スライド 1

Size: px
Start display at page:

Download "スライド 1"

Transcription

1 地図情報処理特論 最近の動向 : 空間情報処理 21 年 7 月 9 日 ( 水 ) 第 13 回 知能情報工学コース横田孝義 1

2 授業計画 4/9 4/16 4/23 4/3 /14 /21 /28 6/4 6/11 6/18 6/2 7/2 7/9 7/16 7/23 2

3 主成分分析と空間情報 3

4 主成分分析 データマイニングの分野ではマクロ ( 巨視的 ) な視点で全体を捉える能力が求められる 1. コンピュータは数値の集合として全体を把握していますので 意味ある情報として全体を見ることが不得意 2. 逆に人間には もともと空間的に全体像を捉える能力が得意 人間はこういう写真を見ると瞬間的に内容が理解できる 青空 木 草地 傾斜 紅葉 季節は秋など空間をうまくグループ化して認識している コンピュータでそれを行うのは非常に大変 4

5 例えば セ リーグ打撃ランキング OPS: On-base plus slugging 長打率 + 出塁率 RC27(Runs Created per 27 outs) は RC を元にある特定の選手 1 人で構成された打線で試合を行った場合 27 アウト (9 イニング 3 アウト =1 試合 ) で平均何点とれるかを算出した指標 XR27 (extrapolated Runs per 27 outs) ある打者が一人で打線を組んだ場合の1 試合 (27アウト) あたりの得点数 アウトにならない間にいかに得点数を稼ぐかという野球の形式が表されており アウト数で標準化されているので出場数の異なる複数の打者の得点創出能力を比較するような場合 XRの値そのままよりもこちらのほうが適切

6 例えば セ リーグ打撃ランキング 1) どの選手がどんな能力があって どんなタイプの選手か全要素を使って説明できるか? 2) 似た選手を探したり グループ分けできるか? 打撃成績 ( 規定打席以上 ) のデータは 24 サンプルで 18 要素に過ぎない 24x18 の画像と言ったら こちらは 8x6 画素 432 画素 48 万画素 無理やり画像にするとこのような画像に対応 人間にはさっぱりわからない コンピュータに空間に分けてもらう その後 人間が認識すればいい 1 倍以上の画素があるが 人間は内容が理解できる 青空 木 草地 傾斜 紅葉など 6

7 主成分分析 攻撃力が無い 長打力が無い 7

8 主成分分析 体重 w z2 z1 重い 軽い 身長 h 低い 高い 主成分 z1 軸 : 身長と体重がともに動く成分 体の大きさの軸 ( これでかなり説明できる ) 主成分 z2 軸 : z1 軸で説明しきれない成分を説明 肥満度の軸 8

9 主成分分析 体重 z2 z1 重い 軽い 情報損失量 身長 低い 高い 情報の損失を出来るだけ小さいまま データの持つ特徴を主成分で表す 例えば 主成分 2 の情報を無視して主成分 1 の情報だけにすれば肥満度の情報が失われる そこで 情報量損失を最小に抑えるような主成分のベクトルを決定していくのが主成分分析である このような主成分のベクトルは各々が直交する 9

10 主成分分析 多変数の場合も同様 主成分分析とは P 個の変数 の持つ情報を情報の損失を最小に抑えながら の一次結合として与えられる互いに独立な M(M<P) 個の主成分 すなわち 総合的指標 を用いて表現する手法である は 第 m 主成分と呼ばれる 結合係数これをどうやって求めるか? 1

11 主成分分析 第 m 主成分 結合係数これをどうやって求めるか? --- 条件 --- 第 1 主成分 z 1 の分散は分散の中で最大であること そして 第 m 主成分 z m の分散は 無相関な一次式の持つ分散の中で最大である のあらゆる一次式の持つ の全てと ただし とする 11

12 主成分分析 例えば 体重 z 1 = 身長 x.8+ 体重 x.6 この主成分の分散が最も大きいので第一主成分である 身長 12

13 主成分分析 主成分の導出 P 個の変数について N 個のサンプルがある場合を考える 主成分の分散が最大になるように主成分を決定する 各変数の平均値を として 平均値からの偏差を導入する 観測データ全体は以下の行列で表される 13

14 主成分分析 主成分の導出 観測データ全体は以下の行列で表される 第 1 主成分は その結合係数を とすると n 番目のサンプルに対応する第 1 主成分 z 1 の値 t n1 は これを第 1 主成分得点と呼ぶ 14

15 主成分分析 主成分の導出 これを第 1 主成分得点 これを N 個のサンプル分のベクトルとしてまとめると となる 一方 なので が成り立つ 1

16 主成分分析 主成分の導出 この第 1 主成分得点の平均値は ここで 第 1 主成分 z 1 の分散は なので 共分散行列で非負定値行列 Positive Definite 要素は 16

17 主成分分析 主成分の導出 第 1 主成分は分散を最大にするように決めなければならない Lagrange の未定定数法の登場 とおき これを最大化するような結合係数ベクトルを求めれば良い 17

18 主成分分析 主成分の導出 すなわち J1 を w1 で偏微分してそれを とおく 18

19 主成分分析 データの標準化 単位のことなる変数大きく分散の異なる変数 分散の大きな変数の影響を受けやすい 各変数の分散が 1 平均値が となるように標準化する 観測値 をそのまま使うのではなく 平均値 を使う 標準偏差 19

20 主成分分析 データの標準化 このようにして標準化を行った後に共分散行列は相関行列になる ここで 標準化されたデータの行列 2

21 主成分分析 寄与率と因子負荷量 寄与率 主成分分析とは : 少ない数の総合的指標 ( 主成分 ) を用いて変数間の関係や特徴を把握するための統計的手法 1. 各主成分が 元のデータに含まれる特徴をどの程度表現しているか? 2. 何個の主成分を採用すれば元のデータに含まれる特徴を十分に表現できるか? 寄与率 および累積寄与率 21

22 主成分分析 寄与率と因子負荷量 P 個の変数の分散の和は共分散行列を V とすれば V の主体対角要素すなわち (p,p) 要素である v pp が変数 x p の分散であるから 一方で 第 m 主成分の分散 は 共分散行列 V の m 番目に大きい 固有値 に等しいから も成り立つ 22

23 主成分分析 寄与率と因子負荷量 第 m 主成分の分散が分散の総和に占める割合を以下のように寄与率として定義する また 第 m 主成分までの分散の和が分散の総和に占める割合を累積寄与率と呼ぶ 23

24 主成分分析 寄与率と因子負荷量 主成分分析の結果の解釈 主成分 ( 総合的指標 ) の意味解釈 主成分とは 各変数の線形結合で与えられる 主成分に強く影響している変数を特定することが有効 主成分と変数との相関係数 : 因子負荷量 (factor loading) 24

25 主成分分析 寄与率と因子負荷量 第 m 主成分 z m と p 番目の変数 x p との間の因子負荷量は z m の標準偏差 x p の標準偏差 z m, x p の共分散 2

26 主成分分析 寄与率と因子負荷量 データのサンプル数を N とする ( 野球選手の人数に相当 ) は 第 p 列のみを取り出すベクトルである p 行目 26

27 主成分分析 寄与率と因子負荷量 一方 であるので (m 番目の主成分の分散は共分散行列 V の m 番目の固有値 ) 因子負荷量 で標準化されている場合は 27

28 狙い : 大型車の各 OD 交通量の空間的な独立性を把握する すなわち OD 交通量の場所ごとで独立に発生しているのか相関があるのかを調べる 実施事項 : 1) まず 各大型車 OD 交通量パターンの日交通量の多い順に Best を選定した ( 付録 ) 2) それらの空間域の独立性を見るために主成分分析を行った 3) 比較のために大型車の上位 OD での普通車の OD 交通量パターンについても主成分分析を実施した 21/7/8 28

29 各 OD 交通量の空間的な独立性について 21/7/8 29

30 阪神高速道路ネットワーク 3

31 ETC による上位 大型車 OD 交通量時系列データ 共分散行列 主成分分析 固有値固有ベクトル ETC による上位 大型車 OD 交通量と同一 OD の普通車 OD 交通量時系列データ 共分散行列 主成分分析 固有値固有ベクトル t は 29 年 4 月 13 日 ( 月 ) の 24 時間について積分 各 OD 交通量が場所ごとに独立性が高ければ 固有値分布は広がる 一方 独立性が低ければ ( 同時多発的であれば ) 固有値分布は狭まる 21/7/8 31

32 普通車空間域の共分散行列 大型車空間域の共分散行列 大型車 BEST OD で評価 21/7/8 32

33 OD 交通量の空間パターンとしての独立性比較 1.9 固有値の累積 普通車 普通車 大型車 大型車 9% タイル 11 次元 9% タイル 16 次元 普通車 9% タイル 2 次元 9% タイル 4 次元 大型車 結論 : 大型車のOD 交通量の空間的な独立性 ( 多様性 ) は普通車に比べ格段に大きい 21/7/

34 : 1:3 3: 4:3 6: 7:3 9: 1:3 12: 13:3 1: 16:3 18: 19:3 21: 22:3 : 1:3 3: 4:3 6: 7:3 9: 1:3 12: 13:3 1: 16:3 18: 19:3 21: 22:3 : 1:3 3: 4:3 6: 7:3 9: 1:3 12: 13:3 1: 16:3 18: 19:3 21: 22:3 : 1:3 3: 4:3 6: 7:3 9: 1:3 12: 13:3 1: 16:3 18: 19:3 21: 22:3 大型車と普通車の独立性の相違 OD1 位安治川 ( 本線 ) 入 北津守出口大型車 似ていない OD7 位須磨合併 西宮 JCT 出大型車 普通車 類似 普通車 21/7/8 34

35 .6.4 参考 : 空間的主成分 (1-4) EIG1 寄与 6.6% EIG2 寄与.1% (7.7%) EIG3 寄与 4.7% (7.4%) EIG4 寄与 3.% (78.8%) /7/8 3

36 参考 : 空間的主成分 (-8) EIG 寄与 2.9% (81.8%) EIG6 寄与 1.9% (83.7%) EIG7 寄与 1.8% (8.%) EIG8 寄与 1.8% (87.%) /7/8 36

37 参考 : 重み ( 各主成分の寄与率 ) の時間変化 st 2nd 3rd 4th th 6th 7th 8th /7/8 37

38 OD 交通量の時間域の独立性について 地域内利用交通 内々 内外交通等で特徴的な相違が現れるか? 21/7/8 38

39 : 8: 16: : 8: 16: : 8: 16: : 8: 16: : 8: 16: : 8: 16: : 8: 16: : 8: 16: : 8: 16: : 8: 16: : 8: 16: : 8: 16: 第 1 位 O 48 D 第 2 位 O 272 D 486 第 3 位 O 72 D 狙い : OD 交通量は典型的なパターンあるいは それらの重ね合わせで表現できると考える この性質があるかを確認する 第 4 位 O 86 D 第 位 O 86 D 第 6 位 O 49 D 地域内利用型通過利用型等 時刻 この場合の共分散行列は 時刻 第 7 位 O 72 D 8 第 8 位 O 831 D 82 第 9 位 O 72 D i 全 OD 第 1 位 O 72 D 81 第 11 位 O 7 D 832 第 12 位 O 713 D w(i,j)= OD(i,t) Ψ(j,t)} t ODE(i,t) = {w(i,j)ψ(j,t)} +m(i) j 21/7/8 39

40 実施事項 各大型車 OD 交通量パターンの日交通量の多い順に Best を選定した それらの時間域の独立性を見るために下記主成分分析を行った また 比較のために大型車の上位 OD での普通車の OD 交通量パターンについても主成分分析を実施した ETC による上位 大型車 OD 交通量時系列データ 共分散行列 主成分分析 (KL 展開 ) 固有値固有ベクトル ETC による上位 大型車 OD 交通量と同一 OD の普通車 OD 交通量時系列データ 共分散行列 主成分分析 (KL 展開 ) 固有値固有ベクトル この場合の共分散行列は 21/7/8 4

