untitled

Size: px
Start display at page:

Download "untitled"

Transcription

1 2

2 : n =1, 2,,

3 weak law of large numbers 1. X 1,X 2,,X n 2. µ = E(X i ),i=1, 2,,n 3. σi 2 = V (X i ) σ 2,i=1, 2,,n ɛ>0 ( lim P X 1 + X X n n n ) µ ɛ =0 X µ converge in probability 3

4 : Y = X 1 + X X n n E(Y )=µ V (Y )= σ σ2 n n 2 σ2 + + σ 2 n 2 P ( Y E(Y ) ɛ) V (Y ) ɛ 2 P ( Y µ ɛ) σ2 nɛ 2 ( lim P X 1 + X X n n n = σ2 n ) µ ɛ =0 4

5 : n =

6 X µ = E(X),. ν 2k = E(X µ) 2k ɛ>0 P ( X µ ɛ) ν 2k ɛ 2k : D = {x x µ ɛ} ν 2k = (x µ)2k f(x) dx (x D µ)2k f(x) dx D ɛ2k f(x) dx ɛ 2k f(x) dx D ɛ 2k P ( X µ ɛ) 6

7 4 X 1,X 2,,X n : E(X i )=µ, V (X i )=σ 2,E(X i µ) 4 = ν 4,i=1,,n E( X µ) 4 = 1 [ 1 n 2 n ν 4 + 3(1 1 ] n ) σ4 : ( X µ) 4 = 1 n = 1 n 4 n i=1 n (X i µ) 4 i µ) i=1(x 4 + 4C 2 (X i µ) 2 (X j µ) 2 i j 4C 1 (X i µ)(x j µ)(x k µ)(x l µ) + i j k l + i j 4C 1 (X i µ) 3 (X j µ), E( X µ) 4 = 1 n 4 (nν 4 + n C 2 4 C 2 σ 4 ) 7

8 strong law of large numbers 1. X 1,X 2,,X n 2. µ = E(X i ) σ 2 = V (X i ) i =1, 2,,n ν 4 = E(X i µ) 4 P ( lim n X 1 + X X n n ) = µ =1 X µ converge almost surely (converge with probability 1) 8

9 lim X = µ n ɛ>0 N ɛ, n>n ɛ X µ <ɛ, ɛ >0, n>n ɛ ɛ ɛ N, n>n X µ ɛ, for some n>n 9

10 n >N>ν 4 P n = P ( X µ ɛ ) E( X µ) 4 = 1 n 2 ɛ 4 ɛ 4 < 1+3σ4 ɛ 4 1 n 2 [ 1 n ν 4 + 3(1 1 n ) σ4 ], ɛ>0 N P ( lim X = µ n ) = 1 P ( X µ ɛ for some n>n ) 1 (P N + P N+1 + ) 1 1+3σ4 1 ɛ 4 N (N +1) N 1 i=1 1/N 2 10

11 3 11

12 : X 1,,X n : p =1/2 Bernoulli n i=1 X i 0.35 n=

13 : X 1,,X n : p =1/2 Bernoulli n i=1 X i 0.25 n=

14 : X 1,,X n : p =1/2 Bernoulli n i=1 X i n=

15 : X 1,,X n : p =1/2 Bernoulli n i=1 X i n=

16 1 Central Limit Theorem 1. X 1,,X n 2. E(X i )=µ, V (X i )=σ 2,i=1,,n Y = n( X µ) σ lim P n( X µ) n σ y y = 1 2π e x2 2 dx (1) 16

17 : (1/2) Y X i Y i = X i µ σ E(Y i )=0,V(Y i )=1,Y = 1 n n i=1 Y i Y i M(t) M(0) = E ( e 0 Y i) =1 M (0) = E(Y i )=0 M (0) = E(Yi 2 )=V(Y i)+(ey i ) 2 =1 ψ(t) = log M(t) ψ (t) = M (t) M(t), ψ (t) = M (t)m(t) [M (t)] 2 [M(t)] 2 ψ(0) = 0, ψ (0) = 0, ψ (0) = 1 17

18 : (2/2), θ < t ψ(t) ψ(t) =ψ(0) + ψ (0) 1! t + ψ (0) 2! Y E ( e Yt) = E (e 1 n n i=1 Y it ) = n ) E (e t n Yi i=1 = [ M ( t/ n )] n t 2 + ψ (θ) 3! = exp { n log M ( t/ n )} = exp n ( t/ n ) 2 + ψ (θ) 6 t 3 = exp 2 t2 + ψ (θ) 6 n { } 1 exp 2 t2 n t 3 = 1 2 t2 + ψ (θ) t 3 6 ( t/ n ) 3 18

19 2 (De Moivre-Laplace Limit Theorem) X lim P a n X Bi(n, p) X np b =Φ(b) Φ(a) (2) np(1 p) Φ(x) Φ(x) = x 1 2π e 1 2 y 2 dy 19

20 : X 1,,X n p Bernoulli, X = n X i Bi(n, p) E(X i ) = p i=1 V (X i ) = p(1 p) X np np(1 p) = = ni=1 X i np np(1 p) n( X p) p(1 p) N(0, 1) 20

21 4 χ 2 F 21

22 χ 2 X 1,,X n N(0, 1) X 1,,X n : Y = X X 2 n f(y) 3 f(y) f(y) = ( ) n n y 2 1 e y 2 I(0, ) (y) (3) Γ(n/2) 2 1 (3) n χ 2 22

23 X 1,,X n χ 2 : (1/2) M Y (t) = E [exp(yt)] n = E exp = (Ee X2 1 t) n i=1 X 2 i t Ee X2 1 t = = = t 1 ex2 2π e x2 2 dx 1 2π e x2 2 (1 2t) dx 1 1 2t (1 2t >0) M Y (t) =(1 2t) n 2 23

24 χ 2 : 2/2 0 e yt f(y) dy = (x = y 2 yt ) = = = = 0 0 ( M Y (t) ( ) n e yt n y 2 1 e y 2 dy Γ(n/2) 2 ( ) n n y 2 1 e y 2 +yt dy 0 Γ(n/2) 2 ( ) n 1 1 ( ) n 2 2 Γ(n/2) 2 1 2t x ) n x n 2 1 e x dx 1 2t Γ(n/2) 0 ) n t ( 2 1 e x ( ) 2 1 2t dx 24

25 χ 2 M(t) =(1 2t) n 2 M (t) = n(1 2t) n 2 1 M (t) = n(n + 2)(1 2t) n 2 2 E(Y )=M (0) = n V (Y )=E(X 2 ) (EX) 2 = M (0) n 2 =2n 25

26 χ 2 χ n= n=2 n=4 n=5 n=

27 χ 2 : χ n= n= n=

28 χ 2 Z 1 = X 2 1,,Z n = X 2 n 1 χ2 E(Z i )=1,V(Z i )=2 Z = 1 n ni=1 X 2 i = Y/n n n(y/n 1) n( Z 1) = 2 2 N(0, 1) = Y N(n, 2n) 28

29 F X: m χ2 Y : n χ2 X, Y : Z = X/m Y/n f(z) 4 f(z) f(z) = ( ) m 1 m 2 m z B( m 2, n 2 ) 2 1 (1 + m m+n z) 2 I (0, (z) (4) n n 2 (4) (m, n) F 29

30 F : (1/3) X, Y X, Y f(x, y) = 2 m 2 Γ(m/2) x m 2 1 e x 2 Ix>0 (x) 2 n 2 Γ(n/2) y n 2 1 e y 2 Iy>0 (y) 1 1 z = x/m y/n = nx my w = y x = m n zw y = w Jacobian (x, y) (z, w) = x z y z x w y w = m n w 0 1 m n z = m n w 30

31 F : (2/3) f(z) = = = = g(z,w) dw f( m n zw, w)m n wdzdw 2 m+n 2 ( ) m m Γ( m 2 )Γ( n 2 ) n zw 2 1 e m 2n zw w n 2 1 e w 2 ( m n ) m 2 z m m+n 2 Γ( m 2 )Γ( n 2 ) 0 w m+n 2 1 e w(mz+n) 2n dw m n wdwdz t = w(mz+n) 2n w = 2nt 2n, dw = mz + n mz + n dt 31

32 F : (3/3) 0 w m+n 2 1 e w(mz+n) 2n dw = = = 0 ( ( ( 2nt mz + n 2n mz + n 2n mz + n ) m+n 2 1 e t 2n ) m+n 2 ) m+n 2 0 t m+n 2 e t dt ( m + n Γ 2 ) mz + n dt f(z) = m m 2 n n 2 = ( m n ) m 2 Γ( m+n 2 ) z Γ( m 2 )Γ( n 2 ) B( m 2, n 2 )z m 2 1 (1 + m n m 2 1 (mz + n) m+n 2 m+n z) 2 This completes the proof. 32

