50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq

Size: px
Start display at page:

Download "50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq"

Transcription

1 49 2 I II e e = A s (2.1

2 50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq F = k r r 2 r r r r ( kg, kg

3 R F C = e 2 /(4πε 0 R 2 F G = GMm/R 2 F G /F C = GMm/(e 2 /(4πε 0 = m 2 l q 2θ q 2l sin θ F C = q 2 /(4πε 0 (2l sin θ 2 F C /(mg = tan(θ q = 4l πε 0 mg sin 3 θ/ cos θ l q q 0 2.2

4 52 2 I A B B q r F E( r F = ( r q r q r E( r = 1 4πε 0 E( r = q r r 2 n i=1 r r r r = 1 4πε 0 r r r r 3 q (2.4 E i ( r = 1 4πε 0 n i=1 E( r = 1 4πε 0 r r i r r i 3 q i (2.5 r r r r 3 ρ( rdv (2.6

5 d q, q (0, 0, d/2, (0, 0, d/2 1. r = (x, y, z 2. d E( r = 1 ( q( r (0, 0, d/2 q( r (0, 0, d/2 + 4πε 0 r (0, 0, d/2 3 r (0, 0, d/2 3 = q ( (x, y, z d 4πε 0 (x 2 + y 2 + (z d/2 2 3/2 (x, y, z + d (x 2 + y 2 + (z + d/2 2 3/2 r d E( r q 4πε 0 r 3 q 4πε 0 r 3 ( (x, y, z d/2 (1 dz r 2 3/2 (x, y, z + d/2 (1 + dz r 3/2 2 ( (x, y, z d/2(1 + 3dz/2 r 2 (x, y, z + d/2(1 3dz/2 r 2 ( q 3dz(x, y, z = 4πε 0 r 3 (0, 0, d + r 2 = qd ( 3z(x, y, z 4πε 0 r 3 (0, 0, 1 + r 2 = qd 4πε 0 r 5 (3xz, 3yz, 3z2 r 2

6 54 2 I λ x z z z (0, 0, z (x, 0, 0 de(z = λdz 4πε 0 1 x 2 + z 2 x de (z = λdz 1 x 4πε 0 x 2 + z 2 x2 + z 2 E(x = λ 4πε 0 = λ 4πε 0 1 x = λ 4πε 0 1 x = λ 2πε 0 x π/2 π/2 π/2 x (x 2 + z 2 π/2 sec 2 θ sec 3 θ dθ cos θdθ 3/2 dz z = x tan θ q, q (0, 0, d/2, (0, 0, d/2 d 1

7 E( r = 1 ( 2q( r (0, 0, d/2 4πε 0 r (0, 0, d/2 ( 3 2(x, y, z d/2 (x 2 + y 2 + (z d/2 2 3/2 (x, y, z + d/2 (x 2 + y 2 + (z + d/2 2 3/2 = q 4πε 0 r d E( r = q 4πε 0 r 3 q 4πε 0 r 3 ( 2(x, y, z d/2 (1 dz r 2 3/2 q( r (0, 0, d/2 + r (0, 0, d/2 3 (x, y, z + d/2 (1 + dz r 3/2 2 ( 2(x, y, z d/2(1 + 3dz/2 r 2 r 2 (x, y, z + d/2(1 3dz/2 q 4πε 0 r 3 d 1 E( r q 4πε 0 r 3 ( (x, y, z 3d/2 + 9 (x, y, z d/6dz 2 r 2 ( (x, y, z 3d/2 + 9 (x, y, zdz 2 r R λ 2. R σ

8 56 2 I 3. σ xy z 1. R(cos θ, sin θ, 0 ds = R dθ E(z = 2π 0 1 (0, 0, z R(cos θ, sin θ, 0 λr dθ 4πε 0 (R 2 + z 2 3/2 = 1 2ε 0 Rλ(0, 0, z (R 2 + z 2 3/2 2. r dr σdr E(z = = = = R 0 1 r(0, 0, z σ dr 2ε 0 (r 2 + z 2 3/2 (0, 0, zσ 2ε 0 (0, 0, zσ [ 2ε 0 (0, 0, zσ 2ε 0 3. R E(z = R 0 r dr (r 2 + z 2 3/2 (z 2 + r 2 1/2] R 0 ( 1 z 1 R2 + z 2 (0, 0, 1σ 2ε 0

9 E A s ε A s ε 0 q r E = q 4πε 0r 2 r πr 2 q Nq E = q 4πε 0 r 2 = Nq 4πr 2 N = 1/ε

10 58 2 I dω ds dω dω = d S r r 3 (2.7 d S ds r 0 4πr0 2 r2 0 4π dw PˆÊ r n q ds 2.3 q S E d S

11 S E ds = q r 4πε 0 r 3 d S = q r ds r 3 = q 4πε 0 S 4πε 0 S dω S }{{} 4π = q/ε 0 (2.8 S q dω = 0 S S E d S = 0 ε 0 S E d S = { q q S 0 q S (2.9 ε 0 S E ds = ρ( r dv (2.10 V V S a ρ S E(r ε 0 E(rdS = ε 0 E(r ds = ε 0 E(r4πr 2 S S S q(r q(r = 4π 3 r3 ρ r < a 4π 3 a3 ρ r > a

12 60 2 I q dw PˆÊ r n q E ds n1 E 1 q q n 2 E 2 PˆÊ 2.4 ρ r 3ε E(r = 0 ρ a 3 3ε 0 r 2 r < a r > a λ l λl r

13 r E(r = λ 2πε 0 r 2πrlE(r = λl ε σ ±z 1 L σl 2 /ε 0 = 2E(zL 2 E(z = σ/(2ε R 1, R 2 σ 1, σ 2 r l

14 62 2 I 0 r < R 1 2πrlε 0 E(r = 2πR 1 lσ 1 R 1 < r < R 2 2π(R 1 σ 1 + R 2 σ 2 l R 2 < r E(r = 0 r < R 1 R 1σ 1 ε 0r R 1 < r < R 2 R 2 < r R 1σ 1+R 2σ 2 ε 0r R ρ { πr 2πrlε 0 E(r = 2 ρl r < R πr 2 ρl r > R E(r = { ρ 2ε 0 r ρ R 2 2ε 0 r r < R r > R r F ( r A P F ( r

15 P W W (P = P A ( F ( r d r (2.11 W (P P F ( r C 1, C 2 A P ( F ( r d r = C 1 ( F ( r d r C 2 (2.12 C 1 F ( r d r = F ( r d r + C 1 C 2 F ( r d r C 2 F ( r d r (2.13 C 1 C 2 A P A C F ( r d r = 0 (2.14 r ϕ( r C F ( r = ϕ( r (2.15 (ϕ( r + δ r ϕ( r = F δ r (2.16

16 64 2 I q q F ( r = 1 qq 4πε 0 r 2 r r ϕ( r = 1 4πε 0 q r (2.17 (2.18 F ( r = { ϕ( r}q (2.19 ϕ( r ϕ( r = 1 ρ( r 4πε 0 r r dv (2.20 V q q ϕ( r = r E( r d r (2.21 ϕ( r = r ϕ( r = δ r E δ r = 0 (2.22 J/C V

17 R σ E(r = { σr 2 ε 0 1 r 2 r > R 0 r < R ϕ(r = = = r E(r dr R { σr 2 1 ε 0 r σr 2 1 ε 0 R r σr 2 ε 0 1 r 2 dr σr 2 1 ε 0 r 2 dr r > R r < R r R r > R 0 dr r < R a ρ ρ a 3 E(r = 3ε 0 r 2 r > a ρ r r < a 3ε 0 E(r r

18 66 2 I E(r 0 a 2.5 r ϕ(r = = = r a E(rdr r ρ a 3 3ε 0 r 2 dr ρ a 3 3ε 0 r 2 dr + ρ a 3 3ε 0 r ρ 3a 2 r 2 3ε 0 2 a r r > a r < a ρ 3ε 0 rdr r > a r < a d q, q (0, 0, d/2, (0, 0, d/2 ( ϕ( r = q 1 4πε 0 x2 + y 2 + (z d/2 2

19 φ(r 0 a r x2 + y 2 + (z + d/2 2 q 4πε 0 x2 + y 2 + z 2 ( (1 + = qd 4πε 0 z r 3 zd/2 x 2 + y 2 + z 2 (1 zd/2 x 2 + y 2 + z q 1, q 2 r 1, r 2 q 1 q 2 ϕ 1 ( r 2 = 1 q 1 4πε r 2 r 1 (2.23

20 68 2 I U = 1 q 1 q 2 4πε r 2 r 1 (2.24 U = 1 4πε n (i,j q i q j r j r i (2.25 n (i,j n U = 1 2 n ϕ iq i (2.26 i=1 ϕ i = 1 4πε 0 n j( i q j r i r j (2.27 ϕ i q i 1/2 2 U = 1 ϕ( rρ( rdv ( ϕ( r = 1 ρ( r 4πε 0 r r dv (2.29 U = 1 2 ρ( rρ( r 4πε 0 r r dv dv ( R ρ 0

21 r ρ dr 4πr 2 ρdr ρr2 3ε W = R 0 = 4πρ2 3ε 0 ρr 2 4πr 2 ρdr 3ε 0 R 0 = 4πρ2 15ε 0 R 5 r 4 dr V 2 1 ev 1 ev J m ev 1 ev = A s 1V = J ( J = = 14.4 ev 10 ev

22 70 2 I R Q 0 Q Q 0 q 4πε 0 R dq = Q2 8πε 0 R ±q a ( 2q2 4πε 0 a + 2q2 2a 2q2 3a q2 ( 1 i+1 4πε 0 a i i=1 = q2 4πε 0 a log ±q d = r + r p = qd p p = lim qd ( r + r ( r + r = p lim d 0 d d 0 d (2.31

