Lebesgue Fubini L p Banach, Hilbert Höld

Size: px
Start display at page:

Download "Lebesgue Fubini L p Banach, Hilbert Höld"

Transcription

1 II (Analysis II) Lebesgue (Applications of Lebesgue Integral Theory) 1 (Seiji HIABA) 1 ( ),,, ( )

2 Lebesgue Fubini L p Banach, Hilbert Hölder, Minkovsky Fourier L p Cc L 1 Fourier L 2 Fourier (Charateristic Functions) Fourier Lévy Schwartz

3 Applications of Lebesgue Integral Theory Lebesgue (X, F, µ) (measure space)., X, 2 X, F 2 X σ (σ-field), i.e., (1) F, (2) A F = A c F, (3) A n F(n 1) = A n F. µ = µ(dx) (measure), i.e., µ : F [0, ], ; (1) µ( ) = 0, (2) A n F : = µ( A n ) = µ(a n ). (measurable function) f : X = {± }. f a, {f a} = {x X; f(x) a} F. f, Lebesgue fdµ = fdµ = X X f(x)µ(dx)., {A k } n k=1 F X n n f = a k 1 Ak (a k ) = fdµ := a k µ(a k ). k=1 f 0, {f n }; 0 f n f, fdµ := lim f n dµ. n f n = fdµ := lim n n2 n k=1 ( n2 n k=1 k 1 2 n 1 {(k 1)/2 n f<k/2 n } + n1 {f n}, k=1 ( k 1 k 1 2 n µ 2 n f < k ) ) 2 n + nµ(f n)., f + = f 0 = max{f, 0}, f = ( f) 0 = max{ f, 0} f ± 0 f = f + f, f = f + + f, f + dµ, f dµ, Lebesgue, fdµ =. f L 1 = L 1 (X, F, µ). f + dµ f dµ f dµ <, f, Lebesgue. B n = B( n ) n Borel field, i.e., n O n σ-field σ(o n ) (= O n σ-field).

4 Applications of Lebesgue Integral Theory (B n Lebesgue (Lebesgue measure on B n )) X = n, F = B n. A = n k=1 (a k, b k ] ( a k b k ), µ(a) = n k=1 (b k a k ) µ µ B n Lebesgue, dx m = m(dx),,. 1.2 N = {N n ; B B n ; m(b) = 0, N B} (m ), (1) L n = L( n ) := {A N : A B n, N N } σ-field. (2) A N L n, i.e., A B n, N N, m(a N) := m(a), ( n, L n ). 1.2 m m, ( )Lebesgue, L n Lebesgue, Lebesgue, ( n, L n, m) Lebesgue. 1.1, Fubini f, f 1, f 2, (X, F, µ). µ(lim f n f) = 0 f n f, f n f, µ-a.e.. a.e. almost everywhere. ( µ = P P -a.s., a.s. almost surely. ) 1.3 ( (Monotone Convergence Theorem)) [0 f 1 f 2 f n f], µ-a.e., i.e., 0 f n f, µ-a.e. fdµ = lim f n dµ. n 1.1 (Fatou (Fatou s Lemma)) f n 0, µ-a.e. ( n 1) lim inf ndµ lim inf n n f n dµ. 1.4 (Lebesgue (Lebesgue s Convergence Theorem)) f n f, µ-a.e. h L 1 (X, F, µ); f n h ( n 1), µ-a.e., f L 1 (X, F, µ) fdµ = lim f n dµ. n Lebesgue (Dominated Convergence Theorem). µ(x) < h Lebesgue (Bounded Convergence Theorem). 1.1 X F- f, f n (n = 1, 2,... ),. f n f, µ-a.e., f n 2 f, µ-a.e., sup f n dµ <, n 1 X f L 1 (X, F, µ),, fdµ = lim f n dµ. n

5 Applications of Lebesgue Integral Theory 3,. 1.5 t, f t = f t(x). t 0, f t f t0 (t t 0), µ-a.e. h L 1 (X, F, µ), U(t 0): t 0 ; f t h ( t U(t 0)), µ-a.e., f t0 L 1 (X, F, µ) Z Z f t0 dµ = lim f t t0 tdµ. 1.2 t f(t) t 0,. 1.6 f(t) f(t 0) (t t 0) {t n}; t n t 0, f(t n) f(t 0) (n ). [a, b] f iemann, Lebesgue, b a f(x)dx = [a,b] f(x)m(dx)., iemann, Lebesgue m Lebesgue. Fubini. 1.7 (X, F, µ), (Y, G, ν) σ-, i.e., {X n } F; X n = X, µ(x n ) <, ν. F G := σ(f G), (X Y, F G) µ : A B F G µ(a B) = µ(a)ν(b). 1.3 µ (product measure), µ = µ ν. (X Y, F G, µ ν) (product measure space). 1.8 (Fubini ) (1) f 0, µ ν-a.e. fd(µ ν) = X Y (X, F, µ), (Y, G, ν) σ-. : X dµ fdν = dν fdµ. Y Y X (2) f. f d(µ ν), dµ f dν, X Y X Y Y dν f dµ X,, fd(µ ν) = dµ X Y X Y fdν = Y dν fdµ. X Lebesgue. fdxdy = dx fdy = dy fdx. 2

6 Applications of Lebesgue Integral Theory Lebesgue m(dx) = dx a [ ] m(a + a) = m(a) ( A + a = A ), i.e, m(dx + a) = m(dx), [ ] m( A) = m(a) ( A = A ), i.e., m( dx) = m(dx),. f(a x)dx = f(y)dy iemann y = a x, dy = dx, i.e., dx = dy. dx = m(dx) = m( dy) = m(dy) = dy.. f(a x)dx = f(a x)m(dx) = f(y)m( dy) f(y)dy (X, F, µ) = (, B(), dx) 1 Lebesgue. f, g, (f g)(x) = f(x y)g(y)dy. f g (convolution)., f, g f, g L 1 (, B(), dx) (f g)(x)dx = f(x)dx g(y)dy ( f, g Fubini ) f L 1 ((, B(), dx). g, g f g (f g) (x) = f(y)g (x y)dy.

7 Applications of Lebesgue Integral Theory 5 2 L p 1 p, p L p. Hölder, Minkovsky, L p. (X, F, µ), M(X, F, µ). 2.1 L p = L p (X, F, µ), 1 p : L p - (1) 1 p <, ( L p = L p (X, F, µ) := {f M(X, F, µ) : f p < } (, f p := f p dµ) 1/p ), f L p p, L p -. (2) p =, L = L (X, F, µ) := {f M(X, F, µ) : f < }, (, f = ess.sup f := inf{α : f α, µ a.e.}: f ), f L, L -. ( f f <, µ-a.e. ) (3) p L p - (norm), L p. (L p, p ) (1 p ) Banach ( ). p = 2 f, g = fgdµ L 2, (L 2,, ) Hilbert ( )., f, g = fgdµ. (, I,.) 2.1 Banach, Hilbert X K = or C, : X [0, ] x, y X, a K : (1) x = 0 x = 0, (2) ax = a x, (3) x + y x + y. (X, ) X {x n } Cauchy lim x n x m = 0. m,n X Cauchy {x n }, i.e., x X; x n x 0, X (complete), (X, ) Banach, X (inner product), : X X K; (1) x, x 0, = 0 x = 0, (2) x, y = y, x, (3) x, ay + z = a x, y + x, z. (X,, ). x = x, x, Hilbert. 2.1 Cauchy.

8 Applications of Lebesgue Integral Theory (X, ) complete {x n } X; x n <, n=1 n=1 x n X. ( ) ( ) {x n } Cauchy {x nj }; x nj x nj+1 < 2 j, x nj. 2.2 Hölder, Minkovsky p, 1 q, 1/p + 1/q = 1., 1,. (1) [Hölder ] fg 1 f p g q. f L p, g L q fg L 1. (2) [Minkowski ] f, g L p, f + g p f p + g p. ( ) p = 1,. 1 < p <. (1) f p = 0 or g q = 0 f = 0, µ-a.e. or g = 0, µ-a.e.,, fg = 0, µ-a.e.. f p > 0 g q > 0. a, b 0 ab ap p + bq. b q ϕ(a) = ϕ (a) = 0 a = b 1/(p 1),, ϕ(b 1/(p 1) ) = 0 ϕ(a) 0. a = f / f p, b = g / g q,. (2) q = p/(p 1), i.e., 1/p + 1/q = 1 f + g p dµ f f + g p 1 dµ + g f + g p 1 dµ f + g p 1 L q Hölder, 1 1/q = 1/p. 2.3,, (L p, p ) (1 p ) µ-a.e., p, Banach ( ). p = 2 f, g = fgdµ L 2, (L 2,, ) Hilbert ( )., f, g = fgdµ. ( f g f = g, µ-a.e.,, f L p [f] L p /, [f] p = f p (L p /, p) Banach., (L p, p) Banach. ) ( ) {f n } L p ; n f n < f := n f n, µ-a.e. f L p. n f k = lim f n n k=1 p k=1 p lim n k=1 n f n p = f n p <. k=1

9 Applications of Lebesgue Integral Theory 7 n f n <, µ-a.e., f = n f n µ-a.e.. f p = f n f n < p p n=1 f L p. 2.4 f, g. f g f g; f g(x) := f(x y)g(y)dy n=1, (1) f g 1 f 1 g 1, (2) f g 2 f 1 g µ(x) <, 1 p < q, L p (X, F, µ) L q (X, F, µ). µ(x) <, f L, lim p f p = f. f f, µ-a.e. lim sup p f p f. ε > 0, X ε := { f > f ε} µ(x ε ) > 0, f p µ(x ε ) 1/p ( f i nfty ε) (1) 1 p <. f n, f L p (X, F, µ) f n f p or L p - ; f n f in L p def lim f n f p = 0. n (2) f n, f M(X, F, µ). f n f µ- ; f n f in µ def ε > 0, lim n µ( f n f ε) = 0. f n f, µ-a.e. def µ(f n f) = 0 ( { µ ε > 0, N; n N, f n f < ε } ) c = 0 c µ { f n f < 1/k} = 0 k 1 N 1 n N µ { f n f 1/k} = 0 k 1 N 1 n N k 1, µ { f n f 1/k} = 0 N 1 n N 2.7 (1) 1 p. f n f in L p, f n g in L p, f = g, µ-a.e.. (2) f n f in µ, f n g in µ, f = g, µ-a.e µ σ- =.