33 (m, n) F F n E(Z) = (n >2) n 2 V (Z) = 2n2 (m + n 2) m(n 2) 2 (n 4) n>4 ( 1 E Y ) ( y 2 = w ) = E(Z) =E 0 1 y ( 1 1 Γ(n/2) 2 ) n/2 ) n/2 y n 2 1 e y 2 dy ( 1 1 = y n e y 2 dy Γ(n/2) 2 0 ( ) 1 1 n/2 = 2 n 2 2 w n e w 2 dw Γ(n/2) 2 0 = 1 Γ((n 2)/2) = 1 1 n 2 Γ(n/2) = 1 n 2 ( ) X/m Y/n = n m E(X) E ( ) 1 Y = n m m 1 n 2 = 33 n n 2

34 Z = X/m Y/n, n =1 : F m=1 m=3 m=5 m=7 m=

35 Z = X/m Y/n, m =1 : F n=1 n=3 n=5 n=7 n=

36 Z = X/m Y/n, m = n : F H2,2L H4,4L H6,6L H10,10L H20,20L

37 5 : t 37

38 t X N(0, 1) Y χ 2 (n) X, Y : T = X f(t) Y/n 5 f(t) f(t) = 1 nb( n 2, 1 2 ) 1+ t2 n n+1 2 (5) 3 (5) n t 38

39 t : (1/3) X Y X, Y f(x, y) =f X (x) f Y (y) = 1 ( ) n e x π 2 Γ(n/2) y n 2 1 e y t = x y/n w = y x = w y = w n t x t y t x w y w = w n t 2 wn 0 1 w = n 39

40 t : (2/3) f(t) = = = g(t, w) dw f( w n t, w) w n dw ( ) n 1 e 1 w 1 2 n t π 2 = 1 ( ) n π 2 n Γ(n/2) 0 s = w 2 + w 2n t2, w = Γ(n/2) w n 2 1 e w 2 w n dw w n e w 2 w 2n t2 dw s 1/2+t 2 /(2n), dw = t2 2n 1 ds 40

41 f(t) = = t : (3/3) ( )n 1 2π n Γ(n/2) 2 + t2 2n ( )n 1 2π n Γ(n/2) 2 + t2 2n 1 2 n 2 0 s n e s ds 1 2 n 2 Γ ( n ) ( n B 2 2), 1 = Γ ( n Γ ( n , t f(t) = = ) ) ( 2 Γ 1 2) = πγ ( n 2 ) Γ ( n ) 2 ( 1 2 2)n ( nb n 2, 1 2 2) + t2 2n 1 ( nb n 2, 1 ) 1+ t2 n+1 2 n n 2 41

42 t : 1+ t2 n n+1 2 = 1+ t2 n n t 2 t 2 n ( n+1 2 ) f(t) = n e t2 2 1 ( nb n 2, 1 ) 1+ t2 n 2 n 1 e t2 2 2π n t. 42

43 1. t : E(T ) = E X Y/n = E(X) E = 0 E 1 Y/n 1 =0 Y/n 2. E(T )=0 V (T ) = E(T 2 ) = ne X 2 Y ( ) 1 = ne(x 2 ) E Y 1 = n 1 n 2 = n n 2 43

44 t n=1 n=3 n=5 n=10 n=

45 7 X 1,X 2,,X n : N(0, 1) 1. X = n 1 n i=1 X i N(0, 1/n) 2. S 2 = n i=1 (X i X) 2 χ 2 (n 1) 3. X S 2 : (1) X M(t) M(t) = E = E = n i=1 (e Xt ) ( e 1 n n i=1 X it ) E ( e t n X ) i = [ exp ( t 2 /2n 2)] n = exp ( t 2 /2n ) N(0, 1/n) 45

46 X S 2 (1/3) (2), (3) Y 1 Y 2. Y n 1 Y n = n(n 1) 1 n(n 1) 1 n(n 1) n 1 n(n 1) 1 n 1 n 1 n 1 n X 1 X 2. X n 1 X n = a 1 a 2. a n 1 a n X 1 X 2. X n 1 X n = A X 1 X 2. X n 1 X n a i a t i =1, i =1,,n a i a t j =0, i j =1,,n 46

47 X S 2 (2/3) Y 1,,Y n : E(Y i )=0,V(Y i )=1,i =1,,n E(Y i Y j )=0,i j =1,,n Y 1,,Y n n i=1 X 2 i = n i=1 Y 2 i : n i=1 Y 2 i = [Y 1,Y 2,,Y n ][Y 1,Y 2,,Y n ] t = ( [X 1,X 2,,X n ] A t)( A [X 1,X 2,,X n ] t) = [X 1,X 2,,X n ] ( A t A ) [X 1,X 2,,X n ] t = [X 1,X 2,,X n ] I n n [X 1,X 2,,X n ] t = n Xi 2 i=1 47

48 X S 2 (3/3) n 1 i=1 Yi 2 χ 2 (n 1) Y n Y n = n X n 1 i=1 Y 2 i = n i=1 = n Xi 2 i=1 = n i=1 = S 2 X 2 i Y 2 n n( X) 2 (X i X) 2 48

49 6 : 49

50 confidence interval θ f(x θ) X = {X 1,X 2,,X n }: X 1,X 2,,X n i.i.d. f(x θ) 0 <α<1 P [L(X) θ U(X)] = 1 α (6) 4 (6) [L, U] =[L(X) θ U(X)] θ 1 α confidence interval L, U lower confidence limit upper confidence limit 1 α [L, U] confidence coefficient 1 α =0.9,

51 1 one sample problem 1. 1 : X 1,,X n i.i.d. N(µ, σ 2 ) 2. µ 3. σ 2 2 two sample problem µ x µ y 3. σ 2 x /σ2 y i.i.d. X 1,,X m N(µ x,σx 2 ) i.i.d. Y 1,,Y n N(µ y,σy 2 ) 51

52 µ (σ 2 ) α z α zα 1 2π e x2 2 dx = α 8 1. : X 1,,X n i.i.d. N(µ, σ 2 ) 2. σ 2 : 3. X = n 1 n i=1 X i µ 1 2α σ P X n z 1 α µ X + σ z 1 α =1 2α n 52

53 µ (σ 2 ): X Y = E( X) =µ, V ( X) = σ2 n X N(µ, σ2 n ) n( X µ) N(0, 1) σ 1 2α = P [ Y z 1 α ] n( X µ) = P z 1 α z 1 α σ σ = P X n z 1 α µ X + σ z 1 α n 53

54 µ (σ 2 ) 9 1. tα n 1 : n 1 t α 2. : i.i.d. X 1,,X n N(µ, σ 2 ) 3. µ, σ 2 : 4. X = n 1 n i=1 X i,s 2 = 1 n 1 n i=1 (X i X) 2 µ 1 2α S P X n t1 α n 1 µ X + S t n 1 n 1 α =1 2α 54

55 Y = Z = µ (σ 2 ): n( X µ) σ (n 1)S2 σ 2 N(0, 1) = n i=1 X i X σ 2 χ 2 (n 1) Y,Z T = Y Z/(n 1) = n( X µ) S t(n 1) 1 2α = P [ T t n 1 1 α n( = P t n 1 1 α X µ) t n 1 1 α S ] S = P X n t n 1 1 α µ X + S t n 1 n 1 α 55

56 µ (σ 2 ): , s 2 x = N(µ, σ 2 ) µ 1 2α = 95%, 90% [ x s n t n 1 1 α, x + s 50.0,α =0.025, 0.05 s = 1 n 1 (xi x) 2 = n n 1 s2 x = n t n 1 ] 1 α n = 100, x = = t = t =1.98, t = t = % : [ , ] = [48.0, 52.0] 90% : [ , ] = [48.3, 51.7] 56

57 7 : 57

58 σ χα n 1 : n 1 χ 2 α 2. : i.i.d. X 1,,X n N(µ, σ 2 ) 3. X = n 1 n i=1 X i,s 2 = n (X i X) 2 µ 1 2α P S2 χ1 α n 1 σ 2 S2 χ n 1 α i=1 =1 2α 58