23 ϕ( r = 1 4πε 0 p r r 3 (2.32 n q i r i (i = 1 n i r i = 0 r r r i = ( r r i ( r r i = r 2 2 r r i + r i 2 r r i 1 r r i 1 ( 1 2 r i r r r 2 1 ( 1 + r i r r r 2 ϕ( r = 1 n q i 4πε 0 r r i 1 4πε 0 = 1 4πε 0 i=1 n i=1 n i=1 q i r ( 1 + r i r r 2 q i r + 1 4πε 0 1/2 n i=1 q i r i r r 3 = 1 4πε 0 Q r + 1 4πε 0 P r r 3 (2.33 Q = P = n q i (2.34 i=1 n q i r i (2.35 i=1

24 72 2 I Q P q, 2q, q d 2. 4 ±q 1 d 1. 2 p = q(0, 0, d (0, 0, d/2, (0, 0, d/2 ϕ( r = 1 4πε 0 = ( p ( r (0, 0, d/2 r (0, 0, d/2 3 p ( r (0, 0, d/2 + r (0, 0, d/ πε 0 r 3 d 1 ( p ( r (0, 0, d/2(1 + 3dz/2 r 2 + p ( r + (0, 0, d/2(1 3dz/2 r 2 ϕ( r = = 1 4πε 0 r 3 1 4πε 0 qr 3 ( p (0, 0, d p r 3dz ( p 2 3 ( p r2 r p = ±q(0, d, 0 (d/2, 0, 0, ( d/2, 0, 0 ϕ( r = 1 ( p ( r (d/2, 0, 0 4πε 0 r (d/2, 0, 0 3 p ( r ( d/2, 0, 0 r ( d/2, 0, 0 3 r 2

25 d 1 ϕ( r = 1 4πε 0 r 3 ( p ( r (d/2, 0, 0(1 + 3dx/2 r 2 p ( r + (d/2, 0, 0(1 3dx/2 r 2 ( 1 = 4πε 0 r 3 p (d, 0, 0 + p r 3dx r 2 = 3qd2 xy 4πε 0 r v( r S v( r ds S f( r v( r ds = f( r dv S V V S E D = ε 0E (2.36

26 74 2 I S D ds = V ρ( rdv (2.37 ρ( rdv S V V v D f ρ D = 0 v 0 c v d s 0 c c D d s = 0 (2.38 c 2.3

27 S D( r ds = ρ( rdv V D( rdv = ρ( rdv V V V D( r = ρ( r ( R ρ ρ( r = { ρ r R 0 r > R E( r = { ρ 3ε 0 r ρr 3 r 3ε 0 r 3 r R r > R E( r

28 76 2 I R ρ { ρ x ρ( r = 2 + y 2 R 2 0 x 2 + y 2 > R 2 z L E( r = { ρ 2ε 0 (x, y, 0 x 2 + y 2 R 2 (x,y,0 x 2 +y 2 x 2 + y 2 > R 2 ρr 2 2ε 0 E( r C E( r d s = 0 ( E( r ds = E( r d s S C

29 C E( r = 0 ( F x = 2Axz, F y = 2Ayz, F z = A(x 2 + y 2 2z 2 2. F x = A(y 2 + z 2, F y = A(x 2 + z 2, F z = A(x 2 + y 2 3. F x = 2Axy, F y = A(x 2 y 2, F z = 0 1. F = 0 F = 0 ϕ( r = A ( (x 2 + y 2 z (2/3z 3 2. F 0 3. F = 0 F = 0 ϕ( r = A ( x 2 y y 3 / ϕ( r E( r E( r = ( ϕ( r = 0

30 78 2 I 2 ϕ( r = 1 ε 0 ρ( r ( ϕ( r = 0 (2.42 = q ϕ( r = q 4πε 0 r 2.3.5

31 ϕ( r = Ae κr r 1. r = r ϕ( r = A( 1r 2 r r e κr + A r ( κe κr r r ( ϕ( r = ρ( r = ε 0 2 ϕ( r = A r 3 e κr (1 + κr r ( ( Ar 3 e κr (1 + κr r + ( A ( r 3 e κr (1 + κr r + ( Ar ( 3 e κr (1 + κr r ( + A ( r 3 e κr (1 + κr r = κ 2 A e κr r 2. E( r = ϕ( r ρ = ε 0 κ 2 e κr r E( r = A r 3 e κr (1 + κr r

32 80 2 I δ 4πε 0 δ 2 Ae κδ δ 4πε 2 0 A 3. 0 ρ(r4πr 2 dr = 4πε 0 Aκ 2 re κr dr = 4πε 0 A ρ( r ϕ( r ψ( r (ϕ( r + φ( r = ϕ( r + φ( r = 1 ρ( r ε 0 ϕ( r + φ( r

33 ϕ 1 ( r, ϕ 2 ( r ϕ 1 ( r = ϕ 2 ( r = 1 ε 0 ρ( r ϕ 1 ( r = ϕ 2 ( r = ϕ 0 φ( r = ϕ 1 ( r ϕ 2 ( r φ( r = 0 ϕ 1 ( r = ϕ 2 ( r ( 10 8 Ωm (10 5 Ωm Ωm

34 82 2 I ε 0 E S = σ S (2.43 σ E = σ n (2.44 ε 0 n DS V m km σ = ε 0 E

35 Q = π( = A s A q 1 q 2 q 1 q d ρ 1. x E(x 2. f = d 0 ρe(xdx 1. x x < 0 E = ρd/ε 0 x > d 0 0 < x < d E(x = (ρ/ε 0 x + C C x = 0 0 < x < d E(x = ρ (x d ε

36 84 2 I 2. f = d 0 ρe(xdx = ρ2 ε d 0 (x ddx = ρ2 d 2 2ε ρ( r ϕ ϕ 1 ( r ϕ 2 ϕ 2 ( r 1 2 ϕ 1, ϕ 2 ϕ( r = ϕ 1 ( r + ϕ 2 ( r (2.45 ϕ( r 1 ϕ 1 ( r + ϕ 2 ( r = ϕ ϕ( r d q 1.

37 q q q ϕ( r ϕ( r = q ( 1 4πε 0 r (0, 0, d 1 r (0, 0, d ϕ(x, y, 0 = 0 z = 0 E( r = ϕ( r = q ( (x, y, z d 4πε 0 (x 2 + y 2 + (z d 2 3/2 (x, y, z + d (x 2 + y 2 + (z + d 2 3/2 E(x, y, 0 = ϕ( r = q 2πε 0 (0, 0, d (x 2 + y 2 + d 2 3/2 σ = ε 0 E

38 86 2 I 4. (0, 0, z q 2 F = (0, 0, 1 4πϵ 0 (2z 2 W = d = q2 16πε 0 d q 2 4πϵ 0 (2z 2 dz E 0 R 1. ϕ 0 ( r = E 0 r 2. ϕ 1 ( r = 1 p r 4πε 0 r r = R n ϕ( r = E 0 R n + 1 p R n 4πε 0 R 3

39 = ( E p 0 + 4πε 0 R 3 R n 3. n = 1 p = 4πε 0 R 3 E0 ϕ( r = E 0 r + 1 4πε 0 R 3 E0 r 4πε 0 r 3 = (1 R3 E r 3 0 r 4. r R ϕ( r = 3R 3 r 4 r E r 0 r (1 R3 E r 3 0 r = R n ϕ( r = 3( E 0 n n ε E p = 4πε 0 R 3 E d λ

40 88 2 I x = 0 E r = (0, y, z 2πl r (0, 0, d ε 0 E l = λl E l ( r = λ r (0, 0, d 2πε 0 r (0, 0, d 2 = λ 2πε 0 (0, y, z d y 2 + (z d 2 E m E m ( r = λ r (0, 0, d 2πε 0 r (0, 0, d 2 = λ (0, y, z + d 2πε 0 y 2 + (z + d 2 z = 0 E( r = E l ( r + E m ( r = λ 2πε 0 λ π ( (0, y, z d (0, y, z + d y 2 + (z d 2 y 2 + (z + d 2 E( r = λ (0, 0, d πε 0 y 2 + d 2 d y 2 +d 2

41 q ϕ C Q = Cϕ (2.46 C/V F U = 1 2 qϕ = 1 2 Cϕ2 = 1 2C q2 (2.47 Q φ ϕ q 1, q 2 q 1 = C 11 ϕ 1, q 2 = C 21 ϕ 1 (2.48

42 90 2 I ϕ 2 q 1, q 2 q 1 = C 12 ϕ 2, q 2 = C 22 ϕ 2 ( ϕ 1, ϕ 2 ( ( ( q1 C11 C = 12 ϕ1 q 2 C 21 C 22 ϕ 2 C ij (2.50 C 12 = C 21 ( a a Q Q = 4πε 0 aϕ Q = 4 3 πa3 ρ 4πε 0 a q 1, q 2 ϕ 1, ϕ 2 ( ( ( q1 C11 C = 12 ϕ1 q 2 C 21 C 22 ϕ 2

43 U = 1 2 (q 1ϕ 1 + q 2 ϕ δq 1 δu δu = U q 1 δq 1 4. δq δq 2 δu = ϕ 1 δq 1 1. ( ϕ1 ϕ 2 ( 1 ( C11 C = 12 q1 C 21 C 22 q 2 ( 1 C22 C = 12 C 11 C 22 C 12 C 21 C 21 C ϕ 1 oϕ 2 ( q1 q 2 U = C 22q 2 1 (C 12 + C 21 q 1 q 2 + C 11 q 2 2 2(C 11 C 22 C 12 C δu = C 22q 1 C 12+C 21 2 q 2 C 11 C 22 C 12 C 21 δq δu = C 22q 1 C 12 q 2 C 11 C 22 C 12 C 21 δq 1 δu C 12 = C 21