41 普通車時間域の共分散行列 大型車時間域の共分散行列 大型車 BEST OD で評価 重み : 近似式 : w(i,j)= OD(i,t) Ψ(j,t)} t ODE(i,t) = {w(i,j)ψ(j,t)} +m(i) j 21/7/8 41

42 OD 交通量の時系列パターンとしての独立性比較 1 固有値の累積 6 固有値の分布 大型車 大型車 普通車 大型車 9% タイル 7 次元 9% タイル 1 次元 普通車 9% タイル 2 次元 9% タイル 4 次元 結論 : 大型車の OD 交通量の時間的変化は普通車に比べ場所による多様性が格段に大きい 普通車 /7/8 42

43 時間域の主成分 (1-1). EUG1 6.6%. EIG6 1.9%(83.7%) EIG2.2%(7.7%). EIG7 1.8%(8.%) EIG3 4.7%(7.4%) 1 EIG8 1.8%(87.3%) EIG4 3.%(79.%). EIG9 1.4%(88.7%) EIG 2.9%(81.8%). EIG1 1.3%(9.%) /7/8 43

44 : 1:3 3: 4:3 6: 7:3 9: 1:3 12: 13:3 1: 16:3 18: 19:3 21: 22:3 : 1:3 3: 4:3 6: 7:3 9: 1:3 12: 13:3 1: 16:3 18: 19:3 21: 22:3 : 1:3 3: 4:3 6: 7:3 9: 1:3 12: 13:3 1: 16:3 18: 19:3 21: 22:3 : 1:3 3: 4:3 6: 7:3 9: 1:3 12: 13:3 1: 16:3 18: 19:3 21: 22:3 第 1 位 O 48 D 主成分の重み 第 2 位 O 272 D 第 3 位 O 72 D 第 4 位 O 86 D /7/8 44-3

45 : 1:3 3: 4:3 6: 7:3 9: 1:3 12: 13:3 1: 16:3 18: 19:3 21: 22:3 : 1:3 3: 4:3 6: 7:3 9: 1:3 12: 13:3 1: 16:3 18: 19:3 21: 22:3 : 1:3 3: 4:3 6: 7:3 9: 1:3 12: 13:3 1: 16:3 18: 19:3 21: 22:3 : 1:3 3: 4:3 6: 7:3 9: 1:3 12: 13:3 1: 16:3 18: 19:3 21: 22:3 第 位 O 86 D 第 6 位 O 49 D 第 7 位 O 72 D 第 8 位 O 831 D 主成分の重み /7/8 4

46 : 1: 2: 3: 4: : 6: 7: 8: 9: 1: 11: 12: 13: 14: 1: 16: 17: 18: 19: 2: 21: 22: 23: 参考 : 時間域の主成分の寄与の様子 OD 第 1 位近似主成分 3 次までで近似した例安治川 ( 本線 ) 入 北津守出口 実測 1 次まで 3 次まで OD 第 7 位主成分 次までで近似した例須磨合併 西宮 JCT 出 実測 次まで 21/7/8 46

47 OD 交通量の分類 狙い : 物流の形態の違いが OD 交通量パターンの相違に現れているとすると仮定し クラスタリングを検討する 実施事項 : 寄与率 7.7% を占める主成分 1 と主成分 2 までののスコアからクラスタリングする方法を検討した ( 現状目視で判断 ) 結論 : 交通量の多い内々交通が分離できる (2 OD) 内外交通が分離できそうである ( OD) 交通量の少ないその他 (43 OD) 課題残る 43OD の特徴付け 分離 21/7/8 47

48 : 2:3 : 7:3 1: 12:3 1: 17:3 2: 22:3 : 2:3 : 7:3 1: 12:3 1: 17:3 2: 22:3 : 2:3 : 7:3 1: 12:3 1: 17:3 2: 22:3 : 2:3 : 7:3 1: 12:3 1: 17:3 2: 22:3 : 2:3 : 7:3 1: 12:3 1: 17:3 2: 22:3 : 2:3 : 7:3 1: 12:3 1: 17:3 2: 22:3 : 2:3 : 7:3 1: 12:3 1: 17:3 2: 22:3 時間域主成分 1,2( 寄与率 7.7%) で比較 クラスタ A 内 内 生活時間帯型 3 2 OD7 OD39 OD3 クラスタB OD OD12 OD1 安治川 ( 本線 ) 入 北津守出口 OD2 北津守入口 安治川 ( 本線 ) 出 主成分 2 1 クラスタ C クラスタ B 内 ( 外 ) 外 9 時頃若干ピーク 夜間ピーク型 -1-2 OD2 クラスタ A OD1 OD 摩耶西行 神戸線 ( 本線 ) 出 OD7 須磨合併 西宮 JCT 出 主成分 1 EUG1 6.6% EIG2.2%(7.7%).. OD12 京橋西行 神戸線 ( 本線 ) 出 OD3 南港北 神戸線 ( 本線 ) 出 OD39 玉出入 豊中南北行名神出 /7/8 48

49 クラスタリング クラスタリング (clustering) クラスタ解析 (cluster analysis) は データ解析手法の 1 つ 教師なしデータ分類手法 つまり与えられたデータを外的基準なしに自動的に分類する手法 また そのアルゴリズム さまざまな手法が提案されているが 大きく分けるとデータの分類が階層的になされる階層型手法と 特定のクラスタ数に分類する非階層的手法とがある それぞれの代表的な手法としてウォード法 (Ward's method) K 平均法 (K-means) などがある 21/7/8 49

50 K 平均法 非階層型のクラスタリング ( データが非常に多い時など ) K 平均法 (K へいきんほう ) は MacQueen Anderberg Forgy らにより提案された非階層型クラスタリング手法の 1 つ クラスタの平均を用い 与えられたクラスタ数 K 個に分類することから MacQueen によりこう呼ばれた K- 平均法 (K-means) c- 平均法 (c-means) とも呼ばれる 単純なアルゴリズムで計算することができるため 現在広く用いられている 分類をファジィ化したファジィ c- 平均法やエントロピー法をはじめ データ構造を発見するさまざまな応用手法が提案されている K- 平均法は 一般には以下のような流れで実装される データの数を n クラスタの数を K としておく 1. 各データに対してランダムにクラスタを割り振る 2. 割り振ったデータをもとに各クラスタの中心を計算する 計算は通常割り当てられたデータの各要素の平均が使用される 3. 各 x i と各 V j との距離を求め x i を最も近い中心のクラスタに割り当て直す 4. 上記の処理で全ての x i のクラスタの割り当てが変化しなかった場合は処理を終了する それ以外の場合は新しく割り振られたクラスタから V j を再計算して上記の処理を繰り返す 結果は 最初のクラスタのラダムな割り振りに大きく依存することが知られており 1 回の結果で最良のものが得られるとは限らない 21/7/8

51 K- 平均法は 一般には以下のような流れで実装される データの数を n クラスタの数を K としておく 1. 各データに対してランダムにクラスタを割り振る 2. 割り振ったデータをもとに各クラスタの中心を計算する 計算は通常割り当てられたデータの各要素の平均が使用される 3. 各 x i と各 V j との距離を求め x i を最も近い中心のクラスタに割り当て直す 4. 上記の処理で全ての x i のクラスタの割り当てが変化しなかった場合は処理を終了する それ以外の場合は新しく割り振られたクラスタから V j を再計算して上記の処理を繰り返す 結果は 最初のクラスタのラダムな割り振りに大きく依存することが知られており 1 回の結果で最良のものが得られるとは限らない 21/7/8 1

52 (1) クラスタ初期割り当て (4) 重心計算 (2) 重心計算 () クラスタ再割り当て (3) クラスタ再割り当て 収束 K 平均法のイメージ 21/7/8 2

53 K 平均法によって主成分分析結果をクラスター分析した 4 つのクラスターとした 第 1, 第 2 主成分上の散布図 第 1, 第 3 主成分上の散布図 /7/8 3

54 K 平均法によるクラスター分析結果 OD 順位 反復計算 6 階で収束 繰り返し回数 /7/8 4

55 : 2: 4: 6: 8: 1: 12: 14: 16: 18: 2: 22: : 2: 4: 6: 8: 1: 12: 14: 16: 18: 2: 22: クラスター 1,2 輸送量大 かつ 日中行動型 第 1 位 O 48 D 第 2 位 O 272 D /7/8

56 : 3: 6: 9: 12: 1: 18: 21: : 3: 6: 9: 12: 1: 18: 21: : 3: 6: 9: 12: 1: 18: 21: : 3: 6: 9: 12: 1: 18: 21: : 3: 6: 9: 12: 1: 18: 21: : 3: 6: 9: 12: 1: 18: 21: : 3: 6: 9: 12: 1: 18: 21: : 3: 6: 9: 12: 1: 18: 21: : 3: 6: 9: 12: 1: 18: 21: : 3: 6: 9: 12: 1: 18: 21: : 3: 6: 9: 12: 1: 18: 21: : 3: 6: 9: 12: 1: 18: 21: : 3: 6: 9: 12: 1: 18: 21: : 3: 6: 9: 12: 1: 18: 21: : 3: 6: 9: 12: 1: 18: 21: : 3: 6: 9: 12: 1: 18: 21: : 3: 6: 9: 12: 1: 18: 21: : 3: 6: 9: 12: 1: 18: 21: : 3: 6: 9: 12: 1: 18: 21: : 3: 6: 9: 12: 1: 18: 21: : 3: 6: 9: 12: 1: 18: 21: クラスター 1 終日行動型 6,7,9,1,16,18,19,23,2,26,27,29,3,36,38,39,4,44,46,48, 第 6 位 O 49 D 第 7 位 O 72 D 第 9 位 O 72 D 46 第 1 位 O 84 D 822 第 16 位 O 72 D 第 18 位 O 63 D 第 19 位 O 22 D 第 23 位 O 72 D 第 2 位 O 77 D 822 第 26 位 O 711 D 第 27 位 O 84 D 第 29 位 O 7 D 838 第 3 位 O 12 D 第 36 位 O 72 D 第 38 位 O 78 D 第 39 位 O 2 D 373 第 4 位 O 136 D 614 第 44 位 O 648 D 633 第 46 位 O 63 D 44 第 48 位 O 712 D 第 位 O 22 D 44 1

57 クラスター 3 終日行動型 3,4,8,17,22,24,28,31,33,37,41,42,43,4,47,49 : 2:3 : 7:3 1: 12:3 1: 17:3 2: 22:3 : 2:3 : 7:3 1: 12:3 1: 17:3 2: 22:3 : 2:3 : 7:3 1: 12:3 1: 17:3 2: 22:3 : 2:3 : 7:3 1: 12:3 1: 17:3 2: 22:3 : 2:3 : 7:3 1: 12:3 1: 17:3 2: 22:3 : 2:3 : 7:3 1: 12:3 1: 17:3 2: 22:3 : 2:3 : 7:3 1: 12:3 1: 17:3 2: 22:3 : 2:3 : 7:3 1: 12:3 1: 17:3 2: 22:3 : 2:3 : 7:3 1: 12:3 1: 17:3 2: 22:3 : 2:3 : 7:3 1: 12:3 1: 17:3 2: 22:3 : 2:3 : 7:3 1: 12:3 1: 17:3 2: 22:3 : 2:3 : 7:3 1: 12:3 1: 17:3 2: 22:3 : 2:3 : 7:3 1: 12:3 1: 17:3 2: 22:3 : 2:3 : 7:3 1: 12:3 1: 17:3 2: 22:3 : 2:3 : 7:3 1: 12:3 1: 17:3 2: 22:3 : 2:3 : 7:3 1: 12:3 1: 17:3 2: 22:3 第 3 位 O 72 D 87 3 第 4 位 O 86 D 第 8 位 O 831 D 82 6 第 17 位 O 72 D 第 22 位 O 72 D 636 第 24 位 O 12 D 44 第 28 位 O 43 D 614 第 31 位 O 16 D 第 33 位 O 79 D 第 37 位 O 63 D 第 41 位 O 16 D 44 第 42 位 O 43D 第 43 位 O 12 D 63 2 第 4 位 O 13 D 636 第 47 位 O 82 D /7/8 7 2 第 49 位 O 4 D 67 2