59 S 2 σ 2 = n σ 2 : i=1 1 2α = P (X i X) 2 = P σ 2 χ 2 (n 1) χ n 1 α S2 χ n 1 1 α S2 σ 2 χn 1 1 α σ 2 S2 χ n 1 α 59

60 σ 2 : , s 2 x = N(µ, σ 2 ) σ 2 1 2α = 95%, 90% [ S 2 χ1 α n 1, ] S 2 χ n 1 α n = 100, x =50.0,s 2 = (x i x) 2 = ns 2 x = 100.2,α=0.025, 0.05 χ = , χ =73.361, χ = , χ = % : [ / , /73.361] = [77.9, 136.3] 90% : [ / , /77.046] = [81.2, 129.8] 60

61 σ 2 x /σ2 y Fα n 1;m 1 : (n 1,m 1) F α 2. : X 1,,X m i.i.d. N(µ x,σ 2 x), Y 1,,Y n i.i.d. N(µ y,σ 2 y) 3. X i,y j : X = 1 m Ȳ = 1 n m i=1 n j=1 X i,sx 2 = 1 m 1 Y i,sy 2 = 1 n 1 m i=1 n j=1 (X i X) 2 (Y i Ȳ )2 σ 2 x /σ2 y P 1 2α S2 x Sy 2 Fα n 1;m 1 σ2 x σy 2 S2 x S 2 y F1 α n 1;m 1 =1 2α 61

62 σ 2 x /σ2 y : (m 1) S2 x σx 2 (n 1) S2 y σy 2 = 1 σx 2 = 1 σy 2 m i=1 n j=1 (X i X) 2 χ 2 (m 1) (Y i Ȳ )2 χ 2 (n 1) Z = S2 y /σ2 y S 2 x /σ2 x = S2 y S 2 x σ2 x σ 2 y F (n 1,m 1) 1 2α = P = P Fα n 1;m 1 S2 y Fα n 1;m 1 Sx 2 Sy 2 62 S 2 x σ2 x σ 2 y σ2 x σ 2 y F n 1;m 1 1 α F n 1;m 1 1 α Sx 2 Sy 2

63 µ x µ y ( ) (σ 2 x,σ 2 y: ): X 1,,X m i.i.d. N(µ x,σ 2 x), Y 1,,Y n i.i.d. N(µ y,σ 2 y) 2. X i,y j : m X = 1 X i, m Ȳ = 1 i=1 n µ x µ y 1 2α P X Ȳ z 1 α σ 2 x m + σ2 y n j=1 Y i, n µ x µ y X Ȳ + z 1 α σx 2 m + σ2 y =1 2α n 63

64 µ x µ y ( ): X Ȳ E( X Ȳ ) = E( X) E(Ȳ )=µ x µ y V ( X Ȳ ) = V ( X)+V (Ȳ )=σ2 x m + σ2 y n Z = ( X Ȳ ) (µ x µ y ) σ 2 x /m + σ 2 y /n N(0, 1) 1 2α = P [ Z z 1 α ] = P z 1 α ( X Ȳ ) (µ x µ y ) σ 2 x /m + σy 2/n z 1 α 1 2α = P X Ȳ z 1 α σ 2 x m + σ2 y n µ x µ y X Ȳ + z 1 α 64 σx 2 m + σ2 y n

65 µ x µ y ( ) ( ): X 1,,X m i.i.d. N(µ x,σ 2 ), Y 1,,Y n i.i.d. N(µ y,σ 2 ) 2. X i,y j : X = 1 m Ȳ = 1 n m i=1 n j=1 ˆσ 2 = S2 x + S 2 y m + n 2 X i,sx 2 = m (X i X) 2 i=1 Y i,sy 2 = n (Y i Ȳ )2 µ x µ y 1 2α I = X Ȳ t m+n 2 1 m + 1 n ˆσ 1 α i=1 X Ȳ + t m+n 2 1 α 1 m + 1 n ˆσ 65

66 µ x µ y ( ): U = X Ȳ N (µ x µ y, ( 1 m + 1 n) σ 2 ) V = S2 x σ 2 + S2 y σ 2 χ2 (m + n 2) X,Ȳ,S2 x,s2 y : W =(U E(U))/ Var(U) T = W/ V/(m + n 2) = [ ( X Ȳ ) (µ x µ y ) ] / ( 1 m + 1 n )σ2 (S 2 x /σ 2 + S 2 y /σ2) /(m + n 2) = ( X Ȳ ) (µ x µ y ) 1 m + 1 n ˆσ t(m + n 2) 1 2α = P ( X Ȳ ) (µ x µ y ) 1 m + 1 n ˆσ t m+n 2 1 α 66

67 8 : Introduction 67

68 5( ) statistical hypothesis simple hypothesis composite hypothesis 1 X 1,,X n N(θ, 25) H : θ =17 H : θ 17 68

69 6( ) test of a statistical hypothesis reject 2 X 1,,X n N(θ, 25) H : θ 17 γ: X > n H 69

70 7( ) sample space n X 1,,X n X = {(x 1,,x n ); (x 1,,x n ) (X 1,,X n ) } 8( ) critical region X C X X (x 1,,x n ) C = C 3 X 1,,X n N(θ, 25) H : θ 17 γ: X > / n H : C γ = {(x 1,,x n ); x> / n} 70

71 2 9( ) null hypothesis, alternative hypothesis H 0 H 1 10 (2 ) two types of error H 0 H 0 1 type I error 1 1 size of type I error H 1 H 1 2 type error 2 2 size of type error 71

72 11 ( ) power function f(x θ) H 0 γ π γ (θ) =P [H 0 X 1,,X n f(x θ)] θ π γ (θ) [0, 1] 4 X 1,,X n N(θ, 25) H 0 : θ 17 X > / n H 0 π γ (θ) = P [ X > / n θ R] = P n( X θ) > / n θ 5 5/ n = 1 Φ / n θ 5/ n 72

73 π γ (θ) =1 Φ ( 17+10/ n θ 5/ n ) with n =

74 : H 0 : θ 17. π γ (θ) θ =

75 12 ( ) parameter space X f(x θ) θ Θ Θ ={θ θ } 5 X Bi(n, θ) P (X = x) = n C x θ n (1 θ) n x Θ={θ 0 θ 1} X N(θ, 1) f(x) = 1 (x θ)2 exp{ } 2π 2 Θ={θ <θ< } 75

76 13 ( ) size of test (significance level) : f(x θ) H 0 : θ Θ 0 γ π γ (θ) = sup [π γ (θ)] θ Θ 0 6 X 1,,X n N(θ, 25) H 0 : θ Θ 0 = {θ θ 17} γ: X > / n H0 : π γ (θ) =1 Φ ( ) 17+10/ n θ 5/ n = sup 1 Φ / n θ θ 17 5/ n = 1 Φ(2)

77 9 : 77

78 14 ( ) likelihood ratio test X 1,,X n f(x θ) H 0 : θ = θ 0 H 1 : θ = θ 1 λ = f(x 1 θ 0 ) f(x n θ 0 ) f(x 1 θ 1 ) f(x n θ 1 ) ni=1 f(x i θ 0 ) = ni=1 f(x i θ 1 ) k>0 λ k : H 0 λ>k : H 0 78

79 15 ( ) most powerful test H 0 : θ = θ 0 ; H 1 : θ = θ 1 α (0 <α<1) : γ π γ (θ 0 ) α γ α 1. π γ (θ 0 )=α 2. π γ (θ 1 ) π γ (θ 1 ) 79

80 Neyman-Pearson 14 (Neyman-Pearson ) Neyman-Pearson Lemma X 1,,X n f(x θ) H 0 : θ = θ 0 H 1 : θ = θ 1 : λ = n i=1 f(x i θ 0 )/ n i=1 f(x i θ 1 ) α(0 <α<1), 1. C = {(x 1,,x n ) λ k } 2. α = P [(X 1,,X n ) C θ = θ 0 ] γ α 80

81 Neyman-Pearson : α γ γ C P [(X 1,,X n ) C θ = θ 0 ] α A L 0 = A L 1 = n A i=1 n A i=1 f(x i θ 0 ) dx 1 dx n f(x i θ 1 ) dx 1 dx n π γ (θ 1 )= C L 1,π γ (θ 1 )= C L 1 C L 1 L 1 C 81

82 C L 1 Neyman-Pearson : ( ) C L 1 = C C L 1 1 k C C L 0 1 k = 1 k ( C C L 0 + = 1 k ( C L 0 This complets the proof. C C L 1 ) L 0 C = 1 (α size of γ) k 0 C C L 0 C C L 0 C C L 0 ) C C L 0 82

