x y 1 x 1 y 1 2 x 2 y 2 3 x 3 y 3... x ( ) 2

Size: px
Start display at page:

Download "x y 1 x 1 y 1 2 x 2 y 2 3 x 3 y 3... x ( ) 2"

Transcription

1 1

2 x y 1 x 1 y 1 2 x 2 y 2 3 x 3 y 3... x ( ) 2

3 x = 1 n x (average, mean) x i s 2 x = 1 n (x i x) 2 3

4 x (variance) s x = 1 (x i x) n 2 x ( ). λ > 1 λ x i x λs x x i n λ 2 λs x n λ 2 ( ) x i x > λs x x i m ns 2 x = (x i x) 2 (x i x) 2 mλ 2 s 2 x x i x λs x x, y a, b y = ax + b ȳ = a x + b, s 2 y = a 2 s 2 x ( ) ȳ = a x + b ȳ = 1 n = 1 n ax i + b ax i + 1 n = a x + b b 4

5 s 2 y = a 2 s 2 x s 2 y = 1 n = 1 n = 1 n (y i ȳ) 2 (ax i + b a x b) 2 a 2 (x i x) 2 = a 2 s 2 x x x s x z = x x s x z = 0, s z = 1 SS = 10z + 50 SS = 50, s SS = 10 z, SS data1 demo.xls 5

6 1. ( ) 2. ( ) s xy = 1 (x i x)(y i ȳ) n x, y (covariance) p i = (x i x)(y i ȳ) 1. ( ) ( ) p i ( x, ȳ) ( x, ȳ) A p i B y B A B B (x,y) x A B 2. ( ) ( ) p i A p i B 6

7 y A B B (x,y) B x B A 3. p i p i 1. s xy 2. s xy 3. s xy ( ) r = s xy s x s y x, y (correlation coefficient) B s x, s y x i x, y i ȳ 7

8 r 1 r = 1 x a b c y d e f x = ȳ = 0 r 2 = (ad + be + cf) 2 (a 2 + b 2 + c 2 )(d 2 + e 2 + f 2 ) 1 (ae bd) 2 + (bf ce) 2 + (cd af) 2 0 d a = e b = f c ( ) a = 0 d = 0 or b = c = 0 (a, d) y 1. r 1 2. r 1 3. r X = (x 1,..., x n ), Y = (y 1,..., y n ) 8

9 θ cos θ ( ) ( ) x, y (x 1, y 1 ),..., (x n, y n ) y x y = f(x) x y f(x) 1. f(x) f(x) = a + bx, f(x) = ax b, f(x) = a + bx + cx 2 2. b 0,..., b p a, b a, b, c S S = (y i f(x i )) 2 S S y = f(x) y 2 y = f(x) y = f(x) 9

10 y y=f(x) x 3. b 0,..., b p S b i = 0 (i = 0,..., p) S f(x) f(x) ( ) (regression) (x 1,..., x p, y) (x 11,..., x p1, y 1 ),..., (x n1,..., x pn, y n ) y x 1,..., x n y = b 0 + b 1 x b p x p S = (y i (b 0 + b 1 x 1i b p x pi )) 2 b 0, b 1,..., b p S b i = 0 (i = 0,..., p) (1) 10

11 (1) b 0,..., b p b 0 + b 1 x b p x p p = 1 f(x 1,..., x p ) (1) b 0,..., b p ( ) 2 y ȳ = s xy s 2 (x x) = r s y (x x) x s x x, y ( ) ( R ( ) ) R R 2 = 1 (y i f(x i )) 2 (y i ȳ) 2 y = f(x) f { } 2 (x i x)(y i ȳ) (x i x) 2 n (y i ȳ) 2 R2 y ȳ = s xy s 2 x x x 11

12 ( ) 2 x, y ( ) BW = f(sl) R R BW SL BW = asl b SL BW data1 demo.xls R (y i f(x 1i,..., x pi )) 2 R 2 = 1 (y i ȳ) 2 y y i f(x 1,..., x p ) 12

13 data1.xls ( web ) 2. katakuchi.csv 3. buri.csv 4. questionnaire.csv 5. data1.xls Excel katakuchi.csv, questionnaire.csv R Excel 1. data1.xls Excel 2. Excel average( ) varp( ) stdevp( ) max( ) min( ) correl( 1, 2) Excel Excel Excel C4 =B4 C4 B4 C4 C5 C5 B4 B5 C4 =B4 B4 C4 C5 B5 13

14 B4 $B$4 $ B4 F4 $B4 B$4 3. frequency 8 9 frequency(, ) shift, ctrl Enter frequency shift, ctrl Enter R- R 1. R 14

15 2. katakuchi.csv 3. Enter q() R d<-read.table("katakuchi.csv",header=t) min(d$sl) max(d$sl) hist(d$bw,breaks=seq(4,29)) lm(bw~sl,d) d<-d[order(d$sl),,] fm<-nls(d$bw~a*d$sl ^b,d,start=list(a=0.1,b=1)) p<-predict(fm) plot(d$sl,d$bw) par(new=t) plot(d$sl,p,type="l") q() (q) (p) p a q b = c a, b, c a log p + b log q = log c 15

16 log p log q Excel 1. data1.xls R 1. R 2. questionnaire.csv 3. Enter q() R d2<-read.table("questionnaire.csv",header=t,sep= \t ) table(d2$p1,d2$p2) q() 16

17 A P (A) A 0 P (A) 1 P (A) A P (A) = 0 A P (A) = 1 A /6 A B A B A B A B A B P (A B ) = P (A)+P (B) P (A B ) = P (A) + P (B) P (A, B ) A B P (A B ) = P (A)P (B) 17

18 ( ) P (A, B ) = P (A)P (B A) P (B A) A B P ( ) = 3 8 (1) 17 P ( ) = 3/17 8/17 = P ( ) = 3 P ( ) 8 P ( ) = P ( P ( ) (1) P (A B) = P (A B ) P (B ) 18

19 P (A B) = P (A B) P (B) P (B) = P (A B) = P (B)P (A B) A B P (A B) = P (A)P (B) P (A B) = P (B)P (A B) P (A B) = P (A) P (A B) = P (A)P (B A) P (B A) = P (B) A 1, A 2,..., A n p(a 1 A 2... A n ) = P (A 1 )P (A 2 ) P (A n ) A B A, B P (A) + P (B) = P (A or B) = 1 P (A) = 1 2, P (B) =

20 A, B p 1 p n A k p k (1 p) n k A k n A k ( ) n n! = k k!(n k)! ( ) n P (A k )) = p k (1 p) n k k X k P (X = k) x 1, x 2, x 3,... X 1,..., X n x 1,..., x n X 1 = x 1,..., X n = x n X 1,..., X n X X n Y Y, Z = Y n 20

21 Y B(n, p) X 1,..., X n X Y = X X n, Z = X X n n 2 p = 1 2 p 1 2 n n X X x 1, x 2... E(X) = i x i P (X = x i ) X X V (X) = E((X E(X)) 2 ) X X, Y X, Y C(X, Y ) = E((X E(X))(Y E(Y ))) n v 1,..., v n v i f i N = n f i X P (X = v i ) = f i N X E(X) = v i f i N X E(aX + b) = ae(x) + b, X, Y E(X + Y ) = E(X) + E(Y ) V (ax + b) = a 2 V (X) 21

22 ( ) p ij = P (X = x i, Y = y j ) E(X + Y ) = i,j (x i + y j )p ij = i,j x i p ij + i,j y j p i,j = i x i j p ij + j y j ( i p i,j ) = i x i P (X = x i ) + j y j P (Y = y j ) = E(X) + E(Y ) E(a 1 X a n X n + b) = a 1 E(X 1 ) + + a n E(X n ) + b ( ) X, Y V (X + Y ) = V (X) + V (Y ) + 2C(X, Y ), C(X + Y, Z) = C(X, Y ) + C(Y, Z) C(X, Y ) = E(XY ) E(X)E(Y ) X, Y E(XY ) = E(X)E(Y ) C(X, Y ) = 0 22

23 ( ) V (X + Y ) = E({X + Y E(X + Y )} 2 ) = E({(X E(X)) + (Y E(Y ))} 2 ) = E((X E(X)) 2 ) + 2E((X E(X))(Y E(Y ))) + E((Y E(Y )) 2 ) = V (X) + V (Y ) + 2C(X, Y ) C(X, Y ) = E((X E(X))(Y E(Y ))) = E(XY XE(Y ) Y E(X) + E(X)E(X)) = E(XY ) E(X)E(Y ) E(X)E(Y ) + E(X)E(Y ) = E(XY ) E(X)E(Y ) X, Y x, y x i, y j P (X = x i ) = p i, P (Y = y j ) = q j E(XY ) = x i y j p i q j i,j = x i p i y j q j i j = E(X)E(Y ) ( n ) V a i X i + b = a 2 i V (X i ) + 2 i<j X 1,..., X n ( n ) V a i X i + b = a 2 i V (X i ) a i a j C(X i, X j ) ( ) Y = X X n Z = Y P (X = 1) = p n E(X) = p, V (X) = p(1 p) E(Y ) = np V (Y ) = np(1 p), E(Z) = p V (Z) = 23 p(1 p) n

24 µ µ µx P (X = x) = e, x = 0, 1, 2,... x! x=0 µ x x! = eµ X E(X) = µ, V (X) = µ ( ) E(X) = µ µ µx E(X(X 1)) = x(x 1)e x! = e µ µ 2 µ x 2 (x 2)! = µ2 x=2 E(X 2 ) = E(X(X 1)) + E(X) = µ 2 + µ V (X) = E(X 2 ) E(X) 2 = µ 2 + µ µ 2 = µ B(n, p) np = µ n = P (X = x) = n C x p x (1 p) n x n! ( µ ) x ( 1 µ ) n x x!(n x)! n n ( 1 1 ) ( 1 x 1 n n = µx x! µx x! e µ (n ) ) { ( 1 µ n x=2 ) n } µ(1 x n) µ (p) (n) µ = np X X 24

25 2.1.3 X n X 1,..., X n n X X X X X X X X 1, X 2 X = X 1+X 2 2 X = 0.5 X = 0.5 (X 1, X 2 ) = (1, 0), (0, 1) X = 0, 1 (X 1, X 2 ) = (0, 0) (X 1, X 2 ) = (1, 1) 0.5 (x + y) n ( ). X X X X E(X) ϵ > 0, V (X) < K V ( X) < K n, E( X) = E(X) V ( X) K n > V ( X) x E(X) ϵ ϵ 2 x E(X) ϵ (x E(X)) 2 P ( X = x) P ( X = x) = ϵ 2 P ( X E(X) ϵ) P ( X E(X) ϵ) K nϵ 2 25

26 1. A p n A p ( ) A X X 1 p + 0 (1 p) = p X A A p 2. X X k X = k A ( ) X A A { 1 X = k X(k) = 0 X k X 1 (k),, X n (k) X = k S n,k = X i (k) S n,k X(k) n P (X = n k) np (X = k) 26

27 2.1.4 octave octave X 0.5 F X F (x) = P (X x) Y [0, 1] X = F 1 (Y ) X F 1 (y) F (x) = y x octave [a, b] 27

28 X X 1 p(x) P (a X b) = b a p(x)dx ( ) p(x) p(x)dx = 1 ( ). F (x) = P (X x) E(X) E(X) = xp(x)dx V (X), C(X, Y ) V (X) = E((X E(X)) 2 ) C(X, Y ) = E((X E(X))(Y E(Y ))) p(x) = 1 (x [0, 1]), p(x) = 0 (x / [0, 1]) E(X) = 1 0 xdx = 1 2 V (X) = 1 0 ( x 1 ) 2 dx =