44 92 2 I R 2 r 1. Q U = (1/2CQ 2 = Q 2 /(8πε 0 R 2. 2 U = 2(1/2C(Q/2 2 = Q 2 /(16πε 0 R R 1 R 2 R 3 q 1, q 2 E(r = { q1 4πϵ 0r R 2 1 < r < R 2 R 3 < r q 1 +q 2 4πϵ 0 r 2

45 R 1, R 3 ϕ 1, ϕ 2 ϕ 2 = q 1 + q 2 R 3 4πϵ 0 r 2 dr = q 1 + q 2 4πϵ 0 R 3 R2 q 1 ϕ 1 = ϕ 2 + R 1 4πϵ 0 r 2 dr = q 1 + q 2 4πϵ 0 R 3 + q 1 4πϵ 0 ( 1 R 1 1 R 2 q 1, q 2 ( q1 q 2 ( R1 R 2 R = 4πϵ 2 R 1 R 1R 2 R 2 R 1 0 R1R2 R 2 R 1 R 3 + R1R2 R 2 R 1 ( ϕ1 ϕ S d σ +Q A -Q B 2.9 E = σ ε 0 ϕ ϕ = B A Edx = σd ε 0 = d ε 0 S Q

46 94 2 I Q = σs C = ε 0S d R 1 R q 1 = q 2 = q ϕ 1 ϕ 2 = q ( 1 1 4πϵ 0 R 1 R 2 C = 4πϵ 0R 1 R 2 R 2 R A 3 a, b, c d 1, d 2 a c b Q a c ab cb E ab d 1 = E cb d 2 b a b c σ ab = ε 0 E ab, σ cb = ε 0 E cb b Q = (σ ab + σ cb A d 2 d 1 σ ab = Q, σ cb = Q, A d 1 + d 2 A d 1 + d 2 E ab = Q d 2, E cb = Q d 1 ε 0 A d 1 + d 2 ε 0 A d 1 + d 2

47 ϕ q = Cϕ q q + q ϕ q 0 q W U = q 0 ϕdq = q 0 q C dq = 1 q 2 2 C (2.52 φ φ+ φ φ q q+dq q φ q Dq 2.10 U = 1 2 ε 0 ( 2 q Ad = 1 ε 0 A 2 ε 0E 2 Ad (2.53 A, d Ad u 0 u 0 = U Ad = 1 2 ε 0E 2 = 1 2 DE = 1 2ε 0 D 2 (2.54

48 96 2 I q R E( r = q r 4πϵ 0 r 3 u( r = (1/2ε 0 E( r 2 U = R = q2 8πε 0 R q 2 32π 2 ε 0 r 4 4πr2 dr R R 1 R 2 R2 U = 32π 2 ε 0 r 4 4πr2 dr ( = q πε 0 R 1 R 2 R 1 q

49 ±q 2d q d A d C = ε 0 A/d Q U(d = dq2 2ε 0 A F (d = d U(d = Q2 2ε 0 A d 2. E = σ/ε 0 = Q/(Aε 0 F = (1/2E(σA = Q 2 /(2ε 0 A 1/2 2

50 98 2 I C 1, C 2,..., C n C C = C 1 + C C n (2.55 Q V = Q + Q + + Q ( 1 = Q (2.56 C 1 C 2 C n C 1 C 2 C n 1 C = (2.57 C 1 C 2 C n H + 1 F 1 F = = C

51 S 0 S i( r d S = 0 (2.58 i( r = 0 ( I ϕ I = ϕ R R (2.60 R l S R = ρ l S (2.61 ρ σ i( r = σ E( r (2.62

52 100 2 I σ 1, σ 2 i E 1, E 2 σ 1 E 1 = σ 2 E 2 σ Sε(E 2 E 1 = Sσ ( 1 σ = εi 1 σ 2 σ i( r = 0 (2.63

53 E( r = 0 (2.64 i( r = σ E( r (2.65 D( r = 0 E( r = 0 D( r = ε 0E( r D i, σ ε 0 *1 E R 1, R 2 L σ I 1. r r i(r = I/(2πrL *1

54 102 2 I 2. E(r = i(r/σ 3. ϕ = R2 R 1 = I 2πLσ E(rdr = I 2πLσ log R2 1 R 1 ( R2 r dr R 1 4. R = ϕ/i = 1 2πLσ log ( R2 R σ 2 a R a ϕ 2 ±q ±q/(4πϵ 0 a ϕ = 2q/(4πϵ 0 a

55 ε 0 σ, q I I = 2πσa ϕ R = 1/(2πσa q m q m F = 1 q m q m r 4πµ 0 r 2 r, (2.66 µ 0 Wb=J/A H q m F = q m H q m q m l p m p m p m = q m l S

56 104 2 I N H N = p m H (2.67 l q m N q S -q m H B q v F = q v B (2.68 v E F = q( E + v B (2.69 v = 0

57 E = E + v B B I dl df t d l = tdl df = Id l B (2.70 Id l = i q i v i dl z y f v B x z B = (0, 0, B v = (0, v, 0 q < 0

58 106 2 I m qvb 1 2 mv2 y v R F F v x 2.13 R ω v R a Rω 2 Rω 2 = q vb 2πR R T = m v R = mv q B, T = 2πm q B ( a I B N

59 n ABCD z AB = a i, BC = a j, CD = a i, DA = a j AB CD BC DA N = r F 0 N = (0, a/2, 0 (ai i B + (a/2, 0, 0 (ai j B + (0, a/2, 0 ( ai i B + ( a/2, 0, 0 ( ai j B ( = Ia2 j (0, B z, B y + i (B z, 0, B x 2 j (0, B z, B y + i (B z, 0, B x = Ia 2 ( B y, B x, 0 = Ia 2 n B a ( b c ( a b c cm 0.8 A 0.02 N 1 IB a F = IBa B = 0.02/( = 0.5 T

60 108 2 I a I xy xy B( r a xy r 0 = (x 0, y 0, 0 B z ( r = B z ( r 0 + [ x B z ( r] r= r0 (x x 0 + [ y B z ( r] r= r0 (y y 0 y 2 x y0+a/2 y 0 a/2 y0 +a/2 y 0 a/2 IB z (x 0 + a/2, y, 0dy ( IB z (x 0 a/2, y, 0dy F x ( F x = I B z (x 0, y 0, 0 + x B z (x 0, y 0, 0 a a ( 2 I B z (x 0, y 0, 0 x B z (x 0, y 0, 0 a a 2 = I[ x B z ( r] r= r0 a 2 x 2 y F y F y = I[ y B z ( r] r= r0 a

61 E = i B nq n, q B i = nq v F = q v B E ( 0 = q E + v B E = v B = i B nq I d s r d B d B = µ 0I 4πr 2 d s r r (2.72 B( r = µ 0 i( r ( r r 4π r r 3 dv (2.73

62 110 2 I z y I ds r q x dh 2.14 H = 1 µ 0 B H( r = 1 i( r ( r r 4π r r 3 dv ( (0, 0, (0, 0, I dz k (a, 0, 0 d H d H = I 4πr 2 (dz k r r k

63 r = (a, 0, z d H(a, 0, 0 = I (a, 0, z 4π (a 2 + z 2 (dz(0, 0, 1 a2 + z 2 (a, 0, 0 d H = H d H x z y H H = = I 4π Ia 4π(a 2 + z 2 π/2 = I 4πa π/2 π/2 π/2 3/2 dz a a 3 (1 + tan 2 θ 3/2 cos θdθ adθ cos 2 θ z = a tan θ H = I 2πa a I O H xy H( r = I t( r ( r r 4π r r 3 ds r = (a cos θ, a sin θ, 0 t( r = ( sin θ, cos θ, 0 r = (0, 0, z ds = adθ

64 112 2 I θ 0 2π H( r = I ( sin θ, cos θ, 0 ( a cos θ, a sin θ, z 4π ( ( a cos θ2 + a 2 sin 2 θ + z 2 ds 3/2 = I 2π (z cos θ, z sin θ, a adθ 4π 0 (z 2 + a 2 3/2 I = 4π (z 2 + a 2 3/2 2π Ia 2 = (0, 0, 1 2 (z 2 + a 2 3/2 0 (z cos θ, z sin θ, aadθ a xy y I z (0, 0, z (0, y, 0 x a/2 a/ z (0, 0, z d H = (I/ady 2π y 2 + z 2

65 H(z d H = (I/ady 2π (1, 0, 0 (0, y, z = Idy (0, z, y y 2 + z 2 y2 + z 2 2πa (y 2 + z 2 H(z = d H = I a/2 (0, z, y 2πa a/2 (y 2 + z 2 dy z 0 y = z tan θ, z tan θ 0 = a/2 I H( r = (0, z, 0 2πaz = (0, 1, 0 Iθ 0 πa θ0 θ 0 dθ a I n r(r a H( r = 1 4πr 3 ( m 3( m r r r 2 (2.75 m = IS n (S S = πa 2 *2 n = (0, 0, 1 r xz H( r = I t( r ( r r 4π r r 3 ds *2 m MKSA SI

66 114 2 I r = (a cos θ, a sin θ, 0 t( r = ( sin θ, cos θ, 0 r = (x, 0, z ds = adθ θ 0 2π H( r = I ( sin θ, cos θ, 0 (x a cos θ, a sin θ, z 4π ( (x a cos θ2 + a 2 sin 2 θ + z 2 ds 3/2 = I (z cos θ, z sin θ, x cos θ + a ds 4π (x 2 + z 2 + a 2 3/2 2ax cos θ ( 1 + I (z cos θ, z sin θ, x cos θ + a 4π (x 2 + z 2 + a 2 3/2 H x ( r = I 2π 0 z cos θ ( 1 + 3ax cos θ x 2 +z 2 +a 2 adθ 4π (x 2 + z 2 + a 2 3/2 3xz Iπa 2 x = 2 +z 2 +a 2 Iπa2 3xz 4π (x 2 + z 2 + a 2 3/2 r 3 r 2 I ( 2π 3ax cos θ z sin θ x H y ( r = 2 +z 2 +a adθ 2 = 0 4π (x 2 + z 2 + a 2 3/2 H z ( r = 3ax cos θ x 2 +z 2 +a 2 ds I ( 2π 0 ( x cos θ + a 3ax cos θ 1 + x 2 +z 2 +a adθ 2 4π (x 2 + z 2 + a 2 3/2 = I 2π 0 (a 3ax2 cos 2 θ x 2 +z 2 +a 2 adθ 4π (x 2 + z 2 + a 2 3/2 = Iπa 2 x 2 + 2z 2 4π (x 2 + z 2 + a 2 3/2 x 2 + z 2 + a 2 Iπa2 x 2 + 2z 2 r 3 r 2