58 各 OD 交通量の料金体系との関係について ( 検討中 ) 21/7/8 8

59 付録大型車 OD 交通量上位 21/7/8 9

60 : 2: 4: 6: 8: 1: 12: 14: 16: 18: 2: 22: : 2: 4: 6: 8: 1: 12: 14: 16: 18: 2: 22: : 2: 4: 6: 8: 1: 12: 14: 16: 18: 2: 22: : 2: 4: 6: 8: 1: 12: 14: 16: 18: 2: 22: : 2: 4: 6: 8: 1: 12: 14: 16: 18: 2: 22: : 2: 4: 6: 8: 1: 12: 14: 16: 18: 2: 22: : 2: 4: 6: 8: 1: 12: 14: 16: 18: 2: 22: : 2: 4: 6: 8: 1: 12: 14: 16: 18: 2: 22: : 2: 4: 6: 8: 1: 12: 14: 16: 18: 2: 22: : 2: 4: 6: 8: 1: 12: 14: 16: 18: 2: 22: : 2: 4: 6: 8: 1: 12: 14: 16: 18: 2: 22: : 2: 4: 6: 8: 1: 12: 14: 16: 18: 2: 22: 大型車上位 OD (1-12) 第 1 位 O 48 D 271 第 2 位 O 272 D 486 第 3 位 O 72 D 第 4 位 O 86 D 822 第 位 O 86 D 第 6 位 O 49 D 第 7 位 O 72 D 第 8 位 O 831 D 第 9 位 O 72 D 第 1 位 O 72 D 81 第 11 位 O 7 D 832 第 12 位 O 713 D /7/8 6

61 : 2: 4: 6: 8: 1: 12: 14: 16: 18: 2: 22: : 2: 4: 6: 8: 1: 12: 14: 16: 18: 2: 22: : 2: 4: 6: 8: 1: 12: 14: 16: 18: 2: 22: : 2: 4: 6: 8: 1: 12: 14: 16: 18: 2: 22: : 2: 4: 6: 8: 1: 12: 14: 16: 18: 2: 22: : 2: 4: 6: 8: 1: 12: 14: 16: 18: 2: 22: : 2: 4: 6: 8: 1: 12: 14: 16: 18: 2: 22: : 2: 4: 6: 8: 1: 12: 14: 16: 18: 2: 22: : 2: 4: 6: 8: 1: 12: 14: 16: 18: 2: 22: : 2: 4: 6: 8: 1: 12: 14: 16: 18: 2: 22: : 2: 4: 6: 8: 1: 12: 14: 16: 18: 2: 22: : 2: 4: 6: 8: 1: 12: 14: 16: 18: 2: 22: 大型車上位 OD (13-24) 第 13 位 O 72 D 811 第 14 位 O 48 D 273 第 1 位 O 84 D 第 16 位 O 72 D 822 第 17 位 O 72 D 73 第 18 位 O 63 D 第 19 位 O 22 D 822 第 2 位 O 274 D 486 第 21 位 O 43 D 第 22 位 O 72 D 636 第 23 位 O 72 D 614 第 24 位 O 12 D /7/8 61

62 : 2: 4: 6: 8: 1: 12: 14: 16: 18: 2: 22: : 2: 4: 6: 8: 1: 12: 14: 16: 18: 2: 22: : 2: 4: 6: 8: 1: 12: 14: 16: 18: 2: 22: : 2: 4: 6: 8: 1: 12: 14: 16: 18: 2: 22: : 2: 4: 6: 8: 1: 12: 14: 16: 18: 2: 22: : 2: 4: 6: 8: 1: 12: 14: 16: 18: 2: 22: : 2: 4: 6: 8: 1: 12: 14: 16: 18: 2: 22: : 2: 4: 6: 8: 1: 12: 14: 16: 18: 2: 22: : 2: 4: 6: 8: 1: 12: 14: 16: 18: 2: 22: : 2: 4: 6: 8: 1: 12: 14: 16: 18: 2: 22: : 2: 4: 6: 8: 1: 12: 14: 16: 18: 2: 22: : 2: 4: 6: 8: 1: 12: 14: 16: 18: 2: 22: 大型車上位 OD (2-36) 第 2 位 O 77 D 822 第 26 位 O 711 D 822 第 27 位 O 84 D 第 28 位 O 43 D 614 第 29 位 O 7 D 838 第 3 位 O 12 D 第 31 位 O 16 D 822 第 32 位 O 777 D 612 第 33 位 O 79 D 第 34 位 O 862 D 761 第 3 位 O 12 D 877 第 36 位 O 72 D /7/8 62

63 : 2: 4: 6: 8: 1: 12: 14: 16: 18: 2: 22: : 2: 4: 6: 8: 1: 12: 14: 16: 18: 2: 22: : 2: 4: 6: 8: 1: 12: 14: 16: 18: 2: 22: : 2: 4: 6: 8: 1: 12: 14: 16: 18: 2: 22: : 2: 4: 6: 8: 1: 12: 14: 16: 18: 2: 22: : 2: 4: 6: 8: 1: 12: 14: 16: 18: 2: 22: : 2: 4: 6: 8: 1: 12: 14: 16: 18: 2: 22: : 2: 4: 6: 8: 1: 12: 14: 16: 18: 2: 22: : 2: 4: 6: 8: 1: 12: 14: 16: 18: 2: 22: : 2: 4: 6: 8: 1: 12: 14: 16: 18: 2: 22: : 2: 4: 6: 8: 1: 12: 14: 16: 18: 2: 22: : 2: 4: 6: 8: 1: 12: 14: 16: 18: 2: 22: 大型車上位 OD (37-48) 第 37 位 O 63 D 61 第 38 位 O 78 D 8 第 39 位 O 2 D 第 4 位 O 136 D 614 第 41 位 O 16 D 44 第 42 位 O 43D 第 43 位 O 12 D 63 第 44 位 O 648 D 633 第 4 位 O 13 D 第 46 位 O 63 D 44 第 47 位 O 82 D 46 第 48 位 O 712 D /7/8 63

64 : 2: 4: 6: 8: 1: 12: 14: 16: 18: 2: 22: : 2: 4: 6: 8: 1: 12: 14: 16: 18: 2: 22: 大型車上位 OD (49-) 第 49 位 O 4 D 67 第 位 O 22 D /7/8 64

65 ところで 交通の状況はどの程度予測可能か? 交通需要は人間の経済活動 生活に密接 かなりの再現性がある 主成分分析 (KL 展開 ) してみると 次元程度しかないことがわかる 21/7/8 6

66 次元の基底成分の 1 年間の変化 21/7/8 66

67 情報を圧縮した統計交通予測技術はカーナビで実用化されている 21/7/8 67

スライド 1

スライド 1 データ解析特論第 5 回 ( 全 15 回 ) 2012 年 10 月 30 日 ( 火 ) 情報エレクトロニクス専攻横田孝義 1 をもっとやります 2 第 2 回 3 データマイニングの分野ではマクロ ( 巨視的 ) な視点で全体を捉える能力が求められる 1. コンピュータは数値の集合として全体を把握していますので 意味ある情報として全体を見ることが不得意 2. 逆に人間には もともと空間的に全体像を捉える能力が得意

More information

スライド 1

スライド 1 データ解析特論参考資料 都市高速道路の交通量の分析の例 平成 27 年 6 月 22 日 ( 木 ) 横田孝義 217/6/22 1 217/6/22 道路交通システム ( シティーロジスティクスの一部 ) で PDCA サイクルを回すにはどうしたら良いか? 道路交通状況を Check( センシング ) したいが 路側センサー 情報が不足 ( 一般道の情報が少ない ) 情報が不正確 ( 特に一般道

More information

スライド 1

スライド 1 データ解析特論第 1 回 ~( 全 15 回 ) 2014 年 4 月 10 日 ( 木 ) 情報エレクトロニクス専攻横田孝義 1 を先に集中してやります 2 を勉強します 3 データマイニングの分野ではマクロ ( 巨視的 ) な視点で全体を捉える能力が求められる 1. コンピュータは数値の集合として全体を把握していますので 意味ある情報として全体を見ることが不得意 2. 逆に人間には もともと空間的に全体像を捉える能力が得意

More information

Microsoft PowerPoint - 統計科学研究所_R_主成分分析.ppt

Microsoft PowerPoint - 統計科学研究所_R_主成分分析.ppt 主成分分析 1 内容 主成分分析 主成分分析について 成績データの解析 R で主成分分析 相関行列による主成分分析 寄与率 累積寄与率 因子負荷量 主成分得点 2 主成分分析 3 次元の縮小と主成分分析 主成分分析 次元の縮小に関する手法 次元の縮小 国語 数学 理科 社会 英語の総合点 5 次元データから1 次元データへの縮約 体形評価 : BMI (Body Mass Index) 判定肥満度の判定方法の1つで

More information

Microsoft PowerPoint - H17-5時限(パターン認識).ppt

Microsoft PowerPoint - H17-5時限(パターン認識).ppt パターン認識早稲田大学講義 平成 7 年度 独 産業技術総合研究所栗田多喜夫 赤穂昭太郎 統計的特徴抽出 パターン認識過程 特徴抽出 認識対象から何らかの特徴量を計測 抽出 する必要がある 認識に有効な情報 特徴 を抽出し 次元を縮小した効率の良い空間を構成する過程 文字認識 : スキャナ等で取り込んだ画像から文字の識別に必要な本質的な特徴のみを抽出 例 文字線の傾き 曲率 面積など 識別 与えられた未知の対象を

More information

0 部分的最小二乗回帰 Partial Least Squares Regression PLS 明治大学理 学部応用化学科 データ化学 学研究室 弘昌

0 部分的最小二乗回帰 Partial Least Squares Regression PLS 明治大学理 学部応用化学科 データ化学 学研究室 弘昌 0 部分的最小二乗回帰 Parial Leas Squares Regressio PLS 明治大学理 学部応用化学科 データ化学 学研究室 弘昌 部分的最小二乗回帰 (PLS) とは? 部分的最小二乗回帰 (Parial Leas Squares Regressio, PLS) 線形の回帰分析手法の つ 説明変数 ( 記述 ) の数がサンプルの数より多くても計算可能 回帰式を作るときにノイズの影響を受けにくい

More information

<4D F736F F D20985F95B D88C7689E68F4889A C8E FA8CBB8DDD>

<4D F736F F D20985F95B D88C7689E68F4889A C8E FA8CBB8DDD> 阪神高速道路の大型車交通のランプ間 OD の空間 時間的性質性質に関する研究 * The spatio-temporal characteristics of large vehicle OD traffic volumes on Hanshin Expressway* 横田孝義 ** 玉川大 *** 谷口栄一 **** 河本一郎 ***** By Takayoshi YOKOTA** Dai TAMAGAWA***

More information

スライド 1

スライド 1 データ解析特論重回帰分析編 2017 年 7 月 10 日 ( 月 )~ 情報エレクトロニクスコース横田孝義 1 ( 単 ) 回帰分析 単回帰分析では一つの従属変数 ( 目的変数 ) を 一つの独立変数 ( 説明変数 ) で予測する事を考える 具体的には y = a + bx という回帰直線 ( モデル ) でデータを代表させる このためにデータからこの回帰直線の切片 (a) と傾き (b) を最小