29 p(x) = 1 e (x µ)2 2σ 2 2πσ µ σ N(µ, σ 2 ) X N(µ, σ 2 ) µ X σ 2 X ( ) ( ) z = x µ σ e x2 dx = π E(X) = 1 2πσ xe (x µ) 2 2σ 2 dx E(X) = µ V (X) = 1 2πσ V (X) = 1 2π (x µ) 2 e (x µ) 2 2σ 2 dx σ 2 z 2 e z2 2 dz z( ze z2 2 ) V (X) = σ 2 N(µ, σ 2 ) p(x) x = µ x = µ x = µ σ, x = µ+σ / / ( ) 29

30 X, Y X, Y [a, b], [c, d] f(x, y) P (a X b, c Y d) = d b c a f(x, y)dxdy f(x, y) (X, Y ) P (a X b, < Y < ) = P ( < X <, c X d) = f(x, y)dy, b a d c f(x, y)dx f(x, y)dydx f(x, y)dxdy X, Y X, Y [a, b], [c, d] a x b, c y d X, Y p(x), q(y) X, Y f(x, y) X, Y X, Y f(x, y) = p(x)q(y) ( ) P (a X b, c Y d) = P (a X b)p (c Y d) = = b p(x)dx a d b c a d c q(y)dy p(x)q(y)dxdy X, Y p(x), q(y) (X, Y ) f(x, y) E(φ(X, Y )) = φ(x, y)f(x, y)dxdy 30

31 ( ) Z = φ(x, Y ) r(z) φ(x, Y ) 0 E(Z) = = = 0 t tr(t)dt z r(t)dzdt r(t)dtdz {(t, z) : 0 t <, 0 z t} = {(t, z) : 0 z <, z t < } E(Z) = = = = = 0 z 0 r(t)dtdz P (Z > z)dz 0 {(x,y): φ(x,y)>z} φ(x,y) 0 f(x, y)dxdydz f(x, y)dzdxdy φ(x, y)f(x, y)dxdy {(x, y, z) : 0 z <, φ(x, y) > z} = {(x, y, z) : x, y <, 0 z < φ(x, y)} X E(aX + b) = ae(x) + b, V (ax + b) = a 2 V (X) X, Y E(X + Y ) = E(X) + E(Y ) ( ) X, Y 31

32 f(x, y) E(X + Y ) = = = (x + y)f(x, y)dxdy xf(x, y)dxdy + ( ) x f(x, y)dy dx + = E(X) + E(Y ) yf(x, y)dxdy ( y f(x, y)dx ) dy E(a 1 X a n X n + b) = a 1 E(X 1 ) + + a n E(X n ) + b X, Y V (X + Y ) = V (X) + V (Y ) + 2C(X, Y ), C(X + Y, Z) = C(X, Y ) + C(Y, Z) C(X, Y ) = E(XY ) E(X)E(Y ) X, Y E(XY ) = E(X)E(Y ) C(X, Y ) = 0 ( ) X, Y X, Y p(x), q(y) f(x, y) E(XY ) = = = = xyf(x, y)dxdy xyp(x)q(y)dxdy yq(y) xp(x)dx = E(X)E(Y ) xp(x)dxdy yq(y)dy 32

33 V ( a i X i + b) = a i a j C(X i )C(X j ) a 2 i V (X i ) + 2 i<j X 1,..., X n V ( a i X i + b) = a 2 i V (X i ) ( ) X 1,..., X n X i N(µ i, σ 2 i ) a i ( n a i X i N a i µ i, ) a 2 i σi 2 X i N(µ, σ 2 ) X X n N n ( µ, σ 2 ) n ( ). X µ σ 2 n X X N(µ, σ2 n ) X X X n N(nµ, nσ 2 ) 33

34 X A 1 0 P (X = 1) = p X n Y B(n, p) E(X) = p, V (X) = p(1 p) B(n, p) n ( ) p(1 p) N(np, np(1 p)) X N p, n X ( ) χ 2 ( ) n n χ 2 1 ) n f n (χ 2 ) = 2 n 2 Γ( n 2 )(χ2 2 1 e 1 2 χ2 (χ 2 > 0) 0 (χ 2 0) Γ Γ(p) = 0 x p 1 e x dx, (p > 0) Z N(0, 1) Z 2 1 χ 2 ( ) 34

35 X 1,..., X n N(µ, σ 2 ) 1 σ 2 (X i µ) 2 n χ 2 ( ) X 1,..., X n N(µ, σ 2 ) 1 σ 2 (X i X) 2 n 1 χ 2 ( ) t n n t 1 f n (t) = ( nb n 2, ) 1 2 ( ) n t2 2 n B(p, q) B(p, q) = 1 t 0 x p 1 (1 x) q 1 dx, (p > 0, q > 0) Z N(0, 1) χ 2 n χ 2 n t ( ) t = Z χ 2 n X 1,..., X n N(µ, σ 2 ) U 2 = 1 n 1 (X i X) 2 35

36 t = X µ U 2 n n 1 t U 2 ( ) N(µ X, σ 2 ), N(µ Y, σ 2 ) X, Y m, n X, Ȳ U 2 X, U 2 Y T = X Ȳ (µ X µ Y ) V ( 2 1 m + ), V 2 = (m 1)U X 2 + (n 1)U Y 2 1 m + n 2 n T m + n 2 t F m, n (m, n) F m m 2 n n 2 F m 1 2 B( f (m,n) (F ) = m 2, n 2 ) (F > 0) (mf +n) m+n 2 0 (F 0) B(p, q) χ 2 1, χ 2 2 m, n χ2 (m, n) F ( ) F = χ 2 1 m χ 2 2 n octave 36

37 X i, i = 1,... n [0, 1] µ = E(X i ) = 0.5 σ 2 = V (X) = 1 12 n = 50 X = X X n n N(0.5, 1/600) octave Z 1000/100=10 octave:1> for :1000 > data(i)=mean(rand(50,1)); > end octave:2> x=0:0.01:1; octave:3> hist(data,x, facecolor, w, edgecolor, b ) octave:4> hold octave:5> plot(x,10*normpdf(x,0.5,sqrt(1/600)), color, r ) 37

38 3-3.1 sample population X 1,..., X n X i X i X i random sampling statistical inference 1 parametric method estimation test 2 yes,no inference 38

39 ( ) ( parameter) µ X ( ) E( X) = µ ( ) ( ) U 2 = 1 n 1 (X i X) 2 39

40 ( ) µ σ 2 ( ) E( X) X1 + + X n =E n = 1 n E(X X n ) = 1 n {E(X 1) + + E(X n )} = E(X) = µ (X i µ) 2 = n( X µ) 2 + (X i X) 2 (X i µ) 2 = (X i X + X µ) 2 = (X i X) 2 + 2( X µ) (X i X) + n( X µ) 2 = n( X µ) 2 + (X i X) E((X i µ) 2 ) = ne ( ( n ) ( X µ) 2) + E (X i X) 2 nσ 2 nσ 2 = ne ( ( n ) ( X µ) 2) + E (X i X) 2 1 E( X) = µ, V ( X) = σ2 nσ 2 = n σ2 n + E n ( n ) (X i X) 2 40

41 ( ) 1 E (X i n 1 X) 2 = σ 2 n X 1,..., X n θ T n ε > 0 lim n P ( T n θ > ε) = 0 T n θ A B C 1 3, 1 2, A B C most likely A B C A ( ) (1 ) 49 ( = ) B ( ) (1 ) 49 ( = ) 41

42 C ( ) (2 ) 49 ( = ) C C 2/3 likelihood X 1,..., X n f(x µ, σ) = 1 e (x µ)2 2σ 2 2πσ x 1,..., x n f(x 1,..., x n µ, σ) = n 1 e (x i µ) 2σ 2 2πσ L = log f(x 1,..., x n µ, σ) 1 = log e (x i µ) 2σ 2 2πσ =n log 1 2πσ 2 (x i µ) 2 = n log( 2πσ) 1 2σ 2 2σ 2 2 (x i µ) 2 42

43 L µ, σ 2 µ, σ 2 L µ = 0, L σ = 0 ˆµ = 1 n x i ˆσ2 = 1 n (x i ˆµ) 2 L ˆσ 2 (x 1, y 1 ),..., (x n, y n ) y = f(x) x y f(x) f(y f(x), σ) = 1 e (y f(x))2 2σ 2 2πσ f(y 1,..., y n f(x), σ) = n 1 e (y i f(x i )) 2σ 2 2πσ f L = n log( 2πσ) 1 2σ 2 (y i f(x i )) 2 (y i f(x i )) 2 f f

44 3.2.3 P (X D) = P (X D) P (D) P (X D) = P (X D)P (D) X, D P (D X) = P (D X)P (X) P (X D)P (D) = P (D X)P (X) P (X D) = P (D X)P (X) P (D) A B C 1 3, 1 2, A B C A B C , 0.012, C C A 3 B 6 C B D A A P (A D) = P (D A)P (A) P (D) 44

45 P (D A) = P (A) = 0.3 D A, D B, D C D P (D) = P (D A)P (A)+ P (D B)P (B) + P (D C)P (C) = A P (A D) = B B P (B D) = = 0 = C C P (C D) = = B B A B C 0.000, 0.571, PC X P (X = ) P (X = ) 1000 P (X = ) = P (X = ) = Y 1, Y 2 { 1 Y 1 = 0 45

46 Y 2 = { 1 0 P (Y 1 = 1 X = ) = P (Y 1 = 1 X = ) P (X = ) P (Y 2 = 1 X = ) = P (Y 2 = 1 X = ) P (X = ) P (Y 1 = 1 X = ) = P (Y 1 = 1 X = ) P (X = ) P (Y 2 = 1 X = ) = P (Y 2 = 1 X = ) P (X = ) = = = = P (X = Y 1 = 0 Y 2 = 1) P (X = Y 1 = 0 Y 2 = 1) X X, Y 1, Y 2, P (X Y 1, Y 2 ) = P (Y 1, Y 2 X)P (X) P (Y 1, Y 2 ) X P (Y 1, Y 2 X) = P (Y 1 X)P (Y 2 X) 46

47 P (Y 1, Y 2 X)P (X) P (Y 1 = 0, Y 2 = 1 X = )P (X = ) =P (Y 1 = 0 X = )P (Y 2 = 1 X = )P (X = ) =( ) = P (Y 1 = 0, Y 2 = 1 X = )P (X = ) =P (Y 1 = 0 X = )P (Y 2 = 1 X = )P (X = ) =( ) = P (Y 1, Y 2 ) P (Y 1, Y 2 ) =P (Y 1, Y 2 X = )P (X = ) +P (Y 1, Y 2 X = )P (X = ) =0.338 X P (Y 1, Y 2 X) P (X = Y 1 = 0 Y 2 = 1) = 0.044/0.338 = P (X = Y 1 = 0 Y 2 = 1) = 0.294/0.338 =

48 3.3 θ α 0.05 a < θ < b 1 α [a, b] α = α = 0.95 = 95 β = 1 α [a, b] 100(1 α) a, b α Z Z 100(1 α) = 100β θ θ θ 0 θ θ 0 θ 1. β = 1 α [a, b] θ 0 θ 0 α 2. θ [a, b] (1) θ (2) θ θ 0 P ( θ θ 0 b a) 1 α ( ) n X 1,..., X n X µ σ 2 N(µ, σ 2 ) ( ) X N(µ, σ 2 /n) (n > 100) X i X N(µ, σ 2 /n) 48

49 X µ N(0, σ 2 /n) σ 2 P ( X µ > z(α/2)) = α/2 z(α/2) > 0 P ( X µ < z(α/2)) = α/2 P ( z(α/2) X µ z(α/2)) = 1 α P ( X z(α/2) µ X z(α/2)) = 1 α ( ) [ X z(α/2), X +z(α/2)] 100(1 α)% z(α/2) N(0, σ 2 /n) α 100α α/2 α/2 -z(α/2) z(α/2) ( ) N(0, 1) N(0, 1) z(α) ( ) N(µ, σ 2 ) z(α) 1. n 2. σ 2 49