67 n = (0, 0, 1 z y C H d r C H d r = 0 C I C I C (2.76 I C dh d r 2.15 H( r d r = i( r ds (2.77 C S

68 116 2 I H( r = i( r ( R I H(r r { 0 r < R H(r = r > R I 2πr H = 0 H 1. H = ( A(x 2 + y 2 y, A(x 2 + y 2 x, A 2. A (z > d H x = A z (d z d d A (z < d, H y = A, H z = 0 1. H = 2Axy + 2Axy + 0 = 0

69 H = i j k x y z A(x 2 + y 2 y A(x 2 + y 2 x A = (0, 0, 4A(x 2 + y 2 H = 0 H = 0 (z > d (0, A/d, 0 (d z d 0 (z < d, j z x y yz y z 1. z 0 0 y a Ha ( Ha = ja H = j/2

70 118 2 I n I 1 a Ha = (nai H = ni R I 1. i( r i( r = I πr 2 2. (x, y, z (x 0, y 0, z 0 dh = i 4πr 2 (dz (x 0 x, y 0 y, z 0 zdxdy k (x0 x 2 + (y 0 y 2 + (z 0 z 2

71 = i ( (y 0 y, x 0 x, 0dxdydz 4πr 2 (x0 x 2 + (y 0 y 2 + (z 0 z 2 z (x 0, y 0, z 0 (x 0, 0, 0 y d H = i (y, x 0 x, 0dxdydz 4πr 2 (x0 x 2 + y 2 + z 2 (x, y, z d H = i ( y, x 0 x, 0dxdydz 4πr 2 (x0 x 2 + y 2 + z 2 y y y 3. H r { πr H d r = 2πrH(r = 2 i r < R I r > R H(r = 1 2 ir = 1 I 2 πr 2 r I 2πr r < R r > R

72 120 2 I E( r E( r = ϕ( r ϕ( r E( r = 0 *3 B( r = 0 (2.79 B( r = µ 0 i( r (2.80 B( r = A( r ( * A( r E( r ϕ( r c ϕ ( r = ϕ( r + c E( r *3 *4 ( a = 0

73 χ( r ( χ( r = 0 *5 A = A + χ( r (2.82 A i( r A( r 2.80 B( r = A( r ( A( r = ( 2 A( r + A( r (2.83 A( r = 0 2 A( r = µ0 i( r (2.84 A( r = µ 0 4π i( r r r dv (2.85 A( r *6 *5 *6 2 ϕ( r = ρ( r ϕ( r = 1 4π ρ( r r r dv

74 122 2 I A( r A( r = 0 A( r = µ 0 4π = µ 0 4π ( i( r 1 dv r r ( i( r 1 r r dv (2.86 = ( x, y, z = ( x, y, z ( i( r r r = i( r r r ( + i( r 1 r r (2.87 A( r = µ 0 4π i( r r r dv µ 0 4π ( i( r r r dv (2.88 i( r = 0 2 A( r = A1 = ( By, 0, 0, 2. A2 = (0, Bx, 0 3. A3 = ( 1 2 By, 1 2Bx, 0

75 A i = (0, 0, B I r A( r (0, 0, l (0, 0, l l r d ( dx log a2 + x x = a2 + x 2 A( r = µ 0I 4π l l (0, 0, 1 r r dz r = (x, y, z, r = (0, 0, z A x ( r = A y ( r = 0 A z ( r x x y y l z A z ( r µ 0I 4π l l 1 x2 + y 2 + (z z 2 dz = µ 0I 4π [log( x 2 + y 2 + (z z 2 + (z z] l l ( µ 0I 4π log x2 + y 2 + l 2 + l x2 + y 2 + l 2 l ( µ 0I 4π log l (x 2 + y 2 /l 2 1 x 2 +y 2 2 l µ ( 0I 4l 2 4π log x 2 + y 2

76 124 2 I ( = µ 0I 2π log 2l x2 + y 2 z B x = y A z ( r = µ 0I 2πr yr = µ 0I 2πr B y = y A z ( r = µ 0I 2πr xr = µ 0I 2πr l x r y r R σ 0 x v 0 xy r r R z > σ 0 x v 0 i 0 i 0 = σ 0 v 0 2. A( r = µ 0 i 0 4π (1, 0, 0 r r dx dy

77 r R r = (0, 0, z y,z x A x (z = µ 0 i 0 4π 1 x 2 + y 2 + z 2 dx dy dx dy rdθdr 3. A x (z = µ 0 i 0 4π = µ 0 i 0 2 = µ 0 i 0 2 2π 0 dθ R 0 [ r2 + z 2 ] R 1 rdr r2 + z 2 0 ( R2 + z 2 z B x (z = y A z z A y = 0 B y (z = z A x x A z = µ ( 0 i 0 z 2 R2 + z 1 2 µ 0 i 0 2 B z (z = x A y y A x = R σ 0 v

78 126 2 I 1. R σ r E(r = 0 (r < R E(r = σr/(ε 0 r (r > R { σr ε ϕ(r = 0 log R (r < R σr ε 0 log r (r > R z ε 0 1/µ 0, σ I/(2πR A z (r = 2. B = A { µ 0 I 2π µ 0I 2π log R (r < R log r (r > R x y,z B x = y A z ( r z A y ( r ( i z ( r 1 y = µ 0 4π = µ 0 4π = µ 0 4π ( i z ( r (y y r r i y( r 1 z r r dv r r 3 i y( r (z z r r 3 dv { i( r ( r r } x r r 3 dv

1 I 1.1 ± e = = - = C C MKSA [m], [Kg] [s] [A] 1C 1A 1 MKSA 1C 1C +q q +q q 1

1 I 1.1 ± e = = - = C C MKSA [m], [Kg] [s] [A] 1C 1A 1 MKSA 1C 1C +q q +q q 1 1 I 1.1 ± e = = - =1.602 10 19 C C MKA [m], [Kg] [s] [A] 1C 1A 1 MKA 1C 1C +q q +q q 1 1.1 r 1,2 q 1, q 2 r 12 2 q 1, q 2 2 F 12 = k q 1q 2 r 12 2 (1.1) k 2 k 2 ( r 1 r 2 ) ( r 2 r 1 ) q 1 q 2 (q 1 q 2

More information

120 9 I I 1 I 2 I 1 I 2 ( a) ( b) ( c ) I I 2 I 1 I ( d) ( e) ( f ) 9.1: Ampère (c) (d) (e) S I 1 I 2 B ds = µ 0 ( I 1 I 2 ) I 1 I 2 B ds =0. I 1 I 2

120 9 I I 1 I 2 I 1 I 2 ( a) ( b) ( c ) I I 2 I 1 I ( d) ( e) ( f ) 9.1: Ampère (c) (d) (e) S I 1 I 2 B ds = µ 0 ( I 1 I 2 ) I 1 I 2 B ds =0. I 1 I 2 9 E B 9.1 9.1.1 Ampère Ampère Ampère s law B S µ 0 B ds = µ 0 j ds (9.1) S rot B = µ 0 j (9.2) S Ampère Biot-Savart oulomb Gauss Ampère rot B 0 Ampère µ 0 9.1 (a) (b) I B ds = µ 0 I. I 1 I 2 B ds = µ 0

More information

18 2 F 12 r 2 r 1 (3) Coulomb km Coulomb M = kg F G = ( ) ( ) ( ) 2 = [N]. Coulomb

18 2 F 12 r 2 r 1 (3) Coulomb km Coulomb M = kg F G = ( ) ( ) ( ) 2 = [N]. Coulomb r 1 r 2 r 1 r 2 2 Coulomb Gauss Coulomb 2.1 Coulomb 1 2 r 1 r 2 1 2 F 12 2 1 F 21 F 12 = F 21 = 1 4πε 0 1 2 r 1 r 2 2 r 1 r 2 r 1 r 2 (2.1) Coulomb ε 0 = 107 4πc 2 =8.854 187 817 10 12 C 2 N 1 m 2 (2.2)

More information

i

i 009 I 1 8 5 i 0 1 0.1..................................... 1 0.................................................. 1 0.3................................. 0.4........................................... 3

More information

1 B () Ver 2014 0 2014/10 2015/1 http://www-cr.scphys.kyoto-u.ac.jp/member/tsuru/lecture/... 1. ( ) 2. 3. 3 1 7 1.1..................................................... 7 1.2.............................................