83 X 1,,X n N(θ, 1) H 0 : θ = θ 0 vs. H 1 : θ = θ 1 (θ 1 >θ 0 ) α λ = n i=1 1 2π e (X i θ 0 )2 2 / n n i=1 1 e (X i θ 1 )2 2 2π = exp 1 [ (Xi θ 0 ) 2 (X i θ 1 ) 2] 2 i=1 = exp [n(θ 0 θ 1 ) X n ] 2 (θ20 θ21 ) λ k X k 83

84 k α = P [ X k θ = θ 0 ] = P [ n( X θ 0 ) n(k θ 0 )] = 1 Φ [ n(k θ0 ) ] k = θ n Φ 1 (1 α) X θ n Φ 1 (1 α) H 0 α =0.025 Φ 1 (1 α) =Φ 1 (0.975) 1.96 α =0.05 Φ 1 (1 α) =Φ 1 (0.95) 1.65 α =0.10 Φ 1 (1 α) =Φ 1 (0.90)

85 10 : 85

86 f(x θ) X 1,,X n θ 1 α (L, U) =(L(X 1,,X n ),U(X 1,,X n )) H 0 : θ = θ 0 γ: θ 0 (L, U) H 0 θ 0 (L, U) H 0 P [H 0 H 0 ] = P [θ 0 (L, U) H 0 ] = 1 P [θ 0 (L, U) H 0 ] = α 86

87 15 ( ) 1. tα n 1 : n 1 t α 2. : i.i.d. X 1,,X n N(µ, σ 2 ) 3. µ, σ 2 : 4. X = n 1 n i=1 X i,s 2 = 1 n 1 n i=1 (X i X) 2 µ 1 2α S P X n t1 α n 1 µ X + S t n 1 n 1 α =1 2α 87

88 ( ) H 0 : µ = µ 0 C = { (x 1,,x n ); T >t n 1 1 α = (x 1,,x n ); n( X µ0 ) S ] >tn 1 1 α = P [H 0 H 0 ] = P n( X µ0 ) S = 1 P n( X µ0 ) S = 1 (1 2α) = 2α >tn 1 1 α tn 1 1 α 88

89 ( ) 20 ( kg) α =0.1, kg H0 : µ = µ 0 =49.5 n =20, x =51.80, s 2 = (x i x) 2 /(n 1) = T = n( X µ0 ) S = 20( ) =1.90 =0.1 t n = t =1.73 <T H 0 =0.05 t n = t =2.09 >T H 0 89

90 16 ( ) 1. χα n 1 : n 1 χ 2 α 2. : i.i.d. X 1,,X n N(µ, σ 2 ) 3. X = n 1 n i=1 X i,s 2 = n (X i X) 2 µ 1 2α P S2 χ1 α n 1 σ 2 S2 χ n 1 α i=1 =1 2α 90

91 ( ) H 0 : σ 2 = σ 2 0 C = { (x 1,,x n ); S 2 <σ 2 0 χn 1 α and S 2 >σ0 2 } χn 1 1 α = P [H 0 H 0 ] = P { S 2 <σ0 2 χ n 1 α and S 2 >σ0 2 χ n 1 1 α = 1 P { σ0 2 χn 1 S 2 σ0 2 χn 1 = 1 P α S 2 χ n 1 1 α = 1 (1 2α) = 2α σ 2 0 S2 χ n 1 α 1 α } } 91

A B P (A B) = P (A)P (B) (3) A B A B P (B A) A B A B P (A B) = P (B A)P (A) (4) P (B A) = P (A B) P (A) (5) P (A B) P (B A) P (A B) A B P

A B P (A B) = P (A)P (B) (3) A B A B P (B A) A B A B P (A B) = P (B A)P (A) (4) P (B A) = P (A B) P (A) (5) P (A B) P (B A) P (A B) A B P 1 1.1 (population) (sample) (event) (trial) Ω () 1 1 Ω 1.2 P 1. A A P (A) 0 1 0 P (A) 1 (1) 2. P 1 P 0 1 6 1 1 6 0 3. A B P (A B) = P (A) + P (B) (2) A B A B A 1 B 2 A B 1 2 1 2 1 1 2 2 3 1.3 A B P (A

More information

tokei01.dvi

tokei01.dvi 2. :,,,. :.... Apr. - Jul., 26FY Dept. of Mechanical Engineering, Saga Univ., JAPAN 4 3. (probability),, 1. : : n, α A, A a/n. :, p, p Apr. - Jul., 26FY Dept. of Mechanical Engineering, Saga Univ., JAPAN

More information

6.1 (P (P (P (P (P (P (, P (, P.

6.1 (P (P (P (P (P (P (, P (, P. (011 30 7 0 ( ( 3 ( 010 1 (P.3 1 1.1 (P.4.................. 1 1. (P.4............... 1 (P.15.1 (P.16................. (P.0............3 (P.18 3.4 (P.3............... 4 3 (P.9 4 3.1 (P.30........... 4 3.

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

6.1 (P (P (P (P (P (P (, P (, P.101

6.1 (P (P (P (P (P (P (, P (, P.101 (008 0 3 7 ( ( ( 00 1 (P.3 1 1.1 (P.3.................. 1 1. (P.4............... 1 (P.15.1 (P.15................. (P.18............3 (P.17......... 3.4 (P................ 4 3 (P.7 4 3.1 ( P.7...........

More information

201711grade1ouyou.pdf

201711grade1ouyou.pdf 2017 11 26 1 2 52 3 12 13 22 23 32 33 42 3 5 3 4 90 5 6 A 1 2 Web Web 3 4 1 2... 5 6 7 7 44 8 9 1 2 3 1 p p >2 2 A 1 2 0.6 0.4 0.52... (a) 0.6 0.4...... B 1 2 0.8-0.2 0.52..... (b) 0.6 0.52.... 1 A B 2

More information

I L01( Wed) : Time-stamp: Wed 07:38 JST hig e, ( ) L01 I(2017) 1 / 19

I L01( Wed) : Time-stamp: Wed 07:38 JST hig e,   ( ) L01 I(2017) 1 / 19 I L01(2017-09-20 Wed) : Time-stamp: 2017-09-20 Wed 07:38 JST hig e, http://hig3.net ( ) L01 I(2017) 1 / 19 ? 1? 2? ( ) L01 I(2017) 2 / 19 ?,,.,., 1..,. 1,2,.,.,. ( ) L01 I(2017) 3 / 19 ? I. M (3 ) II,

More information

数理統計学Iノート

数理統計学Iノート I ver. 0/Apr/208 * (inferential statistics) *2 A, B *3 5.9 *4 *5 [6] [],.., 7 2004. [2].., 973. [3]. R (Wonderful R )., 9 206. [4]. ( )., 7 99. [5]. ( )., 8 992. [6],.., 989. [7]. - 30., 0 996. [4] [5]

More information

( )/2 hara/lectures/lectures-j.html 2, {H} {T } S = {H, T } {(H, H), (H, T )} {(H, T ), (T, T )} {(H, H), (T, T )} {1

( )/2   hara/lectures/lectures-j.html 2, {H} {T } S = {H, T } {(H, H), (H, T )} {(H, T ), (T, T )} {(H, H), (T, T )} {1 ( )/2 http://www2.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html 1 2011 ( )/2 2 2011 4 1 2 1.1 1 2 1 2 3 4 5 1.1.1 sample space S S = {H, T } H T T H S = {(H, H), (H, T ), (T, H), (T, T )} (T, H) S

More information

Z: Q: R: C: sin 6 5 ζ a, b

Z: Q: R: C: sin 6 5 ζ a, b Z: Q: R: C: 3 3 7 4 sin 6 5 ζ 9 6 6............................... 6............................... 6.3......................... 4 7 6 8 8 9 3 33 a, b a bc c b a a b 5 3 5 3 5 5 3 a a a a p > p p p, 3,

More information

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2 II No.1 [n/] [1]H n x) H n x) = 1) r n! r!n r)! x)n r r= []H n x) n,, H n x) = 1) n H n x) [3] H n x) = 1) n dn x e dx n e x [4] H n+1 x) = xh n x) nh n 1 x) ) d dx x H n x) = H n+1 x) d dx H nx) = nh

More information

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google I4 - : April, 4 Version :. Kwhir, Tomoki TA (Kondo, Hirotk) Google http://www.mth.ngoy-u.c.jp/~kwhir/courses/4s-biseki.html pdf 4 4 4 4 8 e 5 5 9 etc. 5 6 6 6 9 n etc. 6 6 6 3 6 3 7 7 etc 7 4 7 7 8 5 59

More information

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t 6 6.1 6.1 (1 Z ( X = e Z, Y = Im Z ( Z = X + iy, i = 1 (2 Z E[ e Z ] < E[ Im Z ] < Z E[Z] = E[e Z] + ie[im Z] 6.2 Z E[Z] E[ Z ] : E[ Z ] < e Z Z, Im Z Z E[Z] α = E[Z], Z = Z Z 1 {Z } E[Z] = α = α [ α ]

More information

( 30 ) 30 4 5 1 4 1.1............................................... 4 1.............................................. 4 1..1.................................. 4 1.......................................