More information

主成分分析 -因子分析との比較-

主成分分析 -因子分析との比較- 主成分分析 - 因子分析との比較 - 2013.7.10. 心理データ解析演習 M1 枡田恵 主成分分析とは 主成分分析は 多変量データに共通な成分を探って 一種の合成変数 ( 主成分 ) を作り出すもの * 主成分はデータを新しい視点でみるための新しい軸 主成分分析の目的 : 情報を縮約すること ( データを合成変数 ( 主成分 ) に総合化 ) 因子分析の目的 : 共通因子を見つけること ( データを潜在因子に分解

More information

memo

memo 数理情報工学特論第一 機械学習とデータマイニング 4 章 : 教師なし学習 3 かしまひさし 鹿島久嗣 ( 数理 6 研 ) kashima@mist.i.~ DEPARTMENT OF MATHEMATICAL INFORMATICS 1 グラフィカルモデルについて学びます グラフィカルモデル グラフィカルラッソ グラフィカルラッソの推定アルゴリズム 2 グラフィカルモデル 3 教師なし学習の主要タスクは

More information

Microsoft PowerPoint - 資料04 重回帰分析.ppt

Microsoft PowerPoint - 資料04 重回帰分析.ppt 04. 重回帰分析 京都大学 加納学 Division of Process Control & Process Sstems Engineering Department of Chemical Engineering, Koto Universit manabu@cheme.koto-u.ac.jp http://www-pse.cheme.koto-u.ac.jp/~kano/ Outline

More information

Probit , Mixed logit

Probit , Mixed logit Probit, Mixed logit 2016/5/16 スタートアップゼミ #5 B4 後藤祥孝 1 0. 目次 Probit モデルについて 1. モデル概要 2. 定式化と理解 3. 推定 Mixed logit モデルについて 4. モデル概要 5. 定式化と理解 6. 推定 2 1.Probit 概要 プロビットモデルとは. 効用関数の誤差項に多変量正規分布を仮定したもの. 誤差項には様々な要因が存在するため,

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション 復習 ) 時系列のモデリング ~a. 離散時間モデル ~ y k + a 1 z 1 y k + + a na z n ay k = b 0 u k + b 1 z 1 u k + + b nb z n bu k y k = G z 1 u k = B(z 1 ) A(z 1 u k ) ARMA モデル A z 1 B z 1 = 1 + a 1 z 1 + + a na z n a = b 0

More information

スライド 1

スライド 1 データ解析特論第 10 回 ( 全 15 回 ) 2012 年 12 月 11 日 ( 火 ) 情報エレクトロニクス専攻横田孝義 1 終了 11/13 11/20 重回帰分析をしばらくやります 12/4 12/11 12/18 2 前回から回帰分析について学習しています 3 ( 単 ) 回帰分析 単回帰分析では一つの従属変数 ( 目的変数 ) を 一つの独立変数 ( 説明変数 ) で予測する事を考える

More information

Microsoft PowerPoint - 10.pptx

Microsoft PowerPoint - 10.pptx m u. 固有値とその応用 8/7/( 水 ). 固有値とその応用 固有値と固有ベクトル 行列による写像から固有ベクトルへ m m 行列 によって線形写像 f : R R が表せることを見てきた ここでは 次元平面の行列による写像を調べる とし 写像 f : を考える R R まず 単位ベクトルの像 u y y f : R R u u, u この事から 線形写像の性質を用いると 次の格子上の点全ての写像先が求まる

More information

多変量解析 ~ 重回帰分析 ~ 2006 年 4 月 21 日 ( 金 ) 南慶典

多変量解析 ~ 重回帰分析 ~ 2006 年 4 月 21 日 ( 金 ) 南慶典 多変量解析 ~ 重回帰分析 ~ 2006 年 4 月 21 日 ( 金 ) 南慶典 重回帰分析とは? 重回帰分析とは複数の説明変数から目的変数との関係性を予測 評価説明変数 ( 数量データ ) は目的変数を説明するのに有効であるか得られた関係性より未知のデータの妥当性を判断する これを重回帰分析という つまり どんなことをするのか? 1 最小 2 乗法により重回帰モデルを想定 2 自由度調整済寄与率を求め

More information

景気指標の新しい動向

景気指標の新しい動向 内閣府経済社会総合研究所 経済分析 22 年第 166 号 4 時系列因子分析モデル 4.1 時系列因子分析モデル (Stock-Watson モデル の理論的解説 4.1.1 景気循環の状態空間表現 Stock and Watson (1989,1991 は観測される景気指標を状態空間表現と呼ば れるモデルで表し, 景気の状態を示す指標を開発した. 状態空間表現とは, わ れわれの目に見える実際に観測される変数は,

More information

Microsoft Word - 補論3.2

Microsoft Word - 補論3.2 補論 3. 多変量 GARC モデル 07//6 新谷元嗣 藪友良 対数尤度関数 3 章 7 節では 変量の対数尤度を求めた ここでは多変量の場合 とくに 変量について対数尤度を求める 誤差項 は平均 0 で 次元の正規分布に従うとする 単純化のため 分散と共分散は時間を通じて一定としよう ( この仮定は後で変更される ) したがって ij から添え字 を除くことができる このとき と の尤度関数は

More information

13章 回帰分析

13章 回帰分析 単回帰分析 つ以上の変数についての関係を見る つの 目的 被説明 変数を その他の 説明 変数を使って 予測しようというものである 因果関係とは限らない ここで勉強すること 最小 乗法と回帰直線 決定係数とは何か? 最小 乗法と回帰直線 これまで 変数の間の関係の深さについて考えてきた 相関係数 ここでは 変数に役割を与え 一方の 説明 変数を用いて他方の 目的 被説明 変数を説明することを考える

More information

PowerPoint Presentation

PowerPoint Presentation 付録 2 2 次元アフィン変換 直交変換 たたみ込み 1.2 次元のアフィン変換 座標 (x,y ) を (x,y) に移すことを 2 次元での変換. 特に, 変換が と書けるとき, アフィン変換, アフィン変換は, その 1 次の項による変換 と 0 次の項による変換 アフィン変換 0 次の項は平行移動 1 次の項は座標 (x, y ) をベクトルと考えて とすれば このようなもの 2 次元ベクトルの線形写像

More information

因子分析

因子分析 因子分析 心理データ解析演習 M1 枡田恵 2013.6.5. 1 因子分析とは 因子分析とは ある観測された変数 ( 質問項目への回答など ) が どのような潜在的な変数 ( 観測されない 仮定された変数 ) から影響を受けているかを探る手法 多変量解析の手法の一つ 複数の変数の関係性をもとにした構造を探る際によく用いられる 2 因子分析とは 探索的因子分析 - 多くの観測変数間に見られる複雑な相関関係が

More information

09.pptx

09.pptx 講義内容 数値解析 第 9 回 5 年 6 月 7 日 水 理学部物理学科情報理学コース. 非線形方程式の数値解法. はじめに. 分法. 補間法.4 ニュートン法.4. 多変数問題への応用.4. ニュートン法の収束性. 連立 次方程式の解法. 序論と行列計算の基礎. ガウスの消去法. 重対角行列の場合の解法項目を変更しました.4 LU 分解法.5 特異値分解法.6 共役勾配法.7 反復法.7. ヤコビ法.7.

More information

1. 多変量解析の基本的な概念 1. 多変量解析の基本的な概念 1.1 多変量解析の目的 人間のデータは多変量データが多いので多変量解析が有用 特性概括評価特性概括評価 症 例 主 治 医 の 主 観 症 例 主 治 医 の 主 観 単変量解析 客観的規準のある要約多変量解析 要約値 客観的規準のな

1. 多変量解析の基本的な概念 1. 多変量解析の基本的な概念 1.1 多変量解析の目的 人間のデータは多変量データが多いので多変量解析が有用 特性概括評価特性概括評価 症 例 主 治 医 の 主 観 症 例 主 治 医 の 主 観 単変量解析 客観的規準のある要約多変量解析 要約値 客観的規準のな 1.1 多変量解析の目的 人間のデータは多変量データが多いので多変量解析が有用 特性概括評価特性概括評価 症 例 治 医 の 観 症 例 治 医 の 観 単変量解析 客観的規準のある要約多変量解析 要約値 客観的規準のない要約知識 直感 知識 直感 総合的評価 考察 総合的評価 考察 単変量解析の場合 多変量解析の場合 < 表 1.1 脂質異常症患者の TC と TG と重症度 > 症例 No. TC

More information

untitled

untitled KLT はエネルギを集約する カルーネンレーベ変換 (KLT) で 情報を集約する 要点 分散 7. 9. 8.3 3.7 4.5 4.0 KLT 前 集約 分散 0.3 0.4 4.5 7.4 3.4 00.7 KLT 後 分散 = エネルギ密度 エネルギ と表現 最大を 55, 最小を 0 に正規化して表示した 情報圧縮に応用できないか? エネルギ集約 データ圧縮 分散 ( 平均 ) KLT 前

More information

14 化学実験法 II( 吉村 ( 洋 mmol/l の半分だったから さんの測定値は くんの測定値の 4 倍の重みがあり 推定値 としては 0.68 mmol/l その標準偏差は mmol/l 程度ということになる 測定値を 特徴づけるパラメータ t を推定するこの手

14 化学実験法 II( 吉村 ( 洋 mmol/l の半分だったから さんの測定値は くんの測定値の 4 倍の重みがあり 推定値 としては 0.68 mmol/l その標準偏差は mmol/l 程度ということになる 測定値を 特徴づけるパラメータ t を推定するこの手 14 化学実験法 II( 吉村 ( 洋 014.6.1. 最小 乗法のはなし 014.6.1. 内容 最小 乗法のはなし...1 最小 乗法の考え方...1 最小 乗法によるパラメータの決定... パラメータの信頼区間...3 重みの異なるデータの取扱い...4 相関係数 決定係数 ( 最小 乗法を語るもう一つの立場...5 実験条件の誤差の影響...5 問題...6 最小 乗法の考え方 飲料水中のカルシウム濃度を

More information

Microsoft Word - thesis.doc

Microsoft Word - thesis.doc 剛体の基礎理論 -. 剛体の基礎理論初めに本論文で大域的に使用する記号を定義する. 使用する記号トルク撃力力角運動量角速度姿勢対角化された慣性テンソル慣性テンソル運動量速度位置質量時間 J W f F P p .. 質点の並進運動 質点は位置 と速度 P を用いる. ニュートンの運動方程式 という状態を持つ. 但し ここでは速度ではなく運動量 F P F.... より質点の運動は既に明らかであり 質点の状態ベクトル

More information

Microsoft PowerPoint - H21生物計算化学2.ppt

Microsoft PowerPoint - H21生物計算化学2.ppt 演算子の行列表現 > L いま 次元ベクトル空間の基底をケットと書くことにする この基底は完全系を成すとすると 空間内の任意のケットベクトルは > > > これより 一度基底を与えてしまえば 任意のベクトルはその基底についての成分で完全に記述することができる これらの成分を列行列の形に書くと M これをベクトル の基底 { >} による行列表現という ところで 行列 A の共役 dont 行列は A

More information

Microsoft PowerPoint - mp11-02.pptx

Microsoft PowerPoint - mp11-02.pptx 数理計画法第 2 回 塩浦昭義情報科学研究科准教授 shioura@dais.is.tohoku.ac.jp http://www.dais.is.tohoku.ac.jp/~shioura/teaching 前回の復習 数理計画とは? 数理計画 ( 復習 ) 数理計画問題とは? 狭義には : 数理 ( 数学 ) を使って計画を立てるための問題 広義には : 与えられた評価尺度に関して最も良い解を求める問題