10 Applications of Lebesgue Integral Theory 8 ( ) µ, f n f, µ-a.e. k 1, lim { f n f 1/k} = 0. N µ n N 2.9 f n, f M(X, F, µ). ε > 0 1 p <, µ( f n f ε) 1 ε p f n f p dµ., L p - = L ( ) [0, 1] Lebesgue, ( ) 1, , (1) 1 p <, L p -,.. (2) µ σ-,.. (3),. f n f in µ (n ) = {f nk } {f n }; f nk f, µ-a.e. (k ). ( ) (3) µ({ f nk f 1/2 k }) < 1/2 k, Borel-Cantelli ( µ(a k ) < µ(lim sup A k ) = 0) µ(lim f nk f) = Fourier, (X, F, µ) = (, B, dx) 1 Lebesgue, 1 p <. L p L p (, B, dx). 3.1 L p Cc Cc Cc (). f supp f := {f 0}. (A A.) p <. Cc L p, i.e., f L p, {f n } Cc ; f f n p 0 (n ). ( ) f1 [ n,n], supp f., f = 1 B ; B B, B <. Lebesgue ε > 0, K;, G; ; K B G; G \ K < ε.

11 Applications of Lebesgue Integral Theory 9 φ = φ ε C c (); 0 φ 1, φ = 1 on K, φ = 0 on G c. 1 B φ p dx G \ K < ε. ε = 1/n f n = φ ε. 3.1 f L p f n = f1 [ n,n], f n f in L p. ( ) a, b 0, p 1 (a + b) p 2 p 1 (a p + b p ) ( ) Lebesgue. [Lebesgue ] B B; B <, ε > 0, K;, G; ; K B G; G\K < ε, A (a, b], σ(a) = B. B B, Lebesgue m(b), ε > 0, A n A; B [ A n, m(b) X m(a n) < m(b) + ε/4. A n A, G n A n m(g n) < m(a n) + ε/2 n+2. G := S G n. B c, F B ; m(b \ F ) < ε/4., K F, m(f \ K) < ε/4,. [ K;, G; ; K G, φ Cc (); 0 φ 1, φ = 1 on K, φ = 0 on G c ] x 1,..., x n K, r 1,..., r n > 0; K S n k=1 B(x k, r k ) S n k=1 B(x k, 2r k ) G ( ), ψ k Cc () (k = 1,..., n) 0 ψ k 1, ψ k = 1 on B(x k, r k ), ψ k > 0 on B(x k, 2r k ), ψ k = 0 on B(x k, 2r k ) c ( ). Ψ = P n k=1 ψ k, Φ = Q n k=1 (1 ψ k), Ψ = 0 on ( S n k=1 B(x k, 2r k )) c, Ψ > 0 on S n k=1 B(x k, 2r k ), Φ = 0 on S n k=1 B(x k, r k ). φ := Ψ/(Ψ + Φ). 3.2 K;, G; ; K G, x 1,..., x n K, r 1,..., r n > 0; K S n S k=1 B(x k, r k ) n k=1 B(x k, 2r k ) G < r < <, ψ C c ; ψ = 1 on B(0, r), ψ > 0 on B(0, ), ψ = 0 on B(0, ) c. f(t) = e 1/t 1 (0, ) (t) C, f(t) = 0 t 0. lim t f(t) = 1. ψ(x) = f( 2 x 2 )/(f( 2 x 2 ) + f( x 2 r 2 ) p <. f L p lim f(x + h) f(x) p dx = 0. h 0 ( ) ε > 0, g Cc ; f g p < ε/2. f h (x) := f(x + h), f h g h p = f g p., θ (0, 1); g h (x) g(x) = hg (x + θh), g h g p p = g = sup g. g(x + h) g(x) p dx h g supp g. f h f p f h g h p + g h g p + g f p 2 f g p + h g supp g 2 f g p < ε (h 0),.

12 Applications of Lebesgue Integral Theory L 1 Fourier 3.1 f L 1, Ff(z) f(z) := 1 f (Fourier trasform). 3.1 e izx f(x)dx f L 1. a, b, h(x) = f( x), f(x+a), e ibx f(x) Fourier ĥ(z) = f(z), e iaz f(z), f(z b). g L 1,. F(f g)(z) = f(z)ĝ(z). ( ),,. e izx = e iz(x y) e izy, Fubini, F(f g)(z) = dx e izx f(x y)g(y)dy = dx e iz(x y) f(x y)e izy g(y)dy = dy e izy g(y) e iz(x y) f(x y)dx (Fubini ) = dy e izy g(y) e izx f(x)dx ( ) = f(z)ĝ(z). 3.3 Gauss g t (x) := 1 t e x2 /(2t), Fg t (z) = ĝ t (z) = 1 e tz2 /2. ( ) θ C,. (3.1) e θzx g t (x)dx = e tθ2 z 2 /2 ( θ = i.) θ C.,, θ. θzx x2 2t = 1 2t (x tθz) tθ2 z 2 e θzx g t (x) = e tθ 2 z 2 /2 g t (x tθz). e θzx g t (x)dx = e tθ2 z 2 /2 g t (x tθz)dx = e tθ2 z 2 /2 g t (x)dx = e tθ2 z 2 / (3.1) θ C. e x2 dx = π, g t (x)dx = 1.

13 Applications of Lebesgue Integral Theory t > 0, e t x / Fourier p t (z) := Poisson., p t (x) = F ( ) 1 e t x t (z) = π(t 2 + z 2 ) t π(t 2 + z 2 ). ( ) p t (z) = 1 e izx 1 e t x dx = 1 e izx 1 e t x dx, 2,, p t (z) = e t x cos(zx)dx = t π(t 2 + z 2 ) ( ) 3.5 f L 1,. (1) f := sup f(z) f 1 /. z (2) f. (3) (iemann-lebesgue) lim z f(z) = 0, i.e, f C0 (). ( ) (1). f(z) e izx f(x) dx f(x) dx = f 1. (2) z, h, f(z + h) f(z) e i(z+h)x e izx f(x) dx e ihx 1 f(x) dx. e ihx 1 2 e ihx 1 0 (h 0), f L 1, Lebesgue, (3) z 0 sup f(z + h) f(z) 1 e ihx 1 f(x) dx 0 (h 0). z f(z) = e iz(x+π/z) f(x)dx = e izx f(x π/z)dx, f(z) = e izx (f(x) f(x π/z)) dx. 3.2, f(z) = 1 2 f(x) f(x π/z) dx 0 ( z ).