50 3. β α = 1 β 4. X 5. σ 2 n N(0, σ 2 /n) α z(α/2) 6. [ X z(α/2), X + z(α/2)] 7. µ 0 µ 0 1 α [ X z(α/2), X + z(α/2)] α µ µ 0 µ µ 0 ( ) ( ) t ( ) N(µ, σ 2 ) ( ) n X 1,..., X n X U t = X µ U n n 1 t ( t ) P ( t > t n 1 (α/2)) = α ( ) t n 1 (α) 100(1 α)% µ X t n 1(α/2)U n µ X + t n 1(α/2)U n 50

51 t β α = 1 β 3. X 4. σ 2 n n 1 t α t n 1 (α/2) 5. [ X t n 1 (α/2) U 2 n, X + tn 1 (α/2) U 2 n ] 6. µ 0 µ 0 1 α [ X t U n 1 (α/2) n, X+ U t n 1 (α/2) n ] α µ µ 0 t ( ) ( ) F = t 2 (1, n 1) F t σ = σ = % 99% 51

52 µ µ 0 µ 0 µ 0 < X z(α/2) X + z(α/2) < µ 0 X µ 0 < z(α/2) z(α/2) < X µ 0 t µ µ 0 µ 0 µ 0 < X U t n 1 (α/2) 2 n X U +t n 1 (α/2) 2 n < µ ( ) ( ) p X 1 A X = 0 E(X) = p 1 + (1 p) 0 = p p 1 α ( ) Z n nz p F p 52

53 Z = X X n X i p p(1 p) = n p(1 p) ( 2 + (1 p)(0) p) p(1 p) N p, Z p ( n ) p(1 p) N 0, n P (Z p < z(α/2)) = P (z(α/2) < Z p) = α 2 z(α/2)( 100α ) z(α/2) < Z p < z(α/2) Z z(α/2) < p < Z + z(α/2) 100(1 α) [Z z(α/2), Z + z(α/2)] 100(1 α) ( ) p(1 p) N 0, p n z(α/2) p Z p(1 p) ( )σ = Z p N(0, 1) n σ p Z z 0 (α)σ < p < Z + z 0 (α)σ z 0 (α) P (Z p < z 0 (α)) = α 2 p σ Z z 0 (α)σ < p < Z + z 0 (α)σ p p (n + z o (α) 2 )p 2 (z 0 (α) 2 + 2npZ)p + nz 2 < 0 z 2 + 2nZ (z 0 (α) 2 + 2nZ) 2 4(n + z 0 (α) 2 )nz 2 2(n + z 0 (α) 2 ) < p < z 2 + 2nZ + (z 0 (α) 2 + 2nZ) 2 4(n + z 0 (α) 2 )nz 2 2(n + z 0 (α) 2 ) n (n + z o (α) 2 )p 2 (z 0 (α) 2 + 2npZ)p + nz 2 = n(p 2 2pZ + Z 2 ) + z 0 (α) 2 p(1 p) n(p 2 2pZ + Z 2 ) + z 0 (α) 2 Z(1 Z) Z(1 Z) Z(1 Z) Z z 0 (α) < p < Z + z 0 (α) n n 53

54 Z(1 Z) z 0 (α) N n ( 0, ) Z(1 Z) α z(α/2) n Z z(α/2) < p < Z + z(α/2) ( ) p(1 p) Z p N 0, ( ) n Z(1 Z) N 0, n ( ) X X t ( ) p p(1 p) ( Z = 0 [0, 1 α 1/n ] Z = 1 [α 1/n, 1] F ( ) nz B(n, p) x nz P (nz x) = P (F > f) F (2(n x + 1), 2x) F x(1 p) f = (n x + 1)p F P (F > f 1 ) = α/2 x(1 p) f 1 f 1 = (n x + 1)p p p 1 p 1 = x (n x + 1)f 1 + x nz B(n, p 1 ) P (nz x) = α/2 P (nz x) = P (F > f ) F (2(x + 1), 2(n x)) F f (n x)p = (x + 1)(1 p) 54

55 P (F > f 2 ) = α/2 f 2 f 2 = (n x)p (x + 1)(1 p) p p 2 p 2 = (x + 1)f 2 (x + 1)f 2 + (n x) nz B(n, p 2 ) P (nz x) = α/2 p 100(1 α)% [p 1, p 2 ] % S 2 χ 2 = ns2 n 1 100(1 α) σ 2 ns ( 2 χ 2 α ) < σ 2 ns < ( 2 ) n 1 2 χ 2 n 1 1 α

56 ( ) = ( 1 4 6) = P P α ( )α

57 6 1 P P ( ) µ [ ] µ 0 µ = µ 0 H 0 : µ = µ 0 X µ 0 N ( 0, σ 2 /n ) N ( 0, σ 2 /n ) P (z > z(α/2)) = α/2 z(α/2) α X µ 0 < z(α/2), z(α/2) < X µ 0 X µ 0 > z(α/2) X µ 0 X µ 0 z(α/2) N(0, σ 2 /n) α 100α H 0 : µ = µ 0 µ = µ 0 57

58 α/2 α/2 -z(α/2) z(α/2) P P X µ 0 ζ X µ 0 = ζ X µ 0 ζ X > µ 0 X µ 0 ζ P P p p -ζ ζ 1. n 2. σ 2 58

59 3. µ µ 0 µ µ 0 4. α 5. X µ 0 6. σ 2 n N(0, σ 2 /n) α z(α/2) 7. X µ 0 > z(α/2) µ µ 0 P 4 5. X µ 0 6. σ 2 n N(0, σ 2 /n) Z P ( X µ 0 < Z) = p 7. p < α α 2α µ µ 0 [ ] µ µ 0 µ > µ 0 µ µ 0 µ µ 0 H 0 : µ = µ 0 X µ 0 N ( 0, σ 2) N ( 0, σ 2) P (t > z(α)) = α z(α) α z(α) < X µ 0 X µ 0 X µ z(α) N(0, σ 2 /n) α 59

60 α z(α) H 0 : µ = µ 0 µ 1 < µ 0 µ 1 H 0 : µ = µ 1 X (µ = µ 0 ) µ µ = µ 1 µ = µ 1 X µ 1 N ( 0, σ 2) X µ 0 < X µ 1 X µ 1 t ( ) H 0 : µ = µ 0 N(µ, σ 2 ) n X 1,..., X n X U t = X µ U n n 1 t U 2 t 60

61 P (t > t n 1 (α)) = α/2 t n 1 (α) α t > t n 1 (α) X µ µ 0 17 ν 0 1. µ µ 0? 2. µ > µ 0? 3. µ < ν 0? (1 ) H 0 : µ = µ 0 (2 ) ( ) H 0 : µ = µ 0 X µ < µ 0 (3 ) 17 H 0 : µ = ν 0 X ( ) 61

62 µ x, µ y (1) 2 (2) 2 (3) 2 (4) 2 (1) N(µ X, σ 2 X ), N(µ Y, σ 2 Y ) 2 m, n X, Ȳ N(µ X, σx 2 /m), N(µ Y, σy 2 /n) X Ȳ N (µ X µ Y, µ X = µ Y X Ȳ N (0, σx 2 m + σ2 Y n σx 2 ) m + σ2 Y n ) 62

63 (2) t 2 N(µ X, σ 2 ), N(µ Y, σ 2 ) 2 m, n X, Ȳ U 2 X, U 2 Y T = X Ȳ (µ X µ Y ) V ( 2 1 m + ), V 2 = (m 1)U X 2 + (n 1)U Y 2 1 m + n 2 n T m + n 2 t µ X = µ Y T = X Ȳ V ( 2 1 m + ), V 2 = (m 1)U X 2 + (n 1)U Y 2 1 m + n 2 n T m + n 2 t V t (3) Welch ν t x ȳ t = ˆσ 2 x n x + ˆσ2 y n y ˆσ x, 2 ˆσ y 2 x, y ν ν 1 ν = c2 (1 c)2 + n x 1 n y 1, c = ˆσ 2 x n x ˆσ x 2 n x + ˆσ2 y n y t t > t ν (α) 63

64 H 0 : µ x = µ y H 0 (4) n 1 t t = x ȳ Ud 2 n U 2 d x i y i ( ) p = 0.01 p < 0.01 p p = 0.01 Z = X X n X i p p(1 p) = n p(1 p) ( 2 + (1 p)(0 p) 2 ) (1 0.01) N 0.01, ( n p = 0.01 ) P (Z < z(α)) = α z(α)( 100α ) Z < z(α) Z α α p < 0.01 Z z(α) α ( p = p 1, (p 1 > p 0 = 0.01) N p 1, p ) 1(1 p 1 ) p p = p 0 = 0.01 n 64

65 100α p = p 0 = 0.01 p = p 1 1. H 0 : p = p 0 p = p 1 p 0 2. p p p 0 p 0 2 (p < p 0?) p p 0 = 0.05 p p 0 p = p 0 p = p 0 p 0 k n k B(n, p) p = p 0 B(n, p 0 ) p 0 n B(n, p 0 ) P (k < K(α)) = α (1) K(α) 2 α K(α) (1) K(α) 65

66 K ( ) K n P (k K) = p k 0(1 p 0 ) n k (2) k k=0 P (2) p = p 0 (K p = p 0 ) p < p 0 p > p 0 K/n < p 0 p > p 0 p p 0 (2) (3) p = p 0 p > p 0 (3) d d p pk (1 p) n k = kp k 1 (1 p) n k (n k)p k (1 p) n k 1 = p k 1 (1 p) n k 1 (k pn) p p k (1 p) n k k/n < p (2) k k K K/n < p (2) p k (1 p) n k p (3) P ( ) n P (k K) = p k 0(1 p 0 ) n k (4) k k=k K/n < p 0 p < p 0 p p 0 (4) (5) P P

67 F 2 F 2 B(n, p) P B(n,p) (m, n) F P F m n K P B(n,p) (k K) = P F 2(K+1) 2(n K) ( (n K)p ) (K + 1)(1 p) < F K ( ) P F P p = p 0 α P α p = p 0 p < p 0 p F P F α (m, n) F 100α F m n (α) Z = K n H 0 : p = p 0 (n K)p ( 0 (K + 1)(1 p 0 ) F 2(K+1) α ) 2(n K) 2 K(1 p 0 ) ( F 2(n K+1) α ) 2K (n K + 1)p 0 2 H K(1 p 0 ) F 2(n K+1) 2K (α) (n K + 1)p 0 H H (n K)p 0 (K + 1)(1 p 0 ) F 2(K+1) 2(n K) (α)

68 P P B(0.05,150) (k 2) = p = 0.05 p <

69 x a x a b x n a b + x n a b n b n n a b X ( ) n b n b n b P (X = x) X = x n b a x n a b k X = x ( ) ( ) a n a P (X = k) = k b k ( ) n b X x P x P (X = k) k=0 69

70 ( n, a, b) 2 a b n 1 = a + b c d n 2 = c + d a + c b + d n = a + b + c + d q 1 = a/n 1 q 2 = c/n 2 q = (a + c)/n q 1, q 2, q p 1, p 2, p p 1 = p 2 (= p) X X E(X 1 ) = E(X 2 ) = p V (X 1 ) = V (X 2 ) = p(1 p) q 1, q 2 X 1, X p(1 p) p(1 p) p n 1 n 2 q 1 q 2 0 ( 1 v = + 1 n 1 n 2 ) p(1 p) p q 2 t q 2 70

71 2 u u (q 1 q 2 ) 2 v (q 1 q 2 ) 2 p = q v (q 1 q 2 ) 2 v = n(ad bc) 2 (a + b)(c + d)(a + c)(b + d) 3 a b c n 1 = a + b + c d e f n 2 = d + e + f a + d b + e c + f n = a + b + c + d + e + f 3 3 m n 2 Fisher 2 R R

