大阪大学大学院理学研究科 ) 実験データの統計処理その 誤差について 母集団と標本 平均値と標準偏差 誤差伝播 最尤法 平均値につく誤差 誤差 (Error): 真の値からのずれ 測定誤差 物差しが曲がっていた 測定する対象が室温が低いため縮んでいた g の単位までしかデジタル表示されない計りで g 以下 計りの目盛りを読み取る角度によって値が異なる 統計誤差

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション 1/X Chapter 9: Linear correlation Cohen, B. H. (2007). In B. H. Cohen (Ed.), Explaining Psychological Statistics (3rd ed.) (pp. 255-285). NJ: Wiley. 概要 2/X 相関係数とは何か 相関係数の数式 検定 注意点 フィッシャーのZ 変換 信頼区間 相関係数の差の検定

More information

Microsoft PowerPoint - ch04j

Microsoft PowerPoint - ch04j Ch.4 重回帰分析 : 推論 重回帰分析 y = 0 + 1 x 1 + 2 x 2 +... + k x k + u 2. 推論 1. OLS 推定量の標本分布 2. 1 係数の仮説検定 : t 検定 3. 信頼区間 4. 係数の線形結合への仮説検定 5. 複数線形制約の検定 : F 検定 6. 回帰結果の報告 入門計量経済学 1 入門計量経済学 2 OLS 推定量の標本分布について OLS 推定量は確率変数

More information

Microsoft Word - å“Ÿåłžå¸°173.docx

Microsoft Word - å“Ÿåłžå¸°173.docx 回帰分析 ( その 3) 経済情報処理 価格弾力性の推定ある商品について その購入量を w 単価を p とし それぞれの変化量を w p で表 w w すことにする この時 この商品の価格弾力性 は により定義される これ p p は p が 1 パーセント変化した場合に w が何パーセント変化するかを示したものである ここで p を 0 に近づけていった極限を考えると d ln w 1 dw dw

More information

日心TWS

日心TWS 2017.09.22 (15:40~17:10) 日本心理学会第 81 回大会 TWS ベイジアンデータ解析入門 回帰分析を例に ベイジアンデータ解析 を体験してみる 広島大学大学院教育学研究科平川真 ベイジアン分析のステップ (p.24) 1) データの特定 2) モデルの定義 ( 解釈可能な ) モデルの作成 3) パラメタの事前分布の設定 4) ベイズ推論を用いて パラメタの値に確信度を再配分ベイズ推定

More information

スライド 1

スライド 1 移動体観測を活用した交通 NW の リアルタイムマネジメントに向けて : プローブカーデータを用いた動的 OD 交通量のリアルタイム推定 名古屋大学山本俊行 背景 : マルチモード経路案内システム PRONAVI 2 プローブカーデータの概要 プローブカー : タクシー 157 台 蓄積用データ収集期間 : 22 年 1 月 ~3 月,1 月 ~23 年 3 月 データ送信はイベントベース : 車両発進

More information

日経平均株価の推移 ( 円 ) 5,, 15, 1, 5, ( データ ) 日経 NEEDS 3 日本株価の推移 (1 年 1 月 =1) 5 日経平均 TOPIX JASDAQ ( データ ) 日

日経平均株価の推移 ( 円 ) 5,, 15, 1, 5, ( データ ) 日経 NEEDS 3 日本株価の推移 (1 年 1 月 =1) 5 日経平均 TOPIX JASDAQ ( データ ) 日 3. 株式投資のリスクとリターン 経済統計分析 (1 年度春学期 ) 株式投資のリスクとリターン ( 統計分析手法 ) 成長率 ( 株価上昇率 ) 指数 平均 分散 標準偏差 相関係数 分布と確率の計算 信頼区間の推定 ( 点推定と区間推定 ) 仮説検定 ( 平均値の検定 平均差の検定 ) ( 経済理論等との関連 ) 金融資産価格 ( 株価 債券価格 為替レート ) の決定要因 相互関連 リスクとリターンの関係

More information

心理学統計法科目コード FB3537 単位数履修方法配当年次担当教員 2 R or SR( 講義 ) 2 年以上河地庸介 2017 年度以前 2018 年度以降に入学した方どちらも履修登録できます 2017 年度以前入学者で 心理学研究法 Ⅱ を履修登録しておらず認定心理士の取得を目指す方 および