More information

t χ 2 F Q t χ 2 F 1 2 µ, σ 2 N(µ, σ 2 ) f(x µ, σ 2 ) = 1 ( exp (x ) µ)2 2πσ 2 2σ 2 0, N(0, 1) (100 α) z(α) t χ 2 *1 2.1 t (i)x N(µ, σ 2 ) x µ σ N(0, 1

t χ 2 F Q t χ 2 F 1 2 µ, σ 2 N(µ, σ 2 ) f(x µ, σ 2 ) = 1 ( exp (x ) µ)2 2πσ 2 2σ 2 0, N(0, 1) (100 α) z(α) t χ 2 *1 2.1 t (i)x N(µ, σ 2 ) x µ σ N(0, 1 t χ F Q t χ F µ, σ N(µ, σ ) f(x µ, σ ) = ( exp (x ) µ) πσ σ 0, N(0, ) (00 α) z(α) t χ *. t (i)x N(µ, σ ) x µ σ N(0, ) (ii)x,, x N(µ, σ ) x = x+ +x N(µ, σ ) (iii) (i),(ii) z = x µ N(0, ) σ N(0, ) ( 9 97.

More information

untitled

untitled 3 3. (stochastic differential equations) { dx(t) =f(t, X)dt + G(t, X)dW (t), t [,T], (3.) X( )=X X(t) : [,T] R d (d ) f(t, X) : [,T] R d R d (drift term) G(t, X) : [,T] R d R d m (diffusion term) W (t)

More information

IA hara@math.kyushu-u.ac.jp Last updated: January,......................................................................................................................................................................................

More information

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,.

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,. 24(2012) (1 C106) 4 11 (2 C206) 4 12 http://www.math.is.tohoku.ac.jp/~obata,.,,,.. 1. 2. 3. 4. 5. 6. 7.,,. 1., 2007 (). 2. P. G. Hoel, 1995. 3... 1... 2.,,. ii 3.,. 4. F. (),.. 5... 6.. 7.,,. 8.,. 1. (75%)

More information

³ÎΨÏÀ

³ÎΨÏÀ 2017 12 12 Makoto Nakashima 2017 12 12 1 / 22 2.1. C, D π- C, D. A 1, A 2 C A 1 A 2 C A 3, A 4 D A 1 A 2 D Makoto Nakashima 2017 12 12 2 / 22 . (,, L p - ). Makoto Nakashima 2017 12 12 3 / 22 . (,, L p

More information

st.dvi

st.dvi 9 3 5................................... 5............................. 5....................................... 5.................................. 7.........................................................................

More information

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ = 1 1.1 ( ). z = + bi,, b R 0, b 0 2 + b 2 0 z = + bi = ( ) 2 + b 2 2 + b + b 2 2 + b i 2 r = 2 + b 2 θ cos θ = 2 + b 2, sin θ = b 2 + b 2 2π z = r(cos θ + i sin θ) 1.2 (, ). 1. < 2. > 3. ±,, 1.3 ( ). A

More information

renshumondai-kaito.dvi

renshumondai-kaito.dvi 3 1 13 14 1.1 1 44.5 39.5 49.5 2 0.10 2 0.10 54.5 49.5 59.5 5 0.25 7 0.35 64.5 59.5 69.5 8 0.40 15 0.75 74.5 69.5 79.5 3 0.15 18 0.90 84.5 79.5 89.5 2 0.10 20 1.00 20 1.00 2 1.2 1 16.5 20.5 12.5 2 0.10

More information

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10% 1 2006.4.17. A 3-312 tel: 092-726-4774, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office hours: B A I ɛ-δ ɛ-δ 1. 2. A 1. 1. 2. 3. 4. 5. 2. ɛ-δ 1. ɛ-n

More information

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2 2005 9/8-11 2 2.2 ( 2-5) γ ( ) γ cos θ 2πr πρhr 2 g h = 2γ cos θ ρgr (2.1) γ = ρgrh (2.2) 2 cos θ θ cos θ = 1 (2.2) γ = 1 ρgrh (2.) 2 2. p p ρgh p ( ) p p = p ρgh (2.) h p p = 2γ r 1 1 (Berry,1975) 2-6

More information

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A .. Laplace ). A... i),. ω i i ). {ω,..., ω } Ω,. ii) Ω. Ω. A ) r, A P A) P A) r... ).. Ω {,, 3, 4, 5, 6}. i i 6). A {, 4, 6} P A) P A) 3 6. ).. i, j i, j) ) Ω {i, j) i 6, j 6}., 36. A. A {i, j) i j }.

More information

X G P G (X) G BG [X, BG] S 2 2 2 S 2 2 S 2 = { (x 1, x 2, x 3 ) R 3 x 2 1 + x 2 2 + x 2 3 = 1 } R 3 S 2 S 2 v x S 2 x x v(x) T x S 2 T x S 2 S 2 x T x S 2 = { ξ R 3 x ξ } R 3 T x S 2 S 2 x x T x S 2

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

10:30 12:00 P.G. vs vs vs 2

10:30 12:00 P.G. vs vs vs 2 1 10:30 12:00 P.G. vs vs vs 2 LOGIT PROBIT TOBIT mean median mode CV 3 4 5 0.5 1000 6 45 7 P(A B) = P(A) + P(B) - P(A B) P(B A)=P(A B)/P(A) P(A B)=P(B A) P(A) P(A B) P(A) P(B A) P(B) P(A B) P(A) P(B) P(B

More information

n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................

More information

Note.tex 2008/09/19( )

Note.tex 2008/09/19( ) 1 20 9 19 2 1 5 1.1........................ 5 1.2............................. 8 2 9 2.1............................. 9 2.2.............................. 10 3 13 3.1.............................. 13 3.2..................................

More information

III III 2010 PART I 1 Definition 1.1 (, σ-),,,, Borel( ),, (σ-) (M, F, µ), (R, B(R)), (C, B(C)) Borel Definition 1.2 (µ-a.e.), (in µ), (in L 1 (µ)). T

III III 2010 PART I 1 Definition 1.1 (, σ-),,,, Borel( ),, (σ-) (M, F, µ), (R, B(R)), (C, B(C)) Borel Definition 1.2 (µ-a.e.), (in µ), (in L 1 (µ)). T III III 2010 PART I 1 Definition 1.1 (, σ-),,,, Borel( ),, (σ-) (M, F, µ), (R, B(R)), (C, B(C)) Borel Definition 1.2 (µ-a.e.), (in µ), (in L 1 (µ)). Theorem 1.3 (Lebesgue ) lim n f n = f µ-a.e. g L 1 (µ)

More information

2011de.dvi

2011de.dvi 211 ( 4 2 1. 3 1.1............................... 3 1.2 1- -......................... 13 1.3 2-1 -................... 19 1.4 3- -......................... 29 2. 37 2.1................................ 37

More information

: , 2.0, 3.0, 2.0, (%) ( 2.

: , 2.0, 3.0, 2.0, (%) ( 2. 2017 1 2 1.1...................................... 2 1.2......................................... 4 1.3........................................... 10 1.4................................. 14 1.5..........................................

More information

(pdf) (cdf) Matlab χ ( ) F t

(pdf) (cdf) Matlab χ ( ) F t (, ) (univariate) (bivariate) (multi-variate) Matlab Octave Matlab Matlab/Octave --...............3. (pdf) (cdf)...3.4....4.5....4.6....7.7. Matlab...8.7.....9.7.. χ ( )...0.7.3.....7.4. F....7.5. t-...3.8....4.8.....4.8.....5.8.3....6.8.4....8.8.5....8.8.6....8.9....9.9.....9.9.....0.9.3....0.9.4.....9.5.....0....3

More information

body.dvi

body.dvi ..1 f(x) n = 1 b n = 1 f f(x) cos nx dx, n =, 1,,... f(x) sin nx dx, n =1,, 3,... f(x) = + ( n cos nx + b n sin nx) n=1 1 1 5 1.1........................... 5 1.......................... 14 1.3...........................