More information

Gmech08.dvi

Gmech08.dvi 145 13 13.1 13.1.1 0 m mg S 13.1 F 13.1 F /m S F F 13.1 F mg S F F mg 13.1: m d2 r 2 = F + F = 0 (13.1) 146 13 F = F (13.2) S S S S S P r S P r r = r 0 + r (13.3) r 0 S S m d2 r 2 = F (13.4) (13.3) d 2

More information

( : December 27, 2015) CONTENTS I. 1 II. 2 III. 2 IV. 3 V. 5 VI. 6 VII. 7 VIII. 9 I. 1 f(x) f (x) y = f(x) x ϕ(r) (gradient) ϕ(r) (gradϕ(r) ) ( ) ϕ(r)

( : December 27, 2015) CONTENTS I. 1 II. 2 III. 2 IV. 3 V. 5 VI. 6 VII. 7 VIII. 9 I. 1 f(x) f (x) y = f(x) x ϕ(r) (gradient) ϕ(r) (gradϕ(r) ) ( ) ϕ(r) ( : December 27, 215 CONTENTS I. 1 II. 2 III. 2 IV. 3 V. 5 VI. 6 VII. 7 VIII. 9 I. 1 f(x f (x y f(x x ϕ(r (gradient ϕ(r (gradϕ(r ( ϕ(r r ϕ r xi + yj + zk ϕ(r ϕ(r x i + ϕ(r y j + ϕ(r z k (1.1 ϕ(r ϕ(r i

More information

2.4 ( ) ( B ) A B F (1) W = B A F dr. A F q dr f(x,y,z) A B Γ( ) Minoru TANAKA (Osaka Univ.) I(2011), Sec p. 1/30

2.4 ( ) ( B ) A B F (1) W = B A F dr. A F q dr f(x,y,z) A B Γ( ) Minoru TANAKA (Osaka Univ.) I(2011), Sec p. 1/30 2.4 ( ) 2.4.1 ( B ) A B F (1) W = B A F dr. A F q dr f(x,y,z) A B Γ( ) I(2011), Sec. 2. 4 p. 1/30 (2) Γ f dr lim f i r i. r i 0 i f i i f r i i i+1 (1) n i r i (3) F dr = lim F i n i r i. Γ r i 0 i n i

More information

21 2 26 i 1 1 1.1............................ 1 1.2............................ 3 2 9 2.1................... 9 2.2.......... 9 2.3................... 11 2.4....................... 12 3 15 3.1..........

More information

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e 7 -a 7 -a February 4, 2007 1. 2. 3. 4. 1. 2. 3. 1 Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e z

More information

II 2 II

II 2 II II 2 II 2005 yugami@cc.utsunomiya-u.ac.jp 2005 4 1 1 2 5 2.1.................................... 5 2.2................................. 6 2.3............................. 6 2.4.................................

More information

2.5 (Gauss) (flux) v(r)( ) S n S v n v n (1) v n S = v n S = v S, n S S. n n S v S v Minoru TANAKA (Osaka Univ.) I(2012), Sec p. 1/30

2.5 (Gauss) (flux) v(r)( ) S n S v n v n (1) v n S = v n S = v S, n S S. n n S v S v Minoru TANAKA (Osaka Univ.) I(2012), Sec p. 1/30 2.5 (Gauss) 2.5.1 (flux) v(r)( ) n v n v n (1) v n = v n = v, n. n n v v I(2012), ec. 2. 5 p. 1/30 i (2) lim v(r i ) i = v(r) d. i 0 i (flux) I(2012), ec. 2. 5 p. 2/30 2.5.2 ( ) ( ) q 1 r 2 E 2 q r 1 E

More information

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x [ ] IC. f(x) = e x () f(x) f (x) () lim f(x) lim f(x) x + x (3) lim f(x) lim f(x) x + x (4) y = f(x) ( ) ( s46). < a < () a () lim a log xdx a log xdx ( ) n (3) lim log k log n n n k=.3 z = log(x + y ),

More information

Note.tex 2008/09/19( )

Note.tex 2008/09/19( ) 1 20 9 19 2 1 5 1.1........................ 5 1.2............................. 8 2 9 2.1............................. 9 2.2.............................. 10 3 13 3.1.............................. 13 3.2..................................

More information

A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B

A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B 9 7 A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B x x B } B C y C y + x B y C x C C x C y B = A

More information

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) (

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) ( 6 20 ( ) sin, cos, tan sin, cos, tan, arcsin, arccos, arctan. π 2 sin π 2, 0 cos π, π 2 < tan < π 2 () ( 2 2 lim 2 ( 2 ) ) 2 = 3 sin (2) lim 5 0 = 2 2 0 0 2 2 3 3 4 5 5 2 5 6 3 5 7 4 5 8 4 9 3 4 a 3 b

More information

2. 2 P M A 2 F = mmg AP AP 2 AP (G > : ) AP/ AP A P P j M j F = n j=1 mm j G AP j AP j 2 AP j 3 P ψ(p) j ψ(p j ) j (P j j ) A F = n j=1 mgψ(p j ) j AP

2. 2 P M A 2 F = mmg AP AP 2 AP (G > : ) AP/ AP A P P j M j F = n j=1 mm j G AP j AP j 2 AP j 3 P ψ(p) j ψ(p j ) j (P j j ) A F = n j=1 mgψ(p j ) j AP 1. 1 213 1 6 1 3 1: ( ) 2: 3: SF 1 2 3 1: 3 2 A m 2. 2 P M A 2 F = mmg AP AP 2 AP (G > : ) AP/ AP A P P j M j F = n j=1 mm j G AP j AP j 2 AP j 3 P ψ(p) j ψ(p j ) j (P j j ) A F = n j=1 mgψ(p j ) j AP

More information

Gmech08.dvi

Gmech08.dvi 51 5 5.1 5.1.1 P r P z θ P P P z e r e, z ) r, θ, ) 5.1 z r e θ,, z r, θ, = r sin θ cos = r sin θ sin 5.1) e θ e z = r cos θ r, θ, 5.1: 0 r

More information

c y /2 ddy = = 2π sin θ /2 dθd /2 [ ] 2π cos θ d = log 2 + a 2 d = log 2 + a 2 = log 2 + a a 2 d d + 2 = l

c y /2 ddy = = 2π sin θ /2 dθd /2 [ ] 2π cos θ d = log 2 + a 2 d = log 2 + a 2 = log 2 + a a 2 d d + 2 = l c 28. 2, y 2, θ = cos θ y = sin θ 2 3, y, 3, θ, ϕ = sin θ cos ϕ 3 y = sin θ sin ϕ 4 = cos θ 5.2 2 e, e y 2 e, e θ e = cos θ e sin θ e θ 6 e y = sin θ e + cos θ e θ 7.3 sgn sgn = = { = + > 2 < 8.4 a b 2

More information

20 4 20 i 1 1 1.1............................ 1 1.2............................ 4 2 11 2.1................... 11 2.2......................... 11 2.3....................... 19 3 25 3.1.............................

More information

sec13.dvi

sec13.dvi 13 13.1 O r F R = m d 2 r dt 2 m r m = F = m r M M d2 R dt 2 = m d 2 r dt 2 = F = F (13.1) F O L = r p = m r ṙ dl dt = m ṙ ṙ + m r r = r (m r ) = r F N. (13.2) N N = R F 13.2 O ˆn ω L O r u u = ω r 1 1:

More information

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2 2005 9/8-11 2 2.2 ( 2-5) γ ( ) γ cos θ 2πr πρhr 2 g h = 2γ cos θ ρgr (2.1) γ = ρgrh (2.2) 2 cos θ θ cos θ = 1 (2.2) γ = 1 ρgrh (2.) 2 2. p p ρgh p ( ) p p = p ρgh (2.) h p p = 2γ r 1 1 (Berry,1975) 2-6

More information

i

i 007 0 1 i 0 1 0.1..................................... 1 0.................................................. 1 0.3................................ 3 0.4............................................. 3 1

More information

all.dvi

all.dvi 38 5 Cauchy.,,,,., σ.,, 3,,. 5.1 Cauchy (a) (b) (a) (b) 5.1: 5.1. Cauchy 39 F Q Newton F F F Q F Q 5.2: n n ds df n ( 5.1). df n n df(n) df n, t n. t n = df n (5.1) ds 40 5 Cauchy t l n mds df n 5.3: t

More information

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0 1 1 1.1 1.) T D = T = D = kn 1. 1.4) F W = F = W/ = kn/ = 15 kn 1. 1.9) R = W 1 + W = 6 + 5 = 11 N. 1.9) W b W 1 a = a = W /W 1 )b = 5/6) = 5 cm 1.4 AB AC P 1, P x, y x, y y x 1.4.) P sin 6 + P 1 sin 45

More information

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =,

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =, [ ] IC. r, θ r, θ π, y y = 3 3 = r cos θ r sin θ D D = {, y ; y }, y D r, θ ep y yddy D D 9 s96. d y dt + 3dy + y = cos t dt t = y = e π + e π +. t = π y =.9 s6.3 d y d + dy d + y = y =, dy d = 3 a, b

More information

δ ij δ ij ˆx ˆx ŷ ŷ ẑ ẑ 0, ˆx ŷ ŷ ˆx ẑ, ŷ ẑ ẑ ŷ ẑ, ẑ ˆx ˆx ẑ ŷ, a b a x ˆx + a y ŷ + a z ẑ b x ˆx + b

δ ij δ ij ˆx ˆx ŷ ŷ ẑ ẑ 0, ˆx ŷ ŷ ˆx ẑ, ŷ ẑ ẑ ŷ ẑ, ẑ ˆx ˆx ẑ ŷ, a b a x ˆx + a y ŷ + a z ẑ b x ˆx + b 23 2 2.1 n n r x, y, z ˆx ŷ ẑ 1 a a x ˆx + a y ŷ + a z ẑ 2.1.1 3 a iˆx i. 2.1.2 i1 i j k e x e y e z 3 a b a i b i i 1, 2, 3 x y z ˆx i ˆx j δ ij, 2.1.3 n a b a i b i a i b i a x b x + a y b y + a z b

More information

pdf

pdf http://www.ns.kogakuin.ac.jp/~ft13389/lecture/physics1a2b/ pdf I 1 1 1.1 ( ) 1. 30 m µm 2. 20 cm km 3. 10 m 2 cm 2 4. 5 cm 3 km 3 5. 1 6. 1 7. 1 1.2 ( ) 1. 1 m + 10 cm 2. 1 hr + 6400 sec 3. 3.0 10 5 kg