心理学統計法科目コード FB3537 単位数履修方法配当年次担当教員 2 R or SR( 講義 ) 2 年以上河地庸介 2017 年度以前 2018 年度以降に入学した方どちらも履修登録できます 2017 年度以前入学者で 心理学研究法 Ⅱ を履修登録しておらず認定心理士の取得を目指す方 および 心理学統計法科目コード FB3537 単位数履修方法配当年次担当教員 2 R or SR( 講義 ) 2 年以上河地庸介 2017 年度以前 2018 年度以降に入学した方どちらも履修登録できます 2017 年度以前入学者で 心理学研究法 Ⅱ を履修登録しておらず認定心理士の取得を目指す方 および 心理学研究法 Ⅱ のスクーリングを未受講で 心理学統計法 に履修科目を変更された方は 本科目の学習を行ってください

More information

医学 薬学分野の研究で用いられるのは推測統計学 母集団のデータ 多数データの 数学的要約 記述 記述統計学 ( 古典統計学 ) 母集団 ( 準母集団 ) 無作為抽出 標本集団のデータ 少数データの 数学的要約 記述 推測統計学 ( 近代統計学 ) 逆規定 確率的推測 記述 記述統計学調査対象集団 =

医学 薬学分野の研究で用いられるのは推測統計学 母集団のデータ 多数データの 数学的要約 記述 記述統計学 ( 古典統計学 ) 母集団 ( 準母集団 ) 無作為抽出 標本集団のデータ 少数データの 数学的要約 記述 推測統計学 ( 近代統計学 ) 逆規定 確率的推測 記述 記述統計学調査対象集団 = 1.. 統計学の基本的な概念 1.1 統計学とは何ぞや? 統計学は沢山のデータを要約し 中に含まれている情報を把握しやすくするための手段 データデータ データデータ データデータ 要約値 ( 統計量 ) 実質科学的評価 < 例 >100 人の日本人について体重を測定した場合 100 個のデータを眺めただけでそこに含まれる情報を読み取るのは困難 100 個のデータのほぼ真ん中を表す要約値として平均値を求める

More information

Microsoft Word - Stattext12.doc

Microsoft Word - Stattext12.doc 章対応のない 群間の量的データの検定. 検定手順 この章ではデータ間に 対 の対応のないつの標本から推定される母集団間の平均値や中央値の比較を行ないます 検定手法は 図. のようにまず正規に従うかどうかを調べます 但し この場合はつの群が共に正規に従うことを調べる必要があります 次に 群とも正規ならば F 検定を用いて等分散であるかどうかを調べます 等分散の場合は t 検定 等分散でない場合はウェルチ

More information

Microsoft Word - Stattext07.doc

Microsoft Word - Stattext07.doc 7 章正規分布 正規分布 (ormal dstrbuto) は 偶発的なデータのゆらぎによって生じる統計学で最も基本的な確率分布です この章では正規分布についてその性質を詳しく見て行きましょう 7. 一般の正規分布正規分布は 平均と分散の つの量によって完全に特徴付けられています 平均 μ 分散 の正規分布は N ( μ, ) 分布とも書かれます ここに N は ormal の頭文字を 表わしています

More information

Microsoft PowerPoint - Econometrics-2013-04-1018.pptx

Microsoft PowerPoint - Econometrics-2013-04-1018.pptx 計 量 経 済 学 講 義 第 回 記 述 統 計 の 基 礎 Part 0 年 0 8 ( ) 限 担 当 教 員 : 唐 渡 広 志 研 究 室 : 経 済 学 研 究 棟 階 号 室 email: kkarato@eco.u-toyama.ac.jp website: http://www.u-toyama.ac.jp/kkarato/ 講 義 の 目 的 般 的 なデータの 集 約 法 や