14 Applications of Lebesgue Integral Theory f L 1, F 1 f(x) f(x) := 1 f (Fourier inverse trasform). 3.6 e izx f(z)dz (1) [ ] f, f L 1 f L 1, F 1 (Ff) = f, a.e., i.e., f = f, a.e. (2) [ ] f, g L 1, f = ĝ f = g, µ-a.e Gauss g t (x) := 1 t e x2 /(2t), x 0 lim t 0 g t (x) = 0. f L 1, lim t 0 (f g t ) = f in L 1, ( ) lim t 0 g t (x) = 0 (x 0) α > 0, x, lim v v α e vx2 = 0. g t dx = 1, y/ t = ỹ, (f g t )(x) f(x) = (f(x y) f(x))g t (y)dy = (f(x ty) f(x))g 1 (y)dy. Fubini, 3.2 Lebesgue f g t f 1 dx f(x ty) f(x) g 1 (y) dy dy g 1 (y) f(x ty) f(x) dx 0 (t 0)., 3.2 y, f(x ty) f(x) dx 0 (t 0),, f(x ty) f(x) dx 2 f 1. Lebesgue. ( 3.6 ) Gauss g t (x) = e x2 /(2t) / t, ĝ t = g t., ĝ t (z) = e tz2 / = g 1/t (z)/ t, (3.1) [ e θzx g t (x)dx = e tθ2 z 2 /2 ] t 1/t θ = i, e izx g 1/t (z)dz = e x2 /(2t), ĝ t (x) = 1 g 1/t (x) = 1 e x2 /(2t) = g t (x). t t (f g t )(x) = (f ĝ t )(x) = f(x y) ĝ t (y)dy 1 = dyf(x y) e izy ĝ t (z)dz = dze izx 1 ĝ t (z) e iz(x y) f(x y)dy = dze izx ĝ t (z) f(z) = F 1 (ĝt f)(x),

15 Applications of Lebesgue Integral Theory 13, f g t = F 1 ( fĝt). lim t 0 (f g t ) = f in L 1, lim t 0 ĝ t (z) = 1/ Lebesgue lim t 0 F 1 ( fĝt) = F 1 f = f ( )., f = f, a.e. (2) h = f g, ĥ = f ĝ = 0, (1) h = ĥ = 0, a.e. 3.7 lim t 0 F 1 ( fĝt) = f. 3.7 f L 1. (1) xf(x) L 1 f C 1, (Ff) (z) = if(xf(x))(z). (2) f C 1, lim x f(x) = 0, f L 1 (f )(z) = iz f(z). ( ) (1), Lebesgue. h 0, e ix(z+h) e ixz h = i x h h 0 e ix(z+s) ds, e ix(z+h) e ixz h x h h 0 e ix(z+s) ds = x. (2),, 1 0. e ixz f (x)dx = [e izx f(x)] x= x= + iz e izx f(x)dx = iz f(z). Cc Fourier, ; Schwartz S = S(). f S def f C, m, n 1, lim x xm f (n) (x) = 0. f (Schwartz ) (rapidly decreasing function). C c S. f(x) = e x2 S. 3.8 f S 1 p, m, n 1, h(x) = x m f (n) (x) L p. 3.3 f S, f, f S, f = f = f. ( ) m, n 1. g(x) = x m f(x), (1), ĝ(z) = F(x m f(x))(z) = i m ( f) (m) (z). h(x) = g (n) (x) = (x m f(x)) (n) S, (2), ĥ(z) = (iz)n ĝ(z) = i m+n z n ( f) (m) (z). iemann-lebesgue ĥ(z) 0 ( z ),, zn ( f) (m) (z) 0 ( z ), f S. f S. f, f L 1, f = f = f. 3.3 L 2 Fourier L 2 L 1, Fourier. L 1 L 2 L 2,.

16 Applications of Lebesgue Integral Theory L 1 L 2 L 2. (Cc ) L 1 Fourier,. 3.4 f L 1 L 2, f, f L 2,, f 2 = f 2 = f 2. ( ) [1st Step] f, g S, f, g = fg dx, f, g = = dz g(z) dx f(x) e izx f(x)dx = e izx g(z)dz = dx f(x) e izx g(z)dz dx f(x)ğ(x) = f, ğ., f, g = f, ğ. g f f = f, f 2 = f 2. [2nd Step] f L 1 L 2, f n S; f n f in L 1, in L 2.. f, f L 2, f n f in L 2, f n f in L 2. f(z) f n (z) f f n 1 0 (n ). Fatou, f L 2. f 2 lim inf n f n 2 = lim inf n f n 2 = f 2 <. f f n 2 lim inf f m f n 2 = lim inf f m f n 2 m m f m f n 2 0 (n ). sup m n [3rd Step] f, g L 1 L 2, [2nd Step] f n, g n S, [1st Step],, f, g = f, ğ. g = f. 3.3 f L 2, f n L 1 L 2 ; f f n 2 0 (n )., f n f m 2 = f n f m 2 0 (m, n ). L 2, f n L 2 -. ( ). Ff f := lim f n in L 2 n, f (L 2 ) Fourier., f n Fourier f n, L 2 - F 1 f f := lim f (L 2 ) Fourier. n f n in L L 2 - f. [ ] g n L 1 L 2 ; f g n 2 0, ĝ = lim ĝ n in L 2. ĝ n f n 2 = g n f n 2 g n f 2 + f f n 2 0 ĝ f 2 = lim ĝ n f n 2 = 0. ĝ = f, a.e.

17 Applications of Lebesgue Integral Theory f, g L 2. (1) [Plancherel ] f, g = f, ğ. f, ĝ = f, ğ = f, g. f 2 = f 2 = f 2. (2) [ ] f = f = f, a.e. ( ) (1). (2) g L 2, f, g = f, g,, g = f f. 4 (Charateristic Functions) f L 1 = L 1 (, B, dx) Fourier F 1 f(z) f(z) = 1 e izx f(x)dx (z ), f 0 µ(dx) = f(x)dx, (, B). e izx f(x)dx = e izx µ(dx). f L 1 f ± L 1 ; f = f + f,. µ := µ/µ(),, i.e, µ() = 1 1 e izx µ(dx) = µ() n e izx µ(dx)., L 1 Fourier, Fourier. Fourier. 4.1 Fourier µ = µ(dx) ( d, B n ) ( µ (distribution) ), ϕ(z) = ϕ µ (z) µ (characteristic function). n ϕ(z) ϕ µ (z) := e i z,x µ(dx) ( z, x = z k x k ). n 4.1 µ ϕ = ϕ µ,. (1) ϕ(0) = 1, ϕ(z) 1, ϕ(z) = ϕ( z). (2) ϕ. n (3) [ ] n 1, α k C, z k (k = 1,..., n), α j α k ϕ(z j z k ) 0. k=1 j,k=1 ( ) (1). (2) L 1 Fourier. (3). n n 2 n α j α k ϕ(z j z k ) = α j α k e i(zj zk)x µ(dx) = α j e izjx µ(dx) 0. j,k=1 j,k=1 j=1 4.1 ϕ,., L 1 (dµ) = L 1 (, B, µ). (1) x L 1 (dµ) ϕ C 1, ϕ (z) = i xe izx µ(dx). (2) ϕ (0) x 2 L 1 (dµ).

18 Applications of Lebesgue Integral Theory 16 ( ) (1) L 1 Fourier. (2) h 0, ( ). (4.1) ψ h (z) = ψ h (z) := (ϕ(z + h) + ϕ(z h) 2ϕ(z))/h 2 ( ) 2 i sin(hx/2) e izx µ(dx) h/2. lim h 0 ψ h (0) = ϕ (0), Fatou, ϕ (0) = lim h 0 ( ) 2 i sin(hx/2) µ(dx) h/2 x 2 µ(dx). 4.1 (4.1) lim h 0 ψ h (0) = ϕ (0). 4.2 Lévy L 1 Fourier.,. 4.2 (Lévy ) µ ϕ,. µ((a, b)) = 1 T lim T T µ({a}) = µ({b}) = 0 e iza e izb iz µ((a, b)) = 1 T lim T T ϕ(z)dz 1 [µ({a}) + µ({b})]. 2 e iza e izb ϕ(z)dz. iz ( ) z 0, (e iza e izb )/iz (b a), Fubini T T e iza e izb ϕ(z)dz = iz z J(T, x, z, b) T J(T, x, a, b) = 2 T T µ(dx) T sin(x a)z T dz 2 z T e iz(x a) e iz(x b) dz. iz sin(x b)z dz. z, 0 sin z z dz = π 2, 0 sin zx dz = z π/2 (x > 0) 0 (x = 0) π/2 (x < 0). lim J(T, x, a, b) = T 0 (x < a or b < x) π (x = a or x = b) (a < x < b).

19 Applications of Lebesgue Integral Theory 17 π sin z, sin J(T, x, a, b) 4 0 z lim J(T, x, a, b)µ(dx) = π T. dz. Lebesgue 1 {a,b} (x)µ(dx) + 1 (a,b) (x)µ(dx). 4.3 ( ) µ, ν ϕ µ, ϕ ν, ϕ µ = ϕ ν µ = ν. ( ) (a, b); µ({a}) = µ({b}) = ν({a}) = ν({b}) = 0 I., [a, b] ; (a n, b n ) I; (a n, b n ) [a, b], µ = ν on I,, µ([a, b]) = ν([a, b]). σ({[a, b]; < a b < }) = B, µ = ν on B. 4.2 µ, µ({a}) > 0 a Schwartz 5.2

App. of Leb. Integral Theory (S. Hiraba) Lebesgue (X, F, µ) (measure space)., X, 2 X, F 2 X σ (σ-field), i.e., (1) F, (2) A F = A c F, (3)

App. of Leb. Integral Theory (S. Hiraba) Lebesgue (X, F, µ) (measure space)., X, 2 X, F 2 X σ (σ-field), i.e., (1) F, (2) A F = A c F, (3) Lebesgue (Applications of Lebesgue Integral Theory) (Seiji HIABA) 1 1 1.1 1 Lebesgue........................ 1 1.2 2 Fubini...................... 2 2 L p 5 2.1 Banach, Hilbert..............................