More information

Microsoft Word - Time Series Basic - Modeling.doc

Microsoft Word - Time Series Basic - Modeling.doc 時系列解析入門 モデリング. 確率分布と統計的モデル が確率変数 (radom varable のとき すべての実数 R に対して となる確 率 Prob( が定められる これを の関数とみなして G( Prob ( とあらわすとき G( を確率変数 の分布関数 (probablt dstrbuto ucto と呼 ぶ 時系列解析で用いられる確率変数は通常連続型と呼ばれるもので その分布関数は (

More information

<4D F736F F F696E74202D2091E6824F82538FCD8CEB82E88C9F8F6F814592F990B382CC8CB4979D82BB82CC82505F D E95848D8682CC90B69

<4D F736F F F696E74202D2091E6824F82538FCD8CEB82E88C9F8F6F814592F990B382CC8CB4979D82BB82CC82505F D E95848D8682CC90B69 第 章 誤り検出 訂正の原理 その ブロック符号とその復号 安達文幸 目次 誤り訂正符号化を用いる伝送系誤り検出符号誤り検出 訂正符号 7, ハミング符号, ハミング符号生成行列, パリティ検査行列の一般形符号の生成行列符号の生成行列とパリティ検査行列の関係符号の訂正能力符号多項式 安達 : コミュニケーション符号理論 安達 : コミュニケーション符号理論 誤り訂正符号化を用いる伝送系 伝送システム

More information

Microsoft PowerPoint - 10.pptx

Microsoft PowerPoint - 10.pptx 0. 固有値とその応用 固有値と固有ベクトル 2 行列による写像から固有ベクトルへ m n A : m n n m 行列によって線形写像 f R R A が表せることを見てきた ここでは 2 次元平面の行列による写像を調べる 2 = 2 A 2 2 とし 写像 まず 単位ベクトルの像を求める u 2 x = v 2 y f : R A R を考える u 2 2 u, 2 2 0 = = v 2 0

More information

横浜市環境科学研究所

横浜市環境科学研究所 周期時系列の統計解析 単回帰分析 io 8 年 3 日 周期時系列に季節調整を行わないで単回帰分析を適用すると, 回帰係数には周期成分の影響が加わる. ここでは, 周期時系列をコサイン関数モデルで近似し単回帰分析によりモデルの回帰係数を求め, 周期成分の影響を検討した. また, その結果を気温時系列に当てはめ, 課題等について考察した. 気温時系列とコサイン関数モデル第 報の結果を利用するので, その一部を再掲する.

More information

untitled

untitled 主成分分析 (Prncpal Component Analy) で情報を集約する マルチスペクトル画像 なし が情報を集約する 69.68 77.97 85.73 96.7 98.8 画像 : NASA 除去できる一部に集約 あり.24.35 4.63 7.65 3.9 分散の比率 最大を 255, 最小を に正規化して表示 3 つの成分から画像を再生した 信号処理の手順 行列 A 共分散行列に対する

More information

Microsoft PowerPoint - データ解析基礎4.ppt [互換モード]

Microsoft PowerPoint - データ解析基礎4.ppt [互換モード] データ解析基礎. 正規分布と相関係数 keyword 正規分布 正規分布の性質 偏差値 変数間の関係を表す統計量 共分散 相関係数 散布図 正規分布 世の中の多くの現象は, 標本数を大きくしていくと, 正規分布に近づいていくことが知られている. 正規分布 データ解析の基礎となる重要な分布 平均と分散によって特徴づけることができる. 平均値 : 分布の中心を表す値 分散 : 分布のばらつきを表す値 正規分布

More information

ベイズ統計入門

ベイズ統計入門 ベイズ統計入門 条件付確率 事象 F が起こったことが既知であるという条件の下で E が起こる確率を条件付確率 (codtoal probablt) という P ( E F ) P ( E F ) P( F ) 定義式を変形すると 確率の乗法公式となる ( E F ) P( F ) P( E F ) P( E) P( F E) P 事象の独立 ある事象の生起する確率が 他のある事象が生起するかどうかによって変化しないとき

More information

<4D F736F F D E4F8E9F82C982A882AF82E98D7397F1>

<4D F736F F D E4F8E9F82C982A882AF82E98D7397F1> 3 三次における行列 要旨高校では ほとんど 2 2 の正方行列しか扱ってなく 三次の正方行列について考えてみたかったため 数 C で学んだ定理を三次の正方行列に応用して 自分たちで仮説を立てて求めていったら 空間における回転移動を表す行列 三次のケーリー ハミルトンの定理 三次における逆行列を求めたり 仮説をたてることができた. 目的 数 C で学んだ定理を三次の正方行列に応用する 2. 概要目的の到達点として

More information

0 21 カラー反射率 slope aspect 図 2.9: 復元結果例 2.4 画像生成技術としての計算フォトグラフィ 3 次元情報を復元することにより, 画像生成 ( レンダリング ) に応用することが可能である. 近年, コンピュータにより, カメラで直接得られない画像を生成する技術分野が生

0 21 カラー反射率 slope aspect 図 2.9: 復元結果例 2.4 画像生成技術としての計算フォトグラフィ 3 次元情報を復元することにより, 画像生成 ( レンダリング ) に応用することが可能である. 近年, コンピュータにより, カメラで直接得られない画像を生成する技術分野が生 0 21 カラー反射率 slope aspect 図 2.9: 復元結果例 2.4 画像生成技術としての計算フォトグラフィ 3 次元情報を復元することにより, 画像生成 ( レンダリング ) に応用することが可能である. 近年, コンピュータにより, カメラで直接得られない画像を生成する技術分野が生まれ, コンピューテーショナルフォトグラフィ ( 計算フォトグラフィ ) と呼ばれている.3 次元画像認識技術の計算フォトグラフィへの応用として,

More information

パソコンシミュレータの現状

パソコンシミュレータの現状 第 2 章微分 偏微分, 写像 豊橋技術科学大学森謙一郎 2. 連続関数と微分 工学において物理現象を支配する方程式は微分方程式で表されていることが多く, 有限要素法も微分方程式を解く数値解析法であり, 定式化においては微分 積分が一般的に用いられており. 数学の基礎知識が必要になる. 図 2. に示すように, 微分は連続な関数 f() の傾きを求めることであり, 微小な に対して傾きを表し, を無限に

More information

Microsoft PowerPoint - e-stat(OLS).pptx

Microsoft PowerPoint - e-stat(OLS).pptx 経済統計学 ( 補足 ) 最小二乗法について 担当 : 小塚匡文 2015 年 11 月 19 日 ( 改訂版 ) 神戸大学経済学部 2015 年度後期開講授業 補足 : 最小二乗法 ( 単回帰分析 ) 1.( 単純 ) 回帰分析とは? 標本サイズTの2 変数 ( ここではXとY) のデータが存在 YをXで説明する回帰方程式を推定するための方法 Y: 被説明変数 ( または従属変数 ) X: 説明変数

More information

Microsoft Word - mstattext02.docx

Microsoft Word - mstattext02.docx 章重回帰分析 複数の変数で 1つの変数を予測するような手法を 重回帰分析 といいます 前の巻でところで述べた回帰分析は 1つの説明変数で目的変数を予測 ( 説明 ) する手法でしたが この説明変数が複数個になったと考えればよいでしょう 重回帰分析はこの予測式を与える分析手法です 以下の例を見て下さい 例 以下のデータ (Samples 重回帰分析 1.txt) をもとに体重を身長と胸囲の1 次関数で

More information

Microsoft Word - mstattext03.docx

Microsoft Word - mstattext03.docx 3 章判別分析 複数の変数によって 分類の変数を予想する手法を判別分析と言います 例えばいくつかの模擬試験の点数によって入試の合否を予想するなどは典型的な例です 以下の例を見てみましょう 例入学試験の合否と勉強時間 模擬試験の平均点のデータを求めたところ以下のような結果を得た (Samples 判別分析.txt) 合否を判定するための勉強時間と平均点の 次関数を求めよ またこの関数によってこのデータを判別し

More information

PowerPoint Presentation

PowerPoint Presentation . カーネル法への招待 正定値カーネルによるデータ解析 - カーネル法の基礎と展開 - 福水健次統計数理研究所 / 総合研究大学院大学 統計数理研究所公開講座 0 年 月 34 日 概要 カーネル法の基本 線形データ解析と非線形データ解析 カーネル法の原理 カーネル法の つの例 カーネル主成分分析 : PCA の非線形拡張 リッジ回帰とそのカーネル化 概要 カーネル法の基本 線形データ解析と非線形データ解析

More information

DVIOUT

DVIOUT 最適レギュレータ 松尾研究室資料 第 最適レギュレータ 節時不変型無限時間最適レギュレータ 状態フィードバックの可能な場合の無限時間問題における最適レギュレータについて確定系について説明する. ここで, レギュレータとは状態量をゼロにするようなコントローラのことである. なぜ, 無限時間問題のみを述べるかという理由は以下のとおりである. 有限時間の最適レギュレータ問題の場合の最適フィードバックゲインは微分方程式の解から構成される時間関数として表現される.

More information

Microsoft PowerPoint slide2forWeb.ppt [互換モード]

Microsoft PowerPoint slide2forWeb.ppt [互換モード] 講義内容 9..4 正規分布 ormal dstrbuto ガウス分布 Gaussa dstrbuto 中心極限定理 サンプルからの母集団統計量の推定 不偏推定量について 確率変数, 確率密度関数 確率密度関数 確率密度関数は積分したら. 平均 : 確率変数 分散 : 例 ある場所, ある日時での気温の確率. : 気温, : 気温 が起こる確率 標本平均とのアナロジー 類推 例 人の身長の分布と平均

More information

Microsoft PowerPoint - pr_12_template-bs.pptx

Microsoft PowerPoint - pr_12_template-bs.pptx 12 回パターン検出と画像特徴 テンプレートマッチング 領域分割 画像特徴 テンプレート マッチング 1 テンプレートマッチング ( 図形 画像などの ) 型照合 Template Matching テンプレートと呼ばれる小さな一部の画像領域と同じパターンが画像全体の中に存在するかどうかを調べる方法 画像内にある対象物体の位置検出 物体数のカウント 物体移動の検出などに使われる テンプレートマッチングの計算

More information

Matrix and summation convention Kronecker delta δ ij 1 = 0 ( i = j) ( i j) permutation symbol e ijk = (even permutation) (odd permutation) (othe

Matrix and summation convention Kronecker delta δ ij 1 = 0 ( i = j) ( i j) permutation symbol e ijk = (even permutation) (odd permutation) (othe Matr ad summato covto Krockr dlta δ ( ) ( ) prmutato symbol k (v prmutato) (odd prmutato) (othrs) gvalu dtrmat dt 6 k rst r s kt opyrght s rsrvd. No part of ths documt may b rproducd for proft. 行列 行 正方行列

More information

ビジネス統計 統計基礎とエクセル分析 正誤表

ビジネス統計 統計基礎とエクセル分析 正誤表 ビジネス統計統計基礎とエクセル分析 ビジネス統計スペシャリスト エクセル分析スペシャリスト 公式テキスト正誤表と学習用データ更新履歴 平成 30 年 5 月 14 日現在 公式テキスト正誤表 頁場所誤正修正 6 知識編第 章 -3-3 最頻値の解説内容 たとえば, 表.1 のデータであれば, 最頻値は 167.5cm というたとえば, 表.1 のデータであれば, 最頻値は 165.0cm ということになります

More information

Microsoft PowerPoint - 統計科学研究所_R_重回帰分析_変数選択_2.ppt

Microsoft PowerPoint - 統計科学研究所_R_重回帰分析_変数選択_2.ppt 重回帰分析 残差分析 変数選択 1 内容 重回帰分析 残差分析 歯の咬耗度データの分析 R で変数選択 ~ step 関数 ~ 2 重回帰分析と単回帰分析 体重を予測する問題 分析 1 身長 のみから体重を予測 分析 2 身長 と ウエスト の両方を用いて体重を予測 分析 1 と比べて大きな改善 体重 に関する推測では 身長 だけでは不十分 重回帰分析における問題 ~ モデルの構築 ~ 適切なモデルで分析しているか?