More information

CAEシミュレーションツールを用いた統計の基礎教育 | (株)日科技研

CAEシミュレーションツールを用いた統計の基礎教育 | (株)日科技研 CAE シミュレーションツール を用いた統計の基礎教育 ( 株 ) 日本科学技術研修所数理事業部 1 現在の統計教育の課題 2009 年から統計教育が中等 高等教育の必須科目となり, 大学でも問題解決ができるような人材 ( 学生 ) を育てたい. 大学ではコンピューター ( 統計ソフトの利用 ) を重視した教育をより積極的におこなうのと同時に, 理論面もきちんと教育すべきである. ( 報告 数理科学分野における統計科学教育

More information

3. 株式投資の リスクとリターン 経済統計分析 (2015 年度春学期 )

3. 株式投資の リスクとリターン 経済統計分析 (2015 年度春学期 ) 3. 株式投資の リスクとリターン 経済統計分析 (15 年度春学期 ) 株式投資のリスクとリターン ( 統計分析手法 ) 成長率 ( 株価上昇率 ) 指数 平均 分散 標準偏差 相関係数 分布と確率の計算 信頼区間の推定 ( 点推定と区間推定 ) 仮説検定 ( 平均値の検定 平均差の検定 ) ( 経済理論等との関連 ) 金融資産価格 ( 株価 債券価格 為替レート ) の決定要因 相互関連 リスクとリターンの関係

More information

Microsoft PowerPoint - Inoue-statistics [互換モード]

Microsoft PowerPoint - Inoue-statistics [互換モード] 誤差論 神戸大学大学院農学研究科 井上一哉 (Kazuya INOUE) 誤差論 2011 年度前期火曜クラス 1 講義内容 誤差と有効数字 (Slide No.2~8 Text p.76~78) 誤差の分布と標準偏差 (Slide No.9~18 Text p.78~80) 最確値とその誤差 (Slide No.19~25 Text p.80~81) 誤差の伝播 (Slide No.26~32 Text

More information

スライド 1

スライド 1 2019 年 5 月 7 日 @ 統計モデリング 統計モデリング 第四回配布資料 ( 予習用 ) 文献 : a) A. J. Dobson and A. G. Barnett: An Introduction to Generalized Linear Models. 3rd ed., CRC Press. b) H. Dung, et al: Monitoring the Transmission

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション 学位論文作成のための疫学 統計解析の実際 徳島大学大学院 医歯薬学研究部 社会医学系 予防医学分野 有澤孝吉 (e-mail: karisawa@tokushima-u.ac.jp) 本日の講義の内容 (SPSS を用いて ) 記述統計 ( データのまとめ方 ) 代表値 ばらつき正規確率プロット 正規性の検定標準偏差 不偏標準偏差 標準誤差の区別中心極限定理母平均の区間推定 ( 母集団の標準偏差が既知の場合

More information

0415

0415 今回の授業の狙い 基本的な統計量を求め 活用できること 章統計量と確率分布のと確率分布の活用 part 統計解析で用いる代表的な確率分布の特徴を 把握すること 統計解析の全体像 統計解析での注意点 ()( サンプリング サンプル 測定 母集団 何らかの意味で同質性が期待できるものの集団 e 日本人男性同じ条件で作った製品 母集団 推定 アクション 事実に基づく判断 データからモノをいう データ解析

More information

はじめに Excel における計算式の入力方法の基礎 Excel では計算式を入力することで様々な計算を行うことができる 例えば はセルに =SQRT((4^2)/3+3*5-2) と入力することで算出される ( 答え ) どのような数式が使えるかは 数式

はじめに Excel における計算式の入力方法の基礎 Excel では計算式を入力することで様々な計算を行うことができる 例えば はセルに =SQRT((4^2)/3+3*5-2) と入力することで算出される ( 答え ) どのような数式が使えるかは 数式 統計演習 統計 とはバラツキのあるデータから数値上の性質や規則性あるいは不規則性を 客観的に分析 評価する手法のことである 統計的手法には様々なものが含まれるが 今回はそのなかから 記述統計と統計学的推測について簡単にふれる 記述統計 : 収集した標本の平均や分散 標準偏差などを計算し データの示す傾向や性質を要約して把握する手法のこと 求められた値を記述統計量 ( または要約統計量 ) と言う 平均値

More information

Microsoft PowerPoint - A1.ppt [互換モード]