72 R chisq.test Fisher R fisher.test chisq.test 2x2 Yates correct=f with Yates continuity correction Yates 2x2 P Yates > chisq.test(matrix(c(18,67,35,65),ncol=2),correct=f) Pearson s Chi-squared test data: matrix(c(18, 67, 35, 65), ncol = 2) X-squared = , df = 1, p-value = > chisq.test(matrix(c(18,67,35,65),ncol=2)) Pearson s Chi-squared test with Yates continuity correction data: matrix(c(18, 67, 35, 65), ncol = 2) X-squared = , df = 1, p-value = > fisher.test(matrix(c(18,67,35,65),ncol=2),alternative= t ) Fisher s Exact Test for Count Data data: matrix(c(18, 67, 35, 65), ncol = 2) p-value = alternative hypothesis: true odds ratio is not equal to 1 95 percent confidence interval: sample estimates: 72

73 odds ratio > fisher.test(matrix(c(18,67,35,65),ncol=2),alternative= less ) Fisher s Exact Test for Count Data data: matrix(c(18, 67, 35, 65), ncol = 2) p-value = alternative hypothesis: true odds ratio is less than 1 95 percent confidence interval: sample estimates: odds ratio y 11 y 12 y 13 y 1 = y 11 + y 12 + y y 21 y 22 y 23 y 2 = y 21 + y 22 + y 23 y 31 y 32 y 33 y 3 = y 31 + y 32 + y 33 y 1 y 2 y 3 y = y 1 + y 2 + y 3 73

74 2 (X) X t F p R fisher.test 74

75 2 a b a = b = 3 χ 2 χ 2 = ij (y ij yˆ ij ) 2 (1) yˆ ij ν = (a 1)(b 1) yˆ ij y ij y 11 : y 12 : y 13 = y 21 : y 22 : y 23 = y 31 : y 32 : y 33 y 1 : y 2 : y 3 y 21 = y 2 y 1 y 11 y 11 + y 21 + y 31 = y 1 y 11 + y 2 y 1 y 11 + y 3 y 1 y 11 = y 1 y 11 yˆ 11 yˆ 11 = y 1 y 1 y 1 + y 2 + y 3 y i y j yˆ ij = (2) y 1 + y 2 + y 3 ( yˆ ij ) (a 1)(b 1) α χ 2 y ij α 75

76 α (1) χ 2 (3) y ij = f ij, yˆ ij = e ij m n {f ij } 1 i m, 1 j n f i = j f ij, f j = i f ij, f = i,j f ij (f ij e ij ) 2 = e ij i,j ( ) i,j f ij e ij = f i f j f. i,j f 2 ij f i f j 1 (3) (f ij e ij ) 2 e ij = i,j ( ) 2 f ij fi f j f f i f j f = (f ijf f i f j ) 2 f f i f j = f 2 ij f 2 2f ij f f i f j + f 2 i f 2 j f f i f j = f f 2 ij f i f j 2f ij + f i f j f f i f j = ij i e ij f i j i,j f j = f 2 (f ij e ij ) 2 fij 2 = f f f i f j = f i,j f 2 ij 1 f i f j 76

77 (2) (1) χ P = (3 1)(3 1) = R R > chisq.test(matrix(c(20,49,10,6,20,41,0,12,34),ncol=3,byrow=t)) Pearson s Chi-squared test data: matrix(c(20, 49, 10, 6, 20, 41, 0, 12, 34), ncol = 3, byrow = T) X-squared = , df = 4, p-value = 4.132e-12 > fisher.test(matrix(c(20,49,10,6,20,41,0,12,34),ncol=3,byrow=t)) Fisher s Exact Test for Count Data data: matrix(c(20, 49, 10, 6, 20, 41, 0, 12, 34), ncol = 3, byrow = T) 77

78 p-value = 1.071e-13 alternative hypothesis: two.sided Excel Excel2007 (a) ( ) 165,162,171,... (b) X average( ) n counta( ) (c) µ µ 0 (d) Excel (a) [ -d, +d] d -norminv(α/2, 0, sqrt( / )) (b) P(X<norminv(p, m, v))=p p<0.5 m=0 norminv (c) z(α/2) norminv α/2 (d) norminv( /2, 0, sqrt( / )) (e) P normdist(-abs( - ),0,sqrt( / ), 1)*2 (f) normdist(*, *, 1) abs (g) P normdist 2 (h) norminv(, 0, sqrt( / )) (i) P normdist(-abs( - ), 0, sqrt( / ), 1) 78

79 t (a) [ -t*sqrt( / ), +t*sqrt( / )] t tinv(α, -1) (b) var( ) (c) P( X >tinv(p, n))=p tinv α t(α) (d) tinv(, -1) (e) P tdist(abs( - ), 0, 2) (f) tdist 3 2 P (g) tdist abs (h) tinv(2*, -1) (i) tinv t(α) 2 (j) P tdist(abs( - ),0,1) (k) tdist 3 1 P (l) tdist abs 2. R R R R Enter help( 79

80 > data <- c(3,5,4,6,5,7,3,8,4,5) > n <- length(data) > s <- sd(data) > x_bar <- mean(data) sd(data) data qnorm(p) P (X z) = p z pnorm(z) P (X z) > z <- qnorm(0.975,mean=0,sd=s/sqrt(n)) > c(x_bar-z, x_bar+z) [1] > 2*(1-pnorm(abs(6-x_bar),mean=0,sd=s/sqrt(n))) [1] % t 6 P t t qt(p) t P (X t) = p t pt(x) t P (X t) > t <- qt(0.975,df=n-1)*s/sqrt(n) > c(x_bar-t, x_bar+t) [1] > 2*(1-pt(abs(6-x_bar)/(s/sqrt(n)),n-1)) [1] % 6 80

81 R > t.test(data,mu=6) One Sample t-test data: data t = , df = 9, p-value = alternative hypothesis: true mean is not equal to 6 95 percent confidence interval: sample estimates: mean of x 5 > t.test(data,mu=6,alternative="less") One Sample t-test data: data t = , df = 9, p-value = alternative hypothesis: true mean is less than 6 95 percent confidence interval: -Inf sample estimates: mean of x 5 2 R 81

82 > data2 <- c(4,4,5,6,5,7,6,6,9,6) > t.test(data,data2,var.equal=f) Welch Two Sample t-test data: data and data2 t = , df = , p-value = alternative hypothesis: true difference in means is not equal to 0 95 percent confidence interval: sample estimates: mean of x mean of y R pbinom(k,n,p) P B(n, p) X P (X k) > 1-pbinom(54,100,0.5) [1] P B(100, 0.5) X P (55 X) = 1 P (X 54) binom.test > binom.test(c(55,45),p=0.5,alternative="greater") Exact binomial test data: c(55, 45) number of successes = 55, number of trials = 100 p-value =

83 alternative hypothesis: true probability of success is greater than percent confidence interval: sample estimates: probability of success R data3.txt Excel R data3.txt > data3<-read.table("data3.txt") > data3 V1 V2 V > chisq.test(data3) Pearson s Chi-squared test data: data3 X-squared = , df = 4, p-value = 4.132e-12 R R 83

84 R 1. R Windows R R 2. R > 3. 3,4,5 d > d <- c(3,4,5) <- < - = <- Enter 4. d d > d Enter [1] R Enter 84

85 C 55 C 60 C 65 C ( ) ( ) ( ) F A( ) a ( ) i r i i j y ij ( r i 5 ) y ij = µ i + ε ij 1 85

86 µ i i ε ij N(0, σ 2 )( ) H 0 : µ 1 = µ 2 = = µ a y i = j y ij, y = i j y ij ȳ i = y i /r i, ȳ = y /n S e = (y ij ȳ i ) 2 i j S e /σ 2 ν e = n a S T = (y ij ȳ ) 2 i j S e S A = S T S e S A /σ 2 (S e ) H 0 ν A = a 1 ( S A ) H 0 F = S A/ν A S e /ν e, ν A = a 1, ν e = n a ν A, ν e F µ i F F α f νa,ν e (α) F > f νa,ν e (α) H 0 F (Analysis of Variance, ANOVA) 86

87 Excel Excel (a) Excel (b) (c) ( ) (d) F F F > F 2. R R 2 1 >score=c(56,48,72,60,55,60,62,76,84,78,53,62,44,90,57, 77,72,83,81,91,83) > group=factor(rep(c("a", "B", "C", "D"), c(5, 4, 6, 6))) > anova(aov(score ~ group)) Analysis of Variance Table Response: score Df Sum Sq Mean Sq F value Pr(>F) group * Residuals

88 --- Signif. codes: 0 *** ** 0.01 * score (group) group A,B,C,D 5,4,6,6 A 56,48,72,60,55 B 60,62,76,84 residual group - Df Signif. codes *** p ** * * > score=c(5,6,7,6,7,8,7,8,9) > group=factor(rep(c("a","b","c"),c(3,3,3))) > anova(aov(score ~ group)) Analysis of Variance Table Response: score Df Sum Sq Mean Sq F value Pr(>F) group Residuals x 1,..., x p, y (x 11,..., x p1, y 1 ),..., (x 1n,..., x pn, y n ) y x 1,..., x p y = b 0 + b 1 x b p x p x 1,..., x p y f(x 1,..., x p ) = b 0 + b 1 x 1 + b p x p 1. 88

89 2. b 0,..., b p S = (y i f(x 1i,..., x pi )) 2 S 3. b 0,..., b p S b i = 0 (i = 0,..., p) 0 (b 0,..., b p ) S y = b 0 + b 1 x b p x p S S b 0,..., b p (b 0,..., b p ) S b k S b k = 2(y i b 0 b 1 x 1i b p x pi )( x ki ) = 0, k = 0,..., p x 0i = 1 ( n ) ( n ) ( n ) x ki b 0 + x ki x 1i b x ki x pi b p = x ki y i, k = 0,..., p b 0,..., b p b k p = 1, p = 2 p = 1 nb 0 + ( ) x i b ( ) x i b 1 = n y i ( ) b 1 = n y i x i 2 x i

90 ns 2 x = x 2 i n x 2, ns xy = x i y i n xȳ x 2 b 0 = i yi x i xi y i n x 2 i ( x i ) 2 = nȳ x 2 i n x x i y i + n 2 x 2 ȳ n 2 x 2 ȳ n 2 s 2 x = r n2 ȳs 2 x n 2 xs xy n 2 s 2 x = ȳ x s xy s 2 x b 1 = = x 2 i yi x i xi y i n x 2 i ( x i ) 2 (xi x)(y i ȳ) (xi x) 2 p = 2 nb 0 + ( ) x 1i b 0 + ( ) x 2i b 0 + = r s y s x ( ) x 1i b 1 + ( ) b 1 + ( x 2 1i ) x 2i x 1i b 1 + ( ) x 2i b 2 = n y i ( ) x 1i x 2i b 2 = n x 1i y i ( ) b 2 = n x 2i y i 2 x 2i y = f(x 1,..., x p ) = b 0 + b 1 x b p x p b k X 1 x 11 x p1 y 1 b 0 1 x 12 x p2 X =..., y = y 2., b = b 1. 1 x 1n x pn y n b p 90

91 n x1i x2i 2 x1i x1i x1i x 2i X X = 2 x2i x2i x 1i x2i..... xpi xpi x 1i xpi x1i x pi. xpi 2 X Xb = X y X V = {Xb : b R p+1 } X V u 0,..., u r V (V X X - ) y V y u v V u V u u = r i=0 (y, u i )u i v + w 2 = (v + w, v + w) = v 2 + 2(v, w) + w 2 v V v u y u y v 2 = v u 2 + y u 2 v = Xb, u = Xˆb y v 2 = S(b), y u 2 = S(ˆb) ˆb S x j, j = 0,..., p X (y Xˆb, v) = 0, v V (y Xˆb, x j ), j X (y Xˆb) = 0 Xˆb y V ˆb S 91