More information

Z[i] Z[i] π 4,1 (x) π 4,3 (x) 1 x (x ) 2 log x π m,a (x) 1 x ϕ(m) log x 1.1 ( ). π(x) x (a, m) = 1 π m,a (x) x modm a 1 π m,a (x) 1 ϕ(m) π(x)

Z[i] Z[i] π 4,1 (x) π 4,3 (x) 1 x (x ) 2 log x π m,a (x) 1 x ϕ(m) log x 1.1 ( ). π(x) x (a, m) = 1 π m,a (x) x modm a 1 π m,a (x) 1 ϕ(m) π(x) 3 3 22 Z[i] Z[i] π 4, (x) π 4,3 (x) x (x ) 2 log x π m,a (x) x ϕ(m) log x. ( ). π(x) x (a, m) = π m,a (x) x modm a π m,a (x) ϕ(m) π(x) ϕ(m) x log x ϕ(m) m f(x) g(x) (x α) lim f(x)/g(x) = x α mod m (a,

More information

ii 3.,. 4. F. ( ), ,,. 8.,. 1. (75% ) (25% ) =7 24, =7 25, =7 26 (. ). 1.,, ( ). 3.,...,.,.,.,.,. ( ) (1 2 )., ( ), 0., 1., 0,.

ii 3.,. 4. F. ( ), ,,. 8.,. 1. (75% ) (25% ) =7 24, =7 25, =7 26 (. ). 1.,, ( ). 3.,...,.,.,.,.,. ( ) (1 2 )., ( ), 0., 1., 0,. (1 C205) 4 10 (2 C206) 4 11 (2 B202) 4 12 25(2013) http://www.math.is.tohoku.ac.jp/~obata,.,,,..,,. 1. 2. 3. 4. 5. 6. 7. 8. 1., 2007 ( ).,. 2. P. G., 1995. 3. J. C., 1988. 1... 2.,,. ii 3.,. 4. F. ( ),..

More information

(Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fou

(Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fou (Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fourier) (Fourier Bessel).. V ρ(x, y, z) V = 4πGρ G :.

More information

k3 ( :07 ) 2 (A) k = 1 (B) k = 7 y x x 1 (k2)?? x y (A) GLM (k

k3 ( :07 ) 2 (A) k = 1 (B) k = 7 y x x 1 (k2)?? x y (A) GLM (k 2012 11 01 k3 (2012-10-24 14:07 ) 1 6 3 (2012 11 01 k3) kubo@ees.hokudai.ac.jp web http://goo.gl/wijx2 web http://goo.gl/ufq2 1 3 2 : 4 3 AIC 6 4 7 5 8 6 : 9 7 11 8 12 8.1 (1)........ 13 8.2 (2) χ 2....................

More information

Untitled

Untitled II 14 14-7-8 8/4 II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ 6/ ] Navier Stokes 3 [ ] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I 1 balance law t (ρv i )+ j

More information

chap9.dvi

chap9.dvi 9 AR (i) (ii) MA (iii) (iv) (v) 9.1 2 1 AR 1 9.1.1 S S y j = (α i + β i j) D ij + η j, η j = ρ S η j S + ε j (j =1,,T) (1) i=1 {ε j } i.i.d(,σ 2 ) η j (j ) D ij j i S 1 S =1 D ij =1 S>1 S =4 (1) y j =

More information

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d S I.. http://ayapin.film.s.dendai.ac.jp/~matuda /TeX/lecture.html PDF PS.................................... 3.3.................... 9.4................5.............. 3 5. Laplace................. 5....

More information

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s ... x, y z = x + iy x z y z x = Rez, y = Imz z = x + iy x iy z z () z + z = (z + z )() z z = (z z )(3) z z = ( z z )(4)z z = z z = x + y z = x + iy ()Rez = (z + z), Imz = (z z) i () z z z + z z + z.. z

More information

80 X 1, X 2,, X n ( λ ) λ P(X = x) = f (x; λ) = λx e λ, x = 0, 1, 2, x! l(λ) = n f (x i ; λ) = i=1 i=1 n λ x i e λ i=1 x i! = λ n i=1 x i e nλ n i=1 x

80 X 1, X 2,, X n ( λ ) λ P(X = x) = f (x; λ) = λx e λ, x = 0, 1, 2, x! l(λ) = n f (x i ; λ) = i=1 i=1 n λ x i e λ i=1 x i! = λ n i=1 x i e nλ n i=1 x 80 X 1, X 2,, X n ( λ ) λ P(X = x) = f (x; λ) = λx e λ, x = 0, 1, 2, x! l(λ) = n f (x i ; λ) = n λ x i e λ x i! = λ n x i e nλ n x i! n n log l(λ) = log(λ) x i nλ log( x i!) log l(λ) λ = 1 λ n x i n =

More information

solutionJIS.dvi

solutionJIS.dvi May 0, 006 6 morimune@econ.kyoto-u.ac.jp /9/005 (7 0/5/006 1 1.1 (a) (b) (c) c + c + + c = nc (x 1 x)+(x x)+ +(x n x) =(x 1 + x + + x n ) nx = nx nx =0 c(x 1 x)+c(x x)+ + c(x n x) =c (x i x) =0 y i (x

More information

December 28, 2018

December 28, 2018 e-mail : kigami@i.kyoto-u.ac.jp December 28, 28 Contents 2............................. 3.2......................... 7.3..................... 9.4................ 4.5............. 2.6.... 22 2 36 2..........................

More information

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) (

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) ( 6 20 ( ) sin, cos, tan sin, cos, tan, arcsin, arccos, arctan. π 2 sin π 2, 0 cos π, π 2 < tan < π 2 () ( 2 2 lim 2 ( 2 ) ) 2 = 3 sin (2) lim 5 0 = 2 2 0 0 2 2 3 3 4 5 5 2 5 6 3 5 7 4 5 8 4 9 3 4 a 3 b

More information

4................................. 4................................. 4 6................................. 6................................. 9.................................................... 3..3..........................

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 3.............................. 3.............................. 4.3 4................... 5.4........................ 6.5........................ 8.6...........................7

More information

20 6 4 1 4 1.1 1.................................... 4 1.1.1.................................... 4 1.1.2 1................................ 5 1.2................................... 7 1.2.1....................................

More information

.. ( )T p T = p p = T () T x T N P (X < x T ) N = ( T ) N (2) ) N ( P (X x T ) N = T (3) T N P T N P 0

.. ( )T p T = p p = T () T x T N P (X < x T ) N = ( T ) N (2) ) N ( P (X x T ) N = T (3) T N P T N P 0 20 5 8..................................................2.....................................3 L.....................................4................................. 2 2. 3 2. (N ).........................................

More information

確率論と統計学の資料

確率論と統計学の資料 5 June 015 ii........................ 1 1 1.1...................... 1 1........................... 3 1.3... 4 6.1........................... 6................... 7 ii ii.3.................. 8.4..........................

More information

21 2 26 i 1 1 1.1............................ 1 1.2............................ 3 2 9 2.1................... 9 2.2.......... 9 2.3................... 11 2.4....................... 12 3 15 3.1..........

More information

1 a b = max{a, b}, a b = mi{a, b} a 1 a 2 a a 1 a = max{a 1,... a }, a 1 a = mi{a 1,... a }. A sup A, if A A A A A sup A sup A = + A if A = ± y = arct

1 a b = max{a, b}, a b = mi{a, b} a 1 a 2 a a 1 a = max{a 1,... a }, a 1 a = mi{a 1,... a }. A sup A, if A A A A A sup A sup A = + A if A = ± y = arct 27 6 2 1 2 2 5 3 8 4 13 5 16 6 19 7 23 8 27 N Z = {, ±1, ±2,... }, R =, R + = [, + ), R = [, ], C =. a b = max{a, b}, a b = mi{a, b}, a a, a a. f : X R [a < f < b] = {x X; a < f(x) < b}. X [f] = [f ],

More information

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt S I. x yx y y, y,. F x, y, y, y,, y n http://ayapin.film.s.dendai.ac.jp/~matuda n /TeX/lecture.html PDF PS yx.................................... 3.3.................... 9.4................5..............