Microsoft PowerPoint - A1.ppt [互換モード] 011/4/13 付録 A1( 推測統計学の基礎 ) 付録 A1 推測統計学の基礎 1. 統計学. カイ 乗検定 3. 分散分析 4. 相関係数 5. 多変量解析 1. 統計学 3 統計ソフト 4 記述統計学 推測統計学 検定 ノンパラメトリック検定名義 / 分類尺度順序 / 順位尺度パラメトリック検定間隔 / 距離尺度比例 / 比率尺度 SAS SPSS R R-Tps (http://cse.aro.affrc.go.jp/takezawa/r-tps/r.html)

More information

経済統計分析1 イントロダクション

経済統計分析1 イントロダクション 1 経済統計分析 9 分散分析 今日のおはなし. 検定 statistical test のいろいろ 2 変数の関係を調べる手段のひとつ適合度検定独立性検定分散分析 今日のタネ 吉田耕作.2006. 直感的統計学. 日経 BP. 中村隆英ほか.1984. 統計入門. 東大出版会. 2 仮説検定の手続き 仮説検定のロジック もし帰無仮説が正しければ, 検定統計量が既知の分布に従う 計算された検定統計量の値から,

More information

Kumamoto University Center for Multimedia and Information Technologies Lab. 熊本大学アプリケーション実験 ~ 実環境における無線 LAN 受信電波強度を用いた位置推定手法の検討 ~ InKIAI 宮崎県美郷

Kumamoto University Center for Multimedia and Information Technologies Lab. 熊本大学アプリケーション実験 ~ 実環境における無線 LAN 受信電波強度を用いた位置推定手法の検討 ~ InKIAI 宮崎県美郷 熊本大学アプリケーション実験 ~ 実環境における無線 LAN 受信電波強度を用いた位置推定手法の検討 ~ InKIAI プロジェクト @ 宮崎県美郷町 熊本大学副島慶人川村諒 1 実験の目的 従来 信号の受信電波強度 (RSSI:RecevedSgnal StrengthIndcator) により 対象の位置を推定する手法として 無線 LAN の AP(AccessPont) から受信する信号の減衰量をもとに位置を推定する手法が多く検討されている

More information

青焼 1章[15-52].indd

青焼 1章[15-52].indd 1 第 1 章統計の基礎知識 1 1 なぜ統計解析が必要なのか? 人間は自分自身の経験にもとづいて 感覚的にものごとを判断しがちである 例えばある疾患に対する標準治療薬の有効率が 50% であったとする そこに新薬が登場し ある医師がその新薬を 5 人の患者に使ったところ 4 人が有効と判定されたとしたら 多くの医師はこれまでの標準治療薬よりも新薬のほうが有効性が高そうだと感じることだろう しかし

More information

多変量解析 ~ 重回帰分析 ~ 2006 年 4 月 21 日 ( 金 ) 南慶典

多変量解析 ~ 重回帰分析 ~ 2006 年 4 月 21 日 ( 金 ) 南慶典 多変量解析 ~ 重回帰分析 ~ 2006 年 4 月 21 日 ( 金 ) 南慶典 重回帰分析とは? 重回帰分析とは複数の説明変数から目的変数との関係性を予測 評価説明変数 ( 数量データ ) は目的変数を説明するのに有効であるか得られた関係性より未知のデータの妥当性を判断する これを重回帰分析という つまり どんなことをするのか? 1 最小 2 乗法により重回帰モデルを想定 2 自由度調整済寄与率を求め

More information

したがって ばらつきを表すには 偏差の符号をなくしてから平均化する必要がある そのひとつの方法は 1 偏差の絶対値を用いることである 偏差の絶対値の算術平均を 平均偏差 という ( )/5=10.8 偏差の符号を取るもうひとつの方法は 2それを2 乗することです 偏差の2 乗の算

したがって ばらつきを表すには 偏差の符号をなくしてから平均化する必要がある そのひとつの方法は 1 偏差の絶対値を用いることである 偏差の絶対値の算術平均を 平均偏差 という ( )/5=10.8 偏差の符号を取るもうひとつの方法は 2それを2 乗することです 偏差の2 乗の算 統計学テキストの69ページに 平均偏差 分散 標準偏差 変動係数 標準誤差 信頼区間に関する記述がある 分布を考える分布の中心の位置 ( 例 ) 65 53 44 78 50 の数値の算術平均は (65+53+44+78+50)/5=58 である 此れだけでは 分布の状態がわからない ばらつきの程度を表すには最大値と最小値との差 (78-44)=34 これをレンジ ( 範囲 ) と言う しかし 両端の数字だけでは