More information

I (Analysis I) Lebesgue (Lebesgue Integral Theory) 1 (Seiji HIRABA) 1 ( ),,, ( )

I (Analysis I) Lebesgue (Lebesgue Integral Theory) 1 (Seiji HIRABA) 1 ( ),,, ( ) I (Analysis I) Lebesgue (Lebesgue Integral Theory) 1 (Seiji HIRABA) 1 ( ),,, ( ) 1 (Introduction) 1 1.1... 1 1.2 Riemann Lebesgue... 2 2 (Measurable sets and Measures) 4 2.1 σ-... 4 2.2 Borel... 5 2.3...

More information

8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) Carathéodory 10.3 Fubini 1 Introduction 1 (1) (2) {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a

8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) Carathéodory 10.3 Fubini 1 Introduction 1 (1) (2) {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a % 100% 1 Introduction 2 (100%) 2.1 2.2 2.3 3 (100%) 3.1 3.2 σ- 4 (100%) 4.1 4.2 5 (100%) 5.1 5.2 5.3 6 (100%) 7 (40%) 8 Fubini (90%) 2007.11.5 1 8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) 10.1 10.2 Carathéodory

More information

1 Introduction 1 (1) (2) (3) () {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a, b] lim f n (x) f(x) (1) f(x)? (2) () f(x)? b lim a f n (x)dx = b

1 Introduction 1 (1) (2) (3) () {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a, b] lim f n (x) f(x) (1) f(x)? (2) () f(x)? b lim a f n (x)dx = b 1 Introduction 2 2.1 2.2 2.3 3 3.1 3.2 σ- 4 4.1 4.2 5 5.1 5.2 5.3 6 7 8. Fubini,,. 1 1 Introduction 1 (1) (2) (3) () {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a, b] lim f n (x) f(x) (1) f(x)?

More information

B2 ( 19 ) Lebesgue ( ) ( ) 0 This note is c 2007 by Setsuo Taniguchi. It may be used for personal or classroom purposes, but not for commercia

B2 ( 19 ) Lebesgue ( ) ( ) 0 This note is c 2007 by Setsuo Taniguchi. It may be used for personal or classroom purposes, but not for commercia B2 ( 19) Lebesgue ( ) ( 19 7 12 ) 0 This note is c 2007 by Setsuo Taniguchi. It may be used for personal or classroom purposes, but not for commercial purposes. i Riemann f n : [0, 1] R 1, x = k (1 m

More information

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s ... x, y z = x + iy x z y z x = Rez, y = Imz z = x + iy x iy z z () z + z = (z + z )() z z = (z z )(3) z z = ( z z )(4)z z = z z = x + y z = x + iy ()Rez = (z + z), Imz = (z z) i () z z z + z z + z.. z

More information

8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) 10.1 10.2 Carathéodory 10.3 Fubini 1 Introduction [1],, [2],, [3],, [4],, [5],, [6],, [7],, [8],, [1, 2, 3] 1980

8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) 10.1 10.2 Carathéodory 10.3 Fubini 1 Introduction [1],, [2],, [3],, [4],, [5],, [6],, [7],, [8],, [1, 2, 3] 1980 % 100% 1 Introduction 2 (100%) 2.1 2.2 2.3 3 (100%) 3.1 3.2 σ- 4 (100%) 4.1 4.2 5 (100%) 5.1 5.2 5.3 6 (100%) 7 (40%) 8 Fubini (90%) 2006.11.20 1 8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) 10.1 10.2 Carathéodory

More information

B [ 0.1 ] x > 0 x 6= 1 f(x) µ 1 1 xn 1 + sin sin x 1 x 1 f(x) := lim. n x n (1) lim inf f(x) (2) lim sup f(x) x 1 0 x 1 0 (

B [ 0.1 ] x > 0 x 6= 1 f(x) µ 1 1 xn 1 + sin sin x 1 x 1 f(x) := lim. n x n (1) lim inf f(x) (2) lim sup f(x) x 1 0 x 1 0 ( . 28 4 14 [.1 ] x > x 6= 1 f(x) µ 1 1 xn 1 + sin + 2 + sin x 1 x 1 f(x) := lim. 1 + x n (1) lim inf f(x) (2) lim sup f(x) x 1 x 1 (3) lim inf x 1+ f(x) (4) lim sup f(x) x 1+ [.2 ] [, 1] Ω æ x (1) (2) nx(1

More information

i

i i 3 4 4 7 5 6 3 ( ).. () 3 () (3) (4) /. 3. 4/3 7. /e 8. a > a, a = /, > a >. () a >, a =, > a > () a > b, a = b, a < b. c c n a n + b n + c n 3c n..... () /3 () + (3) / (4) /4 (5) m > n, a b >, m > n,

More information

untitled

untitled 1 kaiseki1.lec(tex) 19951228 19960131;0204 14;16 26;0329; 0410;0506;22;0603-05;08;20;0707;09;11-22;24-28;30;0807;12-24;27;28; 19970104(σ,F = µ);0212( ); 0429(σ- A n ); 1221( ); 20000529;30(L p ); 20050323(

More information

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t 6 6.1 6.1 (1 Z ( X = e Z, Y = Im Z ( Z = X + iy, i = 1 (2 Z E[ e Z ] < E[ Im Z ] < Z E[Z] = E[e Z] + ie[im Z] 6.2 Z E[Z] E[ Z ] : E[ Z ] < e Z Z, Im Z Z E[Z] α = E[Z], Z = Z Z 1 {Z } E[Z] = α = α [ α ]

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

2 2 ( Riemann ( 2 ( ( 2 ( (.8.4 (PDF 2

2 2 ( Riemann ( 2 ( ( 2 ( (.8.4 (PDF     2 2 ( 28 8 (http://nalab.mind.meiji.ac.jp/~mk/lecture/tahensuu2/ 2 2 ( Riemann ( 2 ( ( 2 ( (.8.4 (PDF http://nalab.mind.meiji.ac.jp/~mk/lecture/tahensuu2/ http://nalab.mind.meiji.ac.jp/~mk/lecture/tahensuu/

More information

2012 IA 8 I p.3, 2 p.19, 3 p.19, 4 p.22, 5 p.27, 6 p.27, 7 p

2012 IA 8 I p.3, 2 p.19, 3 p.19, 4 p.22, 5 p.27, 6 p.27, 7 p 2012 IA 8 I 1 10 10 29 1. [0, 1] n x = 1 (n = 1, 2, 3,...) 2 f(x) = n 0 [0, 1] 2. 1 x = 1 (n = 1, 2, 3,...) 2 f(x) = n 0 [0, 1] 1 0 f(x)dx 3. < b < c [, c] b [, c] 4. [, b] f(x) 1 f(x) 1 f(x) [, b] 5.

More information

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F F 1 F 2 F, (3) F λ F λ F λ F. 3., A λ λ A λ. B λ λ

More information

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x [ ] IC. f(x) = e x () f(x) f (x) () lim f(x) lim f(x) x + x (3) lim f(x) lim f(x) x + x (4) y = f(x) ( ) ( s46). < a < () a () lim a log xdx a log xdx ( ) n (3) lim log k log n n n k=.3 z = log(x + y ),

More information

実解析的方法とはどのようなものか

実解析的方法とはどのようなものか (1) ENCOUNTER with MATHEMATICS 2001 10 26 (2) 1807 J. B. J. Fourier 1 2π f(x) f(x) = n= c n (f) = 1 2π c n (f)e inx (1) π π f(t)e int dt Fourier 2 R f(x) f(x) = F[f](ξ)= 1 2π F [f](ξ)e ixξ dξ f(t)e iξx

More information

Riemann-Stieltjes Poland S. Lojasiewicz [1] An introduction to the theory of real functions, John Wiley & Sons, Ltd., Chichester, 1988.,,,,. Riemann-S

Riemann-Stieltjes Poland S. Lojasiewicz [1] An introduction to the theory of real functions, John Wiley & Sons, Ltd., Chichester, 1988.,,,,. Riemann-S Riemnn-Stieltjes Polnd S. Lojsiewicz [1] An introduction to the theory of rel functions, John Wiley & Sons, Ltd., Chichester, 1988.,,,, Riemnn-Stieltjes 1 2 2 5 3 6 4 Jordn 13 5 Riemnn-Stieltjes 15 6 Riemnn-Stieltjes

More information

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y [ ] 7 0.1 2 2 + y = t sin t IC ( 9) ( s090101) 0.2 y = d2 y 2, y = x 3 y + y 2 = 0 (2) y + 2y 3y = e 2x 0.3 1 ( y ) = f x C u = y x ( 15) ( s150102) [ ] y/x du x = Cexp f(u) u (2) x y = xey/x ( 16) ( s160101)

More information

A 21 A.1 L p A A.3 H k,p () A

A 21 A.1 L p A A.3 H k,p () A Analysis III Functional Analysis III 25 10 3 2 (10:40-12:10) 1 1 1.1 n R n or C n.......................... 1 1.2 ( ) (Linear sp. (Vector sp.))................. 1 2 (Normed Spaces) 2 2.1 (Norm).....................................