92 X X (X X) X X(X X) X X = X X X X (X X) X y ( ) S ˆb = (ˆb0,, ˆb ) p b = (b 0,, b p ) S(b) = (y Xb) (y Xb) { } { } = y Xˆb + X(ˆb b) y Xˆb + X(ˆb b) (4.1) = (y Xˆb) (y Xˆb) + (Xb Xˆb) (Xb Xˆb) (4.2) S(ˆb) (Xˆb Xb) (y Xˆb) (y Xˆb) (Xˆb Xb) X (y Xˆb) = ( ) 1. y x 1,..., x p y = β 0 + β 1 x β p x p x k y 2. y x 1,..., x p (x 1i,..., x pi ) 2 y i = β 0 + β 1 x 1i + + β p x pi + ε i ε i i 1 ( ) 2 92

93 3. ε i N(0, σ 2 ) (σ ) y i ε i y = b 0 + b 1 x b p x p b k b k β k E(b k ) = β k b k β k b 0,..., b p l 0 b l p b p l 0,..., l p 1, x,..., x p 1, x 1,..., x p ( ) S l 0,..., l p 1, x,..., x p (Gauss-Markov ). l 1 b l p b p ȳ l 1ˆb1 + + l pˆbp (1) - F 0 t 0 0 H 0 : β 1 = = β p = 0 93

94 ( ) S e = (y i ŷ i ) 2, S R = S yy = (y i ȳ) 2 S e = S yy S R (ŷ i ŷ) 2 ( H 0 ) S e /σ 2 N(0, 1) ν e 2 ( p.56) ν e = n rank(x)(x n (p + 1) ) ν e = n p 1 χ 2 S e /σ 2 n p 1 χ 2 S R /σ 2 H 0 N(0, 1) p 2 ( p.56 ) χ 2 S R /σ 2 p χ 2 F H 0 F = S Rp S e n p 1 (p, n p 1) F F 94

95 S R ( ) Syy /(n p 1) p F = 1/ S R /p n p 1 F α f νa,ν e (α) F > f νa,ν e (α) H 0 V e = S e /(n p 1) ( H 0 )σ 2 V R = S R /p σ 2 F (2) - (y i b 0 b 1 x 1 b p x p ) 2 R 2 = 1 (y i ȳ) 2 R y y i b 0 + b 1 x 1i b p x pi y b 0 + b 1 l b p l p ( p.16 ) F F 95

96 t k = b k β k, a kk V e k = 1,..., p b 0 β 0 t 0 = ( ) 1 n + p p x j x k a jk V e j=1 k=1 n p 1 t V e V e = (y i f(x 1,..., x p )) 2 n p 1 a jk ( n ) A = (a jk ) = (x ji x j )(x ki x k ) (j, k) ( ) ( p.60 ) (β k = 0) P (t k > t n p 1 (α)) = P (t k < t n p 1 (α)) = α 2 t n p 1 (α) 1 α β k [ b k a kk V e, b k + a kk V e ], k = 1,..., p b 0 1 p n + j=1 k=1 p x j x k a jk V e, b p n + j=1 k=1 p x j x k a jk V e, k = 0 96

97 H 0 : β k = 0 x k x k b k k = 1,..., p k = 0 t k = b k a kk V e, k = 1,..., p b 0 t 0 = ( ) 1 n + p p x j x k a jk V e j=1 k=1 b k 0 t k > t n p 1 (α) α H data mulreg.xls OK 4. Y ( ) X ( ) ( ) OK 5. (F ) t 6. 97

98 R 2 R 2 = 1 (y i b 0 b 1 x 1 b p x p ) 2 (y i ȳ) 2 = 1 S e S yy S e, S yy R 2 R 2 R 2 R 2 = 1 S e/(n p 1) S yy /(n 1) p x 1,, x p x 1 x 11 x 1i x 1n.. x k x k1 x ki x kn.... x p x p1 x pi x pn p = 2 x 1 x

99 x 1,..., x p x 1,..., x p ( ) (a 1,..., a p ), a a 2 p = 1 (x 1,..., x p ) z z = a 1 x a p x p z z (x 1i,..., x pi ) z z i (a 1,..., a p ) V (z) = 1 (z i z) 2, z = 1 n n V (z) z (a 1,..., a p ) V (z) x 1,..., x p, y, a 1,..., a p V (z) = 1 n = 1 n = 1 n (a 1x 1i + + a p x pi ) 1 n a 1 x 1i 1 n j=1 x 1j z i (a 1 x 1j + + a p x pj ) j=1 + + a p x pi 1 n {a 1 (x 1i x 1 ) + + a p (x pi x p )} 2 j=1 x pj 2 2 x i = 1 n n j=1 x ij σ ij = 1 (x ik x i )(x jk x j ) n k=1 (σ ij x i, x j ) V (z) = σ 11 a σ pp a 2 p + 2 i<j σ ij a i a j 99

100 a a 2 p = 1 a 1,..., a p σ 11 a σ pp a 2 p + 2 i<j σ ij a i a j a 1,..., a p σ ii a i + j i σ ij a j λa i = 0 i = 1,..., p a 1,..., a p, λ σ 11 σ 1p Σ =... σ p1 σ pp, α = (Σ ) Σα = λα (1) p p 1 (positive semi-definite) Σ (λ 1, α 1 ),..., (λ p, α p ), α 1,..., α p 1 a 1. a p λ 1 λ 2... λ p (λ, α) Σ V (z) = α Σα V (z) = α Σα = α λα = λα α = λ 100

101 λ 1 α 1 V (z) z α 1 = (a 11,..., a 1p ) z 1 = α 1 (x 1,..., x p ) = a 11 x a 1p x p α 1 λ 1 λ 2 λ 1 α 2 = (a 21,..., a 2p ) z 2 = α 2 (x 1,..., x p ) = a 21 x a 2p x p α 2 α 1 α = 1 α α 1 = 0 V (z) Lagrange (1) α = 1 α 1 V (z) α (1) α = α 2 R.A.Johnson, D.W.Wichern, Applied Multivariate Analysis, sixth edition, Chpter 8.1 p ( ) p σ ii p σ ii Σ Σ 101

102 k z k λ k (k ) C k = λ k p i σ = λ k p ii i λ i k k k Ci i k k z k x j z k a k ( ) z k λk a kj r kj = σjj x 1,..., x p x i = x i x i σii x i x i

103 2. Excel ( ) OK biplot 103

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

I L01( Wed) : Time-stamp: Wed 07:38 JST hig e, ( ) L01 I(2017) 1 / 19

I L01( Wed) : Time-stamp: Wed 07:38 JST hig e,   ( ) L01 I(2017) 1 / 19 I L01(2017-09-20 Wed) : Time-stamp: 2017-09-20 Wed 07:38 JST hig e, http://hig3.net ( ) L01 I(2017) 1 / 19 ? 1? 2? ( ) L01 I(2017) 2 / 19 ?,,.,., 1..,. 1,2,.,.,. ( ) L01 I(2017) 3 / 19 ? I. M (3 ) II,

More information

ii 3.,. 4. F. ( ), ,,. 8.,. 1. (75% ) (25% ) =7 24, =7 25, =7 26 (. ). 1.,, ( ). 3.,...,.,.,.,.,. ( ) (1 2 )., ( ), 0., 1., 0,.

ii 3.,. 4. F. ( ), ,,. 8.,. 1. (75% ) (25% ) =7 24, =7 25, =7 26 (. ). 1.,, ( ). 3.,...,.,.,.,.,. ( ) (1 2 )., ( ), 0., 1., 0,. (1 C205) 4 10 (2 C206) 4 11 (2 B202) 4 12 25(2013) http://www.math.is.tohoku.ac.jp/~obata,.,,,..,,. 1. 2. 3. 4. 5. 6. 7. 8. 1., 2007 ( ).,. 2. P. G., 1995. 3. J. C., 1988. 1... 2.,,. ii 3.,. 4. F. ( ),..

More information

A B P (A B) = P (A)P (B) (3) A B A B P (B A) A B A B P (A B) = P (B A)P (A) (4) P (B A) = P (A B) P (A) (5) P (A B) P (B A) P (A B) A B P

A B P (A B) = P (A)P (B) (3) A B A B P (B A) A B A B P (A B) = P (B A)P (A) (4) P (B A) = P (A B) P (A) (5) P (A B) P (B A) P (A B) A B P 1 1.1 (population) (sample) (event) (trial) Ω () 1 1 Ω 1.2 P 1. A A P (A) 0 1 0 P (A) 1 (1) 2. P 1 P 0 1 6 1 1 6 0 3. A B P (A B) = P (A) + P (B) (2) A B A B A 1 B 2 A B 1 2 1 2 1 1 2 2 3 1.3 A B P (A

More information

( 30 ) 30 4 5 1 4 1.1............................................... 4 1.............................................. 4 1..1.................................. 4 1.......................................

More information

数理統計学Iノート

数理統計学Iノート I ver. 0/Apr/208 * (inferential statistics) *2 A, B *3 5.9 *4 *5 [6] [],.., 7 2004. [2].., 973. [3]. R (Wonderful R )., 9 206. [4]. ( )., 7 99. [5]. ( )., 8 992. [6],.., 989. [7]. - 30., 0 996. [4] [5]

More information

( )/2 hara/lectures/lectures-j.html 2, {H} {T } S = {H, T } {(H, H), (H, T )} {(H, T ), (T, T )} {(H, H), (T, T )} {1

( )/2   hara/lectures/lectures-j.html 2, {H} {T } S = {H, T } {(H, H), (H, T )} {(H, T ), (T, T )} {(H, H), (T, T )} {1 ( )/2 http://www2.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html 1 2011 ( )/2 2 2011 4 1 2 1.1 1 2 1 2 3 4 5 1.1.1 sample space S S = {H, T } H T T H S = {(H, H), (H, T ), (T, H), (T, T )} (T, H) S

More information

統計学のポイント整理

統計学のポイント整理 .. September 17, 2012 1 / 55 n! = n (n 1) (n 2) 1 0! = 1 10! = 10 9 8 1 = 3628800 n k np k np k = n! (n k)! (1) 5 3 5 P 3 = 5! = 5 4 3 = 60 (5 3)! n k n C k nc k = npk k! = n! k!(n k)! (2) 5 3 5C 3 = 5!

More information

6.1 (P (P (P (P (P (P (, P (, P.

6.1 (P (P (P (P (P (P (, P (, P. (011 30 7 0 ( ( 3 ( 010 1 (P.3 1 1.1 (P.4.................. 1 1. (P.4............... 1 (P.15.1 (P.16................. (P.0............3 (P.18 3.4 (P.3............... 4 3 (P.9 4 3.1 (P.30........... 4 3.

