1.500 m X Y m m m m m m m m m m m m N/ N/ ( ) qa N/ N/ 2 2

Size: px
Start display at page:

Download "1.500 m X Y m m m m m m m m m m m m N/ N/ ( ) qa N/ N/ 2 2"

Transcription

1

2 1.500 m X Y m m m m m m m m m m m m N/ N/ ( ) qa N/ N/ X(m) Y(m) (kn/m 2 )

3 kn N/m y P = m xp = m b p = m σ ck = 21 N/mm 2 σ ca = 7 N/mm 2 τ ca = 0.7 N/mm 2 σ sa = 180 N/mm 2 τ a 2.1 N/mm 2 X P P y p 0.26 N/mm 2 t(mm) U(mm) No X Y Xn+1 - Xn / m2 γc kn, ) Σ i ( i 2/3 i)} i Σ i ( i 1/3 i)} i i

4 (kn) (m) (knm) δ= () j= () α= 55 () kn kn a kn KA=2 Pa/(γs h 2 ) = KH=Ka cos(δ ) = KV=Ka sin(δ ) = 0.102

5 PH=1/2 h^2 γs KH My=PH Y PV=1/2 h^2 γs KV Mx=PV X QwH=Qw h KH My=QwH Y QwV=Qw h KV Mx=QwV X m Σ kn Σ kn M kNm e/2 / m m OK Nµ+CB Fs H NO d B/2 e m m q kn/m 2 q kn/m 2 qa kn/m OK

6 Df1= m γ1= kn/m 3 Df2= m γ2= kn/m kn/m 2 φ= 30.0 c= 0.0 kn/m 2 B= m L= m V= kn HB= 9.63 kn e= m Q = / Ae ( α K C Nc c + K q Nq q + 1/2 γ 2 β Be Nr r ) = 1/ ( / ) = 51 kn/m 2 a : a= 3 C : kn/m2 q : (kn/m2) q γ1 Df1 γ2 Df (kn/m2) Ae : (m2) Ae Be L (m2) Be : (m) Be B - 2 eb (m) α,β : α= 1.00 β= 1.00 K : K = * Df'/ Be Nc,Nq,Nr : tanθ = B/ Nc = 9.25 Nq = 6.34 Nr = 1.92 λ µ-1/3 c ') λ ' q ') ' γ ') µ ' B B0 B

7

8 Hk Nµ+CB P k Fs H OK

9 kn kn = P= kn y P = m ( ) b p = m 1m P u = kn/m knm/m kn/m kn knm/m kn/m

10 ( B2 = 200 mm b = 1000 mm i = 60 mm d = 140 mm A s = 285 mm 2 U = 120 mm b σ c x/3 x=kd M C h A s d z=jd T=σ s A s E A S S n = = 15 np = n = Ec b d k = 2 k ( np) + 2np np = j = 1 = M= 4.39E+06 Nmm S= 7.74E+03 N 2.2 N/mm N/mm 2 OK N/mm 2 σsa= N/mm 2 OK N/mm 2 τca= 0.70 N/mm 2 OK τca= 2.10 OK d = 140 mm M= 0.00E+00 Nmm A s = 285 mm 2 S= 0.00E+00 N U = 120 mm K = j = N/mm N/mm 2 OK 0.0 N/mm 2 σsa= N/mm 2 OK N/mm 2 τca= 0.70 N/mm 2 OK N/mm τa= 2.10 OK

11 l lh2/2 l 0.100m H3 = 0.20 m H2 = 0.20 m B= 1.40 m HS = 0.20 m l m =B5 = 1.20 m l s = 1.10 m W1=H3γc(hp-H3)γs kn/m2 W2=H2γc(hp-H2)γs 4.90 (W 2 W 1 )l W s 3 W 1 B kn/m2 q 1 = kn/m 2 q 2 = kn/m 2 q 3 = kn/m 2 q 4 = kn/m 2 ls/2q1q4w1w kn/m l m 2 /6 2 q1 W1 q3 W knm/m

12 T = mm b = mm i = mm d = mm A s = mm 2 U = mm E S = = 15 A n S np = n = Ec b d ( np) + np = k j = = k = 2 np M= 4.90E+06 Nmm S= 7.76E+03 N 2.5 N/mm 2 σca= 7.0 N/mm 2 OK N/mm 2 σca= N/mm 2 OK d = 140 mm N/mm 2 τca= 0.70 N/mm 2 OK N/mm τca= 2.10 OK

13 OK OK NO OK OK OK OK OK OK OK OK OK OK OK OK OK #DIV/0! 0.00 #DIV/0! #DIV/0! #DIV/0! #DIV/0! OK #DIV/0! #DIV/0! #DIV/0! 0.00 #DIV/0! 0.00 #DIV/0! 0.00 OK #DIV/0! OK #DIV/0! OK OK OK NO NO OK OK OK OK OK OK OK OK OK OK OK OK #DIV/0! 0.00 #DIV/0! #DIV/0! #DIV/0! #DIV/0! OK #DIV/0! #DIV/0! #DIV/0! 0.00 #DIV/0! 0.00 #DIV/0! 0.00 OK #DIV/0! OK #DIV/0! OK

3.300 m m m m m m 0 m m m 0 m 0 m m m he m T m 1.50 m N/ N

3.300 m m m m m m 0 m m m 0 m 0 m m m he m T m 1.50 m N/ N 3.300 m 0.500 m 0.300 m 0.300 m 0.300 m 0.500 m 0 m 1.000 m 2.000 m 0 m 0 m 0.300 m 0.300 m -0.200 he 0.400 m T 0.200 m 1.50 m 0.16 2 24.5 N/ 3 18.0 N/ 3 28.0 18.7 18.7 14.0 14.0 X(m) 1.000 2.000 20 Y(m)