More information

Microsoft PowerPoint - 三次元座標測定 ppt

Microsoft PowerPoint - 三次元座標測定 ppt 冗長座標測定機 ()( 三次元座標計測 ( 第 9 回 ) 5 年度大学院講義 6 年 月 7 日 冗長性を持つ 次元座標測定機 次元 辺測量 : 冗長性を出すために つのレーザトラッカを配置し, キャッツアイまでの距離から座標を測定する つのカメラ ( 次元的なカメラ ) とレーザスキャナ : つの角度測定システムによる座標測定 つの回転関節による 次元 自由度多関節機構 高増潔東京大学工学系研究科精密機械工学専攻

More information

地理学論集№83.indd

地理学論集№83.indd Geographical Studies 道路交通センサスを用いた札幌市の都市構造の解析 三木祐太郎 * 木村圭司 ** ** 本間利久 キーワード. はじめに - - . 使用したデータと解析方法 図 1 - - こととした なお 以上の項目のうち歩行者交通 かう道路よりも 市周辺で割合が大きくなってい 量 自転車交通量 バス交通量についてはそのま る まの数値を用いると 地点ごとの値のばらつきが

More information

Microsoft Word - lec_student-chp3_1-representative

Microsoft Word - lec_student-chp3_1-representative 1. はじめに この節でのテーマ データ分布の中心位置を数値で表す 可視化でとらえた分布の中心位置を数量化する 平均値とメジアン, 幾何平均 この節での到達目標 1 平均値 メジアン 幾何平均の定義を書ける 2 平均値とメジアン, 幾何平均の特徴と使える状況を説明できる. 3 平均値 メジアン 幾何平均を計算できる 2. 特性値 集めたデータを度数分布表やヒストグラムに整理する ( 可視化する )

More information

統計的データ解析

統計的データ解析 統計的データ解析 011 011.11.9 林田清 ( 大阪大学大学院理学研究科 ) 連続確率分布の平均値 分散 比較のため P(c ) c 分布 自由度 の ( カイ c 平均値 0, 標準偏差 1の正規分布 に従う変数 xの自乗和 c x =1 が従う分布を自由度 の分布と呼ぶ 一般に自由度の分布は f /1 c / / ( c ) {( c ) e }/ ( / ) 期待値 二乗 ) 分布 c

More information

画像類似度測定の初歩的な手法の検証

画像類似度測定の初歩的な手法の検証 画像類似度測定の初歩的な手法の検証 島根大学総合理工学部数理 情報システム学科 計算機科学講座田中研究室 S539 森瀧昌志 1 目次 第 1 章序論第 章画像間類似度測定の初歩的な手法について.1 A. 画素値の平均を用いる手法.. 画素値のヒストグラムを用いる手法.3 C. 相関係数を用いる手法.4 D. 解像度を合わせる手法.5 E. 振れ幅のヒストグラムを用いる手法.6 F. 周波数ごとの振れ幅を比較する手法第

More information

Ecel 演習問題 Work Shee 解答 第 章 Ecel 演習問題 WorkShee 解答 問題 - 4 8 7 転置行列 4 8 7 TRANSPOSE( ) 問題 - X.6 4 4.8 8 4.9 6. 7 48 8. X 転置行列 4 8 7 4 6 48 TRANSPOSE( ).6 4.8.9. 8. 問題 -.6 4 4.8 8 y.9. 7 8. 転置行列 4 8 7 TRANSPOSE(

More information

テンソル ( その ) テンソル ( その ) スカラー ( 階のテンソル ) スカラー ( 階のテンソル ) 階数 ベクトル ( 階のテンソル ) ベクトル ( 階のテンソル ) 行列表現 シンボリック表現 [ ]

テンソル ( その ) テンソル ( その ) スカラー ( 階のテンソル ) スカラー ( 階のテンソル ) 階数 ベクトル ( 階のテンソル ) ベクトル ( 階のテンソル ) 行列表現 シンボリック表現 [ ] Tsor th-ordr tsor by dcl xprsso m m Lm m k m k L mk kk quott rul by symbolc xprsso Lk X thrd-ordr tsor cotrcto j j Copyrght s rsrvd. No prt of ths documt my b rproducd for proft. テンソル ( その ) テンソル ( その

More information

日心TWS

日心TWS 2017.09.22 (15:40~17:10) 日本心理学会第 81 回大会 TWS ベイジアンデータ解析入門 回帰分析を例に ベイジアンデータ解析 を体験してみる 広島大学大学院教育学研究科平川真 ベイジアン分析のステップ (p.24) 1) データの特定 2) モデルの定義 ( 解釈可能な ) モデルの作成 3) パラメタの事前分布の設定 4) ベイズ推論を用いて パラメタの値に確信度を再配分ベイズ推定

More information

経営統計学

経営統計学 5 章基本統計量 3.5 節で量的データの集計方法について簡単に触れ 前章でデータの分布について学びましたが データの特徴をつの数値で示すこともよく行なわれます これは統計量と呼ばれ 主に分布の中心や拡がりなどを表わします この章ではよく利用される分布の統計量を特徴で分類して説明します 数式表示を統一的に行なうために データの個数を 個とし それらを,,, と表わすことにします ここで学ぶ統計量は統計分析の基礎となっており

More information

周期時系列の統計解析 (3) 移動平均とフーリエ変換 nino 2017 年 12 月 18 日 移動平均は, 周期時系列における特定の周期成分の消去や不規則変動 ( ノイズ ) の低減に汎用されている統計手法である. ここでは, 周期時系列をコサイン関数で近似し, その移動平均により周期成分の振幅

周期時系列の統計解析 (3) 移動平均とフーリエ変換 nino 2017 年 12 月 18 日 移動平均は, 周期時系列における特定の周期成分の消去や不規則変動 ( ノイズ ) の低減に汎用されている統計手法である. ここでは, 周期時系列をコサイン関数で近似し, その移動平均により周期成分の振幅 周期時系列の統計解析 3 移動平均とフーリエ変換 io 07 年 月 8 日 移動平均は, 周期時系列における特定の周期成分の消去や不規則変動 ノイズ の低減に汎用されている統計手法である. ここでは, 周期時系列をコサイン関数で近似し, その移動平均により周期成分のがどのように変化するのか等について検討する. また, 気温の実測値に移動平均を適用した結果についてフーリエ変換も併用して考察する. 単純移動平均の計算式移動平均には,

More information

様々なミクロ計量モデル†

様々なミクロ計量モデル† 担当 : 長倉大輔 ( ながくらだいすけ ) この資料は私の講義において使用するために作成した資料です WEB ページ上で公開しており 自由に参照して頂いて構いません ただし 内容について 一応検証してありますが もし間違いがあった場合でもそれによって生じるいかなる損害 不利益について責任を負いかねますのでご了承ください 間違いは発見次第 継続的に直していますが まだ存在する可能性があります 1 カウントデータモデル

More information

線形代数とは

線形代数とは 線形代数とは 第一回ベクトル 教科書 エクササイズ線形代数 立花俊一 成田清正著 共立出版 必要最低限のことに限る 得意な人には物足りないかもしれません 線形代数とは何をするもの? 線形関係 y 直線 yもも 次式で登場する (( 次の形 ) 線形 ただし 次元の話世の中は 3 次元 [4[ 次元 ] 次元 3 次元 4 次元 はどうやって直線を表すの? ベクトルや行列の概念 y A ベクトルを使うと

More information

学習指導要領

学習指導要領 (1) 数と式 ア数と集合 ( ア ) 実数数を実数まで拡張する意義を理解し 簡単な無理数の四則計算をすること 絶対値の意味を理解し適切な処理することができる 例題 1-3 の絶対値をはずせ 展開公式 ( a + b ) ( a - b ) = a 2 - b 2 を利用して根号を含む分数の分母を有理化することができる 例題 5 5 + 2 の分母を有理化せよ 実数の整数部分と小数部分の表し方を理解している

More information

SAP11_03

SAP11_03 第 3 回 音声音響信号処理 ( 線形予測分析と自己回帰モデル ) 亀岡弘和 東京大学大学院情報理工学系研究科日本電信電話株式会社 NTT コミュニケーション科学基礎研究所 講義内容 ( キーワード ) 信号処理 符号化 標準化の実用システム例の紹介情報通信の基本 ( 誤り検出 訂正符号 変調 IP) 符号化技術の基本 ( 量子化 予測 変換 圧縮 ) 音声分析 合成 認識 強調 音楽信号処理統計的信号処理の基礎

More information

0 スペクトル 時系列データの前処理 法 平滑化 ( スムージング ) と微分 明治大学理 学部応用化学科 データ化学 学研究室 弘昌

0 スペクトル 時系列データの前処理 法 平滑化 ( スムージング ) と微分 明治大学理 学部応用化学科 データ化学 学研究室 弘昌 0 スペクトル 時系列データの前処理 法 平滑化 ( スムージング ) と微分 明治大学理 学部応用化学科 データ化学 学研究室 弘昌 スペクトルデータの特徴 1 波 ( 波数 ) が近いと 吸光度 ( 強度 ) の値も似ている ノイズが含まれる 吸光度 ( 強度 ) の極大値 ( ピーク ) 以外のデータも重要 時系列データの特徴 2 時刻が近いと プロセス変数の値も似ている ノイズが含まれる プロセス変数の極大値

More information

微分方程式による現象記述と解きかた

微分方程式による現象記述と解きかた 微分方程式による現象記述と解きかた 土木工学 : 公共諸施設 構造物の有用目的にむけた合理的な実現をはかる方法 ( 技術 ) に関する学 橋梁 トンネル ダム 道路 港湾 治水利水施設 安全化 利便化 快適化 合法則的 経済的 自然および人口素材によって作られた 質量保存則 構造物の自然的な性質 作用 ( 外力による応答 ) エネルギー則 の解明 社会的諸現象のうち マスとしての移動 流通 運動量則

More information

Microsoft Word - NumericalComputation.docx

Microsoft Word - NumericalComputation.docx 数値計算入門 武尾英哉. 離散数学と数値計算 数学的解法の中には理論計算では求められないものもある. 例えば, 定積分は, まずは積分 ( 被積分関数の原始関数をみつけること できなければ値を得ることはできない. また, ある関数の所定の値における微分値を得るには, まずその関数の微分ができなければならない. さらに代数方程式の解を得るためには, 解析的に代数方程式を解く必要がある. ところが, これらは必ずしも解析的に導けるとは限らない.