More information

151021slide.dvi

151021slide.dvi : Mac I 1 ( 5 Windows (Mac Excel : Excel 2007 9 10 1 4 http://asakura.co.jp/ books/isbn/978-4-254-12172-8/ (1 1 9 1/29 (,,... (,,,... (,,, (3 3/29 (, (F7, Ctrl + i, (Shift +, Shift + Ctrl (, a i (, Enter,

More information

tokei01.dvi

tokei01.dvi 2. :,,,. :.... Apr. - Jul., 26FY Dept. of Mechanical Engineering, Saga Univ., JAPAN 4 3. (probability),, 1. : : n, α A, A a/n. :, p, p Apr. - Jul., 26FY Dept. of Mechanical Engineering, Saga Univ., JAPAN

More information

untitled

untitled 2 : n =1, 2,, 10000 0.5125 0.51 0.5075 0.505 0.5025 0.5 0.4975 0.495 0 2000 4000 6000 8000 10000 2 weak law of large numbers 1. X 1,X 2,,X n 2. µ = E(X i ),i=1, 2,,n 3. σi 2 = V (X i ) σ 2,i=1, 2,,n ɛ>0

More information

renshumondai-kaito.dvi

renshumondai-kaito.dvi 3 1 13 14 1.1 1 44.5 39.5 49.5 2 0.10 2 0.10 54.5 49.5 59.5 5 0.25 7 0.35 64.5 59.5 69.5 8 0.40 15 0.75 74.5 69.5 79.5 3 0.15 18 0.90 84.5 79.5 89.5 2 0.10 20 1.00 20 1.00 2 1.2 1 16.5 20.5 12.5 2 0.10

More information

6.1 (P (P (P (P (P (P (, P (, P.101

6.1 (P (P (P (P (P (P (, P (, P.101 (008 0 3 7 ( ( ( 00 1 (P.3 1 1.1 (P.3.................. 1 1. (P.4............... 1 (P.15.1 (P.15................. (P.18............3 (P.17......... 3.4 (P................ 4 3 (P.7 4 3.1 ( P.7...........

More information

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A .. Laplace ). A... i),. ω i i ). {ω,..., ω } Ω,. ii) Ω. Ω. A ) r, A P A) P A) r... ).. Ω {,, 3, 4, 5, 6}. i i 6). A {, 4, 6} P A) P A) 3 6. ).. i, j i, j) ) Ω {i, j) i 6, j 6}., 36. A. A {i, j) i j }.

More information

Microsoft Word - 表紙.docx

Microsoft Word - 表紙.docx 黒住英司 [ 著 ] サピエンティア 計量経済学 訂正および練習問題解答 (206/2/2 版 ) 訂正 練習問題解答 3 .69, 3.8 4 (X i X)U i i i (X i μ x )U i ( X μx ) U i. i E [ ] (X i μ x )U i i E[(X i μ x )]E[U i ]0. i V [ ] (X i μ x )U i i 2 i j E [(X i

More information

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,.

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,. 24(2012) (1 C106) 4 11 (2 C206) 4 12 http://www.math.is.tohoku.ac.jp/~obata,.,,,.. 1. 2. 3. 4. 5. 6. 7.,,. 1., 2007 (). 2. P. G. Hoel, 1995. 3... 1... 2.,,. ii 3.,. 4. F. (),.. 5... 6.. 7.,,. 8.,. 1. (75%)

More information

st.dvi

st.dvi 9 3 5................................... 5............................. 5....................................... 5.................................. 7.........................................................................

More information

ii 3.,. 4. F. (), ,,. 8.,. 1. (75% ) (25% ) =9 7, =9 8 (. ). 1.,, (). 3.,. 1. ( ).,.,.,.,.,. ( ) (1 2 )., ( ), 0. 2., 1., 0,.

ii 3.,. 4. F. (), ,,. 8.,. 1. (75% ) (25% ) =9 7, =9 8 (. ). 1.,, (). 3.,. 1. ( ).,.,.,.,.,. ( ) (1 2 )., ( ), 0. 2., 1., 0,. 23(2011) (1 C104) 5 11 (2 C206) 5 12 http://www.math.is.tohoku.ac.jp/~obata,.,,,.. 1. 2. 3. 4. 5. 6. 7.,,. 1., 2007 ( ). 2. P. G. Hoel, 1995. 3... 1... 2.,,. ii 3.,. 4. F. (),.. 5.. 6.. 7.,,. 8.,. 1. (75%

More information

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g(

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g( 06 5.. ( y = x x y 5 y 5 = (x y = x + ( y = x + y = x y.. ( Y = C + I = 50 + 0.5Y + 50 r r = 00 0.5Y ( L = M Y r = 00 r = 0.5Y 50 (3 00 0.5Y = 0.5Y 50 Y = 50, r = 5 .3. (x, x = (, u = = 4 (, x x = 4 x,

More information

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K II. () 7 F 7 = { 0,, 2, 3, 4, 5, 6 }., F 7 a, b F 7, a b, F 7,. (a) a, b,,. (b) 7., 4 5 = 20 = 2 7 + 6, 4 5 = 6 F 7., F 7,., 0 a F 7, ab = F 7 b F 7. (2) 7, 6 F 6 = { 0,, 2, 3, 4, 5 },,., F 6., 0 0 a F

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

熊本県数学問題正解

熊本県数学問題正解 00 y O x Typed by L A TEX ε ( ) (00 ) 5 4 4 ( ) http://www.ocn.ne.jp/ oboetene/plan/. ( ) (009 ) ( ).. http://www.ocn.ne.jp/ oboetene/plan/eng.html 8 i i..................................... ( )0... (

More information

waseda2010a-jukaiki1-main.dvi

waseda2010a-jukaiki1-main.dvi November, 2 Contents 6 2 8 3 3 3 32 32 33 5 34 34 6 35 35 7 4 R 2 7 4 4 9 42 42 2 43 44 2 5 : 2 5 5 23 52 52 23 53 53 23 54 24 6 24 6 6 26 62 62 26 63 t 27 7 27 7 7 28 72 72 28 73 36) 29 8 29 8 29 82 3

More information

( 28 ) ( ) ( ) 0 This note is c 2016, 2017 by Setsuo Taniguchi. It may be used for personal or classroom purposes, but not for commercial purp

( 28 ) ( ) ( ) 0 This note is c 2016, 2017 by Setsuo Taniguchi. It may be used for personal or classroom purposes, but not for commercial purp ( 28) ( ) ( 28 9 22 ) 0 This ote is c 2016, 2017 by Setsuo Taiguchi. It may be used for persoal or classroom purposes, but ot for commercial purposes. i (http://www.stat.go.jp/teacher/c2epi1.htm ) = statistics

More information

v er.1/ c /(21)

v er.1/ c /(21) 12 -- 1 1 2009 1 17 1-1 1-2 1-3 1-4 2 2 2 1-5 1 1-6 1 1-7 1-1 1-2 1-3 1-4 1-5 1-6 1-7 c 2011 1/(21) 12 -- 1 -- 1 1--1 1--1--1 1 2009 1 n n α { n } α α { n } lim n = α, n α n n ε n > N n α < ε N {1, 1,

More information

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y)

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 1 1977 x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) ( x 2 y + xy 2 x 2 2xy y 2) = 15 (x y) (x + y) (xy

More information

populatio sample II, B II? [1] I. [2] 1 [3] David J. Had [4] 2 [5] 3 2

populatio sample II, B II?  [1] I. [2] 1 [3] David J. Had [4] 2 [5] 3 2 (2015 ) 1 NHK 2012 5 28 2013 7 3 2014 9 17 2015 4 8!? New York Times 2009 8 5 For Today s Graduate, Just Oe Word: Statistics Google Hal Varia I keep sayig that the sexy job i the ext 10 years will be statisticias.

More information

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x [ ] IC. f(x) = e x () f(x) f (x) () lim f(x) lim f(x) x + x (3) lim f(x) lim f(x) x + x (4) y = f(x) ( ) ( s46). < a < () a () lim a log xdx a log xdx ( ) n (3) lim log k log n n n k=.3 z = log(x + y ),

More information

X G P G (X) G BG [X, BG] S 2 2 2 S 2 2 S 2 = { (x 1, x 2, x 3 ) R 3 x 2 1 + x 2 2 + x 2 3 = 1 } R 3 S 2 S 2 v x S 2 x x v(x) T x S 2 T x S 2 S 2 x T x S 2 = { ξ R 3 x ξ } R 3 T x S 2 S 2 x x T x S 2

More information

1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C

1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C 0 9 (1990 1999 ) 10 (2000 ) 1900 1994 1995 1999 2 SAT ACT 1 1990 IMO 1990/1/15 1:00-4:00 1 N 1990 9 N N 1, N 1 N 2, N 2 N 3 N 3 2 x 2 + 25x + 52 = 3 x 2 + 25x + 80 3 2, 3 0 4 A, B, C 3,, A B, C 2,,,, 7,

More information

20 9 19 1 3 11 1 3 111 3 112 1 4 12 6 121 6 122 7 13 7 131 8 132 10 133 10 134 12 14 13 141 13 142 13 143 15 144 16 145 17 15 19 151 1 19 152 20 2 21 21 21 211 21 212 1 23 213 1 23 214 25 215 31 22 33

More information

i I II I II II IC IIC I II ii 5 8 5 3 7 8 iii I 3........................... 5......................... 7........................... 4........................ 8.3......................... 33.4...................

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

newmain.dvi

newmain.dvi 数論 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/008142 このサンプルページの内容は, 第 2 版 1 刷発行当時のものです. Daniel DUVERNEY: THÉORIE DES NOMBRES c Dunod, Paris, 1998, This book is published

More information

(pdf) (cdf) Matlab χ ( ) F t

(pdf) (cdf) Matlab χ ( ) F t (, ) (univariate) (bivariate) (multi-variate) Matlab Octave Matlab Matlab/Octave --...............3. (pdf) (cdf)...3.4....4.5....4.6....7.7. Matlab...8.7.....9.7.. χ ( )...0.7.3.....7.4. F....7.5. t-...3.8....4.8.....4.8.....5.8.3....6.8.4....8.8.5....8.8.6....8.9....9.9.....9.9.....0.9.3....0.9.4.....9.5.....0....3

More information

all.dvi

all.dvi 5,, Euclid.,..,... Euclid,.,.,, e i (i =,, ). 6 x a x e e e x.:,,. a,,. a a = a e + a e + a e = {e, e, e } a (.) = a i e i = a i e i (.) i= {a,a,a } T ( T ),.,,,,. (.),.,...,,. a 0 0 a = a 0 + a + a 0

More information

6 2 2 x y x y t P P = P t P = I P P P ( ) ( ) ,, ( ) ( ) cos θ sin θ cos θ sin θ, sin θ cos θ sin θ cos θ y x θ x θ P

6 2 2 x y x y t P P = P t P = I P P P ( ) ( ) ,, ( ) ( ) cos θ sin θ cos θ sin θ, sin θ cos θ sin θ cos θ y x θ x θ P 6 x x 6.1 t P P = P t P = I P P P 1 0 1 0,, 0 1 0 1 cos θ sin θ cos θ sin θ, sin θ cos θ sin θ cos θ x θ x θ P x P x, P ) = t P x)p ) = t x t P P ) = t x = x, ) 6.1) x = Figure 6.1 Px = x, P=, θ = θ P

More information

( z = x 3 y + y ( z = cos(x y ( 8 ( s8.7 y = xe x ( 8 ( s83.8 ( ( + xdx ( cos 3 xdx t = sin x ( 8 ( s84 ( 8 ( s85. C : y = x + 4, l : y = x + a,

( z = x 3 y + y ( z = cos(x y ( 8 ( s8.7 y = xe x ( 8 ( s83.8 ( ( + xdx ( cos 3 xdx t = sin x ( 8 ( s84 ( 8 ( s85. C : y = x + 4, l : y = x + a, [ ] 8 IC. y d y dx = ( dy dx ( p = dy p y dx ( ( ( 8 ( s8. 3 A A = ( A ( A (3 A P A P AP.3 π y(x = { ( 8 ( s8 x ( π < x x ( < x π y(x π π O π x ( 8 ( s83.4 f (x, y, z grad(f ( ( ( f f f grad(f = i + j

More information

i

i 2012 i 1 1 1.1.................................. 1 1.2................................. 2 1.3.................................. 4 1.4.................................. 5 2 7 2.1....................................