More information

he T N/ N/

he T N/ N/ 6.000 1.000 0.800 0.000 0.500 1.500 3.000 1.200 0.000 0.000 0.000 0.000 0.000-0.100 he 1.500 T 0.100 1.50 0.00 2 24.5 N/ 3 18.0 N/ 3 28.0 18.7 18.7 14.0 14.0 X() 20.000 Y() 0.000 (kn/2) 10.000 0.000 kn

More information

untitled

untitled 0 ( L CONTENTS 0 . sin(-x-sinx, (-x(x, sin(90-xx,(90-xsinx sin(80-xsinx,(80-x-x ( sin{90-(ωφ}(ωφ. :n :m.0 m.0 n tn. 0 n.0 tn ω m :n.0n tn n.0 tn.0 m c ω sinω c ω c tnω ecω sin ω ω sin c ω c ω tn c tn ω

More information

untitled

untitled 9118 154 B-1 B-3 B- 5cm 3cm 5cm 3m18m5.4m.5m.66m1.3m 1.13m 1.134m 1.35m.665m 5 , 4 13 7 56 M 1586.1.18 7.77.9 599.5.8 7 1596.9.5 7.57.75 684.11.9 8.5 165..3 7.9 87.8.11 6.57. 166.6.16 7.57.6 856 6.6.5

More information

untitled

untitled ( ) c a sin b c b c a cos a c b c a tan b a b cos sin a c b c a ccos b csin (4) Ma k Mg a (Gal) g(98gal) (Gal) a max (K-E) kh Zck.85.6. 4 Ma g a k a g k D τ f c + σ tanφ σ 3 3 /A τ f3 S S τ A σ /A σ /A

More information

all.dvi

all.dvi 38 5 Cauchy.,,,,., σ.,, 3,,. 5.1 Cauchy (a) (b) (a) (b) 5.1: 5.1. Cauchy 39 F Q Newton F F F Q F Q 5.2: n n ds df n ( 5.1). df n n df(n) df n, t n. t n = df n (5.1) ds 40 5 Cauchy t l n mds df n 5.3: t

More information

untitled

untitled .m 5m :.45.4m.m 3.m.6m (N/mm ).8.6 σ.4 h.m. h.68m h(m) b.35m θ4..5.5.5 -. σ ta.n/mm c 3kN/m 3 w 9.8kN/m 3 -.4 ck 6N/mm -.6 σ -.8 3 () :. 4 5 3.75m :. 7.m :. 874mm 4 865mm mm/ :. 7.m 4.m 4.m 6 7 4. 3.5

More information

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0 1 1 1.1 1.) T D = T = D = kn 1. 1.4) F W = F = W/ = kn/ = 15 kn 1. 1.9) R = W 1 + W = 6 + 5 = 11 N. 1.9) W b W 1 a = a = W /W 1 )b = 5/6) = 5 cm 1.4 AB AC P 1, P x, y x, y y x 1.4.) P sin 6 + P 1 sin 45

More information

NETES No.CG V

NETES No.CG V 1 2006 6 NETES No.CG-050001-V 2007 5 2 1 2 1 19 5 1 2 19 8 2 i 1 1 1.1 1 1.2 2 1.3 2 2 3 2.1 3 2.2 8 3 9 3.1 9 3.2 10 3.3 13 3.3.1 13 3.3.2 14 3.3.3 14 3.3.4 16 3.3.5 17 3.3.6 18 3.3.7 21 3.3.8 22 3.4

More information

(1) (kn/m 3 )

(1) (kn/m 3 ) 1 1 1.1 1.1.1 (1) 1.1 1.2 1.1 (kn/m 3 ) 77 71 24.5 23 21 8.0 22.5 2 1 1.2 N/m 2 2 m 3 m 2000 2200 2500 3000 (2) 1 A B B 1.3 1.5 1.1 T cm 1.1 3 1.3 L m L 4 L > 4 1.0 L 32 + 7 8 1.2 T 4 1 2 5.0 kn/m 2 3.

More information

untitled

untitled PGF 17 6 1 11 1 12 1 2 21 2 22 2 23 3 1 3 1 3 2 3 3 3 4 3 5 4 6 4 2 4 1 4 2 4 3 4 4 4 5 5 3 5 1 5 2 5 5 5 5 4 5 1 5 2 5 3 6 5 6 1 6 2 6 6 6 24 7 1 7 1 7 2 7 3 7 4 8 2 8 1 8 2 8 3 9 4 9 5 9 6 9 3 9 1 9

More information

4 4 θ X θ P θ 4. 0, 405 P 0 X 405 X P 4. () 60 () 45 () 40 (4) 765 (5) 40 B 60 0 P = 90, = ( ) = X

4 4 θ X θ P θ 4. 0, 405 P 0 X 405 X P 4. () 60 () 45 () 40 (4) 765 (5) 40 B 60 0 P = 90, = ( ) = X 4 4. 4.. 5 5 0 A P P P X X X X +45 45 0 45 60 70 X 60 X 0 P P 4 4 θ X θ P θ 4. 0, 405 P 0 X 405 X P 4. () 60 () 45 () 40 (4) 765 (5) 40 B 60 0 P 0 0 + 60 = 90, 0 + 60 = 750 0 + 60 ( ) = 0 90 750 0 90 0

More information

(1) 1.1

(1) 1.1 1 1 1.1 1.1.1 1.1 ( ) ( ) ( ) { ( ) ( ) { ( ) ( ) { ( ) ( ) { ( ) ( ) { ( ) ( ) ( ) ( ) ( ) 2 1 1.1.2 (1) 1.1 1.1 3 (2) 1.2 4 1 (3) 1.3 ( ) ( ) (4) 1.1 5 (5) ( ) 1.4 6 1 (6) 1.5 (7) ( ) (8) 1.1 7 1.1.3