More information

Microsoft PowerPoint - データ解析基礎4.ppt [互換モード]

Microsoft PowerPoint - データ解析基礎4.ppt [互換モード] データ解析基礎. 正規分布と相関係数 keyword 正規分布 正規分布の性質 偏差値 変数間の関係を表す統計量 共分散 相関係数 散布図 正規分布 世の中の多くの現象は, 標本数を大きくしていくと, 正規分布に近づいていくことが知られている. 正規分布 データ解析の基礎となる重要な分布 平均と分散によって特徴づけることができる. 平均値 : 分布の中心を表す値 分散 : 分布のばらつきを表す値 正規分布

More information

ベイズ統計入門

ベイズ統計入門 ベイズ統計入門 条件付確率 事象 F が起こったことが既知であるという条件の下で E が起こる確率を条件付確率 (codtoal probablt) という P ( E F ) P ( E F ) P( F ) 定義式を変形すると 確率の乗法公式となる ( E F ) P( F ) P( E F ) P( E) P( F E) P 事象の独立 ある事象の生起する確率が 他のある事象が生起するかどうかによって変化しないとき

More information

(3) 検定統計量の有意確率にもとづく仮説の採否データから有意確率 (significant probability, p 値 ) を求め 有意水準と照合する 有意確率とは データの分析によって得られた統計値が偶然おこる確率のこと あらかじめ設定した有意確率より低い場合は 帰無仮説を棄却して対立仮説

(3) 検定統計量の有意確率にもとづく仮説の採否データから有意確率 (significant probability, p 値 ) を求め 有意水準と照合する 有意確率とは データの分析によって得られた統計値が偶然おこる確率のこと あらかじめ設定した有意確率より低い場合は 帰無仮説を棄却して対立仮説 第 3 章 t 検定 (pp. 33-42) 3-1 統計的検定 統計的検定とは 設定した仮説を検証する場合に 仮説に基づいて集めた標本を 確率論の観点から分析 検証すること 使用する標本は 母集団から無作為抽出されたものでなければならない パラメトリック検定とノンパラメトリック検定 パラメトリック検定は母集団が正規分布に従う間隔尺度あるいは比率尺度の連続データを対象とする ノンパラメトリック検定は母集団に特定の分布を仮定しない

More information

確率分布 - 確率と計算 1 6 回に 1 回の割合で 1 の目が出るさいころがある. このさいころを 6 回投げたとき,1 度も 1 の目が出ない確率を求めよ. 5 6 /6 6 =15625/46656= (5/6) 6 = ある市の気象観測所での記録では, 毎年雨の降る

確率分布 - 確率と計算 1 6 回に 1 回の割合で 1 の目が出るさいころがある. このさいころを 6 回投げたとき,1 度も 1 の目が出ない確率を求めよ. 5 6 /6 6 =15625/46656= (5/6) 6 = ある市の気象観測所での記録では, 毎年雨の降る 確率分布 - 確率と計算 6 回に 回の割合で の目が出るさいころがある. このさいころを 6 回投げたとき 度も の目が出ない確率を求めよ. 5 6 /6 6 =565/46656=.48 (5/6) 6 =.48 ある市の気象観測所での記録では 毎年雨の降る日と降らない日の割合は概ね :9 で一定している. 前日に発表される予報の精度は 8% で 残りの % は実際とは逆の天気を予報している.