More information

ohpmain.dvi

ohpmain.dvi fujisawa@ism.ac.jp 1 Contents 1. 2. 3. 4. γ- 2 1. 3 10 5.6, 5.7, 5.4, 5.5, 5.8, 5.5, 5.3, 5.6, 5.4, 5.2. 5.5 5.6 +5.7 +5.4 +5.5 +5.8 +5.5 +5.3 +5.6 +5.4 +5.2 =5.5. 10 outlier 5 5.6, 5.7, 5.4, 5.5, 5.8,

More information

(1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10)

(1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10) 2017 12 9 4 1 30 4 10 3 1 30 3 30 2 1 30 2 50 1 1 30 2 10 (1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10) (1) i 23 c 23 0 1 2 3 4 5 6 7 8 9 a b d e f g h i (2) 23 23 (3) 23 ( 23 ) 23 x 1 x 2 23 x

More information

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2) 3 215 4 27 1 1 u u(x, t) u tt a 2 u xx, a > (1) D : {(x, t) : x, t } u (, t), u (, t), t (2) u(x, ) f(x), u(x, ) t 2, x (3) u(x, t) X(x)T (t) u (1) 1 T (t) a 2 T (t) X (x) X(x) α (2) T (t) αa 2 T (t) (4)

More information

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y [ ] 7 0.1 2 2 + y = t sin t IC ( 9) ( s090101) 0.2 y = d2 y 2, y = x 3 y + y 2 = 0 (2) y + 2y 3y = e 2x 0.3 1 ( y ) = f x C u = y x ( 15) ( s150102) [ ] y/x du x = Cexp f(u) u (2) x y = xey/x ( 16) ( s160101)

More information

構造と連続体の力学基礎

構造と連続体の力学基礎 II 37 Wabash Avenue Bridge, Illinois 州 Winnipeg にある歩道橋 Esplanade Riel 橋6 6 斜張橋である必要は多分無いと思われる すぐ横に道路用桁橋有り しかも塔基部のレストランは 8 年には営業していなかった 9 9. 9.. () 97 [3] [5] k 9. m w(t) f (t) = f (t) + mg k w(t) Newton

More information

1 Tokyo Daily Rainfall (mm) Days (mm)

1 Tokyo Daily Rainfall (mm) Days (mm) ( ) r-taka@maritime.kobe-u.ac.jp 1 Tokyo Daily Rainfall (mm) 0 100 200 300 0 10000 20000 30000 40000 50000 Days (mm) 1876 1 1 2013 12 31 Tokyo, 1876 Daily Rainfall (mm) 0 50 100 150 0 100 200 300 Tokyo,

More information

( ) 2.1. C. (1) x 4 dx = 1 5 x5 + C 1 (2) x dx = x 2 dx = x 1 + C = 1 2 x + C xdx (3) = x dx = 3 x C (4) (x + 1) 3 dx = (x 3 + 3x 2 + 3x +

( ) 2.1. C. (1) x 4 dx = 1 5 x5 + C 1 (2) x dx = x 2 dx = x 1 + C = 1 2 x + C xdx (3) = x dx = 3 x C (4) (x + 1) 3 dx = (x 3 + 3x 2 + 3x + (.. C. ( d 5 5 + C ( d d + C + C d ( d + C ( ( + d ( + + + d + + + + C (5 9 + d + d tan + C cos (sin (6 sin d d log sin + C sin + (7 + + d ( + + + + d log( + + + C ( (8 d 7 6 d + 6 + C ( (9 ( d 6 + 8 d

More information

p = mv p x > h/4π λ = h p m v Ψ 2 Ψ

p = mv p x > h/4π λ = h p m v Ψ 2 Ψ II p = mv p x > h/4π λ = h p m v Ψ 2 Ψ Ψ Ψ 2 0 x P'(x) m d 2 x = mω 2 x = kx = F(x) dt 2 x = cos(ωt + φ) mω 2 = k ω = m k v = dx = -ωsin(ωt + φ) dt = d 2 x dt 2 0 y v θ P(x,y) θ = ωt + φ ν = ω [Hz] 2π

More information

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 第 2 版 1 刷発行時のものです. 医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/009192 このサンプルページの内容は, 第 2 版 1 刷発行時のものです. i 2 t 1. 2. 3 2 3. 6 4. 7 5. n 2 ν 6. 2 7. 2003 ii 2 2013 10 iii 1987

More information

日本統計学会誌, 第44巻, 第2号, 251頁-270頁

日本統計学会誌, 第44巻, 第2号, 251頁-270頁 44, 2, 205 3 25 270 Multiple Comparison Procedures for Checking Differences among Sequence of Normal Means with Ordered Restriction Tsunehisa Imada Lee and Spurrier (995) Lee and Spurrier (995) (204) (2006)

More information

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co 16 I ( ) (1) I-1 I-2 I-3 (2) I-1 ( ) (100 ) 2l x x = 0 y t y(x, t) y(±l, t) = 0 m T g y(x, t) l y(x, t) c = 2 y(x, t) c 2 2 y(x, t) = g (A) t 2 x 2 T/m (1) y 0 (x) y 0 (x) = g c 2 (l2 x 2 ) (B) (2) (1)

More information

ii 3.,. 4. F. (), ,,. 8.,. 1. (75% ) (25% ) =9 7, =9 8 (. ). 1.,, (). 3.,. 1. ( ).,.,.,.,.,. ( ) (1 2 )., ( ), 0. 2., 1., 0,.

ii 3.,. 4. F. (), ,,. 8.,. 1. (75% ) (25% ) =9 7, =9 8 (. ). 1.,, (). 3.,. 1. ( ).,.,.,.,.,. ( ) (1 2 )., ( ), 0. 2., 1., 0,. 23(2011) (1 C104) 5 11 (2 C206) 5 12 http://www.math.is.tohoku.ac.jp/~obata,.,,,.. 1. 2. 3. 4. 5. 6. 7.,,. 1., 2007 ( ). 2. P. G. Hoel, 1995. 3... 1... 2.,,. ii 3.,. 4. F. (),.. 5.. 6.. 7.,,. 8.,. 1. (75%

More information

43433 8 3 . Stochastic exponentials...................................... 3. Girsanov s theorem......................................... 4 On the martingale property of stochastic exponentials 5. Gronwall

More information

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 0 < t < τ I II 0 No.2 2 C x y x y > 0 x 0 x > b a dx

More information

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 2 ), ϕ(t) = B 1 cos(ω 1 t + α 1 ) + B 2 cos(ω 2 t

More information

M3 x y f(x, y) (= x) (= y) x + y f(x, y) = x + y + *. f(x, y) π y f(x, y) x f(x + x, y) f(x, y) lim x x () f(x,y) x 3 -

M3 x y f(x, y) (= x) (= y) x + y f(x, y) = x + y + *. f(x, y) π y f(x, y) x f(x + x, y) f(x, y) lim x x () f(x,y) x 3 - M3............................................................................................ 3.3................................................... 3 6........................................... 6..........................................

More information

Basic Math. 1 0 [ N Z Q Q c R C] 1, 2, 3,... natural numbers, N Def.(Definition) N (1) 1 N, (2) n N = n +1 N, (3) N (1), (2), n N n N (element). n/ N.

Basic Math. 1 0 [ N Z Q Q c R C] 1, 2, 3,... natural numbers, N Def.(Definition) N (1) 1 N, (2) n N = n +1 N, (3) N (1), (2), n N n N (element). n/ N. Basic Mathematics 16 4 16 3-4 (10:40-12:10) 0 1 1 2 2 2 3 (mapping) 5 4 ε-δ (ε-δ Logic) 6 5 (Potency) 9 6 (Equivalence Relation and Order) 13 7 Zorn (Axiom of Choice, Zorn s Lemma) 14 8 (Set and Topology)

More information

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

I A A441 : April 15, 2013 Version : 1.1 I   Kawahira, Tomoki TA (Shigehiro, Yoshida ) I013 00-1 : April 15, 013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida) http://www.math.nagoya-u.ac.jp/~kawahira/courses/13s-tenbou.html pdf * 4 15 4 5 13 e πi = 1 5 0 5 7 3 4 6 3 6 10 6 17

More information

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4 1. k λ ν ω T v p v g k = π λ ω = πν = π T v p = λν = ω k v g = dω dk 1) ) 3) 4). p = hk = h λ 5) E = hν = hω 6) h = h π 7) h =6.6618 1 34 J sec) hc=197.3 MeV fm = 197.3 kev pm= 197.3 ev nm = 1.97 1 3 ev

More information

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x [ ] IC. f(x) = e x () f(x) f (x) () lim f(x) lim f(x) x + x (3) lim f(x) lim f(x) x + x (4) y = f(x) ( ) ( s46). < a < () a () lim a log xdx a log xdx ( ) n (3) lim log k log n n n k=.3 z = log(x + y ),

More information

i

i 009 I 1 8 5 i 0 1 0.1..................................... 1 0.................................................. 1 0.3................................. 0.4........................................... 3

More information

untitled

untitled 17 5 13 1 2 1.1... 2 1.2... 2 1.3... 3 2 3 2.1... 3 2.2... 5 3 6 3.1... 6 3.2... 7 3.3 t... 7 3.4 BC a... 9 3.5... 10 4 11 1 1 θ n ˆθ. ˆθ, ˆθ, ˆθ.,, ˆθ.,.,,,. 1.1 ˆθ σ 2 = E(ˆθ E ˆθ) 2 b = E(ˆθ θ). Y 1,,Y