More information

多数アンカー式補強土壁工法

多数アンカー式補強土壁工法 1. (SN ) SS400 ( ) SN400 SM490A ( ) SN490 JIS G 3136:SN -1994 JIS G 3136:SN 1) SN (SNR ) (JIS G 3138-1996) SN SNR490B 1 1SNR490B 2. SN490 SM490A 2) SNR490B SM490 3) 2SNR490B [N/mm 2 ] 185 185 105 [N/mm

More information

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2 2005 9/8-11 2 2.2 ( 2-5) γ ( ) γ cos θ 2πr πρhr 2 g h = 2γ cos θ ρgr (2.1) γ = ρgrh (2.2) 2 cos θ θ cos θ = 1 (2.2) γ = 1 ρgrh (2.) 2 2. p p ρgh p ( ) p p = p ρgh (2.) h p p = 2γ r 1 1 (Berry,1975) 2-6

More information

Q & A Q A p

Q & A Q A p Q & A 2004.12 1 Q1. 12 2 A1. 11 3 p.1 1.1 2 Q2. A2. < > [ ] 10 5 15 (p.138) (p.150) (p.176) (p.167 ) 3 1. 4 1.6 1.6.1 (2) (p.6) Q3. 5 1 1:1.0 12 2 1:0.6 1:1.0 1:1.0 1:0.6 1:0.6 1:0.6 1:1.0 1:0.6 ( ) 1:1.0

More information

[Ver. 0.2] 1 2 3 4 5 6 7 1 1.1 1.2 1.3 1.4 1.5 1 1.1 1 1.2 1. (elasticity) 2. (plasticity) 3. (strength) 4. 5. (toughness) 6. 1 1.2 1. (elasticity) } 1 1.2 2. (plasticity), 1 1.2 3. (strength) a < b F

More information

I II III IV V

I II III IV V I II III IV V N/m 2 640 980 50 200 290 440 2m 50 4m 100 100 150 200 290 390 590 150 340 4m 6m 8m 100 170 250 µ = E FRVβ β N/mm 2 N/mm 2 1.1 F c t.1 3 1 1.1 1.1 2 2 2 2 F F b F s F c F t F b F s 3 3 3

More information

第86回日本感染症学会総会学術集会後抄録(I)

第86回日本感染症学会総会学術集会後抄録(I) κ κ κ κ κ κ μ μ β β β γ α α β β γ α β α α α γ α β β γ μ β β μ μ α ββ β β β β β β β β β β β β β β β β β β γ β μ μ μ μμ μ μ μ μ β β μ μ μ μ μ μ μ μ μ μ μ μ μ μ β

More information

untitled

untitled ( 9:: 3:6: (k 3 45 k F m tan 45 k 45 k F m tan S S F m tan( 6.8k tan k F m ( + k tan 373 S S + Σ Σ 3 + Σ os( sin( + Σ sin( os( + sin( os( p z ( γ z + K pzdz γ + K γ K + γ + 9 ( 9 (+ sin( sin { 9 ( } 4

More information

66 σ σ (8.1) σ = 0 0 σd = 0 (8.2) (8.2) (8.1) E ρ d = 0... d = 0 (8.3) d 1 NN K K 8.1 d σd σd M = σd = E 2 d (8.4) ρ 2 d = I M = EI ρ 1 ρ = M EI ρ EI

66 σ σ (8.1) σ = 0 0 σd = 0 (8.2) (8.2) (8.1) E ρ d = 0... d = 0 (8.3) d 1 NN K K 8.1 d σd σd M = σd = E 2 d (8.4) ρ 2 d = I M = EI ρ 1 ρ = M EI ρ EI 65 8. K 8 8 7 8 K 6 7 8 K 6 M Q σ (6.4) M O ρ dθ D N d N 1 P Q B C (1 + ε)d M N N h 2 h 1 ( ) B (+) M 8.1: σ = E ρ (E, 1/ρ ) (8.1) 66 σ σ (8.1) σ = 0 0 σd = 0 (8.2) (8.2) (8.1) E ρ d = 0... d = 0 (8.3)

More information

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e 3 3 5 5 5 3 3 7 5 33 5 33 9 5 8 > e > f U f U u u > u ue u e u ue u ue u e u e u u e u u e u N cos s s cos ψ e e e e 3 3 e e 3 e 3 e 3 > A A > A E A f A A f A [ ] f A A e > > A e[ ] > f A E A < < f ; >

More information

LLG-R8.Nisus.pdf

LLG-R8.Nisus.pdf d M d t = γ M H + α M d M d t M γ [ 1/ ( Oe sec) ] α γ γ = gµ B h g g µ B h / π γ g = γ = 1.76 10 [ 7 1/ ( Oe sec) ] α α = λ γ λ λ λ α γ α α H α = γ H ω ω H α α H K K H K / M 1 1 > 0 α 1 M > 0 γ α γ =

More information

untitled

untitled 20 3 Copyright (2007) by P.W.R.I. All rights reserved. No part of this book may be reproduced by any means, nor transmitted, nor translated into a machine language without the written permission of the

More information

(1)基礎の設計に関する基本事項

(1)基礎の設計に関する基本事項 (1) qa 50kN/m 2 qa 13 1113 1 (2) (3) (2) 50 qa 100kN/m 2 13 1113 1 (3) qa 100kN/m 2 qa 120kN/m 2 (1) qa 300kN/m 2 qa 13 1113 1 (2) (2) qa 300 kn/m 2 qa 1000kN/m 2 38 3 50 30 3 /10m 42 1 13 1113 5 6 30

More information

1

1 GL (a) (b) Ph l P N P h l l Ph Ph Ph Ph l l l l P Ph l P N h l P l .9 αl B βlt D E. 5.5 L r..8 e g s e,e l l W l s l g W W s g l l W W e s g e s g r e l ( s ) l ( l s ) r e l ( s ) l ( l s ) e R e r

More information

untitled

untitled . 96. 99. ( 000 SIC SIC N88 SIC for Windows95 6 6 3 0 . amano No.008 6. 6.. z σ v σ v γ z (6. σ 0 (a (b 6. (b 0 0 0 6. σ σ v σ σ 0 / v σ v γ z σ σ 0 σ v 0γ z σ / σ ν /( ν, ν ( 0 0.5 0.0 0 v sinφ, φ 0 (6.