More information

(ii) (iii) z a = z a =2 z a =6 sin z z a dz. cosh z z a dz. e z dz. (, a b > 6.) (z a)(z b) 52.. (a) dz, ( a = /6.), (b) z =6 az (c) z a =2 53. f n (z

(ii) (iii) z a = z a =2 z a =6 sin z z a dz. cosh z z a dz. e z dz. (, a b > 6.) (z a)(z b) 52.. (a) dz, ( a = /6.), (b) z =6 az (c) z a =2 53. f n (z B 4 24 7 9 ( ) :,..,,.,. 4 4. f(z): D C: D a C, 2πi C f(z) dz = f(a). z a a C, ( ). (ii), a D, a U a,r D f. f(z) = A n (z a) n, z U a,r, n= A n := 2πi C f(ζ) dζ, n =,,..., (ζ a) n+, C a D. (iii) U a,r

More information

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi) 0. A A = 4 IC () det A () A () x + y + z = x y z X Y Z = A x y z ( 5) ( s5590) 0. a + b + c b c () a a + b + c c a b a + b + c 0 a b c () a 0 c b b c 0 a c b a 0 0. A A = 7 5 4 5 0 ( 5) ( s5590) () A ()

More information

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4 1. k λ ν ω T v p v g k = π λ ω = πν = π T v p = λν = ω k v g = dω dk 1) ) 3) 4). p = hk = h λ 5) E = hν = hω 6) h = h π 7) h =6.6618 1 34 J sec) hc=197.3 MeV fm = 197.3 kev pm= 197.3 ev nm = 1.97 1 3 ev

More information

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10% 1 2006.4.17. A 3-312 tel: 092-726-4774, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office hours: B A I ɛ-δ ɛ-δ 1. 2. A 1. 1. 2. 3. 4. 5. 2. ɛ-δ 1. ɛ-n

More information

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C 8 ( ) 8 5 4 I II III A B C( ),,, 5 I II A B ( ),, I II A B (8 ) 6 8 I II III A B C(8 ) n ( + x) n () n C + n C + + n C n = 7 n () 7 9 C : y = x x A(, 6) () A C () C P AP Q () () () 4 A(,, ) B(,, ) C(,,

More information

l µ l µ l 0 (1, x r, y r, z r ) 1 r (1, x r, y r, z r ) l µ g µν η µν 2ml µ l ν 1 2m r 2mx r 2 2my r 2 2mz r 2 2mx r 2 1 2mx2 2mxy 2mxz 2my r 2mz 2 r

l µ l µ l 0 (1, x r, y r, z r ) 1 r (1, x r, y r, z r ) l µ g µν η µν 2ml µ l ν 1 2m r 2mx r 2 2my r 2 2mz r 2 2mx r 2 1 2mx2 2mxy 2mxz 2my r 2mz 2 r 2 1 (7a)(7b) λ i( w w ) + [ w + w ] 1 + w w l 2 0 Re(γ) α (7a)(7b) 2 γ 0, ( w) 2 1, w 1 γ (1) l µ, λ j γ l 2 0 Re(γ) α, λ w + w i( w w ) 1 + w w γ γ 1 w 1 r [x2 + y 2 + z 2 ] 1/2 ( w) 2 x2 + y 2 + z 2

More information

Z: Q: R: C: sin 6 5 ζ a, b

Z: Q: R: C: sin 6 5 ζ a, b Z: Q: R: C: 3 3 7 4 sin 6 5 ζ 9 6 6............................... 6............................... 6.3......................... 4 7 6 8 8 9 3 33 a, b a bc c b a a b 5 3 5 3 5 5 3 a a a a p > p p p, 3,

More information

n=1 1 n 2 = π = π f(z) f(z) 2 f(z) = u(z) + iv(z) *1 f (z) u(x, y), v(x, y) f(z) f (z) = f/ x u x = v y, u y = v x

n=1 1 n 2 = π = π f(z) f(z) 2 f(z) = u(z) + iv(z) *1 f (z) u(x, y), v(x, y) f(z) f (z) = f/ x u x = v y, u y = v x n= n 2 = π2 6 3 2 28 + 4 + 9 + = π2 6 2 f(z) f(z) 2 f(z) = u(z) + iv(z) * f (z) u(x, y), v(x, y) f(z) f (z) = f/ x u x = v y, u y = v x f x = i f y * u, v 3 3. 3 f(t) = u(t) + v(t) [, b] f(t)dt = u(t)dt

More information

() Remrk I = [0, ] [x i, x i ]. (x : ) f(x) = 0 (x : ) ξ i, (f) = f(ξ i )(x i x i ) = (x i x i ) = ξ i, (f) = f(ξ i )(x i x i ) = 0 (f) 0.

() Remrk I = [0, ] [x i, x i ]. (x : ) f(x) = 0 (x : ) ξ i, (f) = f(ξ i )(x i x i ) = (x i x i ) = ξ i, (f) = f(ξ i )(x i x i ) = 0 (f) 0. () 6 f(x) [, b] 6. Riemnn [, b] f(x) S f(x) [, b] (Riemnn) = x 0 < x < x < < x n = b. I = [, b] = {x,, x n } mx(x i x i ) =. i [x i, x i ] ξ i n (f) = f(ξ i )(x i x i ) i=. (ξ i ) (f) 0( ), ξ i, S, ε >

More information

(Basics of Proability Theory). (Probability Spacees ad Radom Variables,, (Ω, F, P ),, X,. (Ω, F, P ) (probability space) Ω ( ω Ω ) F ( 2 Ω ) Ω σ (σ-fi

(Basics of Proability Theory). (Probability Spacees ad Radom Variables,, (Ω, F, P ),, X,. (Ω, F, P ) (probability space) Ω ( ω Ω ) F ( 2 Ω ) Ω σ (σ-fi I (Basics of Probability Theory ad Radom Walks) 25 4 5 ( 4 ) (Preface),.,,,.,,,...,,.,.,,.,,. (,.) (Basics of Proability Theory). (Probability Spacees ad Radom Variables...............2, (Expectatios,

More information

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google I4 - : April, 4 Version :. Kwhir, Tomoki TA (Kondo, Hirotk) Google http://www.mth.ngoy-u.c.jp/~kwhir/courses/4s-biseki.html pdf 4 4 4 4 8 e 5 5 9 etc. 5 6 6 6 9 n etc. 6 6 6 3 6 3 7 7 etc 7 4 7 7 8 5 59

More information

120 9 I I 1 I 2 I 1 I 2 ( a) ( b) ( c ) I I 2 I 1 I ( d) ( e) ( f ) 9.1: Ampère (c) (d) (e) S I 1 I 2 B ds = µ 0 ( I 1 I 2 ) I 1 I 2 B ds =0. I 1 I 2

120 9 I I 1 I 2 I 1 I 2 ( a) ( b) ( c ) I I 2 I 1 I ( d) ( e) ( f ) 9.1: Ampère (c) (d) (e) S I 1 I 2 B ds = µ 0 ( I 1 I 2 ) I 1 I 2 B ds =0. I 1 I 2 9 E B 9.1 9.1.1 Ampère Ampère Ampère s law B S µ 0 B ds = µ 0 j ds (9.1) S rot B = µ 0 j (9.2) S Ampère Biot-Savart oulomb Gauss Ampère rot B 0 Ampère µ 0 9.1 (a) (b) I B ds = µ 0 I. I 1 I 2 B ds = µ 0

More information

u = u(t, x 1,..., x d ) : R R d C λ i = 1 := x 2 1 x 2 d d Euclid Laplace Schrödinger N := {1, 2, 3,... } Z := {..., 3, 2, 1,, 1, 2, 3

u = u(t, x 1,..., x d ) : R R d C λ i = 1 := x 2 1 x 2 d d Euclid Laplace Schrödinger N := {1, 2, 3,... } Z := {..., 3, 2, 1,, 1, 2, 3 2 2 1 5 5 Schrödinger i u t + u = λ u 2 u. u = u(t, x 1,..., x d ) : R R d C λ i = 1 := 2 + + 2 x 2 1 x 2 d d Euclid Laplace Schrödinger 3 1 1.1 N := {1, 2, 3,... } Z := {..., 3, 2, 1,, 1, 2, 3,... } Q

More information

ルベーグ積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

ルベーグ積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. ルベーグ積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/005431 このサンプルページの内容は, 初版 1 刷発行時のものです. Lebesgue 1 2 4 4 1 2 5 6 λ a

More information

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a =

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a = [ ] 9 IC. dx = 3x 4y dt dy dt = x y u xt = expλt u yt λ u u t = u u u + u = xt yt 6 3. u = x, y, z = x + y + z u u 9 s9 grad u ux, y, z = c c : grad u = u x i + u y j + u k i, j, k z x, y, z grad u v =

More information

III III 2010 PART I 1 Definition 1.1 (, σ-),,,, Borel( ),, (σ-) (M, F, µ), (R, B(R)), (C, B(C)) Borel Definition 1.2 (µ-a.e.), (in µ), (in L 1 (µ)). T