More information

基礎統計

基礎統計 基礎統計 第 4 回講義資料 本日の講義内容 第 3 章 : 次元データの整理 散布図 [ グラフ ] 共分散と相関係数 [ 数値 ] 回帰分析 [ 数値とグラフ ] 偏相関係数 [ 数値 ] 第 3 章 次元のデータ 第 3 章 : 次元のデータ ( 目的 ) 変数間の関係を探る 相関と回帰 ( 相関 ) 変数を区別せず対等にみる ( 相関関係 ) 身長と体重, 教科目の成績 ( 回帰 ) 一方が他方に影響を与える

More information

Excel で学ぶ 実験計画法データ処理入門 坂元保秀 まえがき 本テキストは, 大学の統計解析演習や研究室ゼミ生の教育の一環として, 実験計画法を理解するための序論として, 工業系の分野で収集される特性データを Microsoft Excel を用いて実践的に処理する方法を記述したものである. 当初は, 完全ランダム実験で二元配置法まで Excel 関数を利用して実施していたが, 企業の皆様から身近に解析ができる

More information

と 測定を繰り返した時のばらつき の和が 全体のばらつき () に対して どれくらいの割合となるかがわかり 測定システムを評価することができる MSA 第 4 版スタディガイド ジャパン プレクサス (010)p.104 では % GRR の値が10% 未満であれば 一般に受容れられる測定システムと

と 測定を繰り返した時のばらつき の和が 全体のばらつき () に対して どれくらいの割合となるかがわかり 測定システムを評価することができる MSA 第 4 版スタディガイド ジャパン プレクサス (010)p.104 では % GRR の値が10% 未満であれば 一般に受容れられる測定システムと .5 Gage R&R による解析.5.1 Gage R&Rとは Gage R&R(Gage Repeatability and Reproducibility ) とは 測定システム分析 (MSA: Measurement System Analysis) ともいわれ 測定プロセスを管理または審査するための手法である MSAでは ばらつきの大きさを 変動 という尺度で表し 測定システムのどこに原因があるのか

More information

Microsoft Word - apstattext04.docx

Microsoft Word - apstattext04.docx 4 章母集団と指定値との量的データの検定 4.1 検定手順今までは質的データの検定の方法を学んで来ましたが これからは量的データについてよく利用される方法を説明します 量的データでは データの分布が正規分布か否かで検定の方法が著しく異なります この章ではまずデータの分布の正規性を調べる方法を述べ 次にデータの平均値または中央値がある指定された値と違うかどうかの検定方法を説明します 以下の図 4.1.1

More information

ii 2. F. ( ), ,,. 5. G., L., D. ( ) ( ), 2005.,. 6.,,. 7.,. 8. ( ), , (20 ). 1. (75% ) (25% ). 60.,. 2. =8 5, =8 4 (. 1.) 1.,,

ii 2. F. ( ), ,,. 5. G., L., D. ( ) ( ), 2005.,. 6.,,. 7.,. 8. ( ), , (20 ). 1. (75% ) (25% ). 60.,. 2. =8 5, =8 4 (. 1.) 1.,, (1 C205) 4 8 27(2015) http://www.math.is.tohoku.ac.jp/~obata,.,,,..,,. 1. 2. 3. 4. 5. 6. 7.... 1., 2014... 2. P. G., 1995.,. 3.,. 4.. 5., 1996... 1., 2007,. ii 2. F. ( ),.. 3... 4.,,. 5. G., L., D. ( )

More information

Microsoft PowerPoint - データ解析基礎2.ppt

Microsoft PowerPoint - データ解析基礎2.ppt データ解析基礎. 度数分布と特性値 keyword データの要約 度数分布表, ヒストグラム 分布の中心を表す基本統計量 平均, 最頻値, 中央値 分布のばらつきを表す統計量 分散, 標準偏差 統計データの構造 - データ解析の目的 具体的な対象 ( 母集団 ) についての調査結果 ( 標本をどう加工 処理し, 有益な情報を引き出すかである. 加工 処理するための調査結果として, データ ( 観測データ

More information

14 化学実験法 II( 吉村 ( 洋 mmol/l の半分だったから さんの測定値は くんの測定値の 4 倍の重みがあり 推定値 としては 0.68 mmol/l その標準偏差は mmol/l 程度ということになる 測定値を 特徴づけるパラメータ t を推定するこの手