More information

16 6 12 1 16 6 23 23 11 16 START 1 Out Ok 1,2 Ok END Out 3 1 1/ H24.2 2 1 L2-1 L2-2 H14.3 3 H9.10 PHC SC 19 1 24 3 18N/mm 2 24N/mm 2 30N/mm 2 25 10 13 12 13 12 11 11 11 11 19 7 25 10 24N 8cm 25(20)mm 45

More information

20 4 20 i 1 1 1.1............................ 1 1.2............................ 4 2 11 2.1................... 11 2.2......................... 11 2.3....................... 19 3 25 3.1.............................

More information

研修コーナー

研修コーナー l l l l l l l l l l l α α β l µ l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l

More information

< B38BD C78F6F97CD97E12D332E786477>

< B38BD C78F6F97CD97E12D332E786477> 無筋擁壁設計システム Ver4.2 適用基準 土地改良事業計画設計基準 設計 農道 (H7/3) 土地改良事業計画設計基準 設計 水路工 (H26/3) 日本道路協会 道路土工 擁壁工指針 (H24/7) 土木学会 大型ブロック積み擁壁設計 (H6/6) 宅地防災マニュアルの解説 第二次改訂版 (H9/2) 出力例 ブロック積み擁壁の計算書 ( 安定計算および部材断面計算 ) 開発 販売元 ( 株

More information

21 2 26 i 1 1 1.1............................ 1 1.2............................ 3 2 9 2.1................... 9 2.2.......... 9 2.3................... 11 2.4....................... 12 3 15 3.1..........

More information

v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i

v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i 1. 1 1.1 1.1.1 1.1.1.1 v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) R ij R ik = δ jk (4) δ ij Kronecker δ ij = { 1 (i = j) 0 (i j) (5) 1 1.1. v1.1 2011/04/10 1. 1 2 v i = R ij v j (6) [

More information

O x y z O ( O ) O (O ) 3 x y z O O x v t = t = 0 ( 1 ) O t = 0 c t r = ct P (x, y, z) r 2 = x 2 + y 2 + z 2 (t, x, y, z) (ct) 2 x 2 y 2 z 2 = 0

O x y z O ( O ) O (O ) 3 x y z O O x v t = t = 0 ( 1 ) O t = 0 c t r = ct P (x, y, z) r 2 = x 2 + y 2 + z 2 (t, x, y, z) (ct) 2 x 2 y 2 z 2 = 0 9 O y O ( O ) O (O ) 3 y O O v t = t = 0 ( ) O t = 0 t r = t P (, y, ) r = + y + (t,, y, ) (t) y = 0 () ( )O O t (t ) y = 0 () (t) y = (t ) y = 0 (3) O O v O O v O O O y y O O v P(, y,, t) t (, y,, t )

More information

Γ Ec Γ V BIAS THBV3_0401JA THBV3_0402JAa THBV3_0402JAb 1000 800 600 400 50 % 25 % 200 100 80 60 40 20 10 8 6 4 10 % 2.5 % 0.5 % 0.25 % 2 1.0 0.8 0.6 0.4 0.2 0.1 200 300 400 500 600 700 800 1000 1200 14001600

More information

( ) e + e ( ) ( ) e + e () ( ) e e Τ ( ) e e ( ) ( ) () () ( ) ( ) ( ) ( )

( ) e + e ( ) ( ) e + e () ( ) e e Τ ( ) e e ( ) ( ) () () ( ) ( ) ( ) ( ) n n (n) (n) (n) (n) n n ( n) n n n n n en1, en ( n) nen1 + nen nen1, nen ( ) e + e ( ) ( ) e + e () ( ) e e Τ ( ) e e ( ) ( ) () () ( ) ( ) ( ) ( ) ( n) Τ n n n ( n) n + n ( n) (n) n + n n n n n n n n

More information

1- 擁壁断面の形状 寸法及び荷重の計算 ( 常時 ) フェンス荷重 1 kn/m 1,100 0 上載荷重 10 m kn/ 3, (1) 自重 地表面と水平面とのなす角度 α=0.00 壁背面と鉛直面とのなす角度 θ=.73 擁壁

1- 擁壁断面の形状 寸法及び荷重の計算 ( 常時 ) フェンス荷重 1 kn/m 1,100 0 上載荷重 10 m kn/ 3, (1) 自重 地表面と水平面とのなす角度 α=0.00 壁背面と鉛直面とのなす角度 θ=.73 擁壁 構造計算例鉄筋コンクリート造擁壁の構造計算例 1 常時 1-1 設計条件 (1) 擁壁の型式及び高さ型式 : 片持梁式鉄筋コンクリート造 L 型擁壁擁壁の高さ :H'=3.00m 擁壁の全高 :H =3.50m () 外力土圧の作用面は縦壁背面とする 上載荷重 : q=10kn/ mフェンス荷重 ( 水平力 ) : 1kN/ m (3) 背面土土質の種類 : 関東ローム土の単位体積重量 :γs=16.0/

More information

さくらの個別指導 ( さくら教育研究所 ) A a 1 a 2 a 3 a n {a n } a 1 a n n n 1 n n 0 a n = 1 n 1 n n O n {a n } n a n α {a n } α {a

さくらの個別指導 ( さくら教育研究所 ) A a 1 a 2 a 3 a n {a n } a 1 a n n n 1 n n 0 a n = 1 n 1 n n O n {a n } n a n α {a n } α {a ... A a a a 3 a n {a n } a a n n 3 n n n 0 a n = n n n O 3 4 5 6 n {a n } n a n α {a n } α {a n } α α {a n } a n n a n α a n = α n n 0 n = 0 3 4. ()..0.00 + (0.) n () 0. 0.0 0.00 ( 0.) n 0 0 c c c c c