III III 2010 PART I 1 Definition 1.1 (, σ-),,,, Borel( ),, (σ-) (M, F, µ), (R, B(R)), (C, B(C)) Borel Definition 1.2 (µ-a.e.), (in µ), (in L 1 (µ)). T III III 2010 PART I 1 Definition 1.1 (, σ-),,,, Borel( ),, (σ-) (M, F, µ), (R, B(R)), (C, B(C)) Borel Definition 1.2 (µ-a.e.), (in µ), (in L 1 (µ)). Theorem 1.3 (Lebesgue ) lim n f n = f µ-a.e. g L 1 (µ)

More information

mugensho.dvi

mugensho.dvi 1 1 f (t) lim t a f (t) = 0 f (t) t a 1.1 (1) lim(t 1) 2 = 0 t 1 (t 1) 2 t 1 (2) lim(t 1) 3 = 0 t 1 (t 1) 3 t 1 2 f (t), g(t) t a lim t a f (t) g(t) g(t) f (t) = o(g(t)) (t a) = 0 f (t) (t 1) 3 1.2 lim

More information

leb224w.dvi

leb224w.dvi 2 4 i Lebesgue Fourier 7 5 Lebesgue Walter. F. Riesz and B. Sz.-Nagy, Functional Analysis, Dover Publ. Inc., New York (99) ( 49 ) 2. ( 8 ) 3. A.2 Fourier Laplace (957 ) 4. (98 ) 5. G. G. Walter, Wavelets

More information

y = f(x) y = f( + h) f(), x = h dy dx f () f (derivtive) (differentition) (velocity) p(t) =(x(t),y(t),z(t)) ( dp dx dt = dt, dy dt, dz ) dt f () > f x

y = f(x) y = f( + h) f(), x = h dy dx f () f (derivtive) (differentition) (velocity) p(t) =(x(t),y(t),z(t)) ( dp dx dt = dt, dy dt, dz ) dt f () > f x I 5 2 6 3 8 4 Riemnn 9 5 Tylor 8 6 26 7 3 8 34 f(x) x = A = h f( + h) f() h A (differentil coefficient) f f () y = f(x) y = f( + h) f(), x = h dy dx f () f (derivtive) (differentition) (velocity) p(t)

More information

2 2 L 5 2. L L L L k.....

2 2 L 5 2. L L L L k..... L 528 206 2 9 2 2 L 5 2. L........................... 5 2.2 L................................... 7 2............................... 9. L..................2 L k........................ 2 4 I 5 4. I...................................

More information

2000年度『数学展望 I』講義録

2000年度『数学展望 I』講義録 2000 I I IV I II 2000 I I IV I-IV. i ii 3.10 (http://www.math.nagoya-u.ac.jp/ kanai/) 2000 A....1 B....4 C....10 D....13 E....17 Brouwer A....21 B....26 C....33 D....39 E. Sperner...45 F....48 A....53

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω ω α 3 3 2 2V 3 33+.6T m T 5 34m Hz. 34 3.4m 2 36km 5Hz. 36km m 34 m 5 34 + m 5 33 5 =.66m 34m 34 x =.66 55Hz, 35 5 =.7 485.7Hz 2 V 5Hz.5V.5V V

More information

- II

- II - II- - -.................................................................................................... 3.3.............................................. 4 6...........................................

More information

notekiso1_09.dvi

notekiso1_09.dvi 39 3 3.1 2 Ax 1,y 1 Bx 2,y 2 x y fx, y z fx, y x 1,y 1, 0 x 1,y 1,fx 1,y 1 x 2,y 2, 0 x 2,y 2,fx 2,y 2 A s I fx, yds lim fx i,y i Δs. 3.1.1 Δs 0 x i,y i N Δs 1 I lim Δx 2 +Δy 2 0 x 1 fx i,y i Δx i 2 +Δy

More information

( z = x 3 y + y ( z = cos(x y ( 8 ( s8.7 y = xe x ( 8 ( s83.8 ( ( + xdx ( cos 3 xdx t = sin x ( 8 ( s84 ( 8 ( s85. C : y = x + 4, l : y = x + a,

( z = x 3 y + y ( z = cos(x y ( 8 ( s8.7 y = xe x ( 8 ( s83.8 ( ( + xdx ( cos 3 xdx t = sin x ( 8 ( s84 ( 8 ( s85. C : y = x + 4, l : y = x + a, [ ] 8 IC. y d y dx = ( dy dx ( p = dy p y dx ( ( ( 8 ( s8. 3 A A = ( A ( A (3 A P A P AP.3 π y(x = { ( 8 ( s8 x ( π < x x ( < x π y(x π π O π x ( 8 ( s83.4 f (x, y, z grad(f ( ( ( f f f grad(f = i + j

More information

(Basic of Proability Theory). (Probability Spacees ad Radom Variables , (Expectatios, Meas) (Weak Law

(Basic of Proability Theory). (Probability Spacees ad Radom Variables , (Expectatios, Meas) (Weak Law I (Radom Walks ad Percolatios) 3 4 7 ( -2 ) (Preface),.,,,...,,.,,,,.,.,,.,,. (,.) (Basic of Proability Theory). (Probability Spacees ad Radom Variables...............2, (Expectatios, Meas).............................

More information

20 6 4 1 4 1.1 1.................................... 4 1.1.1.................................... 4 1.1.2 1................................ 5 1.2................................... 7 1.2.1....................................

More information

http://www2.math.kyushu-u.ac.jp/~hara/lectures/lectures-j.html 2 N(ε 1 ) N(ε 2 ) ε 1 ε 2 α ε ε 2 1 n N(ɛ) N ɛ ɛ- (1.1.3) n > N(ɛ) a n α < ɛ n N(ɛ) a n

http://www2.math.kyushu-u.ac.jp/~hara/lectures/lectures-j.html 2 N(ε 1 ) N(ε 2 ) ε 1 ε 2 α ε ε 2 1 n N(ɛ) N ɛ ɛ- (1.1.3) n > N(ɛ) a n α < ɛ n N(ɛ) a n http://www2.math.kyushu-u.ac.jp/~hara/lectures/lectures-j.html 1 1 1.1 ɛ-n 1 ɛ-n lim n a n = α n a n α 2 lim a n = 1 n a k n n k=1 1.1.7 ɛ-n 1.1.1 a n α a n n α lim n a n = α ɛ N(ɛ) n > N(ɛ) a n α < ɛ

More information

A B P (A B) = P (A)P (B) (3) A B A B P (B A) A B A B P (A B) = P (B A)P (A) (4) P (B A) = P (A B) P (A) (5) P (A B) P (B A) P (A B) A B P

A B P (A B) = P (A)P (B) (3) A B A B P (B A) A B A B P (A B) = P (B A)P (A) (4) P (B A) = P (A B) P (A) (5) P (A B) P (B A) P (A B) A B P 1 1.1 (population) (sample) (event) (trial) Ω () 1 1 Ω 1.2 P 1. A A P (A) 0 1 0 P (A) 1 (1) 2. P 1 P 0 1 6 1 1 6 0 3. A B P (A B) = P (A) + P (B) (2) A B A B A 1 B 2 A B 1 2 1 2 1 1 2 2 3 1.3 A B P (A

More information

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x (

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x ( II (1 4 ) 1. p.13 1 (x, y) (a, b) ε(x, y; a, b) f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a x a A = f x (a, b) y x 3 3y 3 (x, y) (, ) f (x, y) = x + y (x, y) = (, )

More information

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2 II No.1 [n/] [1]H n x) H n x) = 1) r n! r!n r)! x)n r r= []H n x) n,, H n x) = 1) n H n x) [3] H n x) = 1) n dn x e dx n e x [4] H n+1 x) = xh n x) nh n 1 x) ) d dx x H n x) = H n+1 x) d dx H nx) = nh

More information

II Brown Brown

II Brown Brown II 16 12 5 1 Brown 3 1.1..................................... 3 1.2 Brown............................... 5 1.3................................... 8 1.4 Markov.................................... 1 1.5

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

ft. ft τfτdτ = e t.5.. fx = x [ π, π] n sinnx n n=. π a π a, x [ π, π] x = a n cosnx cosna + 4 n=. 3, x [ π, π] x 3 π x = n sinnx. n=.6 f, t gt n 3 n

ft. ft τfτdτ = e t.5.. fx = x [ π, π] n sinnx n n=. π a π a, x [ π, π] x = a n cosnx cosna + 4 n=. 3, x [ π, π] x 3 π x = n sinnx. n=.6 f, t gt n 3 n [ ]. A = IC X n 3 expx = E + expta t : n! n=. fx π x π. { π x < fx = x π fx F k F k = π 9 s9 fxe ikx dx, i =. F k. { x x fx = x >.3 ft = cosωt F s = s4 e st ftdt., e, s. s = c + iφ., i, c, φ., Gφ = lim

More information

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy z fz fz x, y, u, v, r, θ r > z = x + iy, f = u + iv γ D fz fz D fz fz z, Rm z, z. z = x + iy = re iθ = r cos θ + i sin θ z = x iy = re iθ = r cos θ i sin θ x = z + z = Re z, y = z z = Im z i r = z = z

More information

(Basics of Proability Theory). (Probability Spacees ad Radom Variables,, (Ω, F, P ),, X,. (Ω, F, P ) (probability space) Ω ( ω Ω ) F ( 2 Ω ) Ω σ (σ-fi

(Basics of Proability Theory). (Probability Spacees ad Radom Variables,, (Ω, F, P ),, X,. (Ω, F, P ) (probability space) Ω ( ω Ω ) F ( 2 Ω ) Ω σ (σ-fi II (Basics of Probability Theory ad Radom Walks) (Preface),.,,,.,,,...,,.,.,,.,,. (Basics of Proability Theory). (Probability Spacees ad Radom Variables...............2, (Expectatios, Meas).............................