14 化学実験法 II( 吉村 ( 洋 mmol/l の半分だったから さんの測定値は くんの測定値の 4 倍の重みがあり 推定値 としては 0.68 mmol/l その標準偏差は mmol/l 程度ということになる 測定値を 特徴づけるパラメータ t を推定するこの手 14 化学実験法 II( 吉村 ( 洋 014.6.1. 最小 乗法のはなし 014.6.1. 内容 最小 乗法のはなし...1 最小 乗法の考え方...1 最小 乗法によるパラメータの決定... パラメータの信頼区間...3 重みの異なるデータの取扱い...4 相関係数 決定係数 ( 最小 乗法を語るもう一つの立場...5 実験条件の誤差の影響...5 問題...6 最小 乗法の考え方 飲料水中のカルシウム濃度を

More information

Excelにおける回帰分析(最小二乗法)の手順と出力

Excelにおける回帰分析(最小二乗法)の手順と出力 Microsoft Excel Excel 1 1 x y x y y = a + bx a b a x 1 3 x 0 1 30 31 y b log x α x α x β 4 version.01 008 3 30 Website:http://keijisaito.info, E-mail:master@keijisaito.info 1 Excel Excel.1 Excel Excel

More information

データの整理 ( 度数分布表とヒストグラム ) 1 次元のデータの整理の仕方として代表的な ものに度数分布表とヒストグラムがあります 度数分布表観測値をその値に応じていくつかのグループ ( これを階級という ) に分類し 各階級に入る観測値の数 ( これを度数という ) を数えて表にしたもの 2

データの整理 ( 度数分布表とヒストグラム ) 1 次元のデータの整理の仕方として代表的な ものに度数分布表とヒストグラムがあります 度数分布表観測値をその値に応じていくつかのグループ ( これを階級という ) に分類し 各階級に入る観測値の数 ( これを度数という ) を数えて表にしたもの 2 春学期統計学 I データの整理 : 度数分布 標本分散 等 担当 : 長倉大輔 ( ながくらだいすけ ) 1 データの整理 ( 度数分布表とヒストグラム ) 1 次元のデータの整理の仕方として代表的な ものに度数分布表とヒストグラムがあります 度数分布表観測値をその値に応じていくつかのグループ ( これを階級という ) に分類し 各階級に入る観測値の数 ( これを度数という ) を数えて表にしたもの

More information

データ科学2.pptx

データ科学2.pptx データ科学 多重検定 2 mul%ple test False Discovery Rate 藤博幸 前回の復習 1 多くの検定を繰り返す時には 単純に個々の検定を繰り返すだけでは不十分 5% 有意水準ということは, 1000 回検定を繰り返すと, 50 回くらいは帰無仮説が正しいのに 間違って棄却されてすまうじちがあるということ ex) 1 万個の遺伝子について 正常細胞とガン細胞で それぞれの遺伝子の発現に差があるかどうかを検定

More information

Microsoft Word - appendix_b

Microsoft Word - appendix_b 付録 B エクセルの使い方 藪友良 (2019/04/05) 統計学を勉強しても やはり実際に自分で使ってみないと理解は十分ではあ りません ここでは 実際に統計分析を使う方法のひとつとして Microsoft Office のエクセルの使い方を解説します B.1 分析ツールエクセルについている分析ツールという機能を使えば さまざまな統計分析が可能です まず この機能を使えるように設定をします もし

More information

Microsoft PowerPoint - Econometrics

Microsoft PowerPoint - Econometrics 計量経済学講義 第 回回帰分析 Part 4 7 年 月 7 日 ( 火 ) 限 担当教員 : 唐渡広志 研究室 : 経済学研究棟 4 階 4 号室 emal: kkarato@eco.-toyama.ac.jp webste: http://www.-toyama.ac.jp/kkarato/ 講義の目的 最小 乗法について理論的な説明をします 多重回帰分析についての特殊なケースについて 多重回帰分析のいくつかの応用例を検討します

More information

切断安定分布による資産収益率のファットテイル性のモデル化とVaR・ESの計測手法におけるモデル・リスクの数値的分析

切断安定分布による資産収益率のファットテイル性のモデル化とVaR・ESの計測手法におけるモデル・リスクの数値的分析 日本銀行金融高度化センターワークショップ リスク計測の高度化 ~ テイルリスクの把握 ~ 説明資料 1 切断安定分布による資産収益率のファットテイル性のモデル化と VR VaR の計測手法における モデル リスクの数値的分析 2013 年 2 月 28 日日本銀行金融機構局金融高度化センター磯貝孝 要旨 ( 分析の枠組み ) 日経平均株価の日次収益率の母分布を切断安定分布として推計 同分布からのランダム