More information

Taro11-aマニュアル.jtd

Taro11-aマニュアル.jtd L A m ton m kn t t kn t kn t m m kn ton ton m m m kn/ CK CK = N/mm ca sa a cm kn/ kn/ kn/ kn/ kn/ kn/ kn/ - - kn/m WL % /m - - A c sin cos kn/m kn/m kn/m / - / A A H V H A cos V A sin - - = N/mm P P m

More information

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) (

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) ( 6 20 ( ) sin, cos, tan sin, cos, tan, arcsin, arccos, arctan. π 2 sin π 2, 0 cos π, π 2 < tan < π 2 () ( 2 2 lim 2 ( 2 ) ) 2 = 3 sin (2) lim 5 0 = 2 2 0 0 2 2 3 3 4 5 5 2 5 6 3 5 7 4 5 8 4 9 3 4 a 3 b

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション 003.10.3 003.10.8 Y 1 0031016 B4(4 3 B4,1 M 0 C,Q 0. M,Q 1.- MQ 003/10/16 10/8 Girder BeamColumn Foundation SlabWall Girder BeamColumn Foundation SlabWall 1.-1 5mm 0 kn/m 3 0.05m=0.5 kn/m 60mm 18 kn/m

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

1 1 x y = y(x) y, y,..., y (n) : n y F (x, y, y,..., y (n) ) = 0 n F (x, y, y ) = 0 1 y(x) y y = G(x, y) y, y y + p(x)y = q(x) 1 p(x) q(

1 1 x y = y(x) y, y,..., y (n) : n y F (x, y, y,..., y (n) ) = 0 n F (x, y, y ) = 0 1 y(x) y y = G(x, y) y, y y + p(x)y = q(x) 1 p(x) q( 1 1 y = y() y, y,..., y (n) : n y F (, y, y,..., y (n) ) = 0 n F (, y, y ) = 0 1 y() 1.1 1 y y = G(, y) 1.1.1 1 y, y y + p()y = q() 1 p() q() (q() = 0) y + p()y = 0 y y + py = 0 y y = p (log y) = p log

More information

3-1. 1) 1-1) =10.92m =18.20m m 2 6,480 3, =30 30kN/m 2 Z=0.9

3-1. 1) 1-1) =10.92m =18.20m m 2 6,480 3, =30 30kN/m 2 Z=0.9 3-1. 3-2. 3-3. 3-1. 1) 1-1) =10.92m =18.20m 198.74m 2 6,480 3,800 4.5 =30 30kN/m 2 Z=0.9 1-2) G1 G2 G3 G4 1-3) G1 G2 H3 1-4) t = 12 2.5 2) 2-1) No ( ) 1 120 120 2 120 120 3 120 180 360 4 120 150 210 5

More information

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x Compton Scattering Beaming exp [i k x ωt] k λ k π/λ ω πν k ω/c k x ωt ω k α c, k k x ωt η αβ k α x β diag + ++ x β ct, x O O x O O v k α k α β, γ k γ k βk, k γ k + βk k γ k k, k γ k + βk 3 k k 4 k 3 k

More information

A(6, 13) B(1, 1) 65 y C 2 A(2, 1) B( 3, 2) C 66 x + 2y 1 = 0 2 A(1, 1) B(3, 0) P 67 3 A(3, 3) B(1, 2) C(4, 0) (1) ABC G (2) 3 A B C P 6

A(6, 13) B(1, 1) 65 y C 2 A(2, 1) B( 3, 2) C 66 x + 2y 1 = 0 2 A(1, 1) B(3, 0) P 67 3 A(3, 3) B(1, 2) C(4, 0) (1) ABC G (2) 3 A B C P 6 1 1 1.1 64 A6, 1) B1, 1) 65 C A, 1) B, ) C 66 + 1 = 0 A1, 1) B, 0) P 67 A, ) B1, ) C4, 0) 1) ABC G ) A B C P 64 A 1, 1) B, ) AB AB = 1) + 1) A 1, 1) 1 B, ) 1 65 66 65 C0, k) 66 1 p, p) 1 1 A B AB A 67

More information

Super Build/宅造擁壁 出力例1

Super Build/宅造擁壁 出力例1 宅造擁壁構造計算書 使用プログラム : uper Build/ 宅造擁壁 Ver.1.60 工事名 : 日付 : 設計者名 : 宅地防災マニュアル事例集 015/01/7 UNION YTEM INC. Ⅶ-1 建設地 : L 型擁壁の設計例 壁体背面を荷重面としてとる場合 *** uper Build/ 宅造擁壁 *** 160-999999 [ 宅地防災マニュアル Ⅶ-1] 015/01/7 00:00

More information

(1) (2) (1) (2) 2 3 {a n } a 2 + a 4 + a a n S n S n = n = S n

(1) (2) (1) (2) 2 3 {a n } a 2 + a 4 + a a n S n S n = n = S n . 99 () 0 0 0 () 0 00 0 350 300 () 5 0 () 3 {a n } a + a 4 + a 6 + + a 40 30 53 47 77 95 30 83 4 n S n S n = n = S n 303 9 k d 9 45 k =, d = 99 a d n a n d n a n = a + (n )d a n a n S n S n = n(a + a n

More information

6 2 2 x y x y t P P = P t P = I P P P ( ) ( ) ,, ( ) ( ) cos θ sin θ cos θ sin θ, sin θ cos θ sin θ cos θ y x θ x θ P