More information

2S III IV K A4 12:00-13:30 Cafe David 1 2 TA 1 appointment Cafe David K2-2S04-00 : C

2S III IV K A4 12:00-13:30 Cafe David 1 2 TA 1  appointment Cafe David K2-2S04-00 : C 2S III IV K200 : April 16, 2004 Version : 1.1 TA M2 TA 1 10 2 n 1 ɛ-δ 5 15 20 20 45 K2-2S04-00 : C 2S III IV K200 60 60 74 75 89 90 1 email 3 4 30 A4 12:00-13:30 Cafe David 1 2 TA 1 email appointment Cafe

More information

A 2008 10 (2010 4 ) 1 1 1.1................................. 1 1.2..................................... 1 1.3............................ 3 1.3.1............................. 3 1.3.2..................................

More information

20 9 19 1 3 11 1 3 111 3 112 1 4 12 6 121 6 122 7 13 7 131 8 132 10 133 10 134 12 14 13 141 13 142 13 143 15 144 16 145 17 15 19 151 1 19 152 20 2 21 21 21 211 21 212 1 23 213 1 23 214 25 215 31 22 33

More information

i 6 3 ii 3 7 8 9 3 6 iii 5 8 5 3 7 8 v...................................................... 5.3....................... 7 3........................ 3.................3.......................... 8 3 35

More information

, 1 ( f n (x))dx d dx ( f n (x)) 1 f n (x)dx d dx f n(x) lim f n (x) = [, 1] x f n (x) = n x x 1 f n (x) = x f n (x) = x 1 x n n f n(x) = [, 1] f n (x

, 1 ( f n (x))dx d dx ( f n (x)) 1 f n (x)dx d dx f n(x) lim f n (x) = [, 1] x f n (x) = n x x 1 f n (x) = x f n (x) = x 1 x n n f n(x) = [, 1] f n (x 1 1.1 4n 2 x, x 1 2n f n (x) = 4n 2 ( 1 x), 1 x 1 n 2n n, 1 x n n 1 1 f n (x)dx = 1, n = 1, 2,.. 1 lim 1 lim 1 f n (x)dx = 1 lim f n(x) = ( lim f n (x))dx = f n (x)dx 1 ( lim f n (x))dx d dx ( lim f d

More information

4................................. 4................................. 4 6................................. 6................................. 9.................................................... 3..3..........................

More information

I , : ~/math/functional-analysis/functional-analysis-1.tex

I , : ~/math/functional-analysis/functional-analysis-1.tex I 1 2004 8 16, 2017 4 30 1 : ~/math/functional-analysis/functional-analysis-1.tex 1 3 1.1................................... 3 1.2................................... 3 1.3.....................................

More information

DVIOUT

DVIOUT A. A. A-- [ ] f(x) x = f 00 (x) f 0 () =0 f 00 () > 0= f(x) x = f 00 () < 0= f(x) x = A--2 [ ] f(x) D f 00 (x) > 0= y = f(x) f 00 (x) < 0= y = f(x) P (, f()) f 00 () =0 A--3 [ ] y = f(x) [, b] x = f (y)

More information

Design of highly accurate formulas for numerical integration in weighted Hardy spaces with the aid of potential theory 1 Ken ichiro Tanaka 1 Ω R m F I = F (t) dt (1.1) Ω m m 1 m = 1 1 Newton-Cotes Gauss

More information

Fubini

Fubini 3............................... 3................................ 5.3 Fubini........................... 7.4.............................5..........................6.............................. 3.7..............................

More information

X G P G (X) G BG [X, BG] S 2 2 2 S 2 2 S 2 = { (x 1, x 2, x 3 ) R 3 x 2 1 + x 2 2 + x 2 3 = 1 } R 3 S 2 S 2 v x S 2 x x v(x) T x S 2 T x S 2 S 2 x T x S 2 = { ξ R 3 x ξ } R 3 T x S 2 S 2 x x T x S 2

More information

Basic Math. 1 0 [ N Z Q Q c R C] 1, 2, 3,... natural numbers, N Def.(Definition) N (1) 1 N, (2) n N = n +1 N, (3) N (1), (2), n N n N (element). n/ N.

Basic Math. 1 0 [ N Z Q Q c R C] 1, 2, 3,... natural numbers, N Def.(Definition) N (1) 1 N, (2) n N = n +1 N, (3) N (1), (2), n N n N (element). n/ N. Basic Mathematics 16 4 16 3-4 (10:40-12:10) 0 1 1 2 2 2 3 (mapping) 5 4 ε-δ (ε-δ Logic) 6 5 (Potency) 9 6 (Equivalence Relation and Order) 13 7 Zorn (Axiom of Choice, Zorn s Lemma) 14 8 (Set and Topology)

More information

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5. A 1. Boltzmann Planck u(ν, T )dν = 8πh ν 3 c 3 kt 1 dν h 6.63 10 34 J s Planck k 1.38 10 23 J K 1 Boltzmann u(ν, T ) T ν e hν c = 3 10 8 m s 1 2. Planck λ = c/ν Rayleigh-Jeans u(ν, T )dν = 8πν2 kt dν c

More information

(Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fou

(Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fou (Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fourier) (Fourier Bessel).. V ρ(x, y, z) V = 4πGρ G :.

More information

f(x) = x (1) f (1) (2) f (2) f(x) x = a y y = f(x) f (a) y = f(x) A(a, f(a)) f(a + h) f(x) = A f(a) A x (3, 3) O a a + h x 1 f(x) x = a

f(x) = x (1) f (1) (2) f (2) f(x) x = a y y = f(x) f (a) y = f(x) A(a, f(a)) f(a + h) f(x) = A f(a) A x (3, 3) O a a + h x 1 f(x) x = a 3 3.1 3.1.1 A f(a + h) f(a) f(x) lim f(x) x = a h 0 h f(x) x = a f 0 (a) f 0 (a) = lim h!0 f(a + h) f(a) h = lim x!a f(x) f(a) x a a + h = x h = x a h 0 x a 3.1 f(x) = x x = 3 f 0 (3) f (3) = lim h 0 (

More information

F S S S S S S S 32 S S S 32: S S rot F ds = F d l (63) S S S 0 F rot F ds = 0 S (63) S rot F S S S S S rot F F (63)

F S S S S S S S 32 S S S 32: S S rot F ds = F d l (63) S S S 0 F rot F ds = 0 S (63) S rot F S S S S S rot F F (63) 211 12 1 19 2.9 F 32 32: rot F d = F d l (63) F rot F d = 2.9.1 (63) rot F rot F F (63) 12 2 F F F (63) 33 33: (63) rot 2.9.2 (63) I = [, 1] [, 1] 12 3 34: = 1 2 1 2 1 1 = C 1 + C C 2 2 2 = C 2 + ( C )

More information

1 I 1.1 ± e = = - = C C MKSA [m], [Kg] [s] [A] 1C 1A 1 MKSA 1C 1C +q q +q q 1

1 I 1.1 ± e = = - = C C MKSA [m], [Kg] [s] [A] 1C 1A 1 MKSA 1C 1C +q q +q q 1 1 I 1.1 ± e = = - =1.602 10 19 C C MKA [m], [Kg] [s] [A] 1C 1A 1 MKA 1C 1C +q q +q q 1 1.1 r 1,2 q 1, q 2 r 12 2 q 1, q 2 2 F 12 = k q 1q 2 r 12 2 (1.1) k 2 k 2 ( r 1 r 2 ) ( r 2 r 1 ) q 1 q 2 (q 1 q 2

More information

December 28, 2018

December 28, 2018 e-mail : kigami@i.kyoto-u.ac.jp December 28, 28 Contents 2............................. 3.2......................... 7.3..................... 9.4................ 4.5............. 2.6.... 22 2 36 2..........................

More information

IA hara@math.kyushu-u.ac.jp Last updated: January,......................................................................................................................................................................................

More information

n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................

More information

i

i 009 I 1 8 5 i 0 1 0.1..................................... 1 0.................................................. 1 0.3................................. 0.4........................................... 3

More information

II 2 II

II 2 II II 2 II 2005 yugami@cc.utsunomiya-u.ac.jp 2005 4 1 1 2 5 2.1.................................... 5 2.2................................. 6 2.3............................. 6 2.4.................................