More information

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ = 1 1.1 ( ). z = + bi,, b R 0, b 0 2 + b 2 0 z = + bi = ( ) 2 + b 2 2 + b + b 2 2 + b i 2 r = 2 + b 2 θ cos θ = 2 + b 2, sin θ = b 2 + b 2 2π z = r(cos θ + i sin θ) 1.2 (, ). 1. < 2. > 3. ±,, 1.3 ( ). A

More information

Z: Q: R: C: sin 6 5 ζ a, b

Z: Q: R: C: sin 6 5 ζ a, b Z: Q: R: C: 3 3 7 4 sin 6 5 ζ 9 6 6............................... 6............................... 6.3......................... 4 7 6 8 8 9 3 33 a, b a bc c b a a b 5 3 5 3 5 5 3 a a a a p > p p p, 3,

More information

n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................

More information

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 24 I 1.1.. ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 1 (t), x 2 (t),, x n (t)) ( ) ( ), γ : (i) x 1 (t),

More information

ii

ii ii iii 1 1 1.1..................................... 1 1.2................................... 3 1.3........................... 4 2 9 2.1.................................. 9 2.2...............................

More information

2 2 MATHEMATICS.PDF 200-2-0 3 2 (p n ), ( ) 7 3 4 6 5 20 6 GL 2 (Z) SL 2 (Z) 27 7 29 8 SL 2 (Z) 35 9 2 40 0 2 46 48 2 2 5 3 2 2 58 4 2 6 5 2 65 6 2 67 7 2 69 2 , a 0 + a + a 2 +... b b 2 b 3 () + b n a

More information

i

i i 1 1 1.1..................................... 1 1.2........................................ 3 1.3.................................. 4 1.4..................................... 4 1.5......................................

More information

June 2016 i (statistics) F Excel Numbers, OpenOffice/LibreOffice Calc ii *1 VAR STDEV 1 SPSS SAS R *2 R R R R *1 Excel, Numbers, Microsoft Office, Apple iwork, *2 R GNU GNU R iii URL http://ruby.kyoto-wu.ac.jp/statistics/training/

More information

201711grade1ouyou.pdf

201711grade1ouyou.pdf 2017 11 26 1 2 52 3 12 13 22 23 32 33 42 3 5 3 4 90 5 6 A 1 2 Web Web 3 4 1 2... 5 6 7 7 44 8 9 1 2 3 1 p p >2 2 A 1 2 0.6 0.4 0.52... (a) 0.6 0.4...... B 1 2 0.8-0.2 0.52..... (b) 0.6 0.52.... 1 A B 2

More information

A

A A 2563 15 4 21 1 3 1.1................................................ 3 1.2............................................. 3 2 3 2.1......................................... 3 2.2............................................

More information

mugensho.dvi

mugensho.dvi 1 1 f (t) lim t a f (t) = 0 f (t) t a 1.1 (1) lim(t 1) 2 = 0 t 1 (t 1) 2 t 1 (2) lim(t 1) 3 = 0 t 1 (t 1) 3 t 1 2 f (t), g(t) t a lim t a f (t) g(t) g(t) f (t) = o(g(t)) (t a) = 0 f (t) (t 1) 3 1.2 lim

More information

80 X 1, X 2,, X n ( λ ) λ P(X = x) = f (x; λ) = λx e λ, x = 0, 1, 2, x! l(λ) = n f (x i ; λ) = i=1 i=1 n λ x i e λ i=1 x i! = λ n i=1 x i e nλ n i=1 x

80 X 1, X 2,, X n ( λ ) λ P(X = x) = f (x; λ) = λx e λ, x = 0, 1, 2, x! l(λ) = n f (x i ; λ) = i=1 i=1 n λ x i e λ i=1 x i! = λ n i=1 x i e nλ n i=1 x 80 X 1, X 2,, X n ( λ ) λ P(X = x) = f (x; λ) = λx e λ, x = 0, 1, 2, x! l(λ) = n f (x i ; λ) = n λ x i e λ x i! = λ n x i e nλ n x i! n n log l(λ) = log(λ) x i nλ log( x i!) log l(λ) λ = 1 λ n x i n =

More information

20 6 4 1 4 1.1 1.................................... 4 1.1.1.................................... 4 1.1.2 1................................ 5 1.2................................... 7 1.2.1....................................

More information

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2 II No.1 [n/] [1]H n x) H n x) = 1) r n! r!n r)! x)n r r= []H n x) n,, H n x) = 1) n H n x) [3] H n x) = 1) n dn x e dx n e x [4] H n+1 x) = xh n x) nh n 1 x) ) d dx x H n x) = H n+1 x) d dx H nx) = nh

More information

IA 2013 : :10722 : 2 : :2 :761 :1 (23-27) : : ( / ) (1 /, ) / e.g. (Taylar ) e x = 1 + x + x xn n! +... sin x = x x3 6 + x5 x2n+1 + (

IA 2013 : :10722 : 2 : :2 :761 :1 (23-27) : : ( / ) (1 /, ) / e.g. (Taylar ) e x = 1 + x + x xn n! +... sin x = x x3 6 + x5 x2n+1 + ( IA 2013 : :10722 : 2 : :2 :761 :1 23-27) : : 1 1.1 / ) 1 /, ) / e.g. Taylar ) e x = 1 + x + x2 2 +... + xn n! +... sin x = x x3 6 + x5 x2n+1 + 1)n 5! 2n + 1)! 2 2.1 = 1 e.g. 0 = 0.00..., π = 3.14..., 1

More information

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 2 ), ϕ(t) = B 1 cos(ω 1 t + α 1 ) + B 2 cos(ω 2 t

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f

f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f 22 A 3,4 No.3 () (2) (3) (4), (5) (6) (7) (8) () n x = (x,, x n ), = (,, n ), x = ( (x i i ) 2 ) /2 f(x) R n f(x) = f() + i α i (x ) i + o( x ) α,, α n g(x) = o( x )) lim x g(x) x = y = f() + i α i(x )

More information

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google I4 - : April, 4 Version :. Kwhir, Tomoki TA (Kondo, Hirotk) Google http://www.mth.ngoy-u.c.jp/~kwhir/courses/4s-biseki.html pdf 4 4 4 4 8 e 5 5 9 etc. 5 6 6 6 9 n etc. 6 6 6 3 6 3 7 7 etc 7 4 7 7 8 5 59

More information

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

I A A441 : April 15, 2013 Version : 1.1 I   Kawahira, Tomoki TA (Shigehiro, Yoshida ) I013 00-1 : April 15, 013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida) http://www.math.nagoya-u.ac.jp/~kawahira/courses/13s-tenbou.html pdf * 4 15 4 5 13 e πi = 1 5 0 5 7 3 4 6 3 6 10 6 17

More information

i 6 3 ii 3 7 8 9 3 6 iii 5 8 5 3 7 8 v...................................................... 5.3....................... 7 3........................ 3.................3.......................... 8 3 35

More information

( ) 2002 1 1 1 1.1....................................... 1 1.1.1................................. 1 1.1.2................................. 1 1.1.3................... 3 1.1.4......................................

More information

分布

分布 (normal distribution) 30 2 Skewed graph 1 2 (variance) s 2 = 1/(n-1) (xi x) 2 x = mean, s = variance (variance) (standard deviation) SD = SQR (var) or 8 8 0.3 0.2 0.1 0.0 0 1 2 3 4 5 6 7 8 8 0 1 8 (probability

More information

( )

( ) 18 10 01 ( ) 1 2018 4 1.1 2018............................... 4 1.2 2018......................... 5 2 2017 7 2.1 2017............................... 7 2.2 2017......................... 8 3 2016 9 3.1 2016...............................

More information

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y [ ] 7 0.1 2 2 + y = t sin t IC ( 9) ( s090101) 0.2 y = d2 y 2, y = x 3 y + y 2 = 0 (2) y + 2y 3y = e 2x 0.3 1 ( y ) = f x C u = y x ( 15) ( s150102) [ ] y/x du x = Cexp f(u) u (2) x y = xey/x ( 16) ( s160101)

More information

i

i i 3 4 4 7 5 6 3 ( ).. () 3 () (3) (4) /. 3. 4/3 7. /e 8. a > a, a = /, > a >. () a >, a =, > a > () a > b, a = b, a < b. c c n a n + b n + c n 3c n..... () /3 () + (3) / (4) /4 (5) m > n, a b >, m > n,

More information

入試の軌跡

入試の軌跡 4 y O x 4 Typed by L A TEX ε ) ) ) 6 4 ) 4 75 ) http://kumamoto.s.xrea.com/plan/.. PDF) Ctrl +L) Ctrl +) Ctrl + Ctrl + ) ) Alt + ) Alt + ) ESC. http://kumamoto.s.xrea.com/nyusi/kumadai kiseki ri i.pdf

More information

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F F 1 F 2 F, (3) F λ F λ F λ F. 3., A λ λ A λ. B λ λ

More information

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4 1. k λ ν ω T v p v g k = π λ ω = πν = π T v p = λν = ω k v g = dω dk 1) ) 3) 4). p = hk = h λ 5) E = hν = hω 6) h = h π 7) h =6.6618 1 34 J sec) hc=197.3 MeV fm = 197.3 kev pm= 197.3 ev nm = 1.97 1 3 ev

More information

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e 3 3 5 5 5 3 3 7 5 33 5 33 9 5 8 > e > f U f U u u > u ue u e u ue u ue u e u e u u e u u e u N cos s s cos ψ e e e e 3 3 e e 3 e 3 e 3 > A A > A E A f A A f A [ ] f A A e > > A e[ ] > f A E A < < f ; >

More information

ohpmain.dvi

ohpmain.dvi fujisawa@ism.ac.jp 1 Contents 1. 2. 3. 4. γ- 2 1. 3 10 5.6, 5.7, 5.4, 5.5, 5.8, 5.5, 5.3, 5.6, 5.4, 5.2. 5.5 5.6 +5.7 +5.4 +5.5 +5.8 +5.5 +5.3 +5.6 +5.4 +5.2 =5.5. 10 outlier 5 5.6, 5.7, 5.4, 5.5, 5.8,

More information

DVIOUT

DVIOUT A. A. A-- [ ] f(x) x = f 00 (x) f 0 () =0 f 00 () > 0= f(x) x = f 00 () < 0= f(x) x = A--2 [ ] f(x) D f 00 (x) > 0= y = f(x) f 00 (x) < 0= y = f(x) P (, f()) f 00 () =0 A--3 [ ] y = f(x) [, b] x = f (y)

More information

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi) 0. A A = 4 IC () det A () A () x + y + z = x y z X Y Z = A x y z ( 5) ( s5590) 0. a + b + c b c () a a + b + c c a b a + b + c 0 a b c () a 0 c b b c 0 a c b a 0 0. A A = 7 5 4 5 0 ( 5) ( s5590) () A ()

More information

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C 8 ( ) 8 5 4 I II III A B C( ),,, 5 I II A B ( ),, I II A B (8 ) 6 8 I II III A B C(8 ) n ( + x) n () n C + n C + + n C n = 7 n () 7 9 C : y = x x A(, 6) () A C () C P AP Q () () () 4 A(,, ) B(,, ) C(,,

More information

分散分析・2次元正規分布

分散分析・2次元正規分布 2 II L10(2016-06-30 Thu) : Time-stamp: 2016-06-30 Thu 13:55 JST hig F 2.. http://hig3.net ( ) L10 2 II(2016) 1 / 24 F 2 F L09-Q1 Quiz :F 1 α = 0.05, 2 F 3 H 0, : σ 2 1 /σ2 2 = 1., H 1, σ 2 1 /σ2 2 1. 4

More information

2011 ( ) ( ) ( ),,.,,.,, ,.. (. ), 1. ( ). ( ) ( ). : obata/,.,. ( )

2011 ( ) ( ) ( ),,.,,.,, ,.. (. ), 1. ( ). ( ) ( ). :   obata/,.,. ( ) 2011 () () (),,.,,.,,. 1. 2. 3. 4. 5. 6. 7. 8. 9. 10.,.. (. ), 1. ( ). ()(). : www.math.is.tohoku.ac.jp/ obata/,.,. () obata@math.is.tohoku.ac.jp http://www.dais.is.tohoku.ac.jp/ amf/, (! 22 10.6; 23 10.20;

More information

29

29 9 .,,, 3 () C k k C k C + C + C + + C 8 + C 9 + C k C + C + C + C 3 + C 4 + C 5 + + 45 + + + 5 + + 9 + 4 + 4 + 5 4 C k k k ( + ) 4 C k k ( k) 3 n( ) n n n ( ) n ( ) n 3 ( ) 3 3 3 n 4 ( ) 4 4 4 ( ) n n

More information

5 Armitage x 1,, x n y i = 10x i + 3 y i = log x i {x i } {y i } 1.2 n i i x ij i j y ij, z ij i j 2 1 y = a x + b ( cm) x ij (i j )

5 Armitage x 1,, x n y i = 10x i + 3 y i = log x i {x i } {y i } 1.2 n i i x ij i j y ij, z ij i j 2 1 y = a x + b ( cm) x ij (i j ) 5 Armitage. x,, x n y i = 0x i + 3 y i = log x i x i y i.2 n i i x ij i j y ij, z ij i j 2 y = a x + b 2 2. ( cm) x ij (i j ) (i) x, x 2 σ 2 x,, σ 2 x,2 σ x,, σ x,2 t t x * (ii) (i) m y ij = x ij /00 y

More information

(Basic of Proability Theory). (Probability Spacees ad Radom Variables , (Expectatios, Meas) (Weak Law

(Basic of Proability Theory). (Probability Spacees ad Radom Variables , (Expectatios, Meas) (Weak Law I (Radom Walks ad Percolatios) 3 4 7 ( -2 ) (Preface),.,,,...,,.,,,,.,.,,.,,. (,.) (Basic of Proability Theory). (Probability Spacees ad Radom Variables...............2, (Expectatios, Meas).............................