More information

[1][2] [3] *1 Defnton 1.1. W () = σ 2 dt [2] Defnton 1.2. W (t ) Defnton 1.3. W () = E[W (t)] = Cov[W (t), W (s)] = E[W (t)w (s)] = σ 2 mn{s, t} Propo

[1][2] [3] *1 Defnton 1.1. W () = σ 2 dt [2] Defnton 1.2. W (t ) Defnton 1.3. W () = E[W (t)] = Cov[W (t), W (s)] = E[W (t)w (s)] = σ 2 mn{s, t} Propo @phykm 218 7 12 [2] [2] [1] ([4] ) 1 Ω = 2 N {Π n =1 A { 1, 1} N n N, A {{ 1, 1}, { 1}, {1}, }} B : Ω { 1, 1} P (Π n =1 A 2 N ) = 2 #{ A={ 1},{1}} X = j=1 B j B X +k X V[X ] = 1 ( ) 1 1 dt dx W (t) = t/dt

More information

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a =

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a = II 6 ishimori@phys.titech.ac.jp 6.. 5.4.. f Rx = f Lx = fx fx + lim = lim x x + x x f c = f x + x < c < x x x + lim x x fx fx x x = lim x x f c = f x x < c < x cosmx cosxdx = {cosm x + cosm + x} dx = [

More information

2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n

2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n . X {x, x 2, x 3,... x n } X X {, 2, 3, 4, 5, 6} X x i P i. 0 P i 2. n P i = 3. P (i ω) = i ω P i P 3 {x, x 2, x 3,... x n } ω P i = 6 X f(x) f(x) X n n f(x i )P i n x n i P i X n 2 G(k) e ikx = (ik) n

More information

.1 z = e x +xy y z y 1 1 x 0 1 z x y α β γ z = αx + βy + γ (.1) ax + by + cz = d (.1') a, b, c, d x-y-z (a, b, c). x-y-z 3 (0,

.1 z = e x +xy y z y 1 1 x 0 1 z x y α β γ z = αx + βy + γ (.1) ax + by + cz = d (.1') a, b, c, d x-y-z (a, b, c). x-y-z 3 (0, .1.1 Y K L Y = K 1 3 L 3 L K K (K + ) 1 1 3 L 3 K 3 L 3 K 0 (K + K) 1 3 L 3 K 1 3 L 3 lim K 0 K = L (K + K) 1 3 K 1 3 3 lim K 0 K = 1 3 K 3 L 3 z = f(x, y) x y z x-y-z.1 z = e x +xy y 3 x-y ( ) z 0 f(x,

More information

°ÌÁê¿ô³ØII

°ÌÁê¿ô³ØII July 14, 2007 Brouwer f f(x) = x x f(z) = 0 2 f : S 2 R 2 f(x) = f( x) x S 2 3 3 2 - - - 1. X x X U(x) U(x) x U = {U(x) x X} X 1. U(x) A U(x) x 2. A U(x), A B B U(x) 3. A, B U(x) A B U(x) 4. A U(x),

More information

keisoku01.dvi

keisoku01.dvi 2.,, Mon, 2006, 401, SAGA, JAPAN Dept. of Mechanical Engineering, Saga Univ., JAPAN 4 Mon, 2006, 401, SAGA, JAPAN Dept. of Mechanical Engineering, Saga Univ., JAPAN 5 Mon, 2006, 401, SAGA, JAPAN Dept.

More information

1 (1) () (3) I 0 3 I I d θ = L () dt θ L L θ I d θ = L = κθ (3) dt κ T I T = π κ (4) T I κ κ κ L l a θ L r δr δl L θ ϕ ϕ = rθ (5) l

1 (1) () (3) I 0 3 I I d θ = L () dt θ L L θ I d θ = L = κθ (3) dt κ T I T = π κ (4) T I κ κ κ L l a θ L r δr δl L θ ϕ ϕ = rθ (5) l 1 1 ϕ ϕ ϕ S F F = ϕ (1) S 1: F 1 1 (1) () (3) I 0 3 I I d θ = L () dt θ L L θ I d θ = L = κθ (3) dt κ T I T = π κ (4) T I κ κ κ L l a θ L r δr δl L θ ϕ ϕ = rθ (5) l : l r δr θ πrδr δf (1) (5) δf = ϕ πrδr

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

Maxwell

Maxwell I 2018 12 13 0 4 1 6 1.1............................ 6 1.2 Maxwell......................... 8 1.3.......................... 9 1.4..................... 11 1.5..................... 12 2 13 2.1...................

More information

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2 No.2 1 2 2 δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i δx j (5) δs 2 = δx i δx i + 2 u i δx i δx j = δs 2 + 2s ij δx i δx j

More information

30

30 3 ............................................2 2...........................................2....................................2.2...................................2.3..............................

More information

chap1.dvi

chap1.dvi 1 1 007 1 e iθ = cos θ + isin θ 1) θ = π e iπ + 1 = 0 1 ) 3 11 f 0 r 1 1 ) k f k = 1 + r) k f 0 f k k = 01) f k+1 = 1 + r)f k ) f k+1 f k = rf k 3) 1 ) ) ) 1+r/)f 0 1 1 + r/) f 0 = 1 + r + r /4)f 0 1 f

More information

006 11 8 0 3 1 5 1.1..................... 5 1......................... 6 1.3.................... 6 1.4.................. 8 1.5................... 8 1.6................... 10 1.6.1......................

More information

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) =

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) = 1 1 1.1 I R 1.1.1 c : I R 2 (i) c C (ii) t I c (t) (0, 0) c (t) c(i) c c(t) 1.1.2 (1) (2) (3) (1) r > 0 c : R R 2 : t (r cos t, r sin t) (2) C f : I R c : I R 2 : t (t, f(t)) (3) y = x c : R R 2 : t (t,

More information

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy z fz fz x, y, u, v, r, θ r > z = x + iy, f = u + iv γ D fz fz D fz fz z, Rm z, z. z = x + iy = re iθ = r cos θ + i sin θ z = x iy = re iθ = r cos θ i sin θ x = z + z = Re z, y = z z = Im z i r = z = z

More information

II Brown Brown

II Brown Brown II 16 12 5 1 Brown 3 1.1..................................... 3 1.2 Brown............................... 5 1.3................................... 8 1.4 Markov.................................... 1 1.5

More information

,,,17,,, ( ),, E Q [S T F t ] < S t, t [, T ],,,,,,,,

,,,17,,, ( ),, E Q [S T F t ] < S t, t [, T ],,,,,,,, 14 5 1 ,,,17,,,194 1 4 ( ),, E Q [S T F t ] < S t, t [, T ],,,,,,,, 1 4 1.1........................................ 4 5.1........................................ 5.........................................

More information

2012 IA 8 I p.3, 2 p.19, 3 p.19, 4 p.22, 5 p.27, 6 p.27, 7 p

2012 IA 8 I p.3, 2 p.19, 3 p.19, 4 p.22, 5 p.27, 6 p.27, 7 p 2012 IA 8 I 1 10 10 29 1. [0, 1] n x = 1 (n = 1, 2, 3,...) 2 f(x) = n 0 [0, 1] 2. 1 x = 1 (n = 1, 2, 3,...) 2 f(x) = n 0 [0, 1] 1 0 f(x)dx 3. < b < c [, c] b [, c] 4. [, b] f(x) 1 f(x) 1 f(x) [, b] 5.

More information

2019 1 5 0 3 1 4 1.1.................... 4 1.1.1......................... 4 1.1.2........................ 5 1.1.3................... 5 1.1.4........................ 6 1.1.5......................... 6 1.2..........................

More information

ii

ii i 2013 5 143 5.1...................................... 143 5.2.................................. 144 5.3....................................... 148 5.4.................................. 153 5.5...................................

More information

Z: Q: R: C:

Z: Q: R: C: 0 Z: Q: R: C: 3 4 4 4................................ 4 4.................................. 7 5 3 5...................... 3 5......................... 40 5.3 snz) z)........................... 4 6 46 x

More information

Lebesgue Fubini L p Banach, Hilbert Höld

Lebesgue Fubini L p Banach, Hilbert Höld II (Analysis II) Lebesgue (Applications of Lebesgue Integral Theory) 1 (Seiji HIABA) 1 ( ),,, ( ) 1 1 1.1 1 Lebesgue........................ 1 1.2 2 Fubini...................... 2 2 L p 5 2.1 Banach, Hilbert..............................

More information