More information

ボルツマンマシンの高速化

ボルツマンマシンの高速化 1. はじめに ボルツマン学習と平均場近似 山梨大学工学部宗久研究室 G04MK016 鳥居圭太 ボルツマンマシンは学習可能な相互結合型ネットワー クの代表的なものである. ボルツマンマシンには, 学習のための統計平均を取る必要があり, 結果を求めるまでに長い時間がかかってしまうという欠点がある. そこで, 学習の高速化のために, 統計を取る2つのステップについて, 以下のことを行う. まず1つ目のステップでは,

More information

航空機の運動方程式

航空機の運動方程式 可制御性 可観測性. 可制御性システムの状態を, 適切な操作によって, 有限時間内に, 任意の状態から別の任意の状態に移動させることができるか否かという特性を可制御性という. 可制御性を有するシステムに対し, システムは可制御である, 可制御なシステム という言い方をする. 状態方程式, 出力方程式が以下で表されるn 次元 m 入力 r 出力線形時不変システム x Ax u y x Du () に対し,

More information

DVIOUT-SS_Ma

DVIOUT-SS_Ma 第 章 微分方程式 ニュートンはリンゴが落ちるのを見て万有引力を発見した という有名な逸話があります 無重力の宇宙船の中ではリンゴは落ちないで静止していることを考えると 重力が働くと始め静止しているものが動き出して そのスピードはどんどん大きくなる つまり速度の変化が現れることがわかります 速度は一般に時間と共に変化します 速度の瞬間的変化の割合を加速度といい で定義しましょう 速度が変化する, つまり加速度がでなくなるためにはその原因があり

More information

データ解析

データ解析 データ解析 ( 前期 ) 最小二乗法 向井厚志 005 年度テキスト 0 データ解析 - 最小二乗法 - 目次 第 回 Σ の計算 第 回ヒストグラム 第 3 回平均と標準偏差 6 第 回誤差の伝播 8 第 5 回正規分布 0 第 6 回最尤性原理 第 7 回正規分布の 分布の幅 第 8 回最小二乗法 6 第 9 回最小二乗法の練習 8 第 0 回最小二乗法の推定誤差 0 第 回推定誤差の計算 第

More information

Microsoft Word - M4_9(N.K.).docx

Microsoft Word - M4_9(N.K.).docx 第 9 章因子分析 9-1 因子分析とは 因子分析 (factor analysis) 実験や観測によって得られた 観測変数 の背後に存在する 因子 を推定する統計的分析手段 観測変数 (observed variable) 実験や観測を通して得られたデータ ( 観測値 ) 因子 (factor) 得られた観測変数に対し影響を及ぼしている 一見すると表には出て来ていない潜在的な要因のこと 潜在変数

More information

ファイナンスのための数学基礎 第1回 オリエンテーション、ベクトル

ファイナンスのための数学基礎 第1回 オリエンテーション、ベクトル 時系列分析 変量時系列モデルとその性質 担当 : 長倉大輔 ( ながくらだいすけ 時系列モデル 時系列モデルとは時系列データを生み出すメカニズムとなるものである これは実際には未知である 私たちにできるのは観測された時系列データからその背後にある時系列モデルを推測 推定するだけである 以下ではいくつかの代表的な時系列モデルを考察する 自己回帰モデル (Auoregressive Model もっとも頻繁に使われる時系列モデルは自己回帰モデル

More information

線積分.indd

線積分.indd 線積分 線積分 ( n, n, n ) (ξ n, η n, ζ n ) ( n-, n-, n- ) (ξ k, η k, ζ k ) ( k, k, k ) ( k-, k-, k- ) 物体に力 を作用させて位置ベクトル A の点 A から位置ベクトル の点 まで曲線 に沿って物体を移動させたときの仕事 W は 次式で計算された A, A, W : d 6 d+ d+ d@,,, d+ d+

More information

Microsoft Word ã‡»ã…«ã‡ªã…¼ã…‹ã…žã…‹ã…³ã†¨åłºæœ›å•¤(佒芤喋çfl�)

Microsoft Word ã‡»ã…«ã‡ªã…¼ã…‹ã…žã…‹ã…³ã†¨åłºæœ›å•¤(佒芤喋çfl�) Cellulr uo nd heir eigenlues 東洋大学総合情報学部 佐藤忠一 Tdzu So Depren o Inorion Siene nd rs Toyo Uniersiy. まえがき 一次元セルオ-トマトンは数学的には記号列上の行列の固有値問題である 固有値問題の行列はふつう複素数体上の行列である 量子力学における固有値問題も無限次元ではあるが関数環上の行列でその成分は可換環である

More information

Microsoft Word 小池秋大会[最終完成版].doc

Microsoft Word 小池秋大会[最終完成版].doc 都市高速道路におけるランプ間 交通量の短時間変動分析 小池真実 ** 井料隆雅 *** 朝倉康夫 **** By Mami KOIKE** Takamasa IRYO*** Yasuo ASAKURA**** 1. はじめに 流入した入口と流出した出口がどこかを知ることができ るので, これを集計することによりランプ間 交通量を 交通量が変動することは, 交通量データを収集したり統計データとして得ることが出来る.

More information

Microsoft PowerPoint - ad11-09.pptx

Microsoft PowerPoint - ad11-09.pptx 無向グラフと有向グラフ 無向グラフ G=(V, E) 頂点集合 V 頂点の対を表す枝の集合 E e=(u,v) 頂点 u, v は枝 e の端点 f c 0 a 1 e b d 有向グラフ G=(V, E) 頂点集合 V 頂点の順序対を表す枝の集合 E e=(u,v) 頂点 uは枝 eの始点頂点 vは枝 eの終点 f c 0 a 1 e b d グラフのデータ構造 グラフ G=(V, E) を表現するデータ構造

More information

1/30 平成 29 年 3 月 24 日 ( 金 ) 午前 11 時 25 分第三章フェルミ量子場 : スピノール場 ( 次元あり ) 第三章フェルミ量子場 : スピノール場 フェルミ型 ボーズ量子場のエネルギーは 第二章ボーズ量子場 : スカラー場 の (2.18) より ˆ dp 1 1 =

1/30 平成 29 年 3 月 24 日 ( 金 ) 午前 11 時 25 分第三章フェルミ量子場 : スピノール場 ( 次元あり ) 第三章フェルミ量子場 : スピノール場 フェルミ型 ボーズ量子場のエネルギーは 第二章ボーズ量子場 : スカラー場 の (2.18) より ˆ dp 1 1 = / 平成 9 年 月 日 ( 金 午前 時 5 分第三章フェルミ量子場 : スピノール場 ( 次元あり 第三章フェルミ量子場 : スピノール場 フェルミ型 ボーズ量子場のエネルギーは 第二章ボーズ量子場 : スカラー場 の (.8 より ˆ ( ( ( q -, ( ( c ( H c c ë é ù û - Ü + c ( ( - に限る (. である 一方 フェルミ型は 成分をもち その成分を,,,,

More information

スライド 1

スライド 1 都市環境計画 都市環境計画のための 調査 分析 調査 分析手法の概論分析 ( 主に多変量解析 ) の概論 試験想定問題 多変量解析手法について以下のキーワードを用いて説明せよ 定量データ ( 量的データ ), 定性データ ( 質的データ ) 目的変数 ( 従属変数 ), 説明変数 ( 独立変数 ), 重回帰分析, 判別分析, 因子分析, 数量化 Ⅰ 類, 数量化 Ⅱ 類, 数量化 Ⅲ 類 利用者の利用実態や評価構造の解明等に関する研究

More information

第13章  テキストのクラスター分析

第13章  テキストのクラスター分析 第 13 章 テキストのクラスター分析 茨城大学工学部 高木真 概要 複数のテキストを分析する際に テキストの何らかの特徴にもとづいて似ているものごとにグループ分けする必要がある場合がある 本章ではテキスト間の類似度 ( または距離 ) にもとづいてテキストをグルーピングする方法やその応用例を説明する テキストのクラスター分析 テキストのクラスター分析 テキストの分散 相関 類似度や距離の情報を用いてグループ分けすること

More information

以下 変数の上のドットは時間に関する微分を表わしている (ex. 2 dx d x x, x 2 dt dt ) 付録 E 非線形微分方程式の平衡点の安定性解析 E-1) 非線形方程式の線形近似特に言及してこなかったが これまでは線形微分方程式 ( x や x, x などがすべて 1 次で なおかつ

以下 変数の上のドットは時間に関する微分を表わしている (ex. 2 dx d x x, x 2 dt dt ) 付録 E 非線形微分方程式の平衡点の安定性解析 E-1) 非線形方程式の線形近似特に言及してこなかったが これまでは線形微分方程式 ( x や x, x などがすべて 1 次で なおかつ 以下 変数の上のドットは時間に関する微分を表わしている (e. d d, dt dt ) 付録 E 非線形微分方程式の平衡点の安定性解析 E-) 非線形方程式の線形近似特に言及してこなかったが これまでは線形微分方程式 ( や, などがすべて 次で なおかつそれらの係数が定数であるような微分方程式 ) に対して安定性の解析を行ってきた しかしながら 実際には非線形の微分方程式で記述される現象も多く存在する

More information

受信機時計誤差項の が残ったままであるが これをも消去するのが 重位相差である. 重位相差ある時刻に 衛星 から送られてくる搬送波位相データを 台の受信機 でそれぞれ測定する このとき各受信機で測定された衛星 からの搬送波位相データを Φ Φ とし 同様に衛星 からの搬送波位相データを Φ Φ とす

受信機時計誤差項の が残ったままであるが これをも消去するのが 重位相差である. 重位相差ある時刻に 衛星 から送られてくる搬送波位相データを 台の受信機 でそれぞれ測定する このとき各受信機で測定された衛星 からの搬送波位相データを Φ Φ とし 同様に衛星 からの搬送波位相データを Φ Φ とす RTK-GPS 測位計算アルゴリズム -FLOT 解 - 東京海洋大学冨永貴樹. はじめに GPS 測量を行う際 実時間で測位結果を得ることが出来るのは今のところ RTK-GPS 測位のみである GPS 測量では GPS 衛星からの搬送波位相データを使用するため 整数値バイアスを決定しなければならず これが測位計算を複雑にしている所以である この整数値バイアスを決定するためのつの方法として FLOT

More information

多次元レーザー分光で探る凝縮分子系の超高速動力学

多次元レーザー分光で探る凝縮分子系の超高速動力学 波動方程式と量子力学 谷村吉隆 京都大学理学研究科化学専攻 http:theochem.kuchem.kyoto-u.ac.jp TA: 岩元佑樹 iwamoto.y@kuchem.kyoto-u.ac.jp ベクトルと行列の作法 A 列ベクトル c = c c 行ベクトル A = [ c c c ] 転置ベクトル T A = [ c c c ] AA 内積 c AA = [ c c c ] c =

More information

行列、ベクトル

行列、ベクトル 行列 (Mtri) と行列式 (Determinnt). 行列 (Mtri) の演算. 和 差 積.. 行列とは.. 行列の和差 ( 加減算 ).. 行列の積 ( 乗算 ). 転置行列 対称行列 正方行列. 単位行列. 行列式 (Determinnt) と逆行列. 行列式. 逆行列. 多元一次連立方程式のコンピュータによる解法. コンピュータによる逆行列の計算.. 定数項の異なる複数の方程式.. 逆行列の計算

More information

Microsoft PowerPoint - 測量学.ppt [互換モード]

Microsoft PowerPoint - 測量学.ppt [互換モード] 8/5/ 誤差理論 測定の分類 性格による分類 独立 ( な ) 測定 : 測定値がある条件を満たさなければならないなどの拘束や制約を持たないで独立して行う測定 条件 ( 付き ) 測定 : 三角形の 3 つの内角の和のように, 個々の測定値間に満たすべき条件式が存在する場合の測定 方法による分類 直接測定 : 距離や角度などを機器を用いて直接行う測定 間接測定 : 求めるべき量を直接測定するのではなく,

More information

< F55542D303996E291E894AD8CA9365F834E E95AA90CD836D815B>

< F55542D303996E291E894AD8CA9365F834E E95AA90CD836D815B> クラスター分析に関するノート 情報学部堀田敬介 2004/7/32008/7/ 改訂, 2009/0/3 改訂 ) 類似度の測定 まずはじめに, 各データ間の距離を測るが, 尺度毎に様々な方法が提案されている. 尺度に対応した類似度測定の距離を示す.. 間隔尺度による類似度の測定 n 個の対象があり, 各対象は間隔尺度で m 個の属性 変量 ) が測定されているとする. このとき対象 と q を x