More information

Microsoft Word - 信号処理3.doc

Microsoft Word - 信号処理3.doc Junji OHTSUBO 2012 FFT FFT SN sin cos x v ψ(x,t) = f (x vt) (1.1) t=0 (1.1) ψ(x,t) = A 0 cos{k(x vt) + φ} = A 0 cos(kx ωt + φ) (1.2) A 0 v=ω/k φ ω k 1.3 (1.2) (1.2) (1.2) (1.1) 1.1 c c = a + ib, a = Re[c],

More information

(, Goo Ishikawa, Go-o Ishikawa) ( ) 1

(, Goo Ishikawa, Go-o Ishikawa) ( ) 1 (, Goo Ishikawa, Go-o Ishikawa) ( ) 1 ( ) ( ) ( ) G7( ) ( ) ( ) () ( ) BD = 1 DC CE EA AF FB 0 0 BD DC CE EA AF FB =1 ( ) 2 (geometry) ( ) ( ) 3 (?) (Topology) ( ) DNA ( ) 4 ( ) ( ) 5 ( ) H. 1 : 1+ 5 2

More information

Part. 4. () 4.. () 4.. 3 5. 5 5.. 5 5.. 6 5.3. 7 Part 3. 8 6. 8 6.. 8 6.. 8 7. 8 7.. 8 7.. 3 8. 3 9., 34 9.. 34 9.. 37 9.3. 39. 4.. 4.. 43. 46.. 46..

Part. 4. () 4.. () 4.. 3 5. 5 5.. 5 5.. 6 5.3. 7 Part 3. 8 6. 8 6.. 8 6.. 8 7. 8 7.. 8 7.. 3 8. 3 9., 34 9.. 34 9.. 37 9.3. 39. 4.. 4.. 43. 46.. 46.. Cotets 6 6 : 6 6 6 6 6 6 7 7 7 Part. 8. 8.. 8.. 9..... 3. 3 3.. 3 3.. 7 3.3. 8 Part. 4. () 4.. () 4.. 3 5. 5 5.. 5 5.. 6 5.3. 7 Part 3. 8 6. 8 6.. 8 6.. 8 7. 8 7.. 8 7.. 3 8. 3 9., 34 9.. 34 9.. 37 9.3.

More information

2 1 Introduction

2 1 Introduction 1 24 11 26 1 E-mail: toyoizumi@waseda.jp 2 1 Introduction 5 1.1...................... 7 2 8 2.1................ 8 2.2....................... 8 2.3............................ 9 3 10 3.1.........................

More information

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4 35-8585 7 8 1 I I 1 1.1 6kg 1m P σ σ P 1 l l λ λ l 1.m 1 6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m

More information

AR(1) y t = φy t 1 + ɛ t, ɛ t N(0, σ 2 ) 1. Mean of y t given y t 1, y t 2, E(y t y t 1, y t 2, ) = φy t 1 2. Variance of y t given y t 1, y t

AR(1) y t = φy t 1 + ɛ t, ɛ t N(0, σ 2 ) 1. Mean of y t given y t 1, y t 2, E(y t y t 1, y t 2, ) = φy t 1 2. Variance of y t given y t 1, y t 87 6.1 AR(1) y t = φy t 1 + ɛ t, ɛ t N(0, σ 2 ) 1. Mean of y t given y t 1, y t 2, E(y t y t 1, y t 2, ) = φy t 1 2. Variance of y t given y t 1, y t 2, V(y t y t 1, y t 2, ) = σ 2 3. Thus, y t y t 1,

More information

IMO 1 n, 21n n (x + 2x 1) + (x 2x 1) = A, x, (a) A = 2, (b) A = 1, (c) A = 2?, 3 a, b, c cos x a cos 2 x + b cos x + c = 0 cos 2x a

IMO 1 n, 21n n (x + 2x 1) + (x 2x 1) = A, x, (a) A = 2, (b) A = 1, (c) A = 2?, 3 a, b, c cos x a cos 2 x + b cos x + c = 0 cos 2x a 1 40 (1959 1999 ) (IMO) 41 (2000 ) WEB 1 1959 1 IMO 1 n, 21n + 4 13n + 3 2 (x + 2x 1) + (x 2x 1) = A, x, (a) A = 2, (b) A = 1, (c) A = 2?, 3 a, b, c cos x a cos 2 x + b cos x + c = 0 cos 2x a = 4, b =

More information

II (Percolation) ( 3-4 ) 1. [ ],,,,,,,. 2. [ ],.. 3. [ ],. 4. [ ] [ ] G. Grimmett Percolation Springer-Verlag New-York [ ] 3

II (Percolation) ( 3-4 ) 1. [ ],,,,,,,. 2. [ ],.. 3. [ ],. 4. [ ] [ ] G. Grimmett Percolation Springer-Verlag New-York [ ] 3 II (Percolation) 12 9 27 ( 3-4 ) 1 [ ] 2 [ ] 3 [ ] 4 [ ] 1992 5 [ ] G Grimmett Percolation Springer-Verlag New-York 1989 6 [ ] 3 1 3 p H 2 3 2 FKG BK Russo 2 p H = p T (=: p c ) 3 2 Kesten p c =1/2 ( )

More information

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a =

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a = [ ] 9 IC. dx = 3x 4y dt dy dt = x y u xt = expλt u yt λ u u t = u u u + u = xt yt 6 3. u = x, y, z = x + y + z u u 9 s9 grad u ux, y, z = c c : grad u = u x i + u y j + u k i, j, k z x, y, z grad u v =

More information

10:30 12:00 P.G. vs vs vs 2

10:30 12:00 P.G. vs vs vs 2 1 10:30 12:00 P.G. vs vs vs 2 LOGIT PROBIT TOBIT mean median mode CV 3 4 5 0.5 1000 6 45 7 P(A B) = P(A) + P(B) - P(A B) P(B A)=P(A B)/P(A) P(A B)=P(B A) P(A) P(A B) P(A) P(B A) P(B) P(A B) P(A) P(B) P(B

More information

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 第 2 版 1 刷発行時のものです. 医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/009192 このサンプルページの内容は, 第 2 版 1 刷発行時のものです. i 2 t 1. 2. 3 2 3. 6 4. 7 5. n 2 ν 6. 2 7. 2003 ii 2 2013 10 iii 1987

More information

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq 49 2 I II 2.1 3 e e = 1.602 10 19 A s (2.1 50 2 I SI MKSA 2.1.1 r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = 3 10 8 m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq F = k r

More information

Chap11.dvi

Chap11.dvi . () x 3 + dx () (x )(x ) dx + sin x sin x( + cos x) dx () x 3 3 x + + 3 x + 3 x x + x 3 + dx 3 x + dx 6 x x x + dx + 3 log x + 6 log x x + + 3 rctn ( ) dx x + 3 4 ( x 3 ) + C x () t x t tn x dx x. t x

More information

II 2 II

II 2 II II 2 II 2005 yugami@cc.utsunomiya-u.ac.jp 2005 4 1 1 2 5 2.1.................................... 5 2.2................................. 6 2.3............................. 6 2.4.................................

More information

n Y 1 (x),..., Y n (x) 1 W (Y 1 (x),..., Y n (x)) 0 W (Y 1 (x),..., Y n (x)) = Y 1 (x)... Y n (x) Y 1(x)... Y n(x) (x)... Y n (n 1) (x) Y (n 1)

n Y 1 (x),..., Y n (x) 1 W (Y 1 (x),..., Y n (x)) 0 W (Y 1 (x),..., Y n (x)) = Y 1 (x)... Y n (x) Y 1(x)... Y n(x) (x)... Y n (n 1) (x) Y (n 1) D d dx 1 1.1 n d n y a 0 dx n + a d n 1 y 1 dx n 1 +... + a dy n 1 dx + a ny = f(x)...(1) dk y dx k = y (k) a 0 y (n) + a 1 y (n 1) +... + a n 1 y + a n y = f(x)...(2) (2) (2) f(x) 0 a 0 y (n) + a 1 y

More information

2016 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 1 16 2 1 () X O 3 (O1) X O, O (O2) O O (O3) O O O X (X, O) O X X (O1), (O2), (O3) (O2) (O3) n (O2) U 1,..., U n O U k O k=1 (O3) U λ O( λ Λ) λ Λ U λ O 0 X 0 (O2) n =

More information

21 2 26 i 1 1 1.1............................ 1 1.2............................ 3 2 9 2.1................... 9 2.2.......... 9 2.3................... 11 2.4....................... 12 3 15 3.1..........

More information

, 1 ( f n (x))dx d dx ( f n (x)) 1 f n (x)dx d dx f n(x) lim f n (x) = [, 1] x f n (x) = n x x 1 f n (x) = x f n (x) = x 1 x n n f n(x) = [, 1] f n (x

, 1 ( f n (x))dx d dx ( f n (x)) 1 f n (x)dx d dx f n(x) lim f n (x) = [, 1] x f n (x) = n x x 1 f n (x) = x f n (x) = x 1 x n n f n(x) = [, 1] f n (x 1 1.1 4n 2 x, x 1 2n f n (x) = 4n 2 ( 1 x), 1 x 1 n 2n n, 1 x n n 1 1 f n (x)dx = 1, n = 1, 2,.. 1 lim 1 lim 1 f n (x)dx = 1 lim f n(x) = ( lim f n (x))dx = f n (x)dx 1 ( lim f n (x))dx d dx ( lim f d

More information

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2 No.2 1 2 2 δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i δx j (5) δs 2 = δx i δx i + 2 u i δx i δx j = δs 2 + 2s ij δx i δx j

More information

1 R Windows R 1.1 R The R project web R web Download [CRAN] CRAN Mirrors Japan Download and Install R [Windows 9

1 R Windows R 1.1 R The R project web   R web Download [CRAN] CRAN Mirrors Japan Download and Install R [Windows 9 1 R 2007 8 19 1 Windows R 1.1 R The R project web http://www.r-project.org/ R web Download [CRAN] CRAN Mirrors Japan Download and Install R [Windows 95 and later ] [base] 2.5.1 R - 2.5.1 for Windows R

More information