6 2 2 x y x y t P P = P t P = I P P P ( ) ( ) ,, ( ) ( ) cos θ sin θ cos θ sin θ, sin θ cos θ sin θ cos θ y x θ x θ P 6 x x 6.1 t P P = P t P = I P P P 1 0 1 0,, 0 1 0 1 cos θ sin θ cos θ sin θ, sin θ cos θ sin θ cos θ x θ x θ P x P x, P ) = t P x)p ) = t x t P P ) = t x = x, ) 6.1) x = Figure 6.1 Px = x, P=, θ = θ P

More information

1. 1 A : l l : (1) l m (m 3) (2) m (3) n (n 3) (4) A α, β γ α β + γ = 2 m l lm n nα nα = lm. α = lm n. m lm 2β 2β = lm β = lm 2. γ l 2. 3

1. 1 A : l l : (1) l m (m 3) (2) m (3) n (n 3) (4) A α, β γ α β + γ = 2 m l lm n nα nα = lm. α = lm n. m lm 2β 2β = lm β = lm 2. γ l 2. 3 1. 1 A : l l : (1) l m (m 3) (2) m (3) n (n 3) (4) A 2 1 2 1 2 3 α, β γ α β + γ = 2 m l lm n nα nα = lm. α = lm n. m lm 2β 2β = lm β = lm 2. γ l 2. 3 4 P, Q R n = {(x 1, x 2,, x n ) ; x 1, x 2,, x n R}

More information

t θ, τ, α, β S(, 0 P sin(θ P θ S x cos(θ SP = θ P (cos(θ, sin(θ sin(θ P t tan(θ θ 0 cos(θ tan(θ = sin(θ cos(θ ( 0t tan(θ

t θ, τ, α, β S(, 0 P sin(θ P θ S x cos(θ SP = θ P (cos(θ, sin(θ sin(θ P t tan(θ θ 0 cos(θ tan(θ = sin(θ cos(θ ( 0t tan(θ 4 5 ( 5 3 9 4 0 5 ( 4 6 7 7 ( 0 8 3 9 ( 8 t θ, τ, α, β S(, 0 P sin(θ P θ S x cos(θ SP = θ P (cos(θ, sin(θ sin(θ P t tan(θ θ 0 cos(θ tan(θ = sin(θ cos(θ ( 0t tan(θ S θ > 0 θ < 0 ( P S(, 0 θ > 0 ( 60 θ

More information

1 I 1.1 ± e = = - = C C MKSA [m], [Kg] [s] [A] 1C 1A 1 MKSA 1C 1C +q q +q q 1

1 I 1.1 ± e = = - = C C MKSA [m], [Kg] [s] [A] 1C 1A 1 MKSA 1C 1C +q q +q q 1 1 I 1.1 ± e = = - =1.602 10 19 C C MKA [m], [Kg] [s] [A] 1C 1A 1 MKA 1C 1C +q q +q q 1 1.1 r 1,2 q 1, q 2 r 12 2 q 1, q 2 2 F 12 = k q 1q 2 r 12 2 (1.1) k 2 k 2 ( r 1 r 2 ) ( r 2 r 1 ) q 1 q 2 (q 1 q 2

More information

Note.tex 2008/09/19( )

Note.tex 2008/09/19( ) 1 20 9 19 2 1 5 1.1........................ 5 1.2............................. 8 2 9 2.1............................. 9 2.2.............................. 10 3 13 3.1.............................. 13 3.2..................................

More information

道路土工擁壁工指針 (H24) に準拠 重力式擁壁の安定計算 ( 盛土土圧対応 ) 正規版 Ver 基本データの入力 2 地形データの入力 3 計算実行 Ver /01/18 Civil Tech 洋洋 本ソフトの概要 機能 道路土工 擁壁工指針 ( 平成 24 年度

道路土工擁壁工指針 (H24) に準拠 重力式擁壁の安定計算 ( 盛土土圧対応 ) 正規版 Ver 基本データの入力 2 地形データの入力 3 計算実行 Ver /01/18 Civil Tech 洋洋 本ソフトの概要 機能 道路土工 擁壁工指針 ( 平成 24 年度 道路土工擁壁工指針 (H24) に準拠 重力式擁壁の安定計算 ( 盛土土圧対応 ) 正規版 Ver.1.10 1 基本データの入力 2 地形データの入力 3 計算実行 Ver 1.10 2019/01/18 Civil Tech 洋洋 本ソフトの概要 機能 道路土工 擁壁工指針 ( 平成 24 年度版 ) に準拠して 重力式擁壁の安定計算を行ないます 滑動 転倒 地盤支持力の安定検討を行うことができます

More information

Microsoft Word - 部材規格追記 doc

Microsoft Word - 部材規格追記 doc 3 14 10 18 7 20 10 SS SN 21 3 24 4 ... 1... 5... 13 f ck=40n/mm 2 P d1 =60kN/ f ck=40n/mm 2 P d2 =100kN/ f ck=40n/mm 2 P d3 =150kN/ UAUBUC TATBTC DADBDC 115mm 75mm 115mm 75mm 160mm 120mm D13 6.0% l l l

More information

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2) 3 215 4 27 1 1 u u(x, t) u tt a 2 u xx, a > (1) D : {(x, t) : x, t } u (, t), u (, t), t (2) u(x, ) f(x), u(x, ) t 2, x (3) u(x, t) X(x)T (t) u (1) 1 T (t) a 2 T (t) X (x) X(x) α (2) T (t) αa 2 T (t) (4)

More information

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4 35-8585 7 8 1 I I 1 1.1 6kg 1m P σ σ P 1 l l λ λ l 1.m 1 6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m

More information

http://www.ike-dyn.ritsumei.ac.jp/ hyoo/wave.html 1 1, 5 3 1.1 1..................................... 3 1.2 5.1................................... 4 1.3.......................... 5 1.4 5.2, 5.3....................