More information

Microsoft PowerPoint - 9.pptx

Microsoft PowerPoint - 9.pptx 9/7/8( 水 9. 線形写像 ここでは 行列の積によって 写像を定義できることをみていく また 行列の積によって定義される写像の性質を調べていく 拡大とスカラー倍 行列演算と写像 ( 次変換 拡大後 k 倍 k 倍 k 倍拡大の関係は スカラー倍を用いて次のように表現できる p = (, ' = k ' 拡大前 p ' = ( ', ' = ( k, k 拡大 4 拡大と行列の積 拡大後 k 倍

More information

Kumamoto University Center for Multimedia and Information Technologies Lab. 熊本大学アプリケーション実験 ~ 実環境における無線 LAN 受信電波強度を用いた位置推定手法の検討 ~ InKIAI 宮崎県美郷

Kumamoto University Center for Multimedia and Information Technologies Lab. 熊本大学アプリケーション実験 ~ 実環境における無線 LAN 受信電波強度を用いた位置推定手法の検討 ~ InKIAI 宮崎県美郷 熊本大学アプリケーション実験 ~ 実環境における無線 LAN 受信電波強度を用いた位置推定手法の検討 ~ InKIAI プロジェクト @ 宮崎県美郷町 熊本大学副島慶人川村諒 1 実験の目的 従来 信号の受信電波強度 (RSSI:RecevedSgnal StrengthIndcator) により 対象の位置を推定する手法として 無線 LAN の AP(AccessPont) から受信する信号の減衰量をもとに位置を推定する手法が多く検討されている

More information

Microsoft PowerPoint - 第3回2.ppt

Microsoft PowerPoint - 第3回2.ppt 講義内容 講義内容 次元ベクトル 関数の直交性フーリエ級数 次元代表的な対の諸性質コンボリューション たたみこみ積分 サンプリング定理 次元離散 次元空間周波数の概念 次元代表的な 次元対 次元離散 次元ベクトル 関数の直交性フーリエ級数 次元代表的な対の諸性質コンボリューション たたみこみ積分 サンプリング定理 次元離散 次元空間周波数の概念 次元代表的な 次元対 次元離散 ベクトルの直交性 3

More information

Microsoft PowerPoint - ip02_01.ppt [互換モード]

Microsoft PowerPoint - ip02_01.ppt [互換モード] 空間周波数 周波数領域での処理 空間周波数 (spatial frquncy) とは 単位長さ当たりの正弦波状の濃淡変化の繰り返し回数を表したもの 正弦波 : y sin( t) 周期 : 周波数 : T f / T 角周波数 : f 画像処理 空間周波数 周波数領域での処理 波形が違うと 周波数も違う 画像処理 空間周波数 周波数領域での処理 画像処理 3 周波数領域での処理 周波数は一つしかない?-

More information

補足 中学で学習したフレミング左手の法則 ( 電 磁 力 ) と関連付けると覚えやすい 電磁力は電流と磁界の外積で表される 力 F 磁 電磁力 F li 右ねじの回転の向き電 li ( l は導線の長さ ) 補足 有向線分とベクトル有向線分 : 矢印の位

補足 中学で学習したフレミング左手の法則 ( 電 磁 力 ) と関連付けると覚えやすい 電磁力は電流と磁界の外積で表される 力 F 磁 電磁力 F li 右ねじの回転の向き電 li ( l は導線の長さ ) 補足 有向線分とベクトル有向線分 : 矢印の位 http://totemt.sur.ne.p 外積 ( ベクトル積 ) の活用 ( 面積, 法線ベクトル, 平面の方程式 ) 3 次元空間の つのベクトルの積が つのベクトルを与えるようなベクトルの掛け算 ベクトルの積がベクトルを与えることからベクトル積とも呼ばれる これに対し内積は符号と大きさをもつ量 ( スカラー量 ) を与えるので, スカラー積とも呼ばれる 外積を使うと, 平行四辺形や三角形の面積,

More information

DVIOUT

DVIOUT 第 章 離散フーリエ変換 離散フーリエ変換 これまで 私たちは連続関数に対するフーリエ変換およびフーリエ積分 ( 逆フーリエ変換 ) について学んできました この節では フーリエ変換を離散化した離散フーリエ変換について学びましょう 自然現象 ( 音声 ) などを観測して得られる波 ( 信号値 ; 観測値 ) は 通常 電気信号による連続的な波として観測機器から出力されます しかしながら コンピュータはこの様な連続的な波を直接扱うことができないため

More information

3 数値解の特性 3.1 CFL 条件 を 前の章では 波動方程式 f x= x0 = f x= x0 t f c x f =0 [1] c f 0 x= x 0 x 0 f x= x0 x 2 x 2 t [2] のように差分化して数値解を求めた ここでは このようにして得られた数値解の性質を 考

3 数値解の特性 3.1 CFL 条件 を 前の章では 波動方程式 f x= x0 = f x= x0 t f c x f =0 [1] c f 0 x= x 0 x 0 f x= x0 x 2 x 2 t [2] のように差分化して数値解を求めた ここでは このようにして得られた数値解の性質を 考 3 数値解の特性 3.1 CFL 条件 を 前の章では 波動方程式 f x= x = f x= x t f c x f = [1] c f x= x f x= x 2 2 t [2] のように差分化して数値解を求めた ここでは このようにして得られた数値解の性質を 考える まず 初期時刻 t=t に f =R f exp [ik x ] [3] のような波動を与えたとき どのように時間変化するか調べる

More information

例 e 指数関数的に減衰する信号を h( a < + a a すると, それらのラプラス変換は, H ( ) { e } e インパルス応答が h( a < ( ただし a >, U( ) { } となるシステムにステップ信号 ( y( のラプラス変換 Y () は, Y ( ) H ( ) X (

例 e 指数関数的に減衰する信号を h( a < + a a すると, それらのラプラス変換は, H ( ) { e } e インパルス応答が h( a < ( ただし a >, U( ) { } となるシステムにステップ信号 ( y( のラプラス変換 Y () は, Y ( ) H ( ) X ( 第 週ラプラス変換 教科書 p.34~ 目標ラプラス変換の定義と意味を理解する フーリエ変換や Z 変換と並ぶ 信号解析やシステム設計における重要なツール ラプラス変換は波動現象や電気回路など様々な分野で 微分方程式を解くために利用されてきた ラプラス変換を用いることで微分方程式は代数方程式に変換される また 工学上使われる主要な関数のラプラス変換は簡単な形の関数で表されるので これを ラプラス変換表

More information

Ecel で学ぶ 多変量データ処理入門 坂元保秀 まえがき 本テキストは, 種々の分野で収集された多変量データを Mcosof Ecel を用いて処理する方法を述べたものである. 特に, 収集した多変量データを処理するために Sofwae がなく断念した, また Sofwae を購入するまでに至らなかった等, 初期の目的を達成できなかったとの意見を聞いたことがあり Ecel の基本関数を用いて解析を試みた.

More information

観測変数 1~5 因子負荷量 独自因子 a 独自因子 b 共通因子 1 独自因子 c 固有値 ( 因子寄与 ) 独自因子 d 共通因子 2 独自因子 e 共通性 補足説明因子負荷量 : 因子と観測変数の関係性を示す -1.00~+1.00 までの値を取り.60 以上で高く強い関係性があると言える.3

観測変数 1~5 因子負荷量 独自因子 a 独自因子 b 共通因子 1 独自因子 c 固有値 ( 因子寄与 ) 独自因子 d 共通因子 2 独自因子 e 共通性 補足説明因子負荷量 : 因子と観測変数の関係性を示す -1.00~+1.00 までの値を取り.60 以上で高く強い関係性があると言える.3 異文化言語教育評価論 IB M.S. 因子分析 1. 主成分分析と因子分析の基本的概念の違い主成分分析と因子分析は多数の変数から少数の変数を得ることを目的とした いわば標本が持つ情報を要約 説明するための探索型分析手段である 両分析は以下のようなモデルで示すことが出来る 主成分分析因子分析 観測変数 1 観測変数 1 観測変数 2 主成分 1 観測変数 2 因子 1 観測変数 3 観測変数 3 合成

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション 1/X Chapter 9: Linear correlation Cohen, B. H. (2007). In B. H. Cohen (Ed.), Explaining Psychological Statistics (3rd ed.) (pp. 255-285). NJ: Wiley. 概要 2/X 相関係数とは何か 相関係数の数式 検定 注意点 フィッシャーのZ 変換 信頼区間 相関係数の差の検定

More information

Microsoft Word - Stattext07.doc

Microsoft Word - Stattext07.doc 7 章正規分布 正規分布 (ormal dstrbuto) は 偶発的なデータのゆらぎによって生じる統計学で最も基本的な確率分布です この章では正規分布についてその性質を詳しく見て行きましょう 7. 一般の正規分布正規分布は 平均と分散の つの量によって完全に特徴付けられています 平均 μ 分散 の正規分布は N ( μ, ) 分布とも書かれます ここに N は ormal の頭文字を 表わしています

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション 非線形カルマンフィルタ ~a. 問題設定 ~ 離散時間非線形状態空間表現 x k + 1 = f x k y k = h x k + bv k + w k f : ベクトル値をとるx k の非線形関数 h : スカラ値をとるx k の非線形関数 v k システム雑音 ( 平均値 0, 分散 σ v 2 k ) x k + 1 = f x k,v k w k 観測雑音 ( 平均値 0, 分散 σ w

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション No.33 首都圏高速道路網における 渋滞の時空間分布の安定性 酒井高良, 赤松隆 東北大学大学院情報科学研究科 E-mail: takara.sakai.t1@dc.tohoku.ac.jp 第 38 回交通工学研究発表会 2018 年 8 月 7 日 @ 日本大学 1 首都圏高速道路網における 渋滞パターンと MFD の関係性 酒井高良, 赤松隆 東北大学大学院情報科学研究科 E-mail: takara.sakai.t1@dc.tohoku.ac.jp

More information

1/17 平成 29 年 3 月 25 日 ( 土 ) 午前 11 時 1 分量子力学とクライン ゴルドン方程式 ( 学部 3 年次秋学期向 ) 量子力学とクライン ゴルドン方程式 素粒子の満たす場 y ( x,t) の運動方程式 : クライン ゴルドン方程式 : æ 3 ö ç å è m= 0

1/17 平成 29 年 3 月 25 日 ( 土 ) 午前 11 時 1 分量子力学とクライン ゴルドン方程式 ( 学部 3 年次秋学期向 ) 量子力学とクライン ゴルドン方程式 素粒子の満たす場 y ( x,t) の運動方程式 : クライン ゴルドン方程式 : æ 3 ö ç å è m= 0 /7 平成 9 年 月 5 日 ( 土 午前 時 分量子力学とクライン ゴルドン方程式 ( 学部 年次秋学期向 量子力学とクライン ゴルドン方程式 素粒子の満たす場 (,t の運動方程式 : クライン ゴルドン方程式 : æ ö ç å è = 0 c + ( t =, 0 (. = 0 ì æ = = = ö æ ö æ ö ç ì =,,,,,,, ç 0 = ç Ñ 0 = ç Ñ 0 Ñ Ñ

More information

スライド 1

スライド 1 計測工学第 12 回以降 測定値の誤差と精度編 2014 年 7 月 2 日 ( 水 )~7 月 16 日 ( 水 ) 知能情報工学科 横田孝義 1 授業計画 4/9 4/16 4/23 5/7 5/14 5/21 5/28 6/4 6/11 6/18 6/25 7/2 7/9 7/16 7/23 2 誤差とその取扱い 3 誤差 = 測定値 真の値 相対誤差 = 誤差 / 真の値 4 誤差 (error)

More information