More information

Quz Quz

Quz Quz http://www.ppl.app.keo.ac.jp/denjk III (1969). (1977). ( ) (1999). (1981). (199). Harry Lass Vector and Tensor Analyss, McGraw-Hll, (195).. Quz Quz II E B / t = Maxwell ρ e E = (1.1) ε E= (1.) B = (1.3)

More information

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8)

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8) 4 4 ) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8) a b a b = 6i j 4 b c b c 9) a b = 4 a b) c = 7

More information

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x (

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x ( II (1 4 ) 1. p.13 1 (x, y) (a, b) ε(x, y; a, b) f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a x a A = f x (a, b) y x 3 3y 3 (x, y) (, ) f (x, y) = x + y (x, y) = (, )

More information

meiji_resume_1.PDF

meiji_resume_1.PDF β β β (q 1,q,..., q n ; p 1, p,..., p n ) H(q 1,q,..., q n ; p 1, p,..., p n ) Hψ = εψ ε k = k +1/ ε k = k(k 1) (x, y, z; p x, p y, p z ) (r; p r ), (θ; p θ ), (ϕ; p ϕ ) ε k = 1/ k p i dq i E total = E

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) =

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) = 1 9 8 1 1 1 ; 1 11 16 C. H. Scholz, The Mechanics of Earthquakes and Faulting 1. 1.1 1.1.1 : - σ = σ t sin πr a λ dσ dr a = E a = π λ σ πr a t cos λ 1 r a/λ 1 cos 1 E: σ t = Eλ πa a λ E/π γ : λ/ 3 γ =

More information

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi) 0. A A = 4 IC () det A () A () x + y + z = x y z X Y Z = A x y z ( 5) ( s5590) 0. a + b + c b c () a a + b + c c a b a + b + c 0 a b c () a 0 c b b c 0 a c b a 0 0. A A = 7 5 4 5 0 ( 5) ( s5590) () A ()

More information

128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds = 0 (3.4) S 1, S 2 { B( r) n( r)}ds

128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds = 0 (3.4) S 1, S 2 { B( r) n( r)}ds 127 3 II 3.1 3.1.1 Φ(t) ϕ em = dφ dt (3.1) B( r) Φ = { B( r) n( r)}ds (3.2) S S n( r) Φ 128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds

More information

l µ l µ l 0 (1, x r, y r, z r ) 1 r (1, x r, y r, z r ) l µ g µν η µν 2ml µ l ν 1 2m r 2mx r 2 2my r 2 2mz r 2 2mx r 2 1 2mx2 2mxy 2mxz 2my r 2mz 2 r

l µ l µ l 0 (1, x r, y r, z r ) 1 r (1, x r, y r, z r ) l µ g µν η µν 2ml µ l ν 1 2m r 2mx r 2 2my r 2 2mz r 2 2mx r 2 1 2mx2 2mxy 2mxz 2my r 2mz 2 r 2 1 (7a)(7b) λ i( w w ) + [ w + w ] 1 + w w l 2 0 Re(γ) α (7a)(7b) 2 γ 0, ( w) 2 1, w 1 γ (1) l µ, λ j γ l 2 0 Re(γ) α, λ w + w i( w w ) 1 + w w γ γ 1 w 1 r [x2 + y 2 + z 2 ] 1/2 ( w) 2 x2 + y 2 + z 2

More information

i 18 2H 2 + O 2 2H 2 + ( ) 3K

i 18 2H 2 + O 2 2H 2 + ( ) 3K i 18 2H 2 + O 2 2H 2 + ( ) 3K ii 1 1 1.1.................................. 1 1.2........................................ 3 1.3......................................... 3 1.4....................................

More information

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2 No.2 1 2 2 δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i δx j (5) δs 2 = δx i δx i + 2 u i δx i δx j = δs 2 + 2s ij δx i δx j

More information

変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy,

変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy, 変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy, z + dz) Q! (x + d x + u + du, y + dy + v + dv, z +

More information

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4 35-8585 7 8 1 I I 1 1.1 6kg 1m P σ σ P 1 l l λ λ l 1.m 1 6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m

More information

1. 4cm 16 cm 4cm 20cm 18 cm L λ(x)=ax [kg/m] A x 4cm A 4cm 12 cm h h Y 0 a G 0.38h a b x r(x) x y = 1 h 0.38h G b h X x r(x) 1 S(x) = πr(x) 2 a,b, h,π

1. 4cm 16 cm 4cm 20cm 18 cm L λ(x)=ax [kg/m] A x 4cm A 4cm 12 cm h h Y 0 a G 0.38h a b x r(x) x y = 1 h 0.38h G b h X x r(x) 1 S(x) = πr(x) 2 a,b, h,π . 4cm 6 cm 4cm cm 8 cm λ()=a [kg/m] A 4cm A 4cm cm h h Y a G.38h a b () y = h.38h G b h X () S() = π() a,b, h,π V = ρ M = ρv G = M h S() 3 d a,b, h 4 G = 5 h a b a b = 6 ω() s v m θ() m v () θ() ω() dθ()

More information

液晶の物理1:連続体理論(弾性,粘性)

液晶の物理1:連続体理論(弾性,粘性) The Physics of Liquid Crystals P. G. de Gennes and J. Prost (Oxford University Press, 1993) Liquid crystals are beautiful and mysterious; I am fond of them for both reasons. My hope is that some readers

More information

応力とひずみ.ppt

応力とひずみ.ppt in yukawa@numse.nagoya-u.ac.jp 2 3 4 5 x 2 6 Continuum) 7 8 9 F F 10 F L L F L 1 L F L F L F 11 F L F F L F L L L 1 L 2 12 F L F! A A! S! = F S 13 F L L F F n = F " cos# F t = F " sin# S $ = S cos# S S

More information

notekiso1_09.dvi

notekiso1_09.dvi 39 3 3.1 2 Ax 1,y 1 Bx 2,y 2 x y fx, y z fx, y x 1,y 1, 0 x 1,y 1,fx 1,y 1 x 2,y 2, 0 x 2,y 2,fx 2,y 2 A s I fx, yds lim fx i,y i Δs. 3.1.1 Δs 0 x i,y i N Δs 1 I lim Δx 2 +Δy 2 0 x 1 fx i,y i Δx i 2 +Δy

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) Ĥ0 ψ n (r) ω n Schrödinger Ĥ 0 ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ0 + Ĥint (

9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) Ĥ0 ψ n (r) ω n Schrödinger Ĥ 0 ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ0 + Ĥint ( 9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) 2. 2.1 Ĥ ψ n (r) ω n Schrödinger Ĥ ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ + Ĥint (t)] ψ (r, t), (2) Ĥ int (t) = eˆxe cos ωt ˆdE cos ωt, (3)

More information

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s ... x, y z = x + iy x z y z x = Rez, y = Imz z = x + iy x iy z z () z + z = (z + z )() z z = (z z )(3) z z = ( z z )(4)z z = z z = x + y z = x + iy ()Rez = (z + z), Imz = (z z) i () z z z + z z + z.. z

More information

grad φ(p ) φ P grad φ(p ) p P p φ P p l t φ l t = 0 g (0) g (0) (31) grad φ(p ) p grad φ φ (P, φ(p )) xy (x, y) = (ξ(t), η(t)) ( )

grad φ(p ) φ P grad φ(p ) p P p φ P p l t φ l t = 0 g (0) g (0) (31) grad φ(p ) p grad φ φ (P, φ(p )) xy (x, y) = (ξ(t), η(t)) ( ) 2 9 2 5 2.2.3 grad φ(p ) φ P grad φ(p ) p P p φ P p l t φ l t = g () g () (3) grad φ(p ) p grad φ φ (P, φ(p )) y (, y) = (ξ(t), η(t)) ( ) ξ (t) (t) := η (t) grad f(ξ(t), η(t)) (t) g(t) := f(ξ(t), η(t))

More information

46 4 E E E E E 0 0 E E = E E E = ) E =0 2) φ = 3) ρ =0 1) 0 2) E φ E = grad φ E =0 P P φ = E ds 0

46 4 E E E E E 0 0 E E = E E E = ) E =0 2) φ = 3) ρ =0 1) 0 2) E φ E = grad φ E =0 P P φ = E ds 0 4 4.1 conductor E E E 4.1: 45 46 4 E E E E E 0 0 E E = E E E =0 4.1.1 1) E =0 2) φ = 3) ρ =0 1) 0 2) E φ E = grad φ E =0 P P φ = E ds 0 4.1 47 0 0 3) ε 0 div E = ρ E =0 ρ =0 0 0 a Q Q/4πa 2 ) r E r 0 Gauss

More information

80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t = 0 i r 0 t(> 0) j r 0 + r < δ(r 0 x i (0))δ(r 0 + r x j (t)) > (4.2) r r 0 G i j (r, t) dr 0

80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t = 0 i r 0 t(> 0) j r 0 + r < δ(r 0 x i (0))δ(r 0 + r x j (t)) > (4.2) r r 0 G i j (r, t) dr 0 79 4 4.1 4.1.1 x i (t) x j (t) O O r 0 + r r r 0 x i (0) r 0 x i (0) 4.1 L. van. Hove 1954 space-time correlation function V N 4.1 ρ 0 = N/V i t 80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t

More information

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d A 2. x F (t) =f sin ωt x(0) = ẋ(0) = 0 ω θ sin θ θ 3! θ3 v = f mω cos ωt x = f mω (t sin ωt) ω t 0 = f ( cos ωt) mω x ma2-2 t ω x f (t mω ω (ωt ) 6 (ωt)3 = f 6m ωt3 2.2 u ( v w) = v ( w u) = w ( u v) ma22-9

More information

Gmech08.dvi

Gmech08.dvi 63 6 6.1 6.1.1 v = v 0 =v 0x,v 0y, 0) t =0 x 0,y 0, 0) t x x 0 + v 0x t v x v 0x = y = y 0 + v 0y t, v = v y = v 0y 6.1) z 0 0 v z yv z zv y zv x xv z xv y yv x = 0 0 x 0 v 0y y 0 v 0x 6.) 6.) 6.1) 6.)