More information

36 3 D f(z) D z f(z) z Taylor z D C f(z) z C C f (z) C f(z) f (z) f(z) D C D D z C C 3.: f(z) 3. f (z) f 2 (z) D D D D D f (z) f 2 (z) D D f (z) f 2 (

36 3 D f(z) D z f(z) z Taylor z D C f(z) z C C f (z) C f(z) f (z) f(z) D C D D z C C 3.: f(z) 3. f (z) f 2 (z) D D D D D f (z) f 2 (z) D D f (z) f 2 ( 3 3. D f(z) D D D D D D D D f(z) D f (z) f (z) f(z) D (i) (ii) (iii) f(z) = ( ) n z n = z + z 2 z 3 + n= z < z < z > f (z) = e t(+z) dt Re z> Re z> [ ] f (z) = e t(+z) = (Rez> ) +z +z t= z < f(z) Taylor

More information

6. Euler x

6. Euler x ...............................................................................3......................................... 4.4................................... 5.5......................................

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

B 38 1 (x, y), (x, y, z) (x 1, x 2 ) (x 1, x 2, x 3 ) 2 : x 2 + y 2 = 1. (parameter) x = cos t, y = sin t. y = f(x) r(t) = (x(t), y(t), z(t)), a t b.

B 38 1 (x, y), (x, y, z) (x 1, x 2 ) (x 1, x 2, x 3 ) 2 : x 2 + y 2 = 1. (parameter) x = cos t, y = sin t. y = f(x) r(t) = (x(t), y(t), z(t)), a t b. 2009 7 9 1 2 2 2 3 6 4 9 5 14 6 18 7 23 8 25 9 26 10 29 11 32 12 35 A 37 1 B 38 1 (x, y), (x, y, z) (x 1, x 2 ) (x 1, x 2, x 3 ) 2 : x 2 + y 2 = 1. (parameter) x = cos t, y = sin t. y = f(x) r(t) = (x(t),

More information

2009 IA I 22, 23, 24, 25, 26, a h f(x) x x a h

2009 IA I 22, 23, 24, 25, 26, a h f(x) x x a h 009 IA I, 3, 4, 5, 6, 7 7 7 4 5 h fx) x x h 4 5 4 5 1 3 1.1........................... 3 1........................... 4 1.3..................................... 6 1.4.............................. 8 1.4.1..............................

More information

A

A A 2563 15 4 21 1 3 1.1................................................ 3 1.2............................................. 3 2 3 2.1......................................... 3 2.2............................................

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

1 a b = max{a, b}, a b = mi{a, b} a 1 a 2 a a 1 a = max{a 1,... a }, a 1 a = mi{a 1,... a }. A sup A, if A A A A A sup A sup A = + A if A = ± y = arct

1 a b = max{a, b}, a b = mi{a, b} a 1 a 2 a a 1 a = max{a 1,... a }, a 1 a = mi{a 1,... a }. A sup A, if A A A A A sup A sup A = + A if A = ± y = arct 27 6 2 1 2 2 5 3 8 4 13 5 16 6 19 7 23 8 27 N Z = {, ±1, ±2,... }, R =, R + = [, + ), R = [, ], C =. a b = max{a, b}, a b = mi{a, b}, a a, a a. f : X R [a < f < b] = {x X; a < f(x) < b}. X [f] = [f ],

More information

4 R f(x)dx = f(z) f(z) R f(z) = lim R f(x) p(x) q(x) f(x) = p(x) q(x) = [ q(x) [ p(x) + p(x) [ q(x) dx =πi Res(z ) + Res(z )+ + Res(z n ) Res(z k ) k

4 R f(x)dx = f(z) f(z) R f(z) = lim R f(x) p(x) q(x) f(x) = p(x) q(x) = [ q(x) [ p(x) + p(x) [ q(x) dx =πi Res(z ) + Res(z )+ + Res(z n ) Res(z k ) k f(x) f(z) z = x + i f(z). x f(x) + R f(x)dx = lim f(x)dx. R + f(x)dx = = lim R f(x)dx + f(x)dx f(x)dx + lim R R f(x)dx Im z R Re z.: +R. R f(z) = R f(x)dx + f(z) 3 4 R f(x)dx = f(z) f(z) R f(z) = lim R

More information

5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h 0 g(a + h) g(a) h g(x) a A = g (a) = f x (a, b)

5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h 0 g(a + h) g(a) h g(x) a A = g (a) = f x (a, b) 5 partial differentiation (total) differentiation 5. z = f(x, y) (a, b) A = lim h 0 f(a + h, b) f(a, b) h............................................................... ( ) f(x, y) (a, b) x A (a, b) x

More information

Radiation from moving charges#1 Liénard-Wiechert potential Yuji Chinone 1 Maxwell Maxwell MKS E (x, t) + B (x, t) t = 0 (1) B (x, t) = 0 (2) B (x, t)

Radiation from moving charges#1 Liénard-Wiechert potential Yuji Chinone 1 Maxwell Maxwell MKS E (x, t) + B (x, t) t = 0 (1) B (x, t) = 0 (2) B (x, t) Radiation from moving harges# Liénard-Wiehert potential Yuji Chinone Maxwell Maxwell MKS E x, t + B x, t = B x, t = B x, t E x, t = µ j x, t 3 E x, t = ε ρ x, t 4 ε µ ε µ = E B ρ j A x, t φ x, t A x, t

More information

6.1 (P (P (P (P (P (P (, P (, P.

6.1 (P (P (P (P (P (P (, P (, P. (011 30 7 0 ( ( 3 ( 010 1 (P.3 1 1.1 (P.4.................. 1 1. (P.4............... 1 (P.15.1 (P.16................. (P.0............3 (P.18 3.4 (P.3............... 4 3 (P.9 4 3.1 (P.30........... 4 3.

More information

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ = 1 1.1 ( ). z = + bi,, b R 0, b 0 2 + b 2 0 z = + bi = ( ) 2 + b 2 2 + b + b 2 2 + b i 2 r = 2 + b 2 θ cos θ = 2 + b 2, sin θ = b 2 + b 2 2π z = r(cos θ + i sin θ) 1.2 (, ). 1. < 2. > 3. ±,, 1.3 ( ). A

More information

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

I A A441 : April 15, 2013 Version : 1.1 I   Kawahira, Tomoki TA (Shigehiro, Yoshida ) I013 00-1 : April 15, 013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida) http://www.math.nagoya-u.ac.jp/~kawahira/courses/13s-tenbou.html pdf * 4 15 4 5 13 e πi = 1 5 0 5 7 3 4 6 3 6 10 6 17

More information

Z: Q: R: C:

Z: Q: R: C: 0 Z: Q: R: C: 3 4 4 4................................ 4 4.................................. 7 5 3 5...................... 3 5......................... 40 5.3 snz) z)........................... 4 6 46 x

More information

A S hara/lectures/lectures-j.html ϵ-n 1 ϵ-n lim n a n = α n a n α 2 lim a n = 0 1 n a k n n k= ϵ

A S hara/lectures/lectures-j.html ϵ-n 1 ϵ-n lim n a n = α n a n α 2 lim a n = 0 1 n a k n n k= ϵ A S1-20 http://www2.mth.kyushu-u.c.jp/ hr/lectures/lectures-j.html 1 1 1.1 ϵ-n 1 ϵ-n lim n n = α n n α 2 lim n = 0 1 n k n n k=1 0 1.1.7 ϵ-n 1.1.1 n α n n α lim n n = α ϵ N(ϵ) n > N(ϵ) n α < ϵ (1.1.1)

More information

°ÌÁê¿ô³ØII

°ÌÁê¿ô³ØII July 14, 2007 Brouwer f f(x) = x x f(z) = 0 2 f : S 2 R 2 f(x) = f( x) x S 2 3 3 2 - - - 1. X x X U(x) U(x) x U = {U(x) x X} X 1. U(x) A U(x) x 2. A U(x), A B B U(x) 3. A, B U(x) A B U(x) 4. A U(x),

More information

Chap11.dvi

Chap11.dvi . () x 3 + dx () (x )(x ) dx + sin x sin x( + cos x) dx () x 3 3 x + + 3 x + 3 x x + x 3 + dx 3 x + dx 6 x x x + dx + 3 log x + 6 log x x + + 3 rctn ( ) dx x + 3 4 ( x 3 ) + C x () t x t tn x dx x. t x

More information

untitled

untitled 2 : n =1, 2,, 10000 0.5125 0.51 0.5075 0.505 0.5025 0.5 0.4975 0.495 0 2000 4000 6000 8000 10000 2 weak law of large numbers 1. X 1,X 2,,X n 2. µ = E(X i ),i=1, 2,,n 3. σi 2 = V (X i ) σ 2,i=1, 2,,n ɛ>0

More information

untitled

untitled 20010916 22;1017;23;20020108;15;20; 1 N = {1, 2, } Z + = {0, 1, 2, } Z = {0, ±1, ±2, } Q = { p p Z, q N} R = { lim a q n n a n Q, n N; sup a n < } R + = {x R x 0} n = {a + b 1 a, b R} u, v 1 R 2 2 R 3

More information

body.dvi

body.dvi ..1 f(x) n = 1 b n = 1 f f(x) cos nx dx, n =, 1,,... f(x) sin nx dx, n =1,, 3,... f(x) = + ( n cos nx + b n sin nx) n=1 1 1 5 1.1........................... 5 1.......................... 14 1.3...........................

More information