More information

Microsoft PowerPoint - 資料04 重回帰分析.ppt

Microsoft PowerPoint - 資料04 重回帰分析.ppt 04. 重回帰分析 京都大学 加納学 Division of Process Control & Process Sstems Engineering Department of Chemical Engineering, Koto Universit manabu@cheme.koto-u.ac.jp http://www-pse.cheme.koto-u.ac.jp/~kano/ Outline

More information

学習指導要領

学習指導要領 (1) 数と式 ア数と集合 ( ア ) 実数数を実数まで拡張する意義を理解し 簡単な無理数の四則計算をすること 絶対値の意味を理解し適切な処理することができる 例題 1-3 の絶対値をはずせ 展開公式 ( a + b ) ( a - b ) = a 2 - b 2 を利用して根号を含む分数の分母を有理化することができる 例題 5 5 + 2 の分母を有理化せよ 実数の整数部分と小数部分の表し方を理解している

More information

自動車感性評価学 1. 二項検定 内容 2 3. 質的データの解析方法 1 ( 名義尺度 ) 2.χ 2 検定 タイプ 1. 二項検定 官能検査における分類データの解析法 識別できるかを調べる 嗜好に差があるかを調べる 2 点比較法 2 点識別法 2 点嗜好法 3 点比較法 3 点識別法 3 点嗜好

自動車感性評価学 1. 二項検定 内容 2 3. 質的データの解析方法 1 ( 名義尺度 ) 2.χ 2 検定 タイプ 1. 二項検定 官能検査における分類データの解析法 識別できるかを調べる 嗜好に差があるかを調べる 2 点比較法 2 点識別法 2 点嗜好法 3 点比較法 3 点識別法 3 点嗜好 . 内容 3. 質的データの解析方法 ( 名義尺度 ).χ 検定 タイプ. 官能検査における分類データの解析法 識別できるかを調べる 嗜好に差があるかを調べる 点比較法 点識別法 点嗜好法 3 点比較法 3 点識別法 3 点嗜好法 : 点比較法 : 点識別法 配偶法 配偶法 ( 官能評価の基礎と応用 ) 3 A か B かの判定において 回の判定でAが選ばれる回数 kは p の二項分布に従う H :

More information

仮説検定を伴う方法では 検定の仮定が満たされ 検定に適切な検出力があり データの分析に使用される近似で有効な結果が得られることを確認することを推奨します カイ二乗検定の場合 仮定はデータ収集に固有であるためデータチェックでは対応しません Minitab は近似法の検出力と妥当性に焦点を絞っています

仮説検定を伴う方法では 検定の仮定が満たされ 検定に適切な検出力があり データの分析に使用される近似で有効な結果が得られることを確認することを推奨します カイ二乗検定の場合 仮定はデータ収集に固有であるためデータチェックでは対応しません Minitab は近似法の検出力と妥当性に焦点を絞っています MINITAB アシスタントホワイトペーパー本書は Minitab 統計ソフトウェアのアシスタントで使用される方法およびデータチェックを開発するため Minitab の統計専門家によって行われた調査に関する一連の文書の 1 つです カイ二乗検定 概要 実際には 連続データの収集が不可能な場合や難しい場合 品質の専門家は工程を評価するためのカテゴリデータの収集が必要となることがあります たとえば 製品は不良

More information

Microsoft Word - lec_student-chp3_1-representative

Microsoft Word - lec_student-chp3_1-representative 1. はじめに この節でのテーマ データ分布の中心位置を数値で表す 可視化でとらえた分布の中心位置を数量化する 平均値とメジアン, 幾何平均 この節での到達目標 1 平均値 メジアン 幾何平均の定義を書ける 2 平均値とメジアン, 幾何平均の特徴と使える状況を説明できる. 3 平均値 メジアン 幾何平均を計算できる 2. 特性値 集めたデータを度数分布表やヒストグラムに整理する ( 可視化する )

More information