More information

2 Chapter 4 (f4a). 2. (f4cone) ( θ) () g M. 2. (f4b) T M L P a θ (f4eki) ρ H A a g. v ( ) 2. H(t) ( )

2 Chapter 4 (f4a). 2. (f4cone) ( θ) () g M. 2. (f4b) T M L P a θ (f4eki) ρ H A a g. v ( ) 2. H(t) ( ) http://astr-www.kj.yamagata-u.ac.jp/~shibata f4a f4b 2 f4cone f4eki f4end 4 f5meanfp f6coin () f6a f7a f7b f7d f8a f8b f9a f9b f9c f9kep f0a f0bt version feqmo fvec4 fvec fvec6 fvec2 fvec3 f3a (-D) f3b

More information

The Physics of Atmospheres CAPTER :

The Physics of Atmospheres CAPTER : The Physics of Atmospheres CAPTER 4 1 4 2 41 : 2 42 14 43 17 44 25 45 27 46 3 47 31 48 32 49 34 41 35 411 36 maintex 23/11/28 The Physics of Atmospheres CAPTER 4 2 4 41 : 2 1 σ 2 (21) (22) k I = I exp(

More information

x,, z v = (, b, c) v v 2 + b 2 + c 2 x,, z 1 i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1) v 1 = ( 1, b 1, c 1 ), v 2 = ( 2, b 2, c 2 ) v

x,, z v = (, b, c) v v 2 + b 2 + c 2 x,, z 1 i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1) v 1 = ( 1, b 1, c 1 ), v 2 = ( 2, b 2, c 2 ) v 12 -- 1 4 2009 9 4-1 4-2 4-3 4-4 4-5 4-6 4-7 4-8 4-9 4-10 c 2011 1/(13) 4--1 2009 9 3 x,, z v = (, b, c) v v 2 + b 2 + c 2 x,, z 1 i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1) v 1 = ( 1, b 1, c 1 ), v 2

More information

006 11 8 0 3 1 5 1.1..................... 5 1......................... 6 1.3.................... 6 1.4.................. 8 1.5................... 8 1.6................... 10 1.6.1......................

More information

i E B Maxwell Maxwell Newton Newton Schrödinger Newton Maxwell Kepler Maxwell Maxwell B H B ii Newton i 1 1.1.......................... 1 1.2 Coulomb.......................... 2 1.3.........................

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

2019 1 5 0 3 1 4 1.1.................... 4 1.1.1......................... 4 1.1.2........................ 5 1.1.3................... 5 1.1.4........................ 6 1.1.5......................... 6 1.2..........................

More information

/Volumes/NO NAME/gakujututosho/chap1.tex i

/Volumes/NO NAME/gakujututosho/chap1.tex i 2012 4 10 /Volumes/NO NAME/gakujututosho/chap1.tex i iii 1 7 1.1............................... 7 2 11 2.1........................................... 11 2.2................................... 18 2.3...................................

More information

(ii) (iii) z a = z a =2 z a =6 sin z z a dz. cosh z z a dz. e z dz. (, a b > 6.) (z a)(z b) 52.. (a) dz, ( a = /6.), (b) z =6 az (c) z a =2 53. f n (z

(ii) (iii) z a = z a =2 z a =6 sin z z a dz. cosh z z a dz. e z dz. (, a b > 6.) (z a)(z b) 52.. (a) dz, ( a = /6.), (b) z =6 az (c) z a =2 53. f n (z B 4 24 7 9 ( ) :,..,,.,. 4 4. f(z): D C: D a C, 2πi C f(z) dz = f(a). z a a C, ( ). (ii), a D, a U a,r D f. f(z) = A n (z a) n, z U a,r, n= A n := 2πi C f(ζ) dζ, n =,,..., (ζ a) n+, C a D. (iii) U a,r

More information

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5. A 1. Boltzmann Planck u(ν, T )dν = 8πh ν 3 c 3 kt 1 dν h 6.63 10 34 J s Planck k 1.38 10 23 J K 1 Boltzmann u(ν, T ) T ν e hν c = 3 10 8 m s 1 2. Planck λ = c/ν Rayleigh-Jeans u(ν, T )dν = 8πν2 kt dν c

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc2.com/ 1 6 3 6.1................................ 3 6.2.............................. 4 6.3................................ 5 6.4.......................... 6 6.5......................

More information

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z I 1 m 2 l k 2 x = 0 x 1 x 1 2 x 2 g x x 2 x 1 m k m 1-1. L x 1, x 2, ẋ 1, ẋ 2 ẋ 1 x = 0 1-2. 2 Q = x 1 + x 2 2 q = x 2 x 1 l L Q, q, Q, q M = 2m µ = m 2 1-3. Q q 1-4. 2 x 2 = h 1 x 1 t = 0 2 1 t x 1 (t)

More information

( 12 ( ( ( ( Levi-Civita grad div rot ( ( = 4 : 6 3 1 1.1 f(x n f (n (x, d n f(x (1.1 dxn f (2 (x f (x 1.1 f(x = e x f (n (x = e x d dx (fg = f g + fg (1.2 d dx d 2 dx (fg = f g + 2f g + fg 2... d n n

More information

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4 1. k λ ν ω T v p v g k = π λ ω = πν = π T v p = λν = ω k v g = dω dk 1) ) 3) 4). p = hk = h λ 5) E = hν = hω 6) h = h π 7) h =6.6618 1 34 J sec) hc=197.3 MeV fm = 197.3 kev pm= 197.3 ev nm = 1.97 1 3 ev

More information

2011de.dvi

2011de.dvi 211 ( 4 2 1. 3 1.1............................... 3 1.2 1- -......................... 13 1.3 2-1 -................... 19 1.4 3- -......................... 29 2. 37 2.1................................ 37

More information

genron-3

genron-3 " ( K p( pasals! ( kg / m 3 " ( K! v M V! M / V v V / M! 3 ( kg / m v ( v "! v p v # v v pd v ( J / kg p ( $ 3! % S $ ( pv" 3 ( ( 5 pv" pv R" p R!" R " ( K ( 6 ( 7 " pv pv % p % w ' p% S & $ p% v ( J /

More information

A (1) = 4 A( 1, 4) 1 A 4 () = tan A(0, 0) π A π

A (1) = 4 A( 1, 4) 1 A 4 () = tan A(0, 0) π A π 4 4.1 4.1.1 A = f() = f() = a f (a) = f() (a, f(a)) = f() (a, f(a)) f(a) = f 0 (a)( a) 4.1 (4, ) = f() = f () = 1 = f (4) = 1 4 4 (4, ) = 1 ( 4) 4 = 1 4 + 1 17 18 4 4.1 A (1) = 4 A( 1, 4) 1 A 4 () = tan

More information

B line of mgnetic induction AB MN ds df (7.1) (7.3) (8.1) df = µ 0 ds, df = ds B = B ds 2π A B P P O s s Q PQ R QP AB θ 0 <θ<π

B line of mgnetic induction AB MN ds df (7.1) (7.3) (8.1) df = µ 0 ds, df = ds B = B ds 2π A B P P O s s Q PQ R QP AB θ 0 <θ<π 8 Biot-Svt Ampèe Biot-Svt 8.1 Biot-Svt 8.1.1 Ampèe B B B = µ 0 2π. (8.1) B N df B ds A M 8.1: Ampèe 107 108 8 0 B line of mgnetic induction 8.1 8.1 AB MN ds df (7.1) (7.3) (8.1) df = µ 0 ds, df = ds B

More information

untitled

untitled 1 17 () BAC9ABC6ACB3 1 tan 6 = 3, cos 6 = AB=1 BC=2, AC= 3 2 A BC D 2 BDBD=BA 1 2 ABD BADBDA ABC6 BAD = (18 6 ) / 2 = 6 θ = 18 BAD = 12 () AD AD=BADCAD9 ABD ACD A 1 1 1 1 dsinαsinα = d 3 sin β 3 sin β

More information

sin.eps

sin.eps 9 ( 9 4 7 ) : 3. 3 5 ( ). 3 ( ) (Maxwell).3 (= ) 4.4 x y(x) dy =3 y(x) =3x dx y(x) =3x + y(x) =3x + y(x) =3x + /m OK.5 .6. 5 3 ( ).6 5 5 ( ) +3 m+3kg m 3kg ( ) I(MKA ) m,kg,s(sec),a 4 4 ( ) m kg s 3 A

More information

I

I I 6 4 10 1 1 1.1............... 1 1................ 1 1.3.................... 1.4............... 1.4.1.............. 1.4................. 1.4.3........... 3 1.4.4.. 3 1.5.......... 3 1.5.1..............

More information

( ) ,

( ) , II 2007 4 0. 0 1 0 2 ( ) 0 3 1 2 3 4, - 5 6 7 1 1 1 1 1) 2) 3) 4) ( ) () H 2.79 10 10 He 2.72 10 9 C 1.01 10 7 N 3.13 10 6 O 2.38 10 7 Ne 3.44 10 6 Mg 1.076 10 6 Si 1 10 6 S 5.15 10 5 Ar 1.01 10 5 Fe 9.00

More information

Z: Q: R: C: 3. Green Cauchy

Z: Q: R: C: 3. Green Cauchy 7 Z: Q: R: C: 3. Green.............................. 3.............................. 5.3................................. 6.4 Cauchy..................... 6.5 Taylor..........................6...............................