More information

all.dvi

all.dvi 5,, Euclid.,..,... Euclid,.,.,, e i (i =,, ). 6 x a x e e e x.:,,. a,,. a a = a e + a e + a e = {e, e, e } a (.) = a i e i = a i e i (.) i= {a,a,a } T ( T ),.,,,,. (.),.,...,,. a 0 0 a = a 0 + a + a 0

More information

I y = f(x) a I a x I x = a + x 1 f(x) f(a) x a = f(a + x) f(a) x (11.1) x a x 0 f(x) f(a) f(a + x) f(a) lim = lim x a x a x 0 x (11.2) f(x) x

I y = f(x) a I a x I x = a + x 1 f(x) f(a) x a = f(a + x) f(a) x (11.1) x a x 0 f(x) f(a) f(a + x) f(a) lim = lim x a x a x 0 x (11.2) f(x) x 11 11.1 I y = a I a x I x = a + 1 f(a) x a = f(a +) f(a) (11.1) x a 0 f(a) f(a +) f(a) = x a x a 0 (11.) x = a a f (a) d df f(a) (a) I dx dx I I I f (x) d df dx dx (x) [a, b] x a ( 0) x a (a, b) () [a,

More information

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google I4 - : April, 4 Version :. Kwhir, Tomoki TA (Kondo, Hirotk) Google http://www.mth.ngoy-u.c.jp/~kwhir/courses/4s-biseki.html pdf 4 4 4 4 8 e 5 5 9 etc. 5 6 6 6 9 n etc. 6 6 6 3 6 3 7 7 etc 7 4 7 7 8 5 59

More information

B

B B YES NO 5 7 6 1 4 3 2 BB BB BB AA AA BB 510J B B A 510J B A A A A A A 510J B A 510J B A A A A A 510J M = σ Z Z = M σ AAA π T T = a ZP ZP = a AAA π B M + M 2 +T 2 M T Me = = 1 + 1 + 2 2 M σ Te = M 2 +T

More information

y = x x R = 0. 9, R = σ $ = y x w = x y x x w = x y α ε = + β + x x x y α ε = + β + γ x + x x x x' = / x y' = y/ x y' =

y = x x R = 0. 9, R = σ $ = y x w = x y x x w = x y α ε = + β + x x x y α ε = + β + γ x + x x x x' = / x y' = y/ x y' = y x = α + β + ε =,, ε V( ε) = E( ε ) = σ α $ $ β w ( 0) σ = w σ σ y α x ε = + β + w w w w ε / w ( w y x α β ) = α$ $ W = yw βwxw $β = W ( W) ( W)( W) w x x w x x y y = = x W y W x y x y xw = y W = w w

More information

X G P G (X) G BG [X, BG] S 2 2 2 S 2 2 S 2 = { (x 1, x 2, x 3 ) R 3 x 2 1 + x 2 2 + x 2 3 = 1 } R 3 S 2 S 2 v x S 2 x x v(x) T x S 2 T x S 2 S 2 x T x S 2 = { ξ R 3 x ξ } R 3 T x S 2 S 2 x x T x S 2

More information

DVIOUT-HYOU

DVIOUT-HYOU () P. () AB () AB ³ ³, BA, BA ³ ³ P. A B B A IA (B B)A B (BA) B A ³, A ³ ³ B ³ ³ x z ³ A AA w ³ AA ³ x z ³ x + z +w ³ w x + z +w ½ x + ½ z +w x + z +w x,,z,w ³ A ³ AA I x,, z, w ³ A ³ ³ + + A ³ A A P.

More information

1. 2 P 2 (x, y) 2 x y (0, 0) R 2 = {(x, y) x, y R} x, y R P = (x, y) O = (0, 0) OP ( ) OP x x, y y ( ) x v = y ( ) x 2 1 v = P = (x, y) y ( x y ) 2 (x

1. 2 P 2 (x, y) 2 x y (0, 0) R 2 = {(x, y) x, y R} x, y R P = (x, y) O = (0, 0) OP ( ) OP x x, y y ( ) x v = y ( ) x 2 1 v = P = (x, y) y ( x y ) 2 (x . P (, (0, 0 R {(,, R}, R P (, O (0, 0 OP OP, v v P (, ( (, (, { R, R} v (, (, (,, z 3 w z R 3,, z R z n R n.,..., n R n n w, t w ( z z Ke Words:. A P 3 0 B P 0 a. A P b B P 3. A π/90 B a + b c π/ 3. +

More information

集水桝の構造計算(固定版編)V1-正規版.xls

集水桝の構造計算(固定版編)V1-正規版.xls 集水桝の構造計算 集水桝 3.0.5 3.15 横断方向断面の計算 1. 計算条件 11. 集水桝の寸法 内空幅 B = 3.000 (m) 内空奥行き L =.500 (m) 内空高さ H = 3.150 (m) 側壁厚 T = 0.300 (m) 底版厚 Tb = 0.400 (m) 1. 土質条件 土の単位体積重量 γs = 18.000 (kn/m 3 ) 土の内部摩擦角 φ = 30.000

More information

untitled

untitled .. 3. 3 3. 3 4 3. 5 6 3 7 3.3 9 4. 9 0 6 3 7 0705 φ c d φ d., φ cd, φd. ) O x s + b l cos s s c l / q taφ / q taφ / c l / X + X E + C l w q B s E q q ul q q ul w w q q E E + E E + ul X X + (a) (b) (c)

More information

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x [ ] IC. f(x) = e x () f(x) f (x) () lim f(x) lim f(x) x + x (3) lim f(x) lim f(x) x + x (4) y = f(x) ( ) ( s46). < a < () a () lim a log xdx a log xdx ( ) n (3) lim log k log n n n k=.3 z = log(x + y ),

More information

2.2 h h l L h L = l cot h (1) (1) L l L l l = L tan h (2) (2) L l 2 l 3 h 2.3 a h a h (a, h)

2.2 h h l L h L = l cot h (1) (1) L l L l l = L tan h (2) (2) L l 2 l 3 h 2.3 a h a h (a, h) 1 16 10 5 1 2 2.1 a a a 1 1 1 2.2 h h l L h L = l cot h (1) (1) L l L l l = L tan h (2) (2) L l 2 l 3 h 2.3 a h a h (a, h) 4 2 3 4 2 5 2.4 x y (x,y) l a x = l cot h cos a, (3) y = l cot h sin a (4) h a

More information

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n (

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n ( 3 n nc k+ k + 3 () n C r n C n r nc r C r + C r ( r n ) () n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (4) n C n n C + n C + n C + + n C n (5) k k n C k n C k (6) n C + nc

More information

( )

( ) 7..-8..8.......................................................................... 4.................................... 3...................................... 3..3.................................. 4.3....................................

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 1 19 3 19.1................... 3 19.............................. 4 19.3............................... 6 19.4.............................. 8 19.5.............................

More information

20 9 19 1 3 11 1 3 111 3 112 1 4 12 6 121 6 122 7 13 7 131 8 132 10 133 10 134 12 14 13 141 13 142 13 143 15 144 16 145 17 15 19 151 1 19 152 20 2 21 21 21 211 21 212 1 23 213 1 23 214 25 215 31 22 33

More information

O1-1 O1-2 O1-3 O1-4 O1-5 O1-6

O1-1 O1-2 O1-3 O1-4 O1-5 O1-6 O1-1 O1-2 O1-3 O1-4 O1-5 O1-6 O1-7 O1-8 O1-9 O1-10 O1-11 O1-12 O1-13 O1-14 O1-15 O1-16 O1-17 O1-18 O1-19 O1-20 O1-21 O1-22 O1-23 O1-24 O1-25 O1-26 O1-27 O1-28 O1-29 O1-30 O1-31 O1-32 O1-33 O1-34 O1-35

More information

r d 2r d l d (a) (b) (c) 1: I(x,t) I(x+ x,t) I(0,t) I(l,t) V in V(x,t) V(x+ x,t) V(0,t) l V(l,t) 2: 0 x x+ x 3: V in 3 V in x V (x, t) I(x, t

r d 2r d l d (a) (b) (c) 1: I(x,t) I(x+ x,t) I(0,t) I(l,t) V in V(x,t) V(x+ x,t) V(0,t) l V(l,t) 2: 0 x x+ x 3: V in 3 V in x V (x, t) I(x, t 1 1 2 2 2r d 2r d l d (a) (b) (c) 1: I(x,t) I(x+ x,t) I(0,t) I(l,t) V in V(x,t) V(x+ x,t) V(0,t) l V(l,t) 2: 0 x x+ x 3: V in 3 V in x V (x, t) I(x, t) V (x, t) I(x, t) V in x t 3 4 1 L R 2 C G L 0 R 0

More information

Microsoft Word - CTCWEB講座(4章照査)0419.doc

Microsoft Word - CTCWEB講座(4章照査)0419.doc 1912 1914 3 58 16 1 58 2 16 3 4 62 61 4 16 1 16 1914 ( 3) 1955 (30) 1961 (36) 1965 (40) 1970 (45) 1983 (58) 1992 ( 4) 1999 (11) 2004 (16) 2 1 2 3 4 5 6 7 8 9 1 10 2 11 12 13 14 15 16 17 18 19 20 21 22

More information

基礎数学I

基礎数学I I & II ii ii........... 22................. 25 12............... 28.................. 28.................... 31............. 32.................. 34 3 1 9.................... 1....................... 1............

More information

No.004 [1] J. ( ) ( ) (1968) [2] Morse (1997) [3] (1988) 1

No.004 [1] J. ( ) ( ) (1968) [2] Morse (1997) [3] (1988) 1 No.004 [1] J. ( ) ( ) (1968) [2] Morse (1997) [3] (1988) 1 1 (1) 1.1 X Y f, g : X Y { F (x, 0) = f(x) F (x, 1) = g(x) F : X I Y f g f g F f g 1.2 X Y X Y gf id X, fg id Y f : X Y, g : Y X X Y X Y (2) 1.3

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc2.com/ 1 30 3 30.1.............. 3 30.2........................... 4 30.3...................... 5 30.4........................ 6 30.5.................................. 8 30.6...............................

More information

... 1... 1... 2... 3... 5... 7... 7... 7... 8... 8... 12... 14... 14... 14... 16... 16... 16... 17... 17... 18... 18... 19... 20... 43... 43... 53... 55... 56... 56... 57 JFE M... 57... 59... 60... 61

More information

70 : 20 : A B (20 ) (30 ) 50 1

70 : 20 : A B (20 ) (30 ) 50 1 70 : 0 : A B (0 ) (30 ) 50 1 1 4 1.1................................................ 5 1. A............................................... 6 1.3 B............................................... 7 8.1 A...............................................

More information

SFGÇÃÉXÉyÉNÉgÉãå`.pdf

SFGÇÃÉXÉyÉNÉgÉãå`.pdf SFG 1 SFG SFG I SFG (ω) χ SFG (ω). SFG χ χ SFG (ω) = χ NR e iϕ +. ω ω + iγ SFG φ = ±π/, χ φ = ±π 3 χ SFG χ SFG = χ NR + χ (ω ω ) + Γ + χ NR χ (ω ω ) (ω ω ) + Γ cosϕ χ NR χ Γ (ω ω ) + Γ sinϕ. 3 (θ) 180

More information

振動と波動

振動と波動 Report JS0.5 J Simplicity February 4, 2012 1 J Simplicity HOME http://www.jsimplicity.com/ Preface 2 Report 2 Contents I 5 1 6 1.1..................................... 6 1.2 1 1:................ 7 1.3

More information

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y)

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 1 1977 x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) ( x 2 y + xy 2 x 2 2xy y 2) = 15 (x y) (x + y) (xy

More information