More information

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2) 3 215 4 27 1 1 u u(x, t) u tt a 2 u xx, a > (1) D : {(x, t) : x, t } u (, t), u (, t), t (2) u(x, ) f(x), u(x, ) t 2, x (3) u(x, t) X(x)T (t) u (1) 1 T (t) a 2 T (t) X (x) X(x) α (2) T (t) αa 2 T (t) (4)

More information

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g(

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g( 06 5.. ( y = x x y 5 y 5 = (x y = x + ( y = x + y = x y.. ( Y = C + I = 50 + 0.5Y + 50 r r = 00 0.5Y ( L = M Y r = 00 r = 0.5Y 50 (3 00 0.5Y = 0.5Y 50 Y = 50, r = 5 .3. (x, x = (, u = = 4 (, x x = 4 x,

More information

数学の基礎訓練I

数学の基礎訓練I I 9 6 13 1 1 1.1............... 1 1................ 1 1.3.................... 1.4............... 1.4.1.............. 1.4................. 3 1.4.3........... 3 1.4.4.. 3 1.5.......... 3 1.5.1..............

More information

I 1

I 1 I 1 1 1.1 1. 3 m = 3 1 7 µm. cm = 1 4 km 3. 1 m = 1 1 5 cm 4. 5 cm 3 = 5 1 15 km 3 5. 1 = 36 6. 1 = 8.64 1 4 7. 1 = 3.15 1 7 1 =3 1 7 1 3 π 1. 1. 1 m + 1 cm = 1.1 m. 1 hr + 64 sec = 1 4 sec 3. 3. 1 5 kg

More information

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,.

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,. 24(2012) (1 C106) 4 11 (2 C206) 4 12 http://www.math.is.tohoku.ac.jp/~obata,.,,,.. 1. 2. 3. 4. 5. 6. 7.,,. 1., 2007 (). 2. P. G. Hoel, 1995. 3... 1... 2.,,. ii 3.,. 4. F. (),.. 5... 6.. 7.,,. 8.,. 1. (75%)

More information

ac b 0 r = r a 0 b 0 y 0 cy 0 ac b 0 f(, y) = a + by + cy ac b = 0 1 ac b = 0 z = f(, y) f(, y) 1 a, b, c 0 a 0 f(, y) = a ( ( + b ) ) a y ac b + a y

ac b 0 r = r a 0 b 0 y 0 cy 0 ac b 0 f(, y) = a + by + cy ac b = 0 1 ac b = 0 z = f(, y) f(, y) 1 a, b, c 0 a 0 f(, y) = a ( ( + b ) ) a y ac b + a y 01 4 17 1.. y f(, y) = a + by + cy + p + qy + r a, b, c 0 y b b 1 z = f(, y) z = a + by + cy z = p + qy + r (, y) z = p + qy + r 1 y = + + 1 y = y = + 1 6 + + 1 ( = + 1 ) + 7 4 16 y y y + = O O O y = y

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

untitled

untitled - k k k = y. k = ky. y du dx = ε ux ( ) ux ( ) = ax+ b x u() = ; u( ) = AE u() = b= u () = a= ; a= d x du ε x = = = dx dx N = σ da = E ε da = EA ε A x A x x - σ x σ x = Eε x N = EAε x = EA = N = EA k =

More information

1 2 1 No p. 111 p , 4, 2, f (x, y) = x2 y x 4 + y. 2 (1) y = mx (x, y) (0, 0) f (x, y). m. (2) y = ax 2 (x, y) (0, 0) f (x,

1 2 1 No p. 111 p , 4, 2, f (x, y) = x2 y x 4 + y. 2 (1) y = mx (x, y) (0, 0) f (x, y). m. (2) y = ax 2 (x, y) (0, 0) f (x, No... p. p. 3, 4,, 5.... f (, y) y 4 + y. () y m (, y) (, ) f (, y). m. () y a (, y) (, ) f (, y). a. (3) lim f (, y). (,y) (,)... (, y) (, ). () f (, y) a + by, a, b. + y () f (, y) 4 + y + y 3 + y..3.

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 3.............................. 3.............................. 4.3 4................... 5.4........................ 6.5........................ 8.6...........................7

More information

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 2 ), ϕ(t) = B 1 cos(ω 1 t + α 1 ) + B 2 cos(ω 2 t

More information

3 filename=quantum-3dim110705a.tex ,2 [1],[2],[3] [3] U(x, y, z; t), p x ˆp x = h i x, p y ˆp y = h i y, p z ˆp z = h

3 filename=quantum-3dim110705a.tex ,2 [1],[2],[3] [3] U(x, y, z; t), p x ˆp x = h i x, p y ˆp y = h i y, p z ˆp z = h filename=quantum-dim110705a.tex 1 1. 1, [1],[],[]. 1980 []..1 U(x, y, z; t), p x ˆp x = h i x, p y ˆp y = h i y, p z ˆp z = h i z (.1) Ĥ ( ) Ĥ = h m x + y + + U(x, y, z; t) (.) z (U(x, y, z; t)) (U(x,

More information

K E N Z OU

K E N Z OU K E N Z OU 11 1 1 1.1..................................... 1.1.1............................ 1.1..................................................................................... 4 1.........................................

More information

2.2 ( y = y(x ( (x 0, y 0 y (x 0 (y 0 = y(x 0 y = y(x ( y (x 0 = F (x 0, y(x 0 = F (x 0, y 0 (x 0, y 0 ( (x 0, y 0 F (x 0, y 0 xy (x, y (, F (x, y ( (

2.2 ( y = y(x ( (x 0, y 0 y (x 0 (y 0 = y(x 0 y = y(x ( y (x 0 = F (x 0, y(x 0 = F (x 0, y 0 (x 0, y 0 ( (x 0, y 0 F (x 0, y 0 xy (x, y (, F (x, y ( ( (. x y y x f y = f(x y x y = y(x y x y dx = d dx y(x = y (x = f (x y = y(x x ( (differential equation ( + y 2 dx + xy = 0 dx = xy + y 2 2 2 x y 2 F (x, y = xy + y 2 y = y(x x x xy(x = F (x, y(x + y(x 2

More information

( ) x y f(x, y) = ax

( ) x y f(x, y) = ax 013 4 16 5 54 (03-5465-7040) nkiyono@mail.ecc.u-okyo.ac.jp hp://lecure.ecc.u-okyo.ac.jp/~nkiyono/inde.hml 1.. y f(, y) = a + by + cy + p + qy + r a, b, c 0 y b b 1 z = f(, y) z = a + by + cy z = p + qy

More information

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT I (008 4 0 de Broglie (de Broglie p λ k h Planck ( 6.63 0 34 Js p = h λ = k ( h π : Dirac k B Boltzmann (.38 0 3 J/K T U = 3 k BT ( = λ m k B T h m = 0.067m 0 m 0 = 9. 0 3 kg GaAs( a T = 300 K 3 fg 07345

More information

graph4.eps

graph4.eps 9 : . 6. S =3ˆ+4ŷ +5ẑ â = ˆ+ ŷ + ẑ () S â () â ˆb.,b,c,d O A, B, C, D b =(d c) (3) â, ˆb AD BC P AD BC 3.,b,c b θ c = +b ccosθ 3. 4. O A, B, C, D O A, B, C, D A,B,C,D () AB BC A B = B C () AB A B (3),b,c,d

More information

(yx4) 1887-1945 741936 50 1995 1 31 http://kenboushoten.web.fc.com/ OCR TeX 50 yx4 e-mail: yx4.aydx5@gmail.com i Jacobi 1751 1 3 Euler Fagnano 187 9 0 Abel iii 1 1...................................

More information

dynamics-solution2.dvi

dynamics-solution2.dvi 1 1. (1) a + b = i +3i + k () a b =5i 5j +3k (3) a b =1 (4) a b = 7i j +1k. a = 14 l =/ 14, m=1/ 14, n=3/ 14 3. 4. 5. df (t) d [a(t)e(t)] =ti +9t j +4k, = d a(t) d[a(t)e(t)] e(t)+ da(t) d f (t) =i +18tj

More information

5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1

5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1 4 1 1.1 ( ) 5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1 da n i n da n i n + 3 A ni n n=1 3 n=1

More information

/Volumes/NO NAME/gakujututosho/chap1.tex i

/Volumes/NO NAME/gakujututosho/chap1.tex i 2010 4 8 /Volumes/NO NAME/gakujututosho/chap1.tex i iii 1 5 1.1............................... 5 2 9 2.1........................................... 9 2.2................................... 16 2.3...................................

More information

2 1 x 1.1: v mg x (t) = v(t) mv (t) = mg 0 x(0) = x 0 v(0) = v 0 x(t) = x 0 + v 0 t 1 2 gt2 v(t) = v 0 gt t x = x 0 + v2 0 2g v2 2g 1.1 (x, v) θ

2 1 x 1.1: v mg x (t) = v(t) mv (t) = mg 0 x(0) = x 0 v(0) = v 0 x(t) = x 0 + v 0 t 1 2 gt2 v(t) = v 0 gt t x = x 0 + v2 0 2g v2 2g 1.1 (x, v) θ 1 1 1.1 (Isaac Newton, 1642 1727) 1. : 2. ( ) F = ma 3. ; F a 2 t x(t) v(t) = x (t) v (t) = x (t) F 3 3 3 3 3 3 6 1 2 6 12 1 3 1 2 m 2 1 x 1.1: v mg x (t) = v(t) mv (t) = mg 0 x(0) = x 0 v(0) = v 0 x(t)

More information

Quiz x y i, j, k 3 A A i A j A k x y z A x A y A z x y z A A A A A A x y z P (x, y,z) r x i y j zk P r r r r r r x y z P ( x 1, y 1, z 1 )

Quiz x y i, j, k 3 A A i A j A k x y z A x A y A z x y z A A A A A A x y z P (x, y,z) r x i y j zk P r r r r r r x y z P ( x 1, y 1, z 1 ) Quiz x y i, j, k 3 A A i A j A k x y z A x A y A z x y z A A A A A A x y z P (x, y,z) x i y j zk P x y z P ( x 1, y 1, z 1 ) Q ( x, y, z ) 1 OP x1i y1 j z1k OQ x i y j z k 1 P Q PQ 1 PQ x x y y z z 